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THE FROG MODEL ON GALTON-WATSON TREES

MARCUS MICHELEN AND JOSH ROSENBERG

Abstract. We consider an interacting particle system on trees known as the frog model:
initially, a single active particle begins at the root and i.i.d. Poiss(λ) many inactive particles
are placed at each non-root vertex. Active particles perform discrete time simple random
walk and activate the inactive particles they encounter. We show that for Galton-Watson
trees with offspring distributions Z satisfying P(Z ≥ 2) = 1 and E[Z4+ε] <∞ for some ε >
0, there is a critical value λc ∈ (0,∞) separating recurrent and transient regimes for almost
surely every tree, thereby answering a question of Hoffman-Johnson-Junge. In addition, we
also establish that this critical parameter depends on the entire offspring distribution, not
just the maximum value of Z, answering another question of Hoffman-Johnson-Junge and
showing that the frog model and contact process behave differently on Galton-Watson trees.

1. Introduction

The frog model refers to a particular kind of system of interacting random walks on a
rooted graph. In its initial state, it features a single active particle at the root, and some
collection of inactive particles distributed among the non-root vertices. The active particle at
the root begins performing a discrete time simple random walk on the graph, and any time an
active particle lands on a vertex containing inactive particles, they all become activated and
begin performing their own independent discrete time simple random walks, activating any
sleeping particles that they encounter along the way. The particles in this system are often
referred to as frogs, with active particles deemed “awake” and inactive particles “sleeping.”

The frog model is a very simple model of the spread of infection. Additionally, it bears
resemblance to activated random walk—a fundamental and well-studied interacting particle
system on graphs (see the survey [13] for more context)—in which active particles later
become inactive. As such, the frog model may be understood as a more active version of
activated random walk, and indeed can be used to stochastically dominate activated random
walk.

On infinite graphs, studies of the frog model have often focused on determining whether it
is recurrent (meaning almost surely infinitely many active particles hit the root) or transient
(meaning almost surely only finitely many active particles ever hit the root). Much work has
been done on the frog model on Z

d: in [15], Telcs and Wormald showed that the one frog per
site model on Z

d is recurrent for every d ≥ 1. This was extended in [1] to show recurrence
for any i.i.d. configuration of frogs on Z

d. In order to obtain transitions from recurrence to
transience on Z

d, one may take the density of frogs to be non-uniform [12] or bias the walks
in a given direction [2, 3, 4].

On trees, the story is quite different: in a breakthrough work [6], Hoffman, Johnson and
Junge demonstrated that the one-frog-per-vertex model is recurrent on the d-ary tree for
d = 2, and transient for d ≥ 5; the cases of d = 3, 4 remain open. Likewise, in [5], Hoffman,
Johnson, and Junge showed that if Poiss(λ) sleeping frogs are placed at each vertex on a
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d-ary tree, recurrent and transient regimes may be found as λ varies for each d ≥ 2. They
comment, “we believe that the most interesting aspect of this work is that the frog model
on trees is teetering on the edge between recurrence and transience.”

In the case of both the one frog per-site model on the d-ary tree studied in [6], as well as the
i.i.d. Poiss(λ) frogs per-site version from [5], the proofs of transience employed a reasonably
straightforward approach that involved embedding the model in a more standard branching
random walk model, and then establishing transience of the branching random walk via a
martingale argument. Conversely, the proofs of recurrence from both [6] and [5] tended
to require significantly more ingenuity, featuring clever bootstrapping arguments that rely
heavily on the self-similarity properties of regular trees. More generally, studies of the frog
model on infinite graphs have almost always involved graphs with near-perfect symmetry.
While there have been efforts to break free of this constraint, they have been limited in scope.
One such attempt was made by the second author in [14], where he established recurrence for
the one per-site model on the 3, 2-alternating tree. Yet even in this case, the proof exploits
the self-similarity of the bi-regular tree, specifically relying on the fact that (as with all of
the other graphs referenced above) the 3, 2-alternating tree is quasi-transitive, meaning that
the set of vertices can be partitioned into finitely many sets so that for each pair of vertices
in the same set there exists a graph automorphism mapping one to the other.

1.1. Results. In the present work we examine the frog model with i.i.d. Poiss(λ) sleeping
frogs positioned at each non-root vertex of a Galton-Watson tree. Our main results, which
are contained in the following theorem, show that there is a sharp transition from transience
to recurrence provided the offspring distribution is always at least 2 and has sufficiently
many moments, while also establishing an asymptotic upper bound on the value of the
critical parameter λc.

Theorem 1.1. Let GW be the measure on Galton-Watson trees induced by an offspring
distribution Z for which P(Z ≥ 2) = 1 and E[Z4+ε] <∞ for some ε > 0. Then there exists
a constant λc ∈ (0,∞) such that, for GW-a.s. every tree T, the frog model with i.i.d. Poiss(λ)
frogs per non-root vertex is transient for every λ < λc, and recurrent for every λ > λc.
Furthermore, the critical parameter λc satisfies the bound log λc = O(ε−1 logEZ4+ε + ε−2)
for ε ∈ (0, 1).

Theorem 1.1 answers a question posed by Hoffman, Johnson, and Junge in [5] that involved
asking whether or not their recurrence and transience results for the frog model on regular
trees can be extended to the Galton-Watson case. A further question in [5] asks if recurrence
on Galton-Watson trees depends on the entire degree distribution or only the maximal degree;
the upper bound on λc stated in Theorem 1.1 is likely far from optimal, but is good enough
to show that recurrence must in fact depend on the entire degree distribution, rather than
just the maximal degree (Corollary 5.7). This is in stark contrast to the contact process,
where the critical probability for local survival on a Galton-Watson tree depends only on the
maximum degree [11, Proposition 2.5].

The two most difficult parts of proving Theorem 1.1 are showing the existence of a recurrent
regime, along with proving that no intermediate regime may exist: in particular, we show
in Theorem 2.1 that GW-a.s., infinitely many particles hit the root with probability either
0 or 1. We also show in Section 7.2 that there is no hope of upgrading this 0-1 law for
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every possible tree. As such, the probabilistic uniformity of Galton-Watson trees plays a
crucial role in our proof. In the case of proving recurrence, we take inspiration from [5, 6]
and replace the trajectory of each particle with its loop-erased version. After this, our proof
diverges radically from the methods of [5, 6]: whereas in their case the self-similarity of
the d-ary tree allowed them to work on an extremely local level, there is no opportunity
to do so on Galton-Watson trees. Further, the behavior of random walk on such trees very
much depends on the particular instance of the tree—as opposed to on regular trees, in
which random walk exhibits a high degree of symmetry—and thus rather than taking the
approach of examining the number of particles that visit a given vertex, we instead weigh
each activated particle roughly according to the probability that it visits the root.

We begin the process of proving Theorem 1.1 in Section 2, where we establish the afore-
mentioned 0-1 law for the frog model on Galton-Watson trees which allows us to rule out the
possibility of a non-trivial intermediate phase between transience and recurrence for almost-
every Galton-Watson treeT. To prove this result we first focus on augmented Galton-Watson
trees, using an ergodic theory argument and decomposition from [7] and [9, Chapter 17], in
order to establish a 0-1 law that applies AGW-a.s. (where AGW refers to the measure for
augmented Galton-Watson trees). We then establish the desired result by showing that re-
currence for almost-every augmented Galton-Watson tree implies recurrence for almost-every
Galton-Watson tree.

For the proof of transience in Section 3, which in fact applies to every tree T generated
by our offspring distribution Z, we essentially adapt the approach that was employed by
Hoffman, Johnson, and Junge in [5] to prove the existence of a transient regime on the
regular d-ary tree. This technique involves first coupling the Poisson frog model on T with
branching random walk. We then introduce a weight function that allows us to construct a
supermartingale out of this branching random walk model. This is then used to show that
for sufficiently small Poisson mean λ, the branching random walk model is transient on T ,
which by virtue of stochastic dominance, implies that the original frog model is as well.

The proof of recurrence is more challenging, and occupies Sections 4, 5 and 6. In contrast
to [5, 6], rather than bootstrapping the number of visits to the root, we instead bootstrap
the conditional probability that a randomly selected vertex is visited given that its parent
is visited. Further, the recurrence result need not hold on every Galton-Watson tree, only
on almost-every Galton-Watson tree, and so we therefore work with an annealed probability
distribution that incorporates the randomness of both the tree and the frog model simul-
taneously. The key step in the bootstrapping argument is to focus not on the number of
particles that are awakened, but rather on the harmonic measure of the set of vertices vis-
ited on each level of the tree. The reason for this is that the harmonic measure and return
probabilities are typically roughly comparable on Galton-Watson trees (see Lemma 4.2 for
a precise statement). Thus, knowing that each vertex in a set with large harmonic measure
is visited will imply that a large number of awakened particles will return to the root. Ulti-
mately, this technique then allows us to show that, for sufficiently large Poisson mean λ, all
non-root vertices in our randomly generated tree T are activated with probability 1, from
which recurrence follows easily.

Section 4 provides three sets of preliminary tools for our proof of recurrence: we will need
to compare the harmonic measure with hitting probabilities of random walk; we will need
to bound the probability that Galton-Watson trees have a large portion of their harmonic
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measure given by vertices with many children; and finally we will need to compare different
measures on random trees.

In Section 5 we first introduce two variants of the frog model, which we call the trun-
cated frog model and the augmented truncated frog model. The truncated frog model is
constructed by altering the dynamics of the random walks performed by activated particles;
most significantly, in the truncated frog model, particles perform loop-erased random walk
rather than simple random walk, following the lead of [5, 6]. We then show that the two
models can be coupled in such a way that the number of returns to the root in the ordinary
model stochastically dominates that of the truncated frog model (Lemma 5.2). Once we
have begun working with the truncated frog model, we will want to understand the proba-
bility that a vertex is activated given that its parent is activated. To analyze this event, we
introduce the augmented truncated frog model, which is tailored specifically to understand
the distribution of the truncated frog model in the subtree T (v) given that v is activated
(see Lemma 5.4). The main technical engine in our proof of recurrence is a bootstrapping
argument for the augmented truncated frog model stated as Proposition 5.6. In Section 5
we deduce our statement of recurrence (Theorem 1.1) from Proposition 5.6.

In Section 6 we prove Proposition 5.6, which is the most technical part of the paper. We
provide a detailed sketch of the proof in Section 6.1.

The paper concludes with Section 7, which features several counterexamples and open
questions. It includes an example of a tree for which the frog model does not have a recurrent
regime, thus confirming that for unbounded offspring distributions the almost-sure result in
Theorem 1.1 cannot be extended to every Galton-Watson tree. On top of this, we also
construct an example of a rooted tree where each vertex has at least 2 children for which the
frog model does not have a 0-1 law (i.e. there is a non-trivial intermediate phase between
its recurrent and transient regimes). These two examples show that the content of Theorem
1.1 may not be upgraded from an almost-sure statement to a sure statement.

1.2. Notation. The proof uses many couplings between various altered versions of the frog
model in addition to many standard objects from probability on Galton-Watson trees. For
convenience, we review notation here to create a centralized location for the reader to turn
back to for reference.

Probability on Random Trees. Throughout, we will utilize various notation from probability
on trees, which we briefly review here. For a rooted tree T and a vertex v, the level of v
denoted |v| is the distance from v to the root. We write Tn for the set of level n vertices in
T . The descendant subtree T (v) is the induced subtree consisting of all vertices w for which
the shortest path from w to the root passes through v. For a non-root vertex v, let←−v denote
its parent, i.e. the neighbor of v lying on the shortest path from v to the root.

