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Abstract
Let A be an 𝑛×𝑛 symmetric matrix with (𝐴𝑖, 𝑗 )𝑖� 𝑗 independent and identically distributed according to a subgaussian

distribution. We show that

P(𝜎min (𝐴) � 𝜀𝑛−1/2) � 𝐶𝜀 + 𝑒−𝑐𝑛,

where 𝜎min (𝐴) denotes the least singular value of A and the constants 𝐶, 𝑐 > 0 depend only on the distribution of

the entries of A. This result confirms the folklore conjecture on the lower tail of the least singular value of such

matrices and is best possible up to the dependence of the constants on the distribution of 𝐴𝑖, 𝑗 . Along the way, we

prove that the probability that A has a repeated eigenvalue is 𝑒−Ω(𝑛) , thus confirming a conjecture of Nguyen, Tao

and Vu [Probab. Theory Relat. Fields 167 (2017), 777–816].
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1. Introduction

Let A be an 𝑛 × 𝑛 random symmetric matrix whose entries on and above the diagonal (𝐴𝑖, 𝑗 )𝑖� 𝑗 are
independent and identically distributed (i.i.d.) with mean 0 and variance 1. This matrix model, sometimes
called the Wigner matrix ensemble, was introduced in the 1950s in the seminal work of Wigner [50],
who established the famous “semicircular law” for the eigenvalues of such matrices.

In this paper, we study the extreme behavior of the least singular value of A, which we denote by
𝜎min(𝐴). Heuristically, we expect that 𝜎min(𝐴) = Θ(𝑛−1/2), and thus it is natural to consider

P(𝜎min(𝐴) � 𝜀𝑛−1/2), (1.1)

for all 𝜀 � 0 (see Section 1.2). In this paper, we prove a bound on this quantity which is optimal up to
constants, for all random symmetric matrices with i.i.d. subgaussian entries. This confirms the folklore
conjecture, explicitly stated by Vershynin in [46].
Theorem 1.1. Let 𝜁 be a subgaussian random variable with mean 0 and variance 1, and let A be an 𝑛×𝑛
random symmetric matrix whose entries above the diagonal (𝐴𝑖, 𝑗 )𝑖� 𝑗 are independent and distributed
according to 𝜁 . Then for every 𝜀 � 0,

P𝐴(𝜎min(𝐴) � 𝜀𝑛−1/2) � 𝐶𝜀 + 𝑒−𝑐𝑛, (1.2)

where 𝐶, 𝑐 > 0 depend only on 𝜁 .
This conjecture is sharp up to the value of the constants 𝐶, 𝑐 > 0 and resolves the “up-to-constants”

analogue of the Spielman–Teng [38] conjecture for random symmetric matrices (see Section 1.2). Also
note that the special case 𝜀 = 0 tells us that the singularity probability of any random symmetric A with
subgaussian entry distribution is exponentially small, generalizing our previous work [4] on the {−1, 1}
case.

1.1. Repeated eigenvalues

Before we discuss the history of the least singular value problem, we highlight one further contribution
of this paper: a proof that a random symmetric matrix has no repeated eigenvalues with probability
1 − 𝑒−Ω(𝑛) .

In the 1980s, Babai [43] conjectured that the adjacency matrix of the binomial random graph
𝐺 (𝑛, 1/2) has no repeated eigenvalues with probability 1− 𝑜(1) (see [43]). Tao and Vu [43] proved this
conjecture in 2014 and, in subsequent work on the topic with Nguyen [24], went on to conjecture the
probability that a random symmetric matrix with i.i.d. subgaussian entries has no repeated eigenvalues
is 1− 𝑒−Ω(𝑛) . In this paper, we prove this conjecture en route to proving Theorem 1.1, our main theorem.
Theorem 1.2. Let 𝜁 be a subgaussian random variable with mean 0 and variance 1, and let A be an
𝑛 × 𝑛 random symmetric matrix, where (𝐴𝑖, 𝑗 )𝑖� 𝑗 are independent and distributed according to 𝜁 . Then
A has no repeated eigenvalues with probability at least 1 − 𝑒−𝑐𝑛, where 𝑐 > 0 is a constant depending
only on 𝜁 .

