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Abstract—Unmanned aerial vehicles (UAVs) have emerged as
indispensable tools in disaster management, providing critical
support in planning, response, and recovery efforts. Integrating
photovoltaic (PV) technology with UAVs offers promising oppor-
tunities to enhance their functionality and resilience in hostile
environments. However, existing PV-based power management
systems for UAVs face challenges related to changing light condi-
tions and the impact of partial shading on module performance. It
is shown that through embedding transistors with PV panels, the
PV based power source of the UAVs can be made adaptable with
the operating environment. However, existing shade detection
techniques are cumbersome and inefficient.

In this study, we propose a novel approach using a neural
network model to accurately predict the shading percentage
on PV cells, enabling dynamic power management. Through
extensive experiments, we demonstrate the effectiveness of the
model, achieving a high accuracy of 94% with 50 epochs and 96%
with 100 epochs. This research highlights the potential of machine
learning techniques in optimizing PV-based UAV power systems
and provides insights for future advancements in this field.
The integration of advanced power management strategies can
significantly enhance the performance and adaptability of UAVs,
contributing to more efficient and effective disaster response
operations.

Index Terms—Unmanned aerial vehicles (UAVs), Photovoltaics
(PV), neural networks, predictions, disaster management.

I. INTRODUCTION

Recently, unmanned aerial vehicles (UAVs) have emerged as

indispensable aids in the aftermath of a natural disaster. They

play a vital role in numerous phases of disaster mitigation,

from planning and preparation to response and recovery [1]–

[3]. In the planning and preparedness phases, UAVs’ high-

resolution imagery and detailed terrain data are invaluable [4]–

[6]. Authorities in charge of preparing for and responding to

natural disasters can use this information to create reliable

models for assessing risk and implementing efficient action

plans. Crucially, such strategies encompass the identification of

vulnerable areas, as well as the design of efficient evacuation

routes.

UAVs also enhance disaster management systems through

their role in predictive warning systems [7]. UAVs equipped

with sensors to monitor environmental changes can predict

potential disasters, facilitating the transmission of real-time

alerts and considerably reducing response times [7]. Moreover,

UAVs play a pivotal role in community mobilization during

disasters. UAVs can easily access areas that may be hazardous

or unreachable for humans and deliver crucial information

and relief materials swiftly and effectively [8]–[10]. This

expedited assistance is especially critical in the immediate

aftermath of a disaster. In the post-disaster phase, UAVs

are employed to monitor and evaluate community response

effectiveness. They provide detailed, real-time assessments of

the extent of damage and the success of response efforts. This

invaluable feedback assists in improving disaster management

strategies and informs future planning and response tactics. In

essence, integrating drones into disaster management systems

offers a multi-pronged approach that significantly enhances the

effectiveness of disaster response operations.

Although UAVs are increasingly essential in various fields,

current models often need to be revised in flight duration,

functionality, and resilience to operate in diverse weather con-

ditions. Additionally, while operating in hostile environments

such as disaster-hit areas, UAVs need multirole capabilities and

resilience to faulty conditions. During disaster assistance mis-

sions, the situation evolves unpredictably over time. Therefore,

UAVs must possess multirole capabilities to adapt effectively

to the dynamic conditions in the field.

Increasing battery capacity is one approach to extending

flight time. However, this solution often reduces the payload

capacity of the UAV, thereby compromising its functionality

[11]. Hydrogen [12]–[14] and gas-powered UAVs [15] are also

explored for powering UAVs during natural disaster missions

since they provide longer flight endurance and increased pay-

load capacity. However, hydrogen-powered UAVs face safety

concerns due to the highly flammable nature of hydrogen,

which requires careful handling and storage. Additionally, the

limited infrastructure for hydrogen refueling restricts their

availability and operational flexibility. Gas-powered UAVs

emit pollutants and have higher noise levels, impacting the

environment and disrupting rescue operations. As a result,

alternative power sources such as photovoltaics (PV) have been

extensively explored [16].

While integrating UAVs with PV technology can signifi-

cantly increase flight duration, the performance of such UAVs

is critically dependent on lighting conditions [16]. Moreover,

potential damage to a few PV cells in the module due to faults

or natural causes can render the UAV nonfunctional. There-
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fore, the current power management systems of PV-based

UAVs lack the intelligence to adapt in real-time to changing

application needs. Moreover, most present-day UAVs utilize

PV cells electrically connected in series-parallel (SP) config-

uration with a parallel-connected bypass diode-based scheme

[17]. The performance of such PV-based power sources can

significantly decline due to partial and complete shading [18],

[19]. If unaddressed, this decline can cause healthy PV cells

in the module to become forward-biased, leading them to

consume rather than produce electricity. This situation reduces

the overall efficiency of the PV module and, in the worst-

case scenario, could create hot spots leading to potential fire

hazards.

Efficient Maximum Power Point Tracking (MPPT) algo-

rithms have been proposed to mitigate this issue reasonably

[20]. However, further research is needed to improve the

resilience and efficiency of PV-based UAVs, particularly in

their response to changing light conditions and the operational

demands of various applications. Since, the MPPT technique

is unable to adapt if a couple of PV cells in the panel get

damaged while operating in harsh operating conditions.

Studies have demonstrated that incorporating complemen-

tary metal-oxide-semiconductor (CMOS) switches into photo-

voltaic (PV) cells enhances the efficiency of PV modules by

mitigating the negative impact of partial shading [21]. CMOS

switches allow the PV panel to adapt to changes in shade and

faulty conditions. This is done by dynamically reconfiguring

the panel’s configuration and optimizing power generation by

adjusting PV cells in series and parallel [21].

Additionally, CMOS-embedded PV modules can create

power islands, facilitating optimal power transfer by matching

generated power with load requirements [22]. A comput-

ing system, such as the Raspberry Pi, controls the CMOS-

embedded PV panel configuration by turning on and off

CMOS switches. The computing system utilizes a shade

detection algorithm to reconfigure the PV panel, thereby max-

imizing power generation in various conditions. The algorithm

employed for the CMOS embedded PV array incorporates a

comparative analysis between computed power and measured

power to detect faults [22]. In the event of a fault or shading,

the algorithm initiates a scanning process across all rows and

columns of the PV module to identify any damaged or shaded

cells [22]. Once shaded or faulty PV cells are detected, an

optimal configuration for the PV module is calculated and

implemented. However, this scanning process and subsequent

corrective actions take time to execute. Additionally, the

expected power of the PV array is determined using a 1-

diode or 2-diode based PV cell modeling technique, which

involves a nonlinear mathematical model [23]. Consequently,

the computation of expected power becomes challenging,

introducing the possibility of inaccurately computed power and

triggering the fault detection and mitigation algorithm. More-

over, exponential terms and nonlinearity in the mathematical

model make the computation computationally intensive [22].

Sood et al. proposed a machine learning (ML) driven frame-

work for power management in autonomous drones using

machine learning [24]. In their work, they conducted a com-

parative analysis of various ML algorithms, including Support

Vector Machines (SVM), Naive Bayes, Random Forest, Voting

Classifier, and Decision Trees, to detect shade presence on

PV panels [24]. While the detection of shade presence is an

important aspect, it is insufficient for effective mitigation of

the impact of partial shading conditions. As a result, adding

a more thorough analysis of the type and amount of shade

on the PV panel can improve the algorithm’s capacity to

reduce the effects of partial shading conditions. Therefore, this

paper aims to enhance the current power management strategy

by incorporating a neural network model specifically trained

to predict the shading percentage. This work proposes an

advanced neural network model for accurately predicting the

shading percentage. The neural network is trained on various

factors such as temperature, number of PV cells connected in

series and parallel, voltage, current, and power generated. We

present the model’s design, implementation, and validation,

along with a comprehensive evaluation of its performance.

The following section describes the dataset used by the

neural network model to predict shade presence on the PV

cell. Section III elaborates on the neural network techniques

employed in the shade percentage prediction model. The

results and a detailed description of the neural network model

are presented in Section IV. The final section concludes the

work and briefly overviews future projects.

II. DATASET

To generate the dataset, we employed a 2-diode based

equivalent circuit modeling of PV cells using SPICE, as

depicted in Fig. 1 [25]. In this study, we utilized a dataset

consisting of 101,580 data points to analyze photovoltaic (PV)

panels. The dataset includes PV panel with up to 10 cells

in various series-parallel configurations. The temperature of

the panels ranges from 27 to 50 °C. We are utilizing the

dataset from a previous study, which focused on determining

the presence or absence of shading on the PV panels [24].

Thus, the findings of this study can be directly juxtaposed

with the results presented in [24], facilitating a comprehensive

comparison.

Fig. 1: Equivalent PV cell model utilizing a 2-diode configu-

ration.
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IPh = JSC ×APV × G

GSC
(1)

ID = IS

[
e

(
Vpv+Ipv·RS

A·Vt

)
− 1

]
(2)

Ipv = Iph − ID1 − ID2 −
(
Vpv + Ipv ·RS

RP

)
(3)

The photon current (IPh) in (1) is proportionate to the area

of the PV cell’s short circuit current, and solar irradiance.

Here, JSC represents the short circuit current density in A/cm²,

APV denotes the area of the PV cells in cm², G denotes

the solar irradiance data (1000 W/m²), and GSC represents

the shaded solar irradiance data (500 W/m²). To compute the

current flowing from a cell, we use the diode current shown

in (2) and (3). The equation considers various factors such

as the saturation current (IS) in amperes, the voltage across

a cell (VPV ) in volts, the current flowing from a cell (IPV )

in amperes, the series resistance (RS) in ohms, the parallel

resistance (RP ) in ohms, the diode ideality constant (A), and

the thermal voltage (Vt) in volts.

In the SPICE simulation of the PV cells, we assume a

PV cell area of 127 cm², which results in an open circuit

voltage of 0.55V and a short circuit current of 2.17A. The

saturation current density values for the two diodes, D1 and

D2, depicted in Fig. 1, are set at 10pA/cm² and 1nA/cm²,

respectively. Additionally, the equivalent model shown in Fig.

1 has RS and RP values of 1mΩ and 100kΩ, respectively.

The power vs voltage characteristics of various configurations

are shown in Fig. 2a. In Fig. 2a, PV panel is operating

under no shade. Meanwhile, Fig. 2b illustrates the power vs

voltage characteristics of a PV panel in a 10 x 1 configuration,

consisting of 10 PV cells in series and 1 in parallel, under

varying shade conditions. When splitting the data, a random

80-20% train-test split was applied, where 20% of the dataset

was randomly selected and set aside for the test set.

III. NEURAL NETWORK MODEL

In this study, we utilize a range of Python libraries to facil-

itate data analysis and model development. Key among these

are pandas for data handling, numpy for numerical operations,

matplotlib and seaborn for data visualization, scikit-learn for

data preprocessing and performance metrics, and keras, a high-

level neural networks API that runs on top of TensorFlow,

for model building and training. The specifics of this network

include the following:

A. Input Layer

The input to the model consists of 7 features:

1) Temperature: The feature corresponds to the operating

temperature range of PV cells, spanning from 27°C to 50°C.

(a)

(b)

Fig. 2: a) Power vs Voltage characteristics of PV panel for

different configurations (series x parallel) of PV cells b)

Power vs Voltage characteristics of PV module in a 10 x

1 configuration under varying shade conditions (10%, 30%,

50%, 70%, and 90% shading)

2) Series: The feature pertains to the arrangement of PV

cells using a series-parallel configuration. The numerical value

of the feature indicates the number of cells connected in series

within the configuration.

3) Parallel: This feature indicates how many PV cells are

electrically connected in a parallel setup on the PV panel.

4) Voltage: This feature displays the voltage produced by

the PV panel.

5) Current: The feature depicts the current generated by

the PV panel.

6) Power: This feature depicts the power generated by the

PV panel. The power is equal to output voltage x output

current.

These are passed as input neurons to the model. The input

layer is the first layer in a neural network which then connects

to the intermediatery layers, also known as hidden layers.

B. Hidden Layers

The model consists of three hidden layers. The first two

hidden layers have 64 neurons each and use the Rectified
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Fig. 3: Distribution of Shade Percentage categories in the

dataset: ’0’ corresponds to high shading percentage, ’1’ de-

notes low shading percentage, and ’2’ represents medium

shading percentage.

Linear Unit (ReLU) activation function. ReLU is often used

in the hidden layers because of its efficiency and effectiveness

in handling the vanishing gradient problem. These layers are

fully connected layers, meaning each neuron in these layers

is connected to every neuron in the previous and next layer.

To avoid overfitting, we add the hidden layers with a dropout

applied at a rate of 0.3. Dropout helps prevent overfitting by

providing a way to reduce the complexity and co-adaptations

of neurons by ensuring that they work independently. The

dropout regularization technique is applied in the hidden layers

of the model is represented in (4). Here y is the output of a

neuron in the hidden layer, x is the input to that neuron, p is

the dropout rate (in this case, 0.3), and m is a binary mask

with values 0 or 1. The binary mask m is randomly generated

during training, with each element having a probability of (1

- p) of being set to 1 and a probability of p of being set

to 0. Dropout is a regularization technique where randomly

selected neurons are ignored during training. This means that

their contribution to the activation of downstream neurons

is temporarily removed on the forward pass and any weight

updates are not applied to the neuron on the backward pass.

y =

(
m · x
1− p

)
(4)

C. Output Layer

The shade percentage depicts the number of PV cells under

different shading levels, ranging from 10%, 20%, 30%, 40%,

50%, 60%, 70%, 80%, 90%, to 100% shading of PV panels.

Later, the shading percentages are further categorized as ”low”

for 0% to 20% shading, ”medium” for shading between 21%

to 80%, and ”high” for shading between 81% to 100%. The

distribution of PV cells across these shading categories is

shown in Fig. 3. The category of ”medium” shading has a more

considerable amount of data compared to the other categories

Fig. 4: Neural network architecture illustrating the layers and

connections used for shade percentage prediction in PV panels.

due to the inclusion of shading percentages ranging from 21%

to 80%. This broader range encompasses a significant portion

of the dataset, resulting in a higher concentration of data points

within the ”medium” shading category, as shown in Fig. 3.

The output layer of the model uses the softmax activation

function and has 3 neurons. The softmax activation function

is used in the output layer of the model [26] is defined in (5).

softmax(z)i =

(
eZi

ΣN
j=1e

Zj

)
(5)

Where Zi represents the input to the ith neuron in the output

layer, N is the total number of neurons in the output layer.

This equation showcases how the softmax activation function

transforms the input values into a probability distribution

across the different output classes (low, medium, and high

shade percentages). The resulting probabilities indicate the

likelihood of a data point belonging to each class.

Each of these neurons represents a class of shade percentage

(low, medium, and high). The shade percentage is as follows:

0-20 % low, 21-80 % medium, and 81-100 % high. These

are classified as class labels: 0, 1 and 2 for high, low, and

medium. The softmax activation function is a generalization of

the logistic function that ”squashes” a K-dimensional vector

of arbitrary real values into a K-dimensional vector of real

values in the range [0, 1] that add up to 1. This means that

the output of this layer can be interpreted as the probabilities

of a data point belonging to each class.

D. Model Compilation and Performance Metrics

The model is compiled with the ’Adam’ optimizer and ’cate-

gorical crossentropy’ loss. Adam is an optimization algorithm

that can be used instead of the classical stochastic gradient

descent procedure to update network weights iterative based on

training data. Categorical cross entropy is a loss function that is

used for single-label categorization tasks where each data point

belongs to exactly one class. It’s used as a loss for multi-class
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classification problems. We use multiple standard performance

metrics for assessing the performance of the model. These

metrics include (1) overall accuracy, (2) confusion matrix, (3)

precision (4) recall (5) F-1 score.

The accuracy metrics are used for assessing the performance

of the model. This is simply the proportion of correct pre-

dictions made by the model. Overall accuracy is one of the

useful measures when the target variable classes in the data are

nearly balanced. In every epoch of training, the accuracy of

the model on the training data and validation data is calculated

and reported. The confusion matrix looks into the correct and

incorrect predictions for each class label. This ensures even

with class imbalance we assess the built model fairly. The

precision is the ratio of true positives to all predicted positives

(true positives and false positives) and is used to test how well

a model avoids false positives. The recall also known as the

true positive rate (TPR), is the ratio of correctly classified

instances for the positive class as well as the total samples for

that class. The F-1 score is the ratio as provided below:

F1score =

(
2 · Precision ·Recall

Precision+Recall

)
(6)

In the next section, we provide a detailed report of each of

these metrics on the test set.

IV. RESULTS AND DISCUSSION

To assess the effectiveness of the proposed neural network

model, a comprehensive evaluation is conducted utilizing

various evaluation metrics and visualization techniques. This

approach allows for a thorough analysis of the model’s per-

formance. The subsequent subsections present detailed results

obtained from the evaluation, including an assessment of

model accuracy, a scatter plot representation, and the analysis

of the confusion matrix at both 50 and 100 epochs.

Firstly, the model’s accuracy is measured to gauge its

ability to correctly predict shade percentages. The accuracy

metric is tracked during the training process for both the

training and testing datasets. The results, depicted in Fig. 5

a) and b), demonstrate the progression of accuracy with each

epoch for both datasets. At 50 epochs, the model achieves

a training accuracy of 93.3%, indicating its proficiency in

learning the patterns within the training data. Correspondingly,

the testing accuracy is 93.55%, highlighting the model’s ability

to generalize well on unseen data. Upon further training until

100 epochs, the model’s performance improves, with a training

accuracy of 96.55% and a testing accuracy of 95.91% shown

in Fig. 5a and Fig. 5b, respectively.

Furthermore, a confusion matrix analysis is conducted to

evaluate the model’s performance in classifying shade percent-

age categories. The confusion matrix provides a comprehen-

sive overview of the predicted shade percentage distribution

compared to the actual categories. At 50 epochs, the confusion

matrix reveals the distribution of predictions for each shade

percentage category as shown in Fig. 6a. Similarly, at 100

(a)

(b)

Fig. 5: Model Accuracy Progression for a) 50 Epochs and

b)100 Epochs)

epochs, the confusion matrix provides a comprehensive anal-

ysis of the model’s classification accuracy for each category

is shown in Fig. 6b.

A plot illustrating the results obtained from training the

implemented neural network model is presented in Fig. 7a

and 7b. The plot illustrates the performance of the model in

terms of accuracy across 50 epochs and 100 epochs.

As the training progresses, the model exhibits a notable

improvement in accuracy. After 50 epochs, the model achieves

94%, 95%, and 93% precision rates for the low, medium, and

high shading categories, respectively, as shown in, as shown

in Fig. 7a. Further training up to 100 epochs increases the

precision to 82%, 97%, and 96% for the respective shading

categories, as illustrated in Fig. 7a. These results emphasize

the effectiveness of the neural network model in accurately

predicting the shading percentage as training iterations in-

crease. The plot provides valuable insights into the model’s

convergence and performance, demonstrating its ability to

adapt and learn from the dataset over time. The observed trend

indicates that increasing the number of epochs enhances the

model’s accuracy, highlighting the significance of continued

training for improved predictions.
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(a)

(b)

Fig. 6: Confusion matrix for a) 50 Epochs b) 100 Epochs

These findings establish the effectiveness and reliability of

the proposed neural network model for accurately predicting

the shading percentage in PV panels. The increasing precision

with additional epochs suggests the potential for achieving

even higher performance with extended training durations.

Additionally, a scatter plot is employed to visually represent

the relationship between power and voltage within the dataset.

As illustrated in Fig. 7, the scatter plot offers insights into

potential trends or clusters within the data. Each data point

is color-coded based on the shade percentage category it

belongs to, with ”high” shading percentage represented in

blue, ”less” shading percentage in orange, and ”medium”

shading percentage in red. This visual representation aids

in discerning any discernible patterns or groupings among

the data points, allowing for a deeper understanding of the

relationships between power, voltage, and shade percentage.

By conducting these evaluations and analyses, a compre-

hensive understanding of the model’s performance is obtained.

The results obtained from the accuracy assessment, scatter plot

analysis, precision, F-1 score, recall, and confusion matrix

analysis highlight the effectiveness and robustness of the

proposed neural network model in accurately predicting shade

(a)

(b)

Fig. 7: Classification report for a) 50 Epochs b) 100 Epochs

Fig. 8: Scatter plot of power vs. voltage with shading percent-

age.

percentages.

V. CONCLUSION

The proposed neural network model has shown promis-

ing results, surpassing traditional methods and opening av-

enues for more advanced power management strategies in

autonomous drones. By integrating this model into the power

management system, we aim to enhance drones’ sustainability

and operational endurance, enabling them to operate effec-
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tively in diverse and challenging environments. Artificial in-

telligence and machine learning algorithms allow for dynamic

adaptation to the operating conditions, further optimizing the

power management capabilities of UAVs.

This research contributes to the ongoing discourse on tech-

nological advancements in drone applications and using re-

newable energy sources. It highlights the potential of machine

learning techniques in optimizing and managing power in

autonomous drones, showcasing their applicability in various

domains. Furthermore, the proposed technique holds promise

for application in space exploration, offering potential solu-

tions for powering satellites.

This work focused on temperature variations within the

range of 27°C to 50°C; however, there is potential for fu-

ture research to investigate the behavior of the proposed

neural network model under even more extreme temperature

conditions. The findings and insights gained from such an

investigation will be reported in a separate article, providing

a comprehensive analysis of the model’s performance across

a broader temperature range. This expanded research would

contribute to a deeper understanding of power management

in autonomous drones, enabling their effective operation in a

broader range of environmental conditions.

In conclusion, this work demonstrates the efficacy of the

proposed neural network model. It sets the stage for future

advancements in power management for autonomous drones,

fostering sustainable and efficient operations in challenging

environments.

ACKNOWLEDGMENT

This work is fully supported by the Research Alliance Seed

Grant Program of NSF-ADVANCE Partnership Grant (NSF

ID 2121950)-Kindling Inter-university Networks for Diverse

Engineering Faculty Advancement in the California State

University System.

REFERENCES

[1] S. Li et al., “Drones and Other Technologies To Assist in Disaster Relief
Efforts,” Tennessee. Department of Transportation, 2022.

[2] A. Khan, S. Gupta, and S. K. Gupta, “Emerging UAV technology for
disaster detection, mitigation, response, and preparedness,” Journal of
Field Robotics, vol. 39, no. 6, pp. 905–955, 2022.

[3] S. Grogan, R. Pellerin, and M. Gamache, “The use of unmanned
aerial vehicles and drones in search and rescue operations–a survey,”
Proceedings of the PROLOG, pp. 1–13, 2018.

[4] T. Schlurmann, W. Kongko, N. Goseberg, D. H. Natawidjaja, and K.
Sieh, “Near-field tsunami hazard map Padang, West Sumatra: Utilizing
high resolution geospatial data and reseasonable source scenarios,” in
Proceedings of the Coastal Engineering Conference (2010), Reston:
American Society of Civil Engineers, 2010.
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