Given a rooted tree T , let ∂T denote the set of infinite non-backtracking paths in T
starting at the root. If a random walk on T is almost-surely transient then we say that T
is transient. On a transient tree T , we define loop-erased random walk to be the trajectory
of a random walk on T with all loops removed. The trajectory of a loop-erased random
walk on T starting at the root is thus an element of ∂T , and so we may define the harmonic
measure HARM := HARMT to be the law of this random element of ∂T . For a vertex v ∈ T ,
HARM(v) := HARM({γ ∈ ∂T : v ∈ γ}) denotes the probability that a loop-erased random
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walk escapes through v. Since supercritical Galton-Watson trees are almost-surely transient
(see, e.g., [9]), we will frequently make use of the harmonic measure.

For a random variable Z ∈ {0, 1, . . .} with E[Z] > 1, let GW denote the Galton-Watson
measure on rooted trees obtained by conditioning the Galton-Watson process with offspring
distribution Z on non-extinction. Similarly, let AGW denote the augmented Galton-Watson
measure, i.e. the law of a Galton-Watson tree where we attach an additional Galton-Watson
tree to the root and condition on non-extinction. For each n ∈ N, we will also consider
the measure AGWn, which is obtained by sampling from AGW and then shifting to a vertex
on level n sampled via HARM. In other words, we may sample from AGWn by sampling a
tree T according to AGW, and performing a loop-erased random walk started at the root;
if v0, v1, . . . denotes the trajectory of the loop-erased walk, then we take T (vn) to be our
sample of AGWn.

Throughout, T will denote a random tree which will be taken from GW, AGW or AGWn

which will be explicitly described in context. For a measure µ—e.g. GW or AGW—we write
Eµ[·] to denote the expectation with respect to µ.

Frog Models. Many altered versions of the frog model will be used in the proof. A common
thread for all models is that the trajectories of particles—once activated—are mutually
independent; additionally, the distribution of sleeping frogs is always Poiss(λ).

For a rooted tree T and parameter λ ≥ 0, let FM
(λ)
T denote the law of the frog-model on T

with i.i.d. Poiss(λ) sleeping frogs at each non-root vertex. In Section 2, we will also consider

the frog model FM
(λ+)
T where there are Poiss(λ) sleeping frogs at each vertex, including the

root.
The proof of recurrence requires multiple altered versions of the frog model. The truncated

frog model defined in Section 5.1 is denoted by TFM
(λ)
T . For the purposes of self-similarity,

in Section 5.2 we also introduce the augmented truncated frog model add an extra leaf to the
root of T to obtain the tree T+ and alter the dynamics of the walk at the root; this altered

model is denoted ATFM
(λ)
T .

The results throughout are quenched results, meaning that we consider a random tree T

and prove statements about various frog models for almost-every T. As a result, we will

often write FM
(λ)
T

for instance, which denotes the frog model on the random tree T. Every
time the random tree T appears, the corresponding probability measure used to generate
T will be specified; conversely, we refer to arbitrary trees as T . The difference between
the two is not of crucial importance, although we maintain this convention throughout for
consistency.

2. A 0-1 Law

Our primary goal in this section is to prove a 0-1 law for the frog model on Galton-Watson

trees. Here, we let FM
(λ)
T denote the probability measure induced by the frog model on a

tree T where Poiss(λ) sleeping frogs are placed at each non-root vertex. For an offspring
distribution Z with E[Z] > 1 and P(Z = 0) = 0 let GW denote the corresponding Galton-
Watson measure on rooted trees and let T represent a random rooted tree selected according
to GW. Here we write recurrent for the event that infinitely many particles visit the root.
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Theorem 2.1. For any Z with E[Z] > 1 and P(Z = 0) = 0, if λ > 0 satisfies

EGW[FM
(λ)
T

(recurrent)] > 0, then EGW[FM
(λ)
T

(recurrent)] = 1 .

We note that the only property of the distribution of sleeping frogs used in the proof of
Theorem 2.1 is that they are i.i.d. and take the value of 0 with positive probability. The proof
of Theorem 2.1 is broken into two main parts: first, an ergodic theory argument proves the
statement for augmented Galton-Watson trees, i.e. a Galton-Watson tree where we attach an
additional Galton-Watson tree to the root; second, we show that working with augmented
Galton-Watson trees is sufficient to establish the result for Galton-Watson trees. Throughout
this section, we assume that Z satisfies E[Z] > 1 and P(Z = 0) = 0; to reduce clutter, we
do not restate this assumption for each lemma in this section.

2.1. The Proof for Augmented Galton-Watson Trees. The ergodic theory argument
that we use is heavily indebted to the groundbreaking work [7] and the altered versions that
appear in [8] and [9, Chapter 17]; following their lead, let AGW denote the augmented Galton-
Watson measure on rooted trees. The purpose of adding an extra child to the root is that
now the root—on average—looks the same as any other vertex, thereby making the problem

more amenable to ergodic theory arguments; to increase the self-similarity, let FM
(λ+)
T denote

the measure induced by the frog model on T where Poiss(λ) sleeping frogs are placed at each
vertex including the root (note that we can think of the Poiss(λ) sleeping frogs added to the
root as being immediately activated by the single active frog positioned at the root). We will
work on a large measure space containing all of the information necessary for the frog model:
define TreePathParticlesTrajectories to be the set of rooted trees decorated with an infinite
path coming from the root, a non-negative integer nv associated to each vertex, and nv paths
starting from each vertex v (for v equal to the root, this is in addition to the infinite path
already referenced). Define AGW × SRW × Poissλ × SRWs on TreePathParticlesTrajectories

to be the measure where the measure on trees is AGW, the infinite path from the root is
assigned the law of an independent simple random walk, the numbers nv are i.i.d. Poiss(λ),
and the laws of the nv paths are mutually independent simple random walks starting at v.
Note that if we place nv sleeping frogs at each vertex, and use the assigned paths to be their
trajectories—should they awaken—and use the path at the root to be the trajectory of the

first awake frog, then this measure space can be used for FM
(λ+)
T

.
We will decompose TreePathParticlesTrajectories into the space of trees and paths—which

we denote TreePath—and think of the particles and their trajectories as decorating it; this
will allow us to lean on the work of [7]. For a given ω ∈ TreePathParticlesTrajectories, define
the shift operator S as follows: let v be the first vertex (after the root) along the path
component of ω that is assigned to the root:

• the tree of S(ω) is the tree of ω with root shifted to be v.
• the path from the root (x0, v, x2, . . .) is changed to (v, x2, . . .).
• the numbers nv and other trajectories are unchanged.

With these definitions in place, we note that

Lemma 2.2. The system

(TreePathParticlesTrajectories,AGW × SRW × Poissλ × SRWs, S)

is stationary.
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Proof. If we project to the space TreePath that ignores the numbers nv and associated paths,
then the stationarity of (TreePath,AGW × SRW, S) is proven in [9, Theorem 17.11]; since
we have merely decorated the space with independent variables that do not depend on the
location of the root, stationarity in our bigger space follows immediately. �

In addition to the above lemma, [8] proves that we in fact can AGW× SRW-almost-surely
decompose each tree-path pair as a collection of i.i.d. slabs, which build the tree and path
together simultaneously in blocks; for more details concerning this decomposition, see [9,
Section 17.3]. While we do not need a precise definition of slabs, we define them informally:
we say that a random walk on a tree regenerates when it crosses an edge for the first and
last time simultaneously. The portion of the tree between regeneration points, along with
the path of the walk through this portion, is called a slab. As noted, the slabs are in fact
i.i.d. when the tree is sampled from AGW and the walk follows SRW [9, Section 17.3]. In
particular, this means that for every fixed n, there is an almost-surely finite τ so that the
first n levels of Sτ (ω) as well as the path until exiting this tree are independent of the first
n levels of ω. We will use this to show that the above system is in fact ergodic.

Let F be the σ-field on which the measure µ := AGW× SRW×Poissλ× SRWs is defined.
For each natural number n, let Fn denote the σ-field induced by:

• the first n levels of the tree
• the path from the root until first exiting the first n levels
• the particle configuration for the first n levels
• the trajectories of these particles until first exiting the first n levels.

Since almost-surely all of these paths exit the first n levels in finite time, there are only
countably many possible configurations for each n. Define U :=

⋃

nFn and note that the
smallest σ-field containing U is F .
Lemma 2.3. The system

(TreePathParticlesTrajectories, µ, S)

is ergodic.

Proof. In order to show ergodicity, we will prove that the system is (strong) mixing, i.e. that
for each A,B ∈ F we have

lim
n→∞

µ[A ∩ S−nB]→ µ[A]µ[B] . (1)

To do this, we will first show (1) for events in U . Let A,B ∈ U and let n be large enough
so that both A,B ∈ Fn. Since we may find an almost-surely finite stopping time τ so that
shifting Sτ moves sufficiently many slabs away from the root so that the first n levels of the
system are independent of the first n levels of the system before shifting, (1) follows for such
A,B from the fact that τ <∞ a.s.

To show mixing for all events in F , we use Dynkin’s π-λ Theorem. Define

V := {C ∈ F : µ[A ∩ S−nC]
n→∞−−−→ µ[A]µ[C] for all A ∈ U} .

Note that U is a π-system and V is a λ-system. Further, we have shown that U ⊂ V; hence,
by Dynkin’s π-λ Theorem, F ⊂ V, implying F = V. Now, define

W := {D ∈ F : µ[D ∩ S−nC]
n→∞−−−→ µ[D]µ[C] for all C ∈ F} .
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This collection W is again a λ-system and—by the previous π-λ argument—contains U .
Therefore we again have F ⊂ W implying (1) holds for all A,B ∈ F . �

From here, establishing a 0-1 law for recurrence of FM(λ) on augmented Galton-Watson
trees follows from the ergodic theorem.

Lemma 2.4. If EAGW[FM
(λ)
T

(recurrent)] > 0, then EAGW[FM
(λ)
T

(recurrent)] = 1.

Proof. By ergodicity, we have that

1

n

n−1
∑

k=0

1{recurrent}(Sk(ω))
n→∞−−−→ EAGW[FM

(λ+)
T

(recurrent)]

almost surely. Since FM(λ+) dominates the frog model, this limit is positive. In partic-
ular, this means that we can shift so that we yield a configuration that is recurrent for
FM(λ+). Since shifting may only reduce the set of particles that awaken—and the trajecto-
ries are unchanged aside from the initial particle—this implies that, for AGW almost surely
every T , infinitely many particles visit some (not necessarily fixed) vertex of T with prob-

ability 1. Now assume that for such a tree T , we have FM
(λ+)
T (recurrence) < 1. This

would then have to imply that there exists some fixed non-root vertex v in T for which

FM
(λ+)
T (v is hit i.o. but root is not) > 0, where we write i.o. for infinitely often (since the

probability of any single frog hitting the root infinitely often is 0 due to the almost-sure
transience of random walks on supercritical Galton-Watson trees, we can take the term ‘i.o.’
to mean being hit by infinitely many distinct frogs).

Now let N be some positive integer and, for each n ≥ 0, let An represent the event that
at least n + 1 distinct frogs hit v after time N and, among the first n of these, none go on
to hit the root afterwards. If, in addition, we let p(v1, v2) denote the probability that simple
random walk begun at v1 ever hits v2, then from here we observe that for each n we have

FM
(λ+)
T (An) = FM

(λ+)
T (A0)

n
∏

i=1

FM
(λ+)
T (Ai|Ai−1) ≤

(

1− p(v, 0)
)n
.

Noting that this last expression goes to 0 as n → ∞, and then allowing N to go to in-

finity, we see that we cannot in fact have FM
(λ+)
T (v is hit i.o. but root is not) > 0. This

contradiction then establishes that if EAGW[FM
(λ)
T

(recurrent)] > 0, then it must follow that

EAGW[FM
(λ+)
T

(recurrent)] = 1. Conditioning on the event that the number of sleeping frogs
placed at the root is 0 completes the proof. �

2.2. Connecting AGW to GW. In order to prove Theorem 2.1 using Lemma 2.4, we will

need to show two implications: Namely, thatEGW[FM
(λ)
T

(recurrent)] > 0 implies EAGW[FM
(λ)
T

(recurrent)] >

0, and that EAGW[FM
(λ)
T

(recurrent)] = 1 implies

EGW[FM
(λ)
T

(recurrent)] = 1. We begin with the former:

Lemma 2.5. If EGW[FM
(λ)
T

(recurrent)] > 0 then EAGW[FM
(λ)
T

(recurrent)] > 0 .

Proof. We will consider a model that is dominated by AGW × FM(λ). To start, generate a
copy of Z + 1 and call its value k. Generate k-many Galton-Watson trees T (1), . . . , T (k) and
place i.i.d. Poiss(λ) inactive particles at each non-root vertex. Label the roots of these trees
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v1, . . . , vk and connect the Z + 1-many roots to another vertex 0, which will be taken to be
the root of this larger tree; place a single active particle at 0. Since each vj was the root of
a T (j), note that there are no sleeping frogs at any of the vj . The broad idea is that we will
break the tree up into k + 1 pieces: the set S := {0, v1, . . . , vk} together with T (j) \ {vj} for
each j ∈ {1, . . . , k}. Only one of these k+1 sets will have particles moving at any given time.
The frog model rule that inactive particles are activated when touched by active particles
will still be in effect, however, since no two distinct pieces of the k + 1 parts that we’ve
separated T into are permitted to have particles in motion simultaneously, the designation
“active” no longer implies a particle is necessarily in the process of moving.

At time t = 0 the active particle initially positioned at 0 ∈ S begins performing a simple
random walk, continuing until it moves into one of the sets T (j)\{vj}. Upon entering this set,
this particle continues its random walk, activating sleeping particles along the way, which
in turn perform simple random walks activating the sleeping particles that they encounter,
and so on (i.e. the normal frog model dynamics apply inside of T (j) \ {vj}). This persists
until a particle arrives at vj (which may never happen). When one of these active particles
arrives at vj , all other active particles in T (j) \ {vj} pause their walksand the particle that
hit vj performs its simple random walk in S until exiting, i.e. until entering into another
T (i) \ {vi}; if two particles arrive simultaneously, we break ties arbitrarily. Now active
particles in T (i) \ {vi} evolve until a particle arrives at vi, and so on (note that if i = j, then
all particles in T (j) \ {vj} that are already active have their walks resume upon entry of this
particle into T (j) \ {vj}).

The key feature of this model is that, when looking at a single one of the trees T (j), it is
simply the frog model stopped—and possibly later restarted—when a particle hits the root of
T (j). This is because whenever a particle exits T (j), evolution inside T (j) stops until a particle
enters T (j)\{vj}. Note further that, due to the time independence property of the frog model,
the model we have described is simply the frog model on augmented Galton-Watson trees
where we possibly ignore the trajectories of many frogs (including those initially positioned
at the children of the root). In particular, the probability of recurrence for this model is a

lower bound for the probability of recurrence of AGW×FM(λ). The event of recurrence must
occur provided on each T (j) the frog model there—i.e. the particles and trajectories assigned
to them in the larger model—is recurrent. Since by assumption each T (j) has a positive
probability of this occurring and these events are independent for different j, we have that
there is a positive probability of recurrence and non-extinction of this model, and thus of
AGW × FM(λ). �

We now establish the second implication needed to complete the proof of Theorem 2.1.

Lemma 2.6. If EAGW[FM
(λ)
T

(recurrent)] = 1, then EGW[FM
(λ)
T

(recurrent)] = 1.

Proof. The proof is by a so-called “local modification” argument. If T is a tree for which

FM
(λ)
T (recurrent) < 1, then there must be a finite set of non-root vertices v1, . . . , vj ∈ T such

that, with positive probability, no particles from outside the set v1, . . . , vj ∈ T ever visit the
root. Since there is positive probability that no sleeping frogs reside at any of the vertices

v1, . . . , vj ∈ T , this then means that FM
(λ)
T (no initially sleeping particles visit the root) > 0,

which implies that there exists at least one vertex v ∈ T1 such that

FM
(λ)
T (no particles from T (v) hit root|particle starting at root hits v on 1st step) > 0.
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Now let D denote the set of all T that have such a vertex v ∈ T1. Since AGW only differs
from GW on account of the root being assigned an extra child (which is itself the root of
a subtree with distribution GW), this then implies that AGW(D) ≥ GW(D). Since we’ve

established that a tree T satisfies FM
(λ)
T (recurrent) < 1 if and only if T ∈ D, we can then

conclude that AGW
(

FM
(λ)
T

(recurrent) < 1
)

≥ GW
(

FM
(λ)
T

(recurrent) < 1
)

, which completes

the proof of the lemma. �

Proof of Theorem 2.1. Let λ > 0 so that EGW[FM
(λ)
T

(recurrent)] > 0. Then by Lemma 2.5, it

must be thatEAGW[FM
(λ)
T

(recurrent)] > 0. Applying Lemma 2.4 then shows EAGW[FM
(λ)
T

(recurrent)] =
1. Lemma 2.6 completes the proof. �

3. Transience

In this brief section, we establish a basic transience result that applies for all rooted trees
without leaves or pipes, i.e. all rooted trees whose non-root vertices have degree at least 3.

Specifically, we obtain a lower bound on the value λ1(T ) := sup{λ : FM
(λ)
T (transience) = 1}

with respect to the minimum degree of T , which is the direct analogue of the transience
result achieved by Hoffman, Johnson, and Junge in [5] for regular trees.

Remark 3.1. Note that the reason we refer to the quantity λ1(T ) here (rather than λc(T )) is
because we are working to achieve a result that applies for every rooted tree without leaves
or pipes, rather than just almost surely every tree generated by some offspring distribution.
Hence, we cannot assume that the 0-1 law obtained in the previous section necessarily holds.
Indeed, a counterexample is presented in Lemma 7.2.

3.1. Using minimal degree to bound λ1. We now present a result that relates λ1(T ),
for a tree T without leaves or pipes, to the minimum degree for vertices in T . While we are
largely interested in the critical value of the Poisson mean λ1(T ), the proof applies to any
nonnegative integer valued random variable with the specified mean, and thus we state the
theorem in that generality. The statement, as well as the proof, mirrors Proposition 15 from
[5], which consists of the analogous result for n-ary trees; we include the details here for the
sake of obtaining a good lower bound on λc in Theorem 1.1:

Theorem 3.2. Let T be a rooted tree for which all vertices have at least k ≥ 2 children. Then

the frog model on T with i.i.d. η frogs per non-root vertex is transient provided E[η] < (k−1)2
4k

.

Proof. We begin by defining the branching random walk model on T that starts with a single
particle positioned at the root at time 0, and where particles perform independent simple
random walks, each one giving birth to η additional particles every time it takes a step away
from the root. Letting Y represent the total number of returns to the root for this model,
we note that since Y stochastically dominates V (the number of returns to the root for the
frog model with η frogs per non-root vertex), it will suffice to establish the desired result for
the branching model. Adopting the notation from the proof of Proposition 15 in [5], we let
Fn represent the set of active particles at time n, and for every particle f ∈ Fn, we denote
its distance from the root as |f |. Next we define the weight function

Wn =
∑

f∈Fn

α|f |,
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where α =
(

(E[η] + 1)k
)−1/2

. Now for any frog f positioned at time n at a non-root vertex
with j ≥ k children, the expected contribution that f , along with all of its progeny that are
born at time n+ 1, makes to Wn+1 is equal to

1

j + 1
α|f |−1 +

j

j + 1

(

E[η] + 1
)

α|f |+1 = α|f |
(

1

j + 1
α−1 +

j

j + 1

(

E[η] + 1
)

α

)

(2)

= α|f |
(

α−1

k + 1
· (k + j)(k + 1)

(j + 1)k

)

= α|f | · α−1

k + 1

(

2− (k − 1)(j − k)

k(j + 1)

)

≤ α|f | · 2α
−1

k + 1
.

Likewise, in the case where f is at the root, the expected contribution f and its progeny
make to Wn+1 is

α
(

E[η] + 1
)

=
α−1

k
≤ α|f | · 2α

−1

k + 1
.

Hence, combining this with (2) and summing over all f ∈ Fn we get

E[Wn+1|Wn] ≤
2α−1

k + 1
Wn. (3)

Now defining m := 2α−1

k+1
and noting that (3) implies that Wn

mn is a nonnegative supermartin-

gale, we see that Wn

mn must be almost surely convergent. Combining this with the fact that

E[η] < (k−1)2
4k

⇐⇒ m < 1, we can now conclude that Wn −→ 0 a.s., thus establishing
transience and completing the proof. �

4. Basic tools for random walk and Galton-Watson trees

Before proceeding to the proof of recurrence, we introduce some basic tools concerning
random walk on trees and comparisons between different probability measures on trees.
These will form the toolbox throughout the proof of recurrence. Many of these statements
have technical and somewhat standard proofs, which will be deferred to an appropriate
appendix.

4.1. Properties of the harmonic measure and simple random walk. We begin with
a basic calculation that is the primary use of our assumption that Z ≥ 2.

Lemma 4.1. Let T be an infinite tree with root 0 so that each vertex is of degree at least 3.
Then for all v ∈ T1 the probability that a simple random walk on T starting at 0 ever hits v
is at most 1/2. We thus have HARMT (v) ≤ 1/2.

Proof. LetXn be the distance from the random walker at time n to v. Consider now a random
walk {Yn} with drift on Z started at 1 where we take right-ward steps with probability 2/3
and left-ward steps with probability 1/3. Up until Yn = 0, we may couple the random walks
(Xn, Yn) so that Xn is larger than Yn. Computing directly that P(Yn > 0 for all n) = 1/2
completes the proof. �



12 MARCUS MICHELEN AND JOSH ROSENBERG

We will want to compare the probability a simple random walk visits the root of a tree to
its harmonic measure. As such, for a rooted tree T and a vertex u ∈ T define p0(u) be the
probability that a loop-erased random walk starting at u ever hits the root.

Lemma 4.2. There is a universal constant C > 0 so that for any rooted tree T with minimum
degree m ≥ 3 and every v ∈ T2 and every u ∈ T (v), we have

p0(u) ≥ C · HARMT (v)(u)

|T1(u)| · |T1(
←−v )| .

Finally, we will want to compare the harmonic measure to simple random walk without
loop erasure.

Lemma 4.3. In a simple random walk on a rooted tree T and a vertex v ∈ Tn, let f(v)
be the probability that v is the first level n vertex visited by the random walk. There exists
a universal constant C ∈ (1,∞) such that, for any infinite rooted tree T where all vertices
have at least two children, and any non-root vertex v of T we have

1

C
· HARMT (v) ≤ f(v) ≤ C · HARMT (v). (4)

Both Lemma 4.2 and 4.3 are proved in Appendix A.

4.2. Cutting out subtrees with a large first generation. Since we will use the harmonic
measure as a weighing for counting the number of activated vertices, we will show that it is
rare for the harmonic measure to have a big contribution from vertices with many children.

Lemma 4.4. There are universal constants C, c > 0 so that for all N ≥ Cµ and n we have

GW

(

∑

v′∈Tn

HARMT(v
′) · 1|T1(v′)|≥N ≥

1

4

)

≤ exp (−c2n) .

Proof. Let T be a rooted tree for which all vertices have at least two children. If v is a level
n vertex in T and we let v0, v1, . . . , vn = v be the path going from the root to v, then since

HARMT (v) =
n−1
∏

j=0

HARMT (vj)(vj+1),

Lemma 4.1 implies that HARMT (v) ≤ 2−n. Now letting u1, . . . , uk represent an enumeration
of the level n vertices in T , and letting f(uj) represent the probability that uj is the first
level n vertex hit by simple random walk on T beginning at the root, we see that the above
exponential bound combined with Lemma 4.3 implies that f(uj) ≤ C2−n for each j.

To obtain the statement bound in the Lemma we will bound an exponential moment.
Observe that if we condition on the first n levels of the random tree T matching those of T
(we write this as Tn ≈ Tn), then we may use conditional independence to find that for any
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t > 0 we have

EGW

[

exp

(

t
k
∑

j=1

f(uj)1|T1(uj)|≥N

)

∣

∣

∣

∣

Tn ≈ Tn

]

=
k
∏

j=1

EGW

[

exp
(

tf(uj)1|T1(uj)|≥N
)

∣

∣

∣

∣

Tn ≈ Tn

]

=

k
∏

j=1

(

1 +P(Z ≥ N)
(

etf(uj ) − 1
))

.

In addition, since ex ≤ 1 + 2x for all x ∈ [0, 1], it follows from the above calculation that
for the choice t = 1

C
2n and writing pN = P(Z ≥ N) we have

EGW

[

exp

(

t

k
∑

j=1

f(uj)1|T1(uj)|≥N

)

∣

∣

∣
Tn ≈ Tn

]

≤
k
∏

j=1

(1 + 2tpNf(uj))

≤
k
∏

j=1

e2tpNf(uj) = e2tpN .

Markov’s inequality that then shows that for any r > 0 we have

GW

( k
∑

j=1

f(uj)1|T1(uj)|≥N ≥ r
∣

∣

∣
Tn ≈ Tn

)

≤ e−(r−2pN ) 1
C
2n .

Now once again applying Lemma 4.3, while also noting that the expression on the right in
the above inequality does not depend on Tn, we can conclude that

GW

(

∑

v′∈Tn

HARMT(v
′)1|T1(v′)|≥N ≥ Cr

)

≤ e−(r−2pN ) 1
C
2n .

Finally, setting r = 1
4C

and noting that for N ≥ Cµ we have 2pn ≤ r/2 completes the
proof. �

In the proof of recurrence we will often require that many levels of the tree satisfy the
event in Lemma 4.4. To this end, we introduce the following definitions.

Definition 4.5 (Bad tree events). For a given N,m and i define the collection of rooted trees
Ai by

Ai =

{

∑

v′∈Ti

HARMT (v
′)1|T1(v′)|≥N ≥

1

4

}

.

Define

A =
⋃

m
2
<i≤m

Ai .

Lemma 4.6. There are universal constants C, c > 0 so that for all N ≥ Cµ and all m we
have

GW(A) ≤ Ce−c2
m/2

.
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Proof. Apply Lemma 4.4 along with a union bound over i. Adjusting the constant c com-
pletes the Lemma. �

4.3. Comparisons between measures on trees. We will need two families of measures
on trees that are slightly different from GW and AGW but are closely related. First, sample
T according to AGW, and let v0, v1, . . . be the vertices of an infinite nonbacktracking path
from the root that is sampled according to the harmonic measure HARMT. Define AGWn

denote the law of the rooted tree T(vn). Note that since the vertex vn is chosen according
to the harmonic measure, this has the effect of biasing T(vn) to be larger than T in some
sense. As such, AGWn is distinct from GW, however we will show that the two measures are
quite close.

Lemma 4.7. There exists a universal constant C ∈ (1,∞) such that, if Z is an offspring
distribution satisfying P(Z ≥ 2) = 1, then

1

C
≤ dAGWn

dGW
≤ C GW − a.s. ∀ n ≥ 1.

We will also need a law on random trees that have a given first generation and then shift
by the harmonic measure.

Lemma 4.8. For each j ∈ N define the measure GW
(j)
1 as follows: let T be sampled from

GW conditioned on |T1| = j. Choose v ∈ T1 according to the harmonic measure on T. Then

set GW
(j)
1 to be the law of T(v). Then

1

2
≤ dGW

(j)
1

dGW
≤ 2 .

Lemmas 4.7 and 4.8 are proved in Appendix B.

5. Recurrence

The purpose of this Section is to show the existence of a recurrent regime for Galton-
Watson trees, which we state explicitly as Theorem 1.1. We begin by introducing two
variants of the frog model: the truncated frog model and the augmented truncated frog
model; the purpose of the truncated frog model is for a direct comparison to the frog model
(Lemma 5.2), while the purpose of the augmented truncated frog model is to understand the
behavior of the truncated frog model when shifted to a vertex v (Lemma 5.4). The main
technical engine in our proof is Proposition 5.6, which we prove in Section 6.

5.1. Two variants: The truncated frog model and its augmented version. In this
section we define two variants on the frog model. The first is the truncated frog model,
which we will directly compare the frog model to. The dynamics of the truncated frog model
are as follows:

Definition 5.1 (Truncated Frog Model Dynamics). Given a rooted tree T and a parameter
λ ≥ 0 the truncated frog model is defined as follows.

(1) Like the ordinary frog model, this model begins with a single active particle at the
root, and i.i.d. Poiss(λ) inactive particles at all non-root vertices.
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(2) An inactive particle is activated when the vertex at which it resides is landed on
by an active particle. Upon activation, particles perform independent loop-erased
random walks, which terminate upon hitting the root.

(3) In addition, any time an active particle takes a step away from the root and lands
on a vertex which has already been landed on by at least one other active particle,
the particle is eliminated. If more than one particle simultaneously land on a vertex
which had not previously been landed on by an active particle, all but one of these
particles are eliminated.

We first note that there is a natural coupling between the frog model and the truncated
frog model so that the number of particles that visit the root in the frog model is at least as
large as the number in the truncated frog model.

Lemma 5.2. Suppose λ is so that GW-a.s. the truncated frog model with Poiss(λ) sleeping
frogs at each non-vertex root is recurrent. Then the same holds for the frog model GW-a.s.

Proof. We provide a coupling between the frog model and the truncated frog model. Let
T (1), T (2) be copies of a tree T sampled from GW. On T (1) we place an active particle at
the root, we position i.i.d. Poiss(λ) sleeping particles at all non-root vertices, and then
run the ordinary frog model. Now on T (2), we let each non-root vertex begin with the
same number of sleeping particles as the corresponding vertex in T (1), and assign to each
particle in T (2) a partner in T (1) originating at the same vertex. We now define a copy of
the truncated model on T (2) by having each particle, if activated, proceed along the path
obtained by eliminating all loops from the path taken by its partner in T (1) (activating all
sleeping particles it encounters along the way), until the particle in T (2) either hits the root,
or travels from a parent vertex to a child that has already been landed on by another particle,
at which point it is eliminated. Letting Xj represent the total number of particles that visit
the root in the model defined on T (j), we see that because the trajectory of each activated
particle in T (2) is a subset of the trajectory of its partner in T (1), and because all activated
particles in T (2) have activated partners in T (1), this implies that X1 ≥ X2. In particular, if
X2 = +∞ then X1 = +∞. �

For any T, λ combination (where T is a rooted tree without leaves or pipes) we denote
the law of the truncated frog model on T with Poiss(λ) sleeping frogs per non-root ver-

tex as TFM
(λ)
T . The elements comprising the space on which this measure is defined, de-

noted as PathsParticlesTrajectoriesT , will consist of the following information: A single non-
backtracking trajectory starting at the root, a non-negative integer nv for each non-root ver-
tex v that refers to the number of sleeping frogs initially located there, nv non-backtracking
paths for each non-root vertex v, and finally an element of [0, 1]N associated with each non-
backtracking path that allows us to break ties (this is needed on account of the last of the
three conditions used to define the truncated frog model in the prior subsection).

One difficulty of working with the truncated frog model is that the root is distinguished
from other vertices. In particular, if we consider the truncated frog model on T and some
vertex v, we will want a model to understand how the model looks on the subtree T (v)
conditioned on v being activated. As such, we will primarily work with a slightly altered
version of the frog model that we call the augmented truncated frog model defined as follows.
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Definition 5.3 (Augmented Truncated Frog Model Dynamics). Given a rooted tree T , λ ≥ 0,
attach a leaf vertex vℓ to the root of T in order to generate the tree T+.

(1) Place i.i.d. Poiss(λ) inactive particles at all vertices aside from vℓ and additionally
place a single active particle at the root.

(2) An inactive particle is activated when the vertex at which it resides is landed on by an
active particle. Upon activation, particles perform independent loop-erased random
walks. Each time such a walk hits vℓ, it terminates. The original particle placed at
the root performs an ordinary loop-erased random walk on T , and so never steps to
vℓ.

(3) As is the case in the truncated frog model, any time an active particle stepping
away from the root lands on a (non-leaf) vertex that has already been landed on
by another active particle, this particle dies. If multiple active particles land on a
previously unvisited vertex simultaneously, then all but one (chosen uniformly at
random) die.

The intuition behind the augmented truncated frog model is that for a non-root vertex
v, once v is activated there is some number of inactive particles at v; this accounts for
the additional particles placed at the root. Additionally, loop erased random walk starting
within T (v) in the larger tree v will either escape through←−v or continue downward in T (v);
the purpose of adding the leaf vℓ is to account for the particles that escape through ←−v .

The law induced by this model will be denoted as ATFM
(λ)
T , and the space on which it

is defined, which includes all of the information associated with PathsParticlesTrajectoriesT ,
on top of the information pertaining to the additional nv active particles starting at the
root, will be denoted as PathsParticlesTrajectories∗T . As the nv particles placed at the root
are performing loop-erased random walk, each one either escapes downward in the tree T (v)
or is terminated at vℓ.

The relationship between these two models is summarized in the following basic fact.

Lemma 5.4. For any rooted tree T so that each vertex has at least two children, v ∈ T1 and
λ > 0 we have

TFM
(λ)
T (v is activated |←−v is activated) ≥ ATFM

(λ)

T (←−v )
(v is activated) .

Proof. Let p = 1−p(←−v , v) where p(←−v , v) denotes the probability that a simple random walk

starting at ←−v ever hits v. If we introduce the slight variant ATFM(λ,p) where rather than
terminating particles when they hit vℓ we terminate them with probability p, then we see

that on the tree T (←−v ), the measure TFM
(λ)

T (←−v )
and ATFM

(λ,p)

T (←−v )
are identical. We also note

TFM
(λ)
T (v is activated |←−v is activated) = TFM

(λ)

T (←−v )
(v is activated) .

By terminating all particles that hit vℓ rather than thinning out by probability p, we may
only decrease the set of vertices activated, completing the proof. �

5.2. Proof of recurrence. In this section we present our main recurrence result. The
precise result consists of the following theorem.

Theorem 5.5. Let Z be an offspring distribution satisfying P(Z ≥ 2) = 1 and E[Z4+ε] <∞
(for some ε > 0), and let GW be the measure on Galton-Watson trees generated by Z.
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Then there exists a constant λ0 ∈ (0,∞) such that, for every λ > λ0, the frog model with
Poiss(λ) sleeping frogs at each non-root vertex is recurrent for GW–a.s. every tree T. Further,
log(λ0) = O(ε−2 + ε−1 logE[Z4+ε]).

The main step in proving Theorem 5.5 will consist of establishing a proposition that forms
the essence of the bootstrapping argument referenced in Section 6.1 (see the second step
from the sketch of the recurrence proof).

Proposition 5.6. There is a constant C > 0 so that the following holds. For any λ ≥
C(E[Z4] + 1) and α ≥ C (ε−1 logE[Z4+ε] + ε−2 + 1), if for all n ≥ 1 we have

EAGWn

[

∑

v′∈T1

HARMT(v
′)ATFM

(λ)
T

(v′ is not activated)

]

≤ e−α

then

EAGWn

[

∑

v′∈T1

HARMT(v
′)ATFM

(λ)
T

(v′ is not activated)

]

≤ e−α

2
.

Proof of Theorem 5.5: By monotonicity of the frog model with respect to λ > 0, it is suffi-
cient to show recurrence for λ0 defined by log λ0 = C(ε−2 + ε−1 logE[Z4+ε]) for sufficiently
large C. Additionally, by Lemma 5.2 it is sufficient to show recurrence for the truncated
frog model. Recall that we let v0, v1, . . . represent the vertices of a nonbacktracking path
sampled according to the harmonic measure; the first step in completing the proof of the
theorem will be to use Proposition 5.6 to show that for all n ≥ 1, we have

EAGW×HARMT

[

ATFM
(λ0)
T(vn)

(vn+1 is not activated)

]

= 0. (5)

In light of Proposition 5.6, in order to do this it will suffice to show that expectation in (5) is
at most e−α0 for every n ≥ 1 where α0 = C ′(ε−1 logE[Z4+ε]+ ε−2). Proposition 5.6 will then
imply (5). Now using Lemma 4.7, we see that the task of establishing (5) can be further
reduced to showing that

EGW

[

∑

v′∈T1

HARMT(v
′)ATFM

(λ0)
T

(v′ is not activated)

]

<
1

C
e−α0 (6)

since λ0 is large enough to meet the conditions of Proposition 5.6 (where C represents the
universal constant appearing in Lemma 4.7).

Noting that for each v′ ∈ T1 the number of particles originating at the root of T+ that hit

v′ is dominated by Poiss
(

cλ0

|T1|

)

, we then observe that the expression inside the expectation

in (6) can be bounded above by e
− cλ0

|T1| . Therefore, it follows that the left-hand-side of (6) is
bounded above by

EGW

[

e
− cλ0

|T1|

]

≤ EGW

[

C ′′|T1|
λ0

]

= C ′′
µ

λ0

for some universal C ′′ > 0. By adjusting the constant in the definition of λ0 we see indeed
have

C ′′
µ

λ0
≤ e−α0
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thus establishing (6); by Lemma 4.7 and Proposition 5.6 we thus have established (5).
This shows that for each n ≥ 1 we have

∑

v∈Tn

HARMT(v)ATFM
(λ)

T(←−v )
(v)(is not activated) = 0 AGW − a.s. .

By an application of Lemma 5.4, this shows

TFM
(λ)
T

(v is not activated) = 1 ∀v ∈ T AGW − a.s. (7)

To show that infinitely many particles reach the root, note that by Lemma 4.4, along with
the Borel-Cantelli Lemma, we see that, for N ≥ Cµ, there is a random n0 with AGW(n0 <
∞) = 1 so that for all n ≥ n0 we have

∑

v′∈Tn

HARMT(v
′)1|T1(v′)|≥N ≥

1

4
(8)

By (7), all vertices are activated, and so combining (8) with Lemma 4.2 shows that almost
surely infinitely many particles visit the root. Combining this with Lemma 5.2 completes
the proof. �

The upper bound on λc in Theorem 1.1 is likely not optimal, although it is strong enough
to show that recurrence depends not only on the maximum possible value of Z, but on the
entire degree distribution.

Corollary 5.7. For all d sufficiently large, there exists an offspring distribution Z supported
in {2, . . . , d} with P(Z = d) > 0 and λ ∈ (0,∞) so that the Poisson frog model with density λ
is almost-surely recurrent on Galton-Watson trees with offspring distribution Z, but transient
on the d-regular tree.

Proof. By [5], there exists a constant c > 0 so that the Poisson frog model with density λ is
transient on the d-regular tree for λ ≤ cd. Now if we let Z be the random variable 2+(d−2)ξ
where ξ is Bernoulli with success probability 1/d5, then E[Z5] = O(1). By Theorem 5.5, this
implies the Poisson frog model with density λ is almost surely recurrent on Galton-Watson
trees generated by Z provided λ ≥ C for some C > 0. Taking d large enough that cd > C
completes the proof. �

6. Proof of Proposition 5.6

6.1. Sketch of the proof. The proof of Proposition 5.6 consists of a delicate bootstrapping
argument; here, we isolate many of the key ideas, with the hope of providing a useful road-
map through the proof.

The hypothesis of Proposition 5.6 states that

EAGWn

[

∑

v′∈T1

HARMT(v
′)ATFM

(λ)
T

(v′ is not activated)

]

≤ e−α . (9)

Our first main step is to show that under the assumption of (9), a large proportion of
far-away vertices will be activated. In particular, we introduce the following “bad” event:
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Definition 6.1. In an instance of the truncated frog model on a tree T and given an integer
m and v ∈ T , define the event E = E(v,m) via

E =















∑

v′∈Tm(v)
v′ is activated

HARMT (v)(v
′) <

1

2















. (10)

Ultimately we will take m = ⌊eα/2⌋. Iterating (9) will show a simple upper bound on the
event that E holds for all children of the root (Lemma 6.2). We want to upgrade this bound
to have probability on the order of e−α. We will achieve this in Lemma 6.3 in two steps:
first, (9) will show that it is rare for only one vertex in T1 to be activated; second, we will
bound the event that at least two distinct vertices v′ and v′′ in T1 satisfy E . By ignoring
all particles originating outside of the trees T (v′) and T (v′′), we see that the probability E
occurs can only increase. This will allow us to upper bound the event that E occurs for both
v′ and v′′ by a product of their probabilities (Claim 6.4).

With Lemma 6.3 in-hand we then proceed to perform the boot-strapping step. The game
here is to win over e−α by a multiplicative factor of 1/2 in the right-hand of side of (9).
Active particles on the first level are either activated by particles starting at v—recall that
in the augmented truncated frog model there are Poiss(λ) particles at v—or particles from a
different child of v. To handle the latter, we will use E to identify many activated particles at
height m along with Lemma 4.2 to compare the harmonic measure and return probabilities.
To handle particles activated by those starting at v, we either have that the first generation
is small—and thus one of the Poiss(λ) particles is likely to land there—or the first generation
is large, which is rare for Galton-Watson trees. As such, we break up the proof into the case
of small |T1| and large |T1|; these are handled in Lemmas 6.5 and 6.7 respectively.

The proofs of Lemmas 6.5 and 6.7 follow similar paths. For each vertex v′ ∈ T1, we want to
upper bound the probability that v′ is not activated. To identify particles that will activate
v′, we will want to condition on E c holding for some child of the root, which holds with
probability Ce−α for our choice of m = ⌊eα/2⌋. To improve over this constant C in the case
when T1 is small, we will use the Poiss(λ) particles at the root to beat this constant (see
(16)); in the case when T1 is large, we will use a tail bound on the offspring distribution
Z to make this probability as small as we want. To balance these two cases, our cutoff for
“small” versus “large” is at |T1| <

√
λ.

Once we have that the event E c holds for some child of the root, it just remains to show
that many particles visit the root. The main tool will be Lemma 4.2, although it is only
useful when then quantities |T1(u)| and |T1(

←−v )| are not too large. As such, we will eliminate
certain “bad tree events” in which the harmonic measure has a large contribution from nodes
that have many children using the tools of Section 4.2. The particular notions of “bad tree”
are slightly different in Lemmas 6.5 and 6.7, due only to the fact that in Lemma 6.7 we
may have a large first generation. Once these “bad trees” are eliminated, a Poisson thinning
argument—Claims 6.6 and 6.8 in Lemmas 6.5 and 6.7 respectively—will identify many active
particles with the potential to activate v′.

6.2. Setting up the bootstrap: identifying many activated sites. The main goal of
this subsection is to prove Lemma 6.3, which bounds the event that E holds for all first
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generation vertices. We first compute an expectation, which will later be used for bounding
the probability E holds.

Lemma 6.2. Suppose that for some n, α, λ we have

EAGWn

[

∑

v′∈T1

HARMT(v
′)ATFM

(λ)
T

(v′ is not activated)

]

≤ e−α .

Then for all m we have

E
AGWn×ATFM(λ)

T







∑

v′∈Tm
v′ is activated

HARMT(v
′)






≥ 1−me−α. (11)

Proof. The proof will consist of iterating the hypothesis m times. We start by noting that
for any possible tree T , non-backtracking path ω = (v0, v1, . . .), and any pair of positive
integers n,m, we have

ATFM
(λ)
T (vn)

(vn+m is activated) ≥
m−1
∏

j=0

ATFM
(λ)
T (vn+j)

(vn+j+1 is activated)

=

m−1
∏

j=0

(

1−
(

1− ATFM
(λ)
T (vn+j)

(vn+j+1 is activated)

))

≥ 1−
m−1
∑

j=0

(

1− ATFM
(λ)
T (vn+j)

(vn+j+1 is activated)
)

.

Combining this bound with the assumption proves

EAGW×HARMT(vn)

[

ATFM
(λ)
T(vn)

(vn+m is activated)

]

≥ 1−
m−1
∑

j=0

(

1− EAGW×HARMT(vn)

[

ATFM
(λ)
T(vn+j)

(vn+j+1 is activated)

])

≥ 1−me−α .

�

We are now ready to state and prove the main result of this subsection. While this Lemma
is stated for all m ≥ 1, we will ultimately take m = ⌊eα/2⌋.
Lemma 6.3. There exists a universal constant C > 0 so that the following holds. If for all
n ≥ 1 we have

EAGWn

[

∑

v′∈T1

HARMT(v
′)ATFM

(λ)
T

(v′ is not activated)

]

≤ e−α

then for all m ≥ 1 we have

AGWn × ATFM
(λ)
T

(∀ v ∈ T1 , E(v,m) holds) ≤ Ce−α
(

1 +m2e−α
)

. (12)
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Proof. Let T be generated by AGWn. Let v∗ be the vertex in T1 that is hit by the frog
originating at the root which follows a standard loop-erased path to∞ (recall that the other
Poiss(λ) frogs starting at the root move according to a slightly different set of dynamics

under ATFM
(λ)
T ). In addition, we let v̂ be the vertex in T1 \ {v∗} that is hit by the frog

with minimal index, out of all of the frogs originating at either the root or in T (v∗) that hit
T1 \ {v∗} (presuming any such frogs exist). Then we have

ATFM
(λ)
T

(

∀ v ∈ T1, E(v,m) holds

)

(13)

≤ ATFM
(λ)
T

(

Only 1 vertex in T1 is activated
)

+ ATFM
(λ)
T

(

At least 2 vertices in T1 are activated, and both v∗ and v̂ satisfy E
)

.

By Markov’s inequality and Lemma 4.1, we may bound the first term by

AGWn×ATFM(λ)
T

(

Only 1 vertex in T1 is activated
)

(14)

≤ AGWn × ATFM
(λ)
T







∑

v′∈T1
v′ not activated

HARMT (v
′) ≥ 1/2







≤ 2e−α

where we used the assumption to bound the expectation when applying Markov’s inequality.
The first step to bounding the second term in (13) will be in the following claim.

Claim 6.4.

ATFM
(λ)
T

(

At least 2 vertices in T1 are activated, and both v∗ and v̂ satisfy E
)

≤
∑

v′,v′′∈T1

v′ 6=v′′

HARMT (v
′) · HARMT (v

′′)

1− HARMT (v′)
ATFM

(λ)
T (v′)(E) · ATFM

(λ)
T (v′′)(E)

Proof of Claim 6.4. We first condition on the identity of v∗ and bound

ATFM
(λ)
T

(

At least 2 vertices in T1 are activated, and both v∗ and v̂ satisfy E
)

≤
∑

v′∈T1

HARMT (v
′)ATFM

(λ)
T

(

v′ satisfies E , v̂ satisfies E | v∗ = v′
)

where we interpret the probability on the right-hand side to be zero if no vertex in T1

is activated other than v′; we note that the only reason this is an inequality rather than

equality is due to the additional vertex added to the root of T in ATFM
(λ)
T . Write B for the
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event that a particle starting in T (v′) ever reaches T1 \ {v′}. We may then write

ATFM
(λ)
T

(

v′ satisfies E , v̂ satisfies E | v∗ = v′
)

= ATFM
(λ)
T

(

v′ satisfies E ,B | v∗ = v′
)

×
∑

v′′∈T1\{v′}
ATFM

(λ)
T

(

v′′ = v̂, v′′ satisfies E | v∗ = v′,B
)

.

We may bound

ATFM
(λ)
T

(

v′ satisfies E ,B | v∗ = v′
)

≤ ATFM
(λ)
T

(

v′ satisfies E | v∗ = v′
)

= ATFM
(λ)
T (v′)(E) .

Similarly bound

ATFM
(λ)
T

(

v′′ = v̂, v′′ satisfies E | v∗ = v′,B
)

=
HARMT (v

′′)

1− HARMT (v′)
ATFM

(λ)
T (v′′)(E)

where we note that the first term is precisely the probability that a loop-erased random walk
in T starting at the root steps to v′′ conditioned on it not stepping to v′. Combining the
previous four displayed equations completes the Claim. �

By Lemma 4.1, the harmonic measure on a level 1 vertex differs from the uniform measure
on T1 by a multiplicative factor of at most 2 (see the proof of Lemma 4.8 for the details of
this argument). We now may apply Claim 6.4 to see

ATFM
(λ)
T

(

At least 2 vertices in T1 are activated, and both v∗ and v̂ satisfy E
)

(15)

≤ C
∑

v′,v′′∈T1

v′ 6=v′′

1
(|T1|

2

) · ATFM(λ)
T (v′)(E) · ATFM

(λ)
T (v′′)(E).

for some constant C > 0.
Combining (14) and (15) along with Lemma 4.7 bounds

AGWn × ATFM
(λ)
T

(

∀ v ∈ T1 , E(v′, m) holds

)

≤ 2e−α + C ′
[

AGWn × ATFM
(λ)
T

(E)
]2

for a constant C ′ > 0. Applying Lemma 6.2 and Markov’s inequality bounds

AGWn × ATFM
(λ)
T

(E) ≤ 2me−α

completing the proof of the Lemma. �

6.3. Performing the bootstrap. We will break up the proof of Proposition 5.6 into two
cases, depending on if the first generation is “small” or “large”. Our cutoff for these two is
the event |T1| <

√
λ and its complement. We handle the case of “small” |T1| first.
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Lemma 6.5. There is a constant C > 0 so that the following holds. For any α ≥ 1 and
λ ≥ CE[Z4], if for all n ≥ 1 we have

EAGWn

[

∑

v′∈T1

HARMT(v
′)ATFM

(λ)
T

(v′ is not activated)

]

≤ e−α

then

EAGWn

[

1|T1|<
√
λ

∑

v′∈T1

HARMT(v
′)ATFM

(λ)
T

(v′ is not activated)

]

≤ e−α

4
.

Proof. Let T be a tree generated by Z with |T1| < λ and v′ ∈ T1. Note first that the
probability none of the Poiss(λ) particles starting at the root of T+ hit v′ is upper bounded

by e−C1

√
λ. Set m = ⌊eα/2⌋ and bound

ATFM
(λ)
T (v′ is not activated) (16)

≤ e−C1

√
λATFM

(λ)
T (∀ v ∈ T1(v

∗), E(v,m) holds)

+ e−C1

√
λATFM

(λ)
T (∃ v′′ ∈ T1(v

∗) satisfying E c and nothing from T (v′′) hits v′)

where we recall that v∗ is vertex in T1 hit by the active particle that begins at the root of
T+. Applying Lemma 6.3 along with Lemma 4.7 shows a bound of

EAGWne
−C1

√
λATFM

(λ)
T

(∀ v ∈ T1(v
∗), E(v,m) holds) ≤ Ce−C1

√
λe−α (17)

for some constant C > 0. Moving on to the second term in (16), bound
∑

v′∈T1

HARMT (v
′)ATFM

(λ)
T (∃ v′′ ∈ T1(v

∗) satisfying E c and nothing from T (v′′) hits v′) (18)

≤ max
v′∈T1
v′′∈T2

ATFM
(λ)
T (Nothing from T (v′′) hits v′ | v′′ ∈ T1(v

∗), E c(v′′, m) holds)

Define the event B := {∃ v ∈ T2 : T (v) ∈ A} ∪ {∃ v ∈ T1 : |T1(v)| > eα/3} where A is the
event from Lemma 4.6. Since Z has four moments, we see that for N ≥ Cµ we have

GW(B) ≤ µ2Ce−c2
m
2 + µE[Z3]e−α ≤ C ′E[Z4]e−α

where in the second bound we used m = ⌊eα/2⌋ and the fact that for any random variable
X with X ≥ 1 we have EXEX3 ≤ EX4 . Applying Lemma 4.7 shows

AGWn(B) ≤ C ′′E[Z4]e−α (19)

We now bound the right-hand-side of (18) in the case that T ∈ Bc.

Claim 6.6. Let T ∈ Bc satisfy |T1| <
√
λ. Then for any v′ ∈ T1, v

′′ ∈ T2 we may bound

ATFM
(λ)
T (Nothing from T (v′′) hits v′ | v′′ ∈ T1(v

∗), E c(v′′, m) holds) ≤ Ce−α .

Proof of Claim 6.6. Note that if v′′ satisfies E c and T ∈ Bc, then this implies that
∑

v′∈Ti(v
′′), |T1(v′)|<

√
λ

v′ is activated

HARMT (v′′)(v
′) ≥ 1

4
(20)
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for every i with m
2
< i ≤ m. In addition, since |T1| <

√
λ, then since each vertex in T (v′′)

begins with Poiss(λ) inactive particles and since T ∈ Bc implies that the parent of v′′ has no
more than eα/3 children, it must follow from Lemma 4.2 that, conditioning on (20) holding
for each i with m

2
< i ≤ m, the number of particles from T (v′′) that hit v0 stochastically

dominates Poiss(C4

λ
· λ · m

8
· e−α/3) = Poiss(C5 ·m · e−α/3) for some universal C5. To see this

Poisson domination, note that conditioning on the collection of activated vertices does not
give any information about the number of frogs at each vertex whose walks go to v0, due
to the dynamics of the truncated frog model. Thus the probability v′ is not activated is at

most e−C5me−α/3
. Recalling m = ⌊eα/2⌋ completes the Claim. �

Combining (16), (17) and (18) with Claim 6.6 bounds

EAGWn

[

1|T1|<
√
λ

∑

v′∈T1

HARMT(v
′)ATFM

(λ)
T

(v′ is not activated)

]

≤ Ce−C1

√
λ
(

e−α + AGWn(B)
)

≤ C ′e−C1

√
λe−αE[Z4] .

Taking λ ≥ CE[Z4] for some large but universal C completes the claim. �

We now move on to the proof in the case of “large” T1.

Lemma 6.7. There is a constant C > 0 so that the following holds. For any α ≥ C(ε−1 logE[Z4+ε]+

ε−2) and λ ≥ C
(

E[Z4+ε]
2

4+ε

)

, if for all n ≥ 1 we have

EAGWn

[

∑

v′∈T1

HARMT(v
′)ATFM

(λ)
T

(v′ is not activated)

]

≤ e−α

then

EAGWn

[

1|T1|≥
√
λ

∑

v′∈T1

HARMT(v
′)ATFM

(λ)
T

(v′ is not activated)

]

≤ e−α

4
.

Proof. We begin along the same lines as Lemma 6.5. Let T be a tree generated by Z with
|T1| ≥ λ and v′ ∈ T1. For m = ⌊eα/2⌋ we bound

ATFM
(λ)
T (v′ is not activated) (21)

≤ ATFM
(λ)
T (∀ v ∈ T1(v

∗), E(v,m) holds)

+ ATFM
(λ)
T (∃ v′′ ∈ T1(v

∗) satisfying E c and nothing from T (v′′) hits v′) .

To bound the first term on the right-hand side of (21), we will use Lemma 6.3 along with
the tree comparison statement Lemma 4.8. In particular we see

EAGWn

[

1|T1|≥
√
λATFM

(λ)
T

(∀ v ∈ T1(v
∗), E(v,m) holds)

]

=
∑

j≥
√
λ

AGWn(|T1| = j)EAGWn

[

ATFM
(λ)
T

(∀ v ∈ T1(v
∗), E(v,m) holds)

∣

∣|T1| = j
]

≤ CP(Z ≥
√
λ)e−α
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where the last inequality follows from Lemma 6.3 along with the tree-comparison statements
Lemma 4.8 and Lemma 4.7. In particular, by Markov’s inequality we have

EAGWn

[

1|T1|≥
√
λATFM

(λ)
T

(∀ v ∈ T1(v
∗), E(v,m) holds)

]

≤ C ′e−α
E[Z2]

λ
. (22)

Moving on to the second term in (21), we proceed as in Lemma 6.5. If we let v∗ be the
vertex that the first active particle starting at the root goes to, we again have (18) holds:

∑

v′∈T1

HARMT (v
′)ATFM

(λ)
T (∃ v′′ ∈ T1(v

∗) satisfying E c and nothing from T (v′′) hits v′) (23)

≤ max
v′∈T1
v′′∈T2

ATFM
(λ)
T (Nothing from T (v′′) hits v′ | v′′ ∈ T1(v

∗), E c(v′′, m) holds) .

We will now similarly cut out “bad trees” as we did in the case of Lemma 6.5. Set
R = exp( α

4+ε/2
); for the event A defined in Lemma 4.6, define the event A via

A = {∃ v ∈ T1(v
∗) : T(v) ∈ A} ∪ {T1 ≥ R} ∪ {T1(v

∗) ≥ R} . (24)

Away from the event A we will bound the right-hand-side of (23).

Claim 6.8. Let T be a rooted tree with u ∈ T1, w ∈ T2. Suppose that T satisfies |T1| < R,
|T1(
←−w )| < R and for all v′ ∈ T1(

←−w ) we have T (v′) /∈ A. Then we have

ATFM
(λ)
T (Nothing from T (w) hits u |w ∈ T1(v

∗), E c(w,m) holds) ≤ C exp
(

−c
√
λe

εα
16+2ε

)

for universal constants C, c > 0.

Proof of Claim 6.8. Note that since T (w) /∈ A and E c(w,m) holds, we have that

∑

v′∈Ti(w), |T1(v′)|<
√
λ

v′ is activated

HARMT (w)(v
′) ≥ 1

4
(25)

for every i with m
2

< i ≤ m. Since |T1| < R and |T1(
←−w )| < R and since each vertex in

T (w) begins with Poiss(λ) inactive particles, it follows from Lemma 4.2 that, conditioning
on (25) holding for each i with m

2
< i ≤ m, the number of particles from T (w) that hit u

stochastically dominates Poiss(c
√
λm/R2) for some universal c > 0. Recalling m = ⌊eα/2⌋

and R = exp( α
4+ε/2

) completes the Claim. �

Combining (21), (22) and (23) with Claim 6.8 bounds

EAGWn

[

1|T1|≥
√
λ

∑

v′∈T1

HARMT(v
′)ATFM

(λ)
T

(v′ is not activated)

]

≤ C ′e−α
E[Z2]

λ
+ C ′ exp

(

−c
√
λe

εα
16+2ε

)

+ AGWn × ATFM
(λ)
T

(A)
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where A is the event defined in (24). We may bound

AGWn × ATFM
(λ)
T

(A)
= AGWn+1(∃ v ∈ T1 : T(v) ∈ A) + AGWn(|T1| ≥ R) + AGWn+1(|T1| ≥ R)

≤ Cµ exp(−c2m/2) + CP(Z ≥ R)

≤ C ′
(

µ exp(−c2m/2) + E[Z4+ε] exp

(

−
(

1 +
ε

8 + ε

)

α

))

.

Choosing C sufficiently large for λ ≥ CE[Z2] we have

C ′e−α
E[Z2]

λ
≤ e−α

16
.

For α ≥ C(ε−2 + 1) with C large enough we have e
εα

16+2ε ≥ α and so

C ′ exp
(

−c
√
λe

εα
16+2ε

)

≤ e−α

16
.

For α ≥ C(ε−1 logE[Z4+ε] + 1) we may take C large enough so that

C ′E[Z4+ε] exp

(

−
(

1 +
ε

8 + ε

)

α

)

≤ e−α

16
.

Finally since m = ⌊eα/3⌋ for α ≥ C(log µ+ 1) we have

C ′µ exp(−cem/2) ≤ e−α

16
.

Combining the previous displayed equations completes the proof. �

Proof of Proposition 5.6. The proof follows from combining Lemmas 6.5 and 6.7. �

7. Counterexamples and open questions

In this section we give an example of a tree that does not have a recurrent regime for the
Poisson frog model. In addition, we also provide an example of a tree for which the Poisson
frog model has a non-trivial intermediate regime between recurrence and transience. We
conclude the section by discussing some remaining open problems.

7.1. A tree without a recurrent regime. Let T̂ be the rooted tree for which each vertex
on level n has n + 2 children. Using methods similar to those employed in the proof of
Theorem 3.2, we will now establish the following transience result on T̂ .

Lemma 7.1. The frog model on T̂ with i.i.d. Poiss(λ) frogs per non-root vertex is transient
for every λ > 0.

Proof. We begin by defining the following branching model on T̂ which dominates the frog
model with i.i.d. Poiss(λ) frogs per non-root vertex with respect to the number of returns to

the root. To start, we first select a positive integer N that is large enough so that N2

4(N+1)
> λ.

We then assign i.i.d. Poiss(λ) active particles to each non-root vertex on every level n < N ,
along with a single active particle at the root. In addition, any time a particle takes a step
away from the root and lands on a vertex v for which |v| ≥ N , it gives birth to Poiss(λ)
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additional active particles at that vertex. Next we define α :=
(

(λ+1)(N +1)
)−1/2

and the

function w : N→ R as

w(j) =











(

(j+2)!
2

)−1/2
if j < N

(

(N+1)!
2

)−1/2
αj−N+1 otherwise

Now once again letting Fn denote the set of active particles at time n, and for every f ∈ Fn

denoting its distance from the root as |f |, we define the weight function

Wn :=
∑

f∈Fn

w(|f |).

Letting f represent an active particle at level j ≥ N at some time n, we see from the
formulas for w and Wn above that the expected contribution to Wn+1 by f , along with any
progeny it has that are born at time n+ 1, is

1

j + 3
w(j − 1) +

j + 2

j + 3
(λ+ 1)w(j + 1) = w(j)

(

1

j + 3
α−1 +

j + 2

j + 3
(λ+ 1)α

)

(26)

≤ w(j)

(

1

N + 2
α−1 +

N + 1

N + 2
(λ+ 1)α

)

= w(j) · 2α
−1

N + 2
< w(j)

(where the string of inequalities follows from (2), along with the fact that N2

4(N+1)
> λ,

α =
(

(λ + 1)(N + 1)
)−1/2

, and j + 3 > N + 2). If instead we have |f | = N − 1 at time n,
then the expected contribution of f and its progeny at time n + 1 will be

1

N + 2
w(N − 2) +

N + 1

N + 2
(λ+ 1)w(N) (27)

= w(N − 1)

(

1

N + 2
(N + 1)1/2 +

N + 1

N + 2
(λ+ 1)α

)

= w(N − 1)

(

1

N + 2
α−1(λ+ 1)−1/2 +

N + 1

N + 2
(λ+ 1)α

)

< w(N − 1)

(

1

N + 2
α−1 +

N + 1

N + 2
(λ+ 1)α

)

= w(N − 1) · 2α
−1

N + 2
.
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Likewise, in the case where f is on level j at time n with 1 ≤ j < N − 1, the expected
contribution to Wn+1 made by f (note f has no progeny at time n+ 1) is

1

j + 3
w(j − 1) +

j + 2

j + 3
w(j + 1) = w(j)

(

1

j + 3
(j + 2)1/2 +

j + 2

j + 3
(j + 3)−1/2

)

(28)

< w(j) · 2

(j + 3)1/2

≤ w(j).

Finally, if f is located at the root at time n, then its expected contribution to Wn+1 is

w(1) = 3−1/2 · w(0). (29)

Now setting m = max{ 2√
5
, 2α−1

N+2
} (note that 2√

5
is the value we get by plugging j = 2 into

the expression that multiplies w(j) on the second line of (28)), we see that it follows from
(26)–(29) that if we sum over all f ∈ Fn, then we get

E[Wn+1|Wn] ≤ m ·Wn.

Hence, this means that Wn

mn is a nonnegative super-martingale, which means it converges
almost surely. Since m < 1, this then implies that Wn → 0 almost surely, thus establishing
transience of our branching model on T̂ and completing the proof. �

7.2. A tree without a 0-1 law. Here we provide an example of a rooted tree with no
leaves or pipes that has a non-trivial intermediate phase, meaning recurrence occurs with
probability strictly between 0 and 1. While [6] also provides an example of a tree without
a 0-1 law, their example contains an arbitrarily long path of vertices with 1 child each. We
therefore adapt their example for the case of a tree that is an instance of the Galton-Watson
measures we’ve been working with (keep in mind, however, that any given tree occurs with
probability 0, and in fact Theorem 2.1 states that the collection of trees with an intermediate
regime has Galton-Watson measure zero).

Our example is presented in the form of the following lemma, in which λ1(T ) and λ2(T )

are used to refer to sup{λ : FM
(λ)
T (transience) = 1} and inf{λ : FM

(λ)
T (recurrence) = 1}

respectively.

Lemma 7.2. Let T denote the rooted tree formed by joining each of the roots of the 2-
ary tree and d-ary tree to a single root by a pair of distinct edges. For d sufficiently large,
λ1(T ) < λ2(T ).

Proof. After establishing in [5] the existence of both recurrent and transient regimes for the
frog model on regular trees, Hoffman, Johnson, and Junge were able to conclude, by virtue
of a 0-1 law which they proved in [6], that λ1 = λ2 on the regular d-ary tree (hence, they
simply refer to a single critical value that we call λc(d)). As shown in [5], λc(d) → ∞ as
d → ∞, and so for d sufficiently large we have λc(d) > λc(2). Now arguing as in Lemma
2.6, for each λ that is strictly between λc(2) and λc(d), there is a positive probability that
for the Poisson frog model on the d-ary tree with Poiss(λ) frogs per non-root vertex, no
particles ever return to the root. This means that for such a value of λ, there is positive
probability that no particles visit the root of T . Conversely, by a similar argument we also
know that whenever the frog beginning at the root escapes inside the 2-ary subtree (an event
with positive probability) there will be infinitely many returns to the root almost surely. For



THE FROG MODEL ON GALTON-WATSON TREES 29

if this were not the case, then there would be positive probability of zero returns to the
root when the frog starting at the root escapes inside of the 2-ary subtree, which would then
imply that the same would hold for the frog model on the 2-ary tree itself, thus contradicting
our assumption that λ > λc(2). Thus we have λ1(T ) ≤ λc(2) < λc(d) ≤ λ2(T ). �

7.3. Further questions. Our proof of recurrence in Section 5 (see Theorem 5.5) relied
on the offspring distribution Z having more than four moments. It seems highly unlikely
however that these are the best possible conditions, and it even seems conceivable that the
recurrence result could potentially be established without imposing any moment conditions
at all. Likewise, we also were not able to extend our recurrence or our transience results
to offspring distributions that can take values less than 2, due to the presence of arbitrarily
long pipes.

Question 7.3. Does there exist a transient regime for the frog model on supercritical Galton-
Watson trees in the case of P(Z ≤ 1) > 0?

After posting this work on arXiv, the work [10] provided a positive partial answer to this
question; here they introduce two parameters, dmin = min{j ≥ 2 : P(Z = j) > 0} and
dmax = sup{j : P(Z = j) > 0} and showed that if dmin is large enough as a function of the
two values P(Z = 0) and P(Z = 1), then if the mean of the density of particles is smaller
than a function of P(Z = 0),P(Z = 1) and dmax, then there is transience. We conjecture
that for any offspring distribution Z with EZ > 1, there is a transient regime.

In general, random walk on trees where vertices may have 1 child may be recurrent—
such as on Z. On supercritical Galton-Watson trees, however, not only are random walks
transient, but the speed is almost surely positive, so the existence of a transient regime is
still very plausible. Also still on the table is expanding the cases of the offspring distribution
Z for which a recurrent regime exists:

Question 7.4. For which offspring distributions does there exist a recurrent regime? In
particular, what about the case of P(Z ≤ 1) > 0 or when Z has fewer than four moments.

While there is no obvious monotonicity with respect to degree, it may be the case that
there is some monotonicity lurking.

Question 7.5. Is there some stochastic order ≤ so that if Z1 and Z2 are offspring distributions
with Z1 ≤ Z2 then λc(Z1) ≤ λc(Z2)?

Finally, we suspect that λc is a function of more than just the mean, but our bound on λc

cannot rule this out.

Question 7.6. Does there exist a pair of random variables Z1 and Z2 with Zj ≥ 2,EZ5
j <∞

for j ∈ {1, 2} so that EZ1 = EZ2 but λc(Z1) 6= λc(Z2)?

Appendix A. Harmonic measure and return probability

In this section we tie up the loose ends of Section 4.1.

Proof of Lemma 4.2. We begin by defining the following quantities: First, let p̃(v, u) repre-
sent the probability that simple random walk on T (v) beginning at v ever hits u. In addition,
we define p̃(u,∞) to be the probability that random walk on T (v) beginning at u eventually
escapes through one of the children of u. Turning to random walk on T , we let p(v, u) be the
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probability a simple random walk starting at v ever hits u, and we define p(v,−∞) to be the
probability that random walk beginning at v eventually escapes through one of the children
of the root other than the parent of v. Now noting that HARMT (v)(u) = p̃(v, u) · p̃(u,∞) and
p0(u) = p(u, v) · p(v,−∞), we see that in order to complete the proof it will suffice to show
that each of the two parts of the product expression

(

p(u, v)

p̃(v, u)
· |T1(u)|
|T1(v)|

)

×
(

p(v,−∞) · |T1(v)| · |T1(
←−v )|

)

(30)

are bounded away from 0.

Looking first at the quantity p(u,v)
p̃(v,u)

, we define p∗(u, v) and p̃∗(v, u) to be the probabilities

that random walk on T (v) beginning at u (v respectively) reaches v (u respectively) without
first returning to its starting position, and note that

p(u, v)

p̃(v, u)
≥ p∗(u, v)

p̃∗(v, u)
· p̃
∗(v, u)

p̃(v, u)
, (31)

and
p∗(u, v)

p̃∗(v, u)
=

|T1(v)|
|T1(u)|+ 1

. (32)

Now we let p represent the probability that random walk on T (v) beginning at v ever returns
to v, and let p′ represent the probability that random walk on T (v) beginning at v returns

to v without first hitting u. Observing that p̃(v, u) = p̃∗(v,u)
1−p′ ≤

p̃∗(v,u)
1−p , and noting that the

fact that each vertex of T has at least two children implies that p ≤ 1
2
, we see that, along

with (31) and (32), this implies that

p(u, v)

p̃(v, u)
· |T1(u)|
|T1(v)|

≥ |T1(v)|
|T1(u)|+ 1

· |T1(u)|
|T1(v)|

· (1− p) =
|T1(u)|
|T1(u)|+ 1

· (1− p) ≥ 2

3
· 1
2
=

1

3
.

Likewise, for the second part of the product in (30), we see that

p(v,−∞) · |T1(v)| · |T1(
←−v )| ≥

(

1

|T1(v)|+ 1
· 1

|T1(
←−v )|+ 1

· |T1| − 1

|T1|
· 1
2

)

×
(

|T1(v)| · |T1(
←−v )|

)

=
|T1(v)|
|T1(v)|+ 1

· |T1(
←−v )|

|T1(
←−v )|+ 1

· |T1| − 1

|T1|
· 1
2

≥
(2

3

)3

· 1
2
=

4

27

(where both inequalities follow from the fact that each vertex has degree at least 3), thus
completing the proof of the lemma. �

Proof of Lemma 4.3. We’ll start by looking at the case where each vertex of T has degree
at least three (thus excluding the case where the root has exactly two children). Since every
vertex in T has degree at least three we know that the probability that simple random
walk, upon hitting v, ever returns to ←−v is equal to at most 1

2
. Hence, we see that simple

random walk on T (starting at the root) escapes through v with probability at least 1
2
f(v),

thus establishing the upper bound in (4) for C = 2. To establish the lower bound, we
start by letting v0, v1, . . . , vn represent the vertices of the nonbacktracking path beginning
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with the root and ending with v. Now using p(v′, B) to denote the probability that simple
random walk on T beginning at a vertex v′ ever hits some collection of vertices B, and
letting p(v′, B, B′) (where B and B′ represent disjoint collections of vertices in T ) refer to
the probability that simple random walk beginning at v′ eventually hits B without first
hitting B′, we find that

p(v0, v)− f(v) ≤
n−1
∑

j=0

p(v0, vj) · p
(

vj, {Tn−j(vj) \ Tn−j−1(vj+1)}, v
)

(33)

×
[

max
v′∈Tn−j(vj)

p(v′, vj)
]

· p(vj , v) (34)

≤
n−1
∑

j=0

p(v0, vj) · p
(

vj, {Tn−j(vj) \ Tn−j−1(vj+1)}, v
)

·
(1

2

)n−j
· p(vj, v)

=
n−1
∑

j=0

p(v0, v) · p
(

vj , {Tn−j(vj) \ Tn−j−1(vj+1)}, v
)

·
(1

2

)n−j

(where the inequality on the second line again follows from the fact that all vertices have
degree at least three). Using the inequalities in (33) we see that if n ≤ 2, then p(v0, v)−f(v) ≤
3
4
p(v0, v), thus implying that f(v) ≥ 1

4
p(v0, v). If n > 2 then we have to do a little bit more

work. First, we set m := deg(vn−2) and let u1, . . . , um−2 be the children of vn−2 (other than

vn−1). In addition, for each uj we define rj :=
∑

v′∈T1(uj)
p(v′,vn−2)
deg(uj)

. Now once again using

(33), we can achieve the bound

p(v0, v)− f(v) ≤
n−3
∑

j=0

p(v0, v) · p
(

vj, {Tn−j(vj) \ Tn−j−1(vj+1)}, v
)

·
(1

2

)n−j
(35)

+ p(v0, v) · p
(

vn−2, {T2(vn−2) \ T1(vn−1)}, v
)

·
∑m−2

j=1 rj · deg(uj)−1
deg(uj)

∑m−2
i=1

deg(ui)−1
deg(ui)

+ p(v0, v) ·
p
(

vn−2, vn−1, {T2(vn−2) \ T1(vn−1)}
)

p(vn−2, vn−1)
· p
(

vn−1, {T1(vn−1) \ T0(v)}, v
)

· 1
2

≤ p(v0, v)

4
+ p(v0, v) · p

(

vn−2, {T2(vn−2) \ T1(vn−1)}
)

·
∑m−2

j=1 rj · deg(uj)−1
deg(uj)

∑m−2
i=1

deg(ui)−1
deg(ui)

+
p(v0, v)

2
·
p
(

vn−2, vn−1, {T2(vn−2) \ T1(vn−1)}
)

p(vn−2, vn−1)

(where the ratio of sums on the second line represents the probability that, conditioned on
hitting {T2(vn−2) \ T1(vn−1)}, simple random walk eventually returns to vn−2). For each uj,

we now set sj :=

∑
v′∈T1(uj)

p(v′,uj)

deg(uj)−1 (the probability, conditioned on hitting T1(uj), that simple

random walk ever returns to uj), and note that

rj =
sj

deg(uj)
+

deg(uj)− 1

deg(uj)
sjrj =⇒ rj =

sj
deg(uj)− (deg(uj)− 1)sj

.
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Letting c1 and c2 represent p(vn−3, vn−2) and p(vn−1, vn−2) respectively, we now see that

p
(

vn−2, {T2(vn−2) \ T1(vn−1)}
)

=

∑m−2
j=1

deg(uj)−1
deg(uj)

deg(vn−2)− c1 − c2 −
∑m−2

i=1
1

deg(ui)

.

Multiplying this last expression by the ratio of sums on the second to last line in (35), and
using the above expression for rj in terms of sj, we get

∑m−2
j=1

sj
deg(uj)−(deg(uj)−1)sj ·

deg(uj)−1
deg(uj)

deg(vn−2)− c1 − c2 −
∑m−2

i=1
1

deg(ui)

(36)

(note that this last expression is bounded above by 1
4
on account of the fact that rj ≤ 1

4
for

each j). Now looking at the second part of the product on the last line of (35), we see that
the numerator is equal to

1

deg(vn−2)− c1 −
∑m−2

j=1
1

deg(uj)

(37)

and the denominator is equal to

1

deg(vn−2)− c1 −
∑m−2

i=1
1

deg(ui)
−∑m−2

j=1
sj

deg(uj)−(deg(uj)−1)sj ·
deg(uj)−1
deg(uj)

. (38)

If we now let A1 and A2 denote the first and second sums respectively in the denominator of
(38), and then plug the expressions in (36), (37), and (38) into the expression to the right
of the final inequality in (35), we get the inequality

p(v0, v)− f(v) (39)

≤ p(v0, v) ·
(

1

4
+

A2

deg(vn−2)− c1 − c2 − A1
+

1

2
· deg(vn−2)− c1 − A1 − A2

deg(vn−2)− c1 − A1

)

= p(v0, v) ·
(

3

4
+

A2

deg(vn−2)− c1 − c2 −A1
− 1

2
· A2

deg(vn−2)− c1 − A1

)

= p(v0, v) ·
(

3

4
+

1

2
· A2

deg(vn−2)− c1 − c2 − A1

·
(

1 +
c2

deg(vn−2)− c1 −A1

)

)

.

Next observe that, since A2

deg(vn−2)−c1−c2−A1
is equal to the expression in (36), this means it is

bounded above by 1
4
. In addition, since c1 and c2 are each bounded above by 1

2
(recall that

they’re return probabilities), and since all vertices of T have degree at least 3, it follows that

c2
deg(vn−2)− c1 − A1

≤ 1/2

m− 1
2
− m−2

3

=
1/2

2m
3
+ 1

6

≤ 3

13

(where the last inequality follows from plugging in m = 3). Substituting the values of 1
4
and

3
13

for the two corresponding rational expressions on the last line of (39), we now find that

p(v0, v)− f(v) ≤ p(v0, v) ·
(3

4
+

1

2
· 1
4
· 16
13

)

=
47

52
=⇒ f(v) ≥ 5

52
· p(v0, v). (40)

Combining this with the fact that f(v) ≥ 1
4
·p(v0, v) for n ≤ 2, and the fact that HARMT (v) ≤

p(v0, v), we can now conclude that the inequality on the left in (4) must hold for C = 11.



THE FROG MODEL ON GALTON-WATSON TREES 33

Alongside the upper bound in (4) that we established for C = 2 (and therefore C = 11 as
well), this establishes (4) for the case where each vertex of T has degree at least three.

To address the case where the root of T has only two children, we let T ∗ be the tree we
obtain by attaching the root of the binary tree T2 to the root of T with an edge (where
the root of T ∗ is defined to be the root vertex of T ). Now let v be a level n vertex of T
(with n ≥ 1). Since every non-root vertex of T has at least two children, it follows that the
probability that simple random walk starting at the root of T ∗ escapes through one of the
two level 1 verteices of T (rather than the third level 1 vertex that was added to T in order
to obtain T ∗) is at least 2

3
. Hence, from this we can conclude that

HARMT ∗(v) ≤ HARMT (v) ≤
3

2
HARMT ∗(v). (41)

Similarly the fact that each non-root vertex in T has at least two children also implies that
the probability that the first level n vertex hit by simple random walk starting at the root
of T ∗ is in T , is at least 2

3
. Thus we can also conclude that

fT ∗(v) ≤ fT (v) ≤
3

2
fT ∗(v) (42)

(where the subscripts T and T ∗ indicate which of the two trees we are using to calculate f).
Since we know (4) must apply for T ∗, it now follows from (41) and (42) that it applies for T
as well (for C = 3

2
· 11 = 33

2
), thus completing the proof of the lemma. �

Appendix B. Comparing measures on the space of trees

We now tie up the loose ends of Section 4.3

Proof of Lemma 4.7. It will suffice to show that there exists C ∈ (1,∞) such that, for any
n ≥ 1 and any event A in the space of rooted trees for which GW(A) > 0, we have

GW(A)

C
≤ AGWn(A) ≤ C · GW(A). (43)

Letting v̂ represent the first level n vertex hit by simple random walk (starting at the root)
on the random tree T selected with respect to the measure AGW, we observe that T(v̂) has
distribution GW. Hence, it follows that

GW(A) =

∫

∑

v′∈Tn

1T(v′)∈Af(v
′)dAGW. (44)

Combining this with the previous lemma, we now see that

AGWn(A) =

∫

∑

v′∈Tn

1T(v′)∈AHARMT(v
′)dAGW (45)

≤ C

∫

∑

v′∈Tn

1T(v′)∈Af(v
′)dAGW = C · GW(A)

(where C is the constant from Lemma 4.3). Likewise, if we replace C by 1
C

then it follows
from Lemma 4.3 that the inequality in (45) holds in the other direction. Hence, the proof is
complete. �
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Proof of Lemma 4.8. Let v(1), . . . , v(j) be the vertices of T1 and note that for each i ≤ j we
have

1− p(v(i), 0)

|T1|
≤ HARMT(v

(i)) ≤ p(0, v(i)) .

By Lemma4.1 we have 1−p(v(i) ,0)
|T1| ≥ 1

2|T1| . For the upper bound, write

p(0, v(i)) ≤
∞
∑

k=0

P(Simple random walk first steps to v(i) from 0 after k returns to 0)

≤ 1

|T1|

∞
∑

k=0

2−k =
2

|T1|
where the second inequality is via Lemma 4.1.

We thus have
1

2|T1|
≤ HARMT(vi) ≤

2

|T1|
.

Combining this with the fact that, if we choose a vertex v′ uniformly at random from T1

(while conditioning on |T1| = j) then T(v′) has law GW, we can conclude that

1

2
≤ dGW

(j)
1

dGW
≤ 2. �
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