Theorem 1.2 is easily seen to be sharp whenever 𝐴𝑖, 𝑗 is discrete: consider the event that three rows
of A are identical; this event has probability 𝑒−Θ(𝑛) and results in two 0 eigenvalues. Also note that the
constant in Theorem 1.2 can be made arbitrary small; consider the entry distribution 𝜁 , which takes
value 0 with probability 1 − 𝑝 and each of {−𝑝−1/2, 𝑝−1/2} with probability 𝑝/2. Here, the probability
of 0 being a repeated root is � 𝑒−(3+𝑜 (1)) 𝑝𝑛.

We in fact prove a more refined version of Theorem 1.2, which gives an upper bound on the probability
that two eigenvalues of A fall into an interval of length 𝜀. This is the main result of Section 7. For this,
we let 𝜆1(𝐴) � . . . � 𝜆𝑛 (𝐴) denote the eigenvalues of the 𝑛 × 𝑛 real symmetric matrix A.
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Theorem 1.3. Let 𝜁 be a subgaussian random variable with mean 0 and variance 1, and let A be an
𝑛 × 𝑛 random symmetric matrix, where (𝐴𝑖, 𝑗 )𝑖� 𝑗 are independent and distributed according to 𝜁 . Then
for each ℓ < 𝑐𝑛 and all 𝜀 � 0, we have

max
𝑘�𝑛−ℓ

P
(
|𝜆𝑘+ℓ (𝐴) − 𝜆𝑘 (𝐴) | � 𝜀𝑛−1/2) � (𝐶𝜀)ℓ + 2𝑒−𝑐𝑛 ,

where 𝐶, 𝑐 > 0 are constants, depending only on 𝜁 .

In the following subsection, we describe the history of the least singular value problem. In Section 1.3,
we discuss a technical theme which is developed in this paper, and then, in Section 2, we go on to give
a sketch of Theorem 1.1.

1.2. History of the least singular value problem

The behavior of the least singular value was first studied for random matrices 𝐵𝑛 with i.i.d. coefficients,
rather than for symmetric random matrices. For this model, the history goes back to von Neumann [48],
who suggested that one typically has

𝜎min(𝐵𝑛) ≈ 𝑛−1/2,

while studying approximate solutions to linear systems. This was then more rigorously conjectured by
Smale [36] and proved by Szarek [39] and Edelman [8] in the case that 𝐵𝑛 = 𝐺𝑛 is a random matrix
with i.i.d. standard gaussian entries. Edelman found an exact expression for the density of the least
singular value in this case. By analyzing this expression, one can deduce that

P(𝜎min(𝐺𝑛) � 𝜀𝑛−1/2) � 𝜀, (1.3)

for all 𝜀 � 0 (see, e.g. [38]). While this gives a very satisfying understanding of the gaussian case, one
encounters serious difficulties when trying to extend this result to other distributions. Indeed, Edelman’s
proof relies crucially on an exact description of the joint distribution of eigenvalues that is available in
the gaussian setting. In the last 20 or so years, intense study of the least singular value of i.i.d. random
matrices has been undertaken with the overall goal of proving an appropriate version of (1.3) for different
entry distributions and models of random matrices.

An important and challenging feature of the more general problem arises in the case of discrete
distributions, where the matrix 𝐵𝑛 can become singular with nonzero probability. This singularity event
will affect the quantity (1.1) for very small 𝜀 and thus estimating the probability that 𝜎min(𝐵𝑛) = 0
is a crucial aspect of generalizing (1.3). This is reflected in the famous and influential Spielman–Teng
conjecture [37] which proposes the bound

P(𝜎min(𝐵𝑛) � 𝜀𝑛−1/2) � 𝜀 + 2𝑒−𝑐𝑛, (1.4)

where 𝐵𝑛 is a Bernoulli random matrix. Here, this added exponential term “comes from” the singularity
probability of 𝐵𝑛. In this direction, a key breakthrough was made by Rudelson [30], who proved that if
𝐵𝑛 has i.i.d. subgaussian entries, then

P(𝜎min(𝐵𝑛) � 𝜀𝑛−1/2) � 𝐶𝜀𝑛 + 𝑛−1/2 .

This result was extended in a series of works [32, 40, 44, 49], culminating in the influential work of
Rudelson and Vershynin [31], who showed the “up-to-constants” version of Spielman-Teng:

P(𝜎min(𝐵𝑛) � 𝜀𝑛−1/2) � 𝐶𝜀 + 𝑒−𝑐𝑛, (1.5)
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where 𝐵𝑛 is a matrix with i.i.d. entries that follow any subgaussian distribution and 𝐶, 𝑐 > 0 depend
only on 𝜁 . A key ingredient in the proof of (1.5) is a novel approach to the “inverse Littlewood-Offord
problem,” a perspective pioneered by Tao and Vu [44] (see Section 1.3 for more discussion).

Another very different approach was taken by Tao and Vu [41], who showed that the distribution of
the least singular value of 𝐵𝑛 is identical to the least singular value of the Gaussian matrix 𝐺𝑛, up to
scales of size 𝑛−𝑐 . In particular, they prove that��P(𝜎min(𝐵𝑛) � 𝜀𝑛−1/2) − P(𝜎min(𝐺𝑛) � 𝜀𝑛−1/2)

�� = 𝑂 (𝑛−𝑐0 ), (1.6)

thus resolving the Spielman-Teng conjecture for 𝜀 � 𝑛−𝑐0 , in a rather strong form. While falling
just short of the Spielman-Teng conjecture, the work of Tao and Vu [41], Rudelson and Vershynin
[31], and subsequent refinements by Tikhomirov [45] and Livshyts et al. [22] (see also [21, 29])
leave us with a very strong understanding of the least singular value for i.i.d. matrix models. How-
ever, progress on the analogous problem for random symmetric matrices, or Wigner random ma-
trices, has come somewhat more slowly and more recently: In the symmetric case, even proving
that 𝐴𝑛 is nonsingular with probability 1 − 𝑜(1) was not resolved until the important 2006 paper of
Costello et al. [7].

Progress on the symmetric version of Spielman–Teng continued with Nguyen [25, 26] and, indepen-
dently, Vershynin [46]. Nguyen proved that for any 𝐵 > 0, there exists an 𝐴 > 0 for which1

P(𝜎min(𝐴𝑛) � 𝑛−𝐴) � 𝑛−𝐵 .

Vershynin [46] proved that if 𝐴𝑛 is a matrix with subgaussian entries then, for all 𝜀 > 0, we have

P(𝜎min(𝐴𝑛) � 𝜀𝑛−1/2) � 𝐶𝜂𝜀
1/8−𝜂 + 2𝑒−𝑛

𝑐
, (1.7)

for all 𝜂 > 0, where the constants𝐶𝜂 , 𝑐 > 0 may depend on the underlying subgaussian random variable.
He went on to conjecture that 𝜀 should replace 𝜀1/8−𝜀 as the correct order of magnitude, and that 𝑒−𝑐𝑛
should replace 𝑒−𝑛𝑐 .

After Vershynin, a series of works [3, 5, 16, 17, 19] made progress on singularity probability (i.e., the
𝜀 = 0 case of Vershynin’s conjecture), and we, in [4], ultimately showed that the singularity probability
is exponentially small, when 𝐴𝑖, 𝑗 is uniform in {−1, 1}:

P(det(𝐴𝑛) = 0) � 𝑒−𝑐𝑛,

which is sharp up to the value of 𝑐 > 0.
However, for general 𝜀, the state of the art is due to Jain et al. [19], who improved on Vershynin’s

bound (1.7) by showing

P(𝜎min(𝐴𝑛) � 𝜀𝑛−1/2) � 𝐶𝜀1/8 + 𝑒−Ω(𝑛1/2) ,

under the subgaussian hypothesis on 𝐴𝑛.
For large 𝜀, for example, 𝜀 � 𝑛−𝑐 , another very different and powerful set of techniques have

been developed, which in fact apply more generally to the distribution of other “bulk” eigenvalues
and additionally give distributional information on the eigenvalues. The works of Tao and Vu [40,
42], Erdős, Schlein and Yau [10, 11, 13], Erdős et al. [9], and specifically, Bourgade et al. [2] tell us
that

P(𝜎min(𝐴𝑛) � 𝜀𝑛−1/2) � 𝜀 + 𝑜(1), (1.8)

1Nguyen in [26] actually proves the same result for random matrices of the form 𝐴𝑛 + 𝐹 , where F is a fixed symmetric 𝑛 × 𝑛

matrix satisfying ‖𝐹 ‖𝑜𝑝 � 𝑛𝑂 (1) .
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thus obtaining the correct dependence2 on 𝜀 when n is sufficiently large compared to 𝜀. These results
are similar in flavor to (1.6) in that they show the distribution of various eigenvalue statistics is closely
approximated by the corresponding statistics in the gaussian case. We note, however, that it appears
these techniques are limited to these large 𝜀 and different ideas are required for 𝜀 < 𝑛−𝐶 , and certainly
for 𝜀 as small as 𝑒−Θ(𝑛) .

Our main theorem, Theorem 1.1, proves Vershynin’s conjecture and thus proves the optimal depen-
dence on 𝜀 for all 𝜀 > 𝑒−𝑐𝑛, up to constants.

1.3. Approximate negative correlation

Before we sketch the proof of Theorem 1.1, we highlight a technical theme of this paper: the approximate
negative correlation of certain “linear events.” While this is only one of several new ingredients in this
paper, we isolate these ideas here, as they seem to be particularly amenable to wider application. We
refer the reader to Section 2 for a more complete overview of the new ideas in this paper.

We say that two events 𝐴, 𝐵 in a probability space are negatively correlated if

P(𝐴 ∩ 𝐵) � P(𝐴)P(𝐵).

Here, we state and discuss two approximate negative correlation results: one of which is from our paper
[4], but is used in an entirely different context, and one of which is new.

We start by describing the latter result, which says that a “small ball” event is approximately negatively
correlated with a large deviation event. This complements our result from [4], which says that two “small
ball events,” of different types, are negatively correlated. In particular, we prove something in the spirit
of the following inequality, though in a slightly more technical form.

P𝑋
(
|〈𝑋, 𝑣〉| � 𝜀 and 〈𝑋, 𝑢〉 > 𝑡

)
� P𝑋 (|〈𝑋, 𝑣〉| � 𝜀)P𝑋 (〈𝑋, 𝑢〉 > 𝑡), (1.9)

where 𝑢, 𝑣 are unit vectors and 𝑡, 𝜀 > 0 and 𝑋 = (𝑋1, . . . , 𝑋𝑛) with i.i.d. subgaussian random variables
with mean 0 and variance 1.

To state and understand our result, it makes sense to first consider, in isolation, the two events present
in (1.9). The easier of the two events is 〈𝑋, 𝑢〉 > 𝑡, which is a large deviation event for which we may
apply the essentially sharp and classical inequality (see Chapter 3.4 in [47])

P𝑋 (〈𝑋, 𝑢〉 > 𝑡) � 𝑒−𝑐𝑡
2
,

where 𝑐 > 0 is a constant depending only on the distribution of X.
We now turn to understand the more complicated small-ball event |〈𝑋, 𝑣〉| � 𝜀 appearing in (1.9).

Here, we have a more subtle interaction between v and the distribution of X, and thus we first consider
the simplest possible case: when X has i.i.d. standard gaussian entries. Here, one may calculate

P𝑋 (|〈𝑋, 𝑣〉| � 𝜀) � 𝐶𝜀, (1.10)

for all 𝜀 > 0, where 𝐶 > 0 is an absolute constant. However, as we depart from the case when X is
gaussian, a much richer behavior emerges when the vector v admits some “arithmetic structure.” For
example, if 𝑣 = 𝑛−1/2 (1, . . . , 1) and the 𝑋𝑖 are uniform in {−1, 1}, then

P𝑋 (|〈𝑋, 𝑣〉| � 𝜀) = Θ(𝑛−1/2),

2Tao and Vu, with Corollary 24 in [42], prove that the distribution of 𝜎min remains asymptotically invariant if the distribution
of the entries 𝐴𝑖, 𝑗 is replaced by a distribution that matches four moments with the original distribution. A follow-up work [9]
joint with Erdős et al. describes an approach to combine ideas from the works [10, 11, 13] to remove the moment matching
assumptions of [42], but does not explicitly address the problem of the least singular value. The work [2] builds on these works
to prove the sharp, nonquantitative statement at (1.8). See the discussion below Theorem 2.2 of [2] for more detail.
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for any 0 < 𝜀 < 𝑛−1/2. This, of course, stands in contrast to (1.10) for all 𝜀 	 𝑛−1/2 and suggests that
we employ an appropriate measure of the arithmetic structure of v.

For this, we use the notion of the “least common denominator” of a vector, introduced by Rudelson
and Vershynin [31]. For parameters 𝛼, 𝛾 ∈ (0, 1) define the least common denominator (LCD) of 𝑣 ∈ R𝑛
to be

𝐷𝛼,𝛾 (𝑣) := inf
{
𝜙 > 0 : ‖𝜙𝑣‖T � min

{
𝛾𝜙‖𝑣‖2,

√
𝛼𝑛
} }
, (1.11)

where ‖𝑣‖T := dist(𝑣,Z𝑛), for all 𝑣 ∈ R𝑛. What makes this definition useful is the important “inverse
Littlewood-Offord theorem” of Rudelson and Vershynin [31], which tells us (roughly speaking) that one
has (1.10) whenever 𝐷𝛼,𝛾 (𝑣) = Ω(𝜀−1). This notion of least common denominator is inspired by Tao
and Vu’s introduction and development of “inverse Littlewood-Offord theory,” which is a collection of
results guided by the meta-hypothesis: “If P𝑋 (〈𝑋, 𝑣〉 = 0) is large then v must have structure.” We refer
the reader to the paper of Tao and Vu [44] and the survey of Nguyen and Vu [28] for more background
and history on inverse Littlewood-Offord theory and its role in random matrix theory. We may now state
our version of (1.9), which uses 𝐷𝛼,𝛾 (𝑣)−1 as a proxy for P(|〈𝑋, 𝑣〉| � 𝜀).
Theorem 1.4. For 𝑛 ∈ N, 𝜀, 𝑡 > 0 and 𝛼, 𝛾 ∈ (0, 1), let 𝑣 ∈ S𝑛−1 satisfy 𝐷𝛼,𝛾 (𝑣) > 𝐶/𝜀 and
let 𝑢 ∈ S𝑛−1. Let 𝜁 be a subgaussian random variable, and let 𝑋 ∈ R𝑛 be a random vector whose
coordinates are i.i.d. copies of 𝜁 . Then

P𝑋 ( |〈𝑋, 𝑣〉| � 𝜀 and 〈𝑋, 𝑢〉 > 𝑡) � 𝐶𝜀𝑒−𝑐𝑡2 + 𝑒−𝑐 (𝛼𝑛+𝑡2) ,

where 𝐶, 𝑐 > 0 depend only on 𝛾 and the distribution of 𝜁 .

In fact, we need a significantly more complicated version of this result (Lemma 5.2), where the
small-ball event |〈𝑋, 𝑣〉| � 𝜀 is replaced with a small-ball event of the form

| 𝑓 (𝑋1, . . . , 𝑋𝑛) | � 𝜀,

where f is a quadratic polynomial in variables 𝑋1, . . . , 𝑋𝑛. The proof of this result is carried out in
Section 5 and is an important aspect of this paper. Theorem 1.4 is stated here to illustrate the general
flavor of this result, and is not actually used in this paper. We do provide a proof in Appendix 9 for
completeness and to suggest further inquiry into inequalities of the form (1.9).

We now turn to discuss our second approximate negative dependence result, which deals with the
intersection of two different small ball events. This was originally proved in our paper [4], but is put to
a different use here. This result tells us that the events

|〈𝑋, 𝑣〉| � 𝜀 and |〈𝑋, 𝑤1〉| 	 1, . . . , |〈𝑋, 𝑤𝑘〉| 	 1 (1.12)

are approximately negatively correlated, where 𝑋 = (𝑋1, . . . , 𝑋𝑛) is a vector with i.i.d. subgaussian
entries and 𝑤1, . . . , 𝑤𝑘 are orthonormal. That is, