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Abstract—Unmanned aerial vehicles (UAVs) have emerged as
indispensable tools in disaster management, providing critical
support in planning, response, and recovery efforts. Integrating
photovoltaic (PV) technology with UAVs offers promising oppor-
tunities to enhance their functionality and resilience in hostile
environments. However, existing PV-based power management
systems for UAVs face challenges related to changing light condi-
tions and the impact of partial shading on module performance. It
is shown that through embedding transistors with PV panels, the
PV based power source of the UAVs can be made adaptable with
the operating environment. However, existing shade detection
techniques are cumbersome and inefficient.

In this study, we propose a novel approach using a neural
network model to accurately predict the shading percentage
on PV cells, enabling dynamic power management. Through
extensive experiments, we demonstrate the effectiveness of the
model, achieving a high accuracy of 94% with 50 epochs and 96 %
with 100 epochs. This research highlights the potential of machine
learning techniques in optimizing PV-based UAV power systems
and provides insights for future advancements in this field.
The integration of advanced power management strategies can
significantly enhance the performance and adaptability of UAVs,
contributing to more efficient and effective disaster response
operations.

Index Terms—Unmanned aerial vehicles (UAVs), Photovoltaics
(PV), neural networks, predictions, disaster management.

I. INTRODUCTION

Recently, unmanned aerial vehicles (UAVs) have emerged as
indispensable aids in the aftermath of a natural disaster. They
play a vital role in numerous phases of disaster mitigation,
from planning and preparation to response and recovery [1]-
[3]. In the planning and preparedness phases, UAVs’ high-
resolution imagery and detailed terrain data are invaluable [4]—
[6]. Authorities in charge of preparing for and responding to
natural disasters can use this information to create reliable
models for assessing risk and implementing efficient action
plans. Crucially, such strategies encompass the identification of
vulnerable areas, as well as the design of efficient evacuation
routes.

UAVs also enhance disaster management systems through
their role in predictive warning systems [7]. UAVs equipped
with sensors to monitor environmental changes can predict
potential disasters, facilitating the transmission of real-time
alerts and considerably reducing response times [7]. Moreover,
UAVs play a pivotal role in community mobilization during

disasters. UAVs can easily access areas that may be hazardous
or unreachable for humans and deliver crucial information
and relief materials swiftly and effectively [8]-[10]. This
expedited assistance is especially critical in the immediate
aftermath of a disaster. In the post-disaster phase, UAVs
are employed to monitor and evaluate community response
effectiveness. They provide detailed, real-time assessments of
the extent of damage and the success of response efforts. This
invaluable feedback assists in improving disaster management
strategies and informs future planning and response tactics. In
essence, integrating drones into disaster management systems
offers a multi-pronged approach that significantly enhances the
effectiveness of disaster response operations.

Although UAVs are increasingly essential in various fields,
current models often need to be revised in flight duration,
functionality, and resilience to operate in diverse weather con-
ditions. Additionally, while operating in hostile environments
such as disaster-hit areas, UAVs need multirole capabilities and
resilience to faulty conditions. During disaster assistance mis-
sions, the situation evolves unpredictably over time. Therefore,
UAVs must possess multirole capabilities to adapt effectively
to the dynamic conditions in the field.

Increasing battery capacity is one approach to extending
flight time. However, this solution often reduces the payload
capacity of the UAV, thereby compromising its functionality
[11]. Hydrogen [12]-[14] and gas-powered UAVs [15] are also
explored for powering UAVs during natural disaster missions
since they provide longer flight endurance and increased pay-
load capacity. However, hydrogen-powered UAVs face safety
concerns due to the highly flammable nature of hydrogen,
which requires careful handling and storage. Additionally, the
limited infrastructure for hydrogen refueling restricts their
availability and operational flexibility. Gas-powered UAVs
emit pollutants and have higher noise levels, impacting the
environment and disrupting rescue operations. As a result,
alternative power sources such as photovoltaics (PV) have been
extensively explored [16].

While integrating UAVs with PV technology can signifi-
cantly increase flight duration, the performance of such UAVs
is critically dependent on lighting conditions [16]. Moreover,
potential damage to a few PV cells in the module due to faults
or natural causes can render the UAV nonfunctional. There-
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fore, the current power management systems of PV-based
UAVs lack the intelligence to adapt in real-time to changing
application needs. Moreover, most present-day UAVs utilize
PV cells electrically connected in series-parallel (SP) config-
uration with a parallel-connected bypass diode-based scheme
[17]. The performance of such PV-based power sources can
significantly decline due to partial and complete shading [18],
[19]. If unaddressed, this decline can cause healthy PV cells
in the module to become forward-biased, leading them to
consume rather than produce electricity. This situation reduces
the overall efficiency of the PV module and, in the worst-
case scenario, could create hot spots leading to potential fire
hazards.

Efficient Maximum Power Point Tracking (MPPT) algo-
rithms have been proposed to mitigate this issue reasonably
[20]. However, further research is needed to improve the
resilience and efficiency of PV-based UAVs, particularly in
their response to changing light conditions and the operational
demands of various applications. Since, the MPPT technique
is unable to adapt if a couple of PV cells in the panel get
damaged while operating in harsh operating conditions.

Studies have demonstrated that incorporating complemen-
tary metal-oxide-semiconductor (CMOS) switches into photo-
voltaic (PV) cells enhances the efficiency of PV modules by
mitigating the negative impact of partial shading [21]. CMOS
switches allow the PV panel to adapt to changes in shade and
faulty conditions. This is done by dynamically reconfiguring
the panel’s configuration and optimizing power generation by
adjusting PV cells in series and parallel [21].

Additionally, CMOS-embedded PV modules can create
power islands, facilitating optimal power transfer by matching
generated power with load requirements [22]. A comput-
ing system, such as the Raspberry Pi, controls the CMOS-
embedded PV panel configuration by turning on and off
CMOS switches. The computing system utilizes a shade
detection algorithm to reconfigure the PV panel, thereby max-
imizing power generation in various conditions. The algorithm
employed for the CMOS embedded PV array incorporates a
comparative analysis between computed power and measured
power to detect faults [22]. In the event of a fault or shading,
the algorithm initiates a scanning process across all rows and
columns of the PV module to identify any damaged or shaded
cells [22]. Once shaded or faulty PV cells are detected, an
optimal configuration for the PV module is calculated and
implemented. However, this scanning process and subsequent
corrective actions take time to execute. Additionally, the
expected power of the PV array is determined using a 1-
diode or 2-diode based PV cell modeling technique, which
involves a nonlinear mathematical model [23]. Consequently,
the computation of expected power becomes challenging,
introducing the possibility of inaccurately computed power and
triggering the fault detection and mitigation algorithm. More-
over, exponential terms and nonlinearity in the mathematical
model make the computation computationally intensive [22].

Sood et al. proposed a machine learning (ML) driven frame-
work for power management in autonomous drones using

machine learning [24]. In their work, they conducted a com-
parative analysis of various ML algorithms, including Support
Vector Machines (SVM), Naive Bayes, Random Forest, Voting
Classifier, and Decision Trees, to detect shade presence on
PV panels [24]. While the detection of shade presence is an
important aspect, it is insufficient for effective mitigation of
the impact of partial shading conditions. As a result, adding
a more thorough analysis of the type and amount of shade
on the PV panel can improve the algorithm’s capacity to
reduce the effects of partial shading conditions. Therefore, this
paper aims to enhance the current power management strategy
by incorporating a neural network model specifically trained
to predict the shading percentage. This work proposes an
advanced neural network model for accurately predicting the
shading percentage. The neural network is trained on various
factors such as temperature, number of PV cells connected in
series and parallel, voltage, current, and power generated. We
present the model’s design, implementation, and validation,
along with a comprehensive evaluation of its performance.

The following section describes the dataset used by the
neural network model to predict shade presence on the PV
cell. Section III elaborates on the neural network techniques
employed in the shade percentage prediction model. The
results and a detailed description of the neural network model
are presented in Section IV. The final section concludes the
work and briefly overviews future projects.

II. DATASET

To generate the dataset, we employed a 2-diode based
equivalent circuit modeling of PV cells using SPICE, as
depicted in Fig. 1 [25]. In this study, we utilized a dataset
consisting of 101,580 data points to analyze photovoltaic (PV)
panels. The dataset includes PV panel with up to 10 cells
in various series-parallel configurations. The temperature of
the panels ranges from 27 to 50 °C. We are utilizing the
dataset from a previous study, which focused on determining
the presence or absence of shading on the PV panels [24].
Thus, the findings of this study can be directly juxtaposed
with the results presented in [24], facilitating a comprehensive
comparison.

AAD
| | Ioy

) N3

Fig. 1: Equivalent PV cell model utilizing a 2-diode configu-
ration.
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The photon current (/pp,) in (1) is proportionate to the area
of the PV cell’s short circuit current, and solar irradiance.
Here, Jg¢ represents the short circuit current density in A/cm?,
Apy denotes the area of the PV cells in cm2?, G denotes
the solar irradiance data (1000 W/m?), and Gg¢ represents
the shaded solar irradiance data (500 W/m?). To compute the
current flowing from a cell, we use the diode current shown
in (2) and (3). The equation considers various factors such
as the saturation current (Ig) in amperes, the voltage across
a cell (Vpy) in volts, the current flowing from a cell (Ipy)
in amperes, the series resistance (Rg) in ohms, the parallel
resistance (Rp) in ohms, the diode ideality constant (A), and
the thermal voltage (V;) in volts.

In the SPICE simulation of the PV cells, we assume a
PV cell area of 127 cm?, which results in an open circuit
voltage of 0.55V and a short circuit current of 2.17A. The
saturation current density values for the two diodes, D; and
Dy, depicted in Fig. 1, are set at 10pA/cm? and InA/cm?,
respectively. Additionally, the equivalent model shown in Fig.
1 has Rs and Rp values of 1mS2 and 100kS2, respectively.
The power vs voltage characteristics of various configurations
are shown in Fig. 2a. In Fig. 2a, PV panel is operating
under no shade. Meanwhile, Fig. 2b illustrates the power vs
voltage characteristics of a PV panel in a 10 x 1 configuration,
consisting of 10 PV cells in series and 1 in parallel, under
varying shade conditions. When splitting the data, a random
80-20% train-test split was applied, where 20% of the dataset
was randomly selected and set aside for the test set.

III. NEURAL NETWORK MODEL

In this study, we utilize a range of Python libraries to facil-
itate data analysis and model development. Key among these
are pandas for data handling, numpy for numerical operations,
matplotlib and seaborn for data visualization, scikit-learn for
data preprocessing and performance metrics, and keras, a high-
level neural networks API that runs on top of TensorFlow,
for model building and training. The specifics of this network
include the following:

A. Input Layer

The input to the model consists of 7 features:

1) Temperature: The feature corresponds to the operating
temperature range of PV cells, spanning from 27°C to 50°C.
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Fig. 2: a) Power vs Voltage characteristics of PV panel for
different configurations (series x parallel) of PV cells b)
Power vs Voltage characteristics of PV module in a 10 x
1 configuration under varying shade conditions (10%, 30%,
50%, 70%, and 90% shading)

2) Series: The feature pertains to the arrangement of PV
cells using a series-parallel configuration. The numerical value
of the feature indicates the number of cells connected in series
within the configuration.

3) Parallel: This feature indicates how many PV cells are
electrically connected in a parallel setup on the PV panel.

4) Voltage: This feature displays the voltage produced by
the PV panel.

5) Current: The feature depicts the current generated by
the PV panel.

6) Power: This feature depicts the power generated by the
PV panel. The power is equal to output voltage x output
current.

These are passed as input neurons to the model. The input
layer is the first layer in a neural network which then connects
to the intermediatery layers, also known as hidden layers.

B. Hidden Layers

The model consists of three hidden layers. The first two
hidden layers have 64 neurons each and use the Rectified
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Distribution of Shade_Percentage Categories

Count

1
Shade_Percentage Category

Fig. 3: Distribution of Shade Percentage categories in the
dataset: 'O’ corresponds to high shading percentage, '1’ de-
notes low shading percentage, and ’2’ represents medium
shading percentage.

Linear Unit (ReLU) activation function. ReLU is often used
in the hidden layers because of its efficiency and effectiveness
in handling the vanishing gradient problem. These layers are
fully connected layers, meaning each neuron in these layers
is connected to every neuron in the previous and next layer.
To avoid overfitting, we add the hidden layers with a dropout
applied at a rate of 0.3. Dropout helps prevent overfitting by
providing a way to reduce the complexity and co-adaptations
of neurons by ensuring that they work independently. The
dropout regularization technique is applied in the hidden layers
of the model is represented in (4). Here y is the output of a
neuron in the hidden layer, x is the input to that neuron, p is
the dropout rate (in this case, 0.3), and m is a binary mask
with values 0 or 1. The binary mask m is randomly generated
during training, with each element having a probability of (1
- p) of being set to 1 and a probability of p of being set
to 0. Dropout is a regularization technique where randomly
selected neurons are ignored during training. This means that
their contribution to the activation of downstream neurons
is temporarily removed on the forward pass and any weight
updates are not applied to the neuron on the backward pass.

m-x
N

The shade percentage depicts the number of PV cells under
different shading levels, ranging from 10%, 20%, 30%, 40%,
50%, 60%, 70%, 80%, 90%, to 100% shading of PV panels.
Later, the shading percentages are further categorized as "low”
for 0% to 20% shading, "medium” for shading between 21%
to 80%, and "high” for shading between 81% to 100%. The
distribution of PV cells across these shading categories is
shown in Fig. 3. The category of “medium” shading has a more
considerable amount of data compared to the other categories

C. Output Layer

7
Q/?/

7

Hidden Layer

Fig. 4: Neural network architecture illustrating the layers and
connections used for shade percentage prediction in PV panels.

due to the inclusion of shading percentages ranging from 21%
to 80%. This broader range encompasses a significant portion
of the dataset, resulting in a higher concentration of data points
within the "medium” shading category, as shown in Fig. 3.
The output layer of the model uses the softmax activation
function and has 3 neurons. The softmax activation function
is used in the output layer of the model [26] is defined in (5).

Z;
softmax(z); = <2N61€Zj) ©)
P

Where Z; represents the input to the i*” neuron in the output
layer, N is the total number of neurons in the output layer.
This equation showcases how the softmax activation function
transforms the input values into a probability distribution
across the different output classes (low, medium, and high
shade percentages). The resulting probabilities indicate the
likelihood of a data point belonging to each class.

Each of these neurons represents a class of shade percentage
(low, medium, and high). The shade percentage is as follows:
0-20 % low, 21-80 % medium, and 81-100 % high. These
are classified as class labels: 0, 1 and 2 for high, low, and
medium. The softmax activation function is a generalization of
the logistic function that ”squashes” a K-dimensional vector
of arbitrary real values into a K-dimensional vector of real
values in the range [0, 1] that add up to 1. This means that
the output of this layer can be interpreted as the probabilities
of a data point belonging to each class.

D. Model Compilation and Performance Metrics

The model is compiled with the ’Adam’ optimizer and ’cate-
gorical_crossentropy’ loss. Adam is an optimization algorithm
that can be used instead of the classical stochastic gradient
descent procedure to update network weights iterative based on
training data. Categorical cross entropy is a loss function that is
used for single-label categorization tasks where each data point
belongs to exactly one class. It’s used as a loss for multi-class
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classification problems. We use multiple standard performance
metrics for assessing the performance of the model. These
metrics include (1) overall accuracy, (2) confusion matrix, (3)
precision (4) recall (5) F-1 score.

The accuracy metrics are used for assessing the performance
of the model. This is simply the proportion of correct pre-
dictions made by the model. Overall accuracy is one of the
useful measures when the target variable classes in the data are
nearly balanced. In every epoch of training, the accuracy of
the model on the training data and validation data is calculated
and reported. The confusion matrix looks into the correct and
incorrect predictions for each class label. This ensures even
with class imbalance we assess the built model fairly. The
precision is the ratio of true positives to all predicted positives
(true positives and false positives) and is used to test how well
a model avoids false positives. The recall also known as the
true positive rate (TPR), is the ratio of correctly classified
instances for the positive class as well as the total samples for
that class. The F-1 score is the ratio as provided below:

6

2. Precision -
Flscore — ( recision Recall>

Precision + Recall

In the next section, we provide a detailed report of each of
these metrics on the test set.

IV. RESULTS AND DISCUSSION

To assess the effectiveness of the proposed neural network
model, a comprehensive evaluation is conducted utilizing
various evaluation metrics and visualization techniques. This
approach allows for a thorough analysis of the model’s per-
formance. The subsequent subsections present detailed results
obtained from the evaluation, including an assessment of
model accuracy, a scatter plot representation, and the analysis
of the confusion matrix at both 50 and 100 epochs.

Firstly, the model’s accuracy is measured to gauge its
ability to correctly predict shade percentages. The accuracy
metric is tracked during the training process for both the
training and testing datasets. The results, depicted in Fig. 5
a) and b), demonstrate the progression of accuracy with each
epoch for both datasets. At 50 epochs, the model achieves
a training accuracy of 93.3%, indicating its proficiency in
learning the patterns within the training data. Correspondingly,
the testing accuracy is 93.55%, highlighting the model’s ability
to generalize well on unseen data. Upon further training until
100 epochs, the model’s performance improves, with a training
accuracy of 96.55% and a testing accuracy of 95.91% shown
in Fig. 5a and Fig. 5b, respectively.

Furthermore, a confusion matrix analysis is conducted to
evaluate the model’s performance in classifying shade percent-
age categories. The confusion matrix provides a comprehen-
sive overview of the predicted shade percentage distribution
compared to the actual categories. At 50 epochs, the confusion
matrix reveals the distribution of predictions for each shade
percentage category as shown in Fig. 6a. Similarly, at 100
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Fig. 5: Model Accuracy Progression for a) 50 Epochs and
b)100 Epochs)

epochs, the confusion matrix provides a comprehensive anal-
ysis of the model’s classification accuracy for each category
is shown in Fig. 6b.

A plot illustrating the results obtained from training the
implemented neural network model is presented in Fig. 7a
and 7b. The plot illustrates the performance of the model in
terms of accuracy across 50 epochs and 100 epochs.

As the training progresses, the model exhibits a notable
improvement in accuracy. After 50 epochs, the model achieves
94%, 95%, and 93% precision rates for the low, medium, and
high shading categories, respectively, as shown in, as shown
in Fig. 7a. Further training up to 100 epochs increases the
precision to 82%, 97%, and 96% for the respective shading
categories, as illustrated in Fig. 7a. These results emphasize
the effectiveness of the neural network model in accurately
predicting the shading percentage as training iterations in-
crease. The plot provides valuable insights into the model’s
convergence and performance, demonstrating its ability to
adapt and learn from the dataset over time. The observed trend
indicates that increasing the number of epochs enhances the
model’s accuracy, highlighting the significance of continued
training for improved predictions.
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Fig. 6: Confusion matrix for a) 50 Epochs b) 100 Epochs

These findings establish the effectiveness and reliability of
the proposed neural network model for accurately predicting
the shading percentage in PV panels. The increasing precision
with additional epochs suggests the potential for achieving
even higher performance with extended training durations.
Additionally, a scatter plot is employed to visually represent
the relationship between power and voltage within the dataset.
As illustrated in Fig. 7, the scatter plot offers insights into
potential trends or clusters within the data. Each data point
is color-coded based on the shade percentage category it
belongs to, with “high” shading percentage represented in
blue, “less” shading percentage in orange, and “medium”
shading percentage in red. This visual representation aids
in discerning any discernible patterns or groupings among
the data points, allowing for a deeper understanding of the
relationships between power, voltage, and shade percentage.

By conducting these evaluations and analyses, a compre-
hensive understanding of the model’s performance is obtained.
The results obtained from the accuracy assessment, scatter plot
analysis, precision, F-1 score, recall, and confusion matrix
analysis highlight the effectiveness and robustness of the
proposed neural network model in accurately predicting shade
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Fig. 7: Classification report for a) 50 Epochs b) 100 Epochs

Shade Percentage

e High Low e Medium

3
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Fig. 8: Scatter plot of power vs. voltage with shading percent-
age.

percentages.

V. CONCLUSION

The proposed neural network model has shown promis-
ing results, surpassing traditional methods and opening av-
enues for more advanced power management strategies in
autonomous drones. By integrating this model into the power
management system, we aim to enhance drones’ sustainability
and operational endurance, enabling them to operate effec-

332

Authorized licensed use limited to: Fresno State Library. Downloaded on August 25,2024 at 20:51:13 UTC from IEEE Xplore. Restrictions apply.



2023 IEEE Global Humanitarian Technology Conference (GHTC)

tively in diverse and challenging environments. Artificial in-
telligence and machine learning algorithms allow for dynamic
adaptation to the operating conditions, further optimizing the
power management capabilities of UAVs.

This research contributes to the ongoing discourse on tech-
nological advancements in drone applications and using re-
newable energy sources. It highlights the potential of machine
learning techniques in optimizing and managing power in
autonomous drones, showcasing their applicability in various
domains. Furthermore, the proposed technique holds promise
for application in space exploration, offering potential solu-
tions for powering satellites.

This work focused on temperature variations within the
range of 27°C to 50°C; however, there is potential for fu-
ture research to investigate the behavior of the proposed
neural network model under even more extreme temperature
conditions. The findings and insights gained from such an
investigation will be reported in a separate article, providing
a comprehensive analysis of the model’s performance across
a broader temperature range. This expanded research would
contribute to a deeper understanding of power management
in autonomous drones, enabling their effective operation in a
broader range of environmental conditions.

In conclusion, this work demonstrates the efficacy of the
proposed neural network model. It sets the stage for future
advancements in power management for autonomous drones,
fostering sustainable and efficient operations in challenging
environments.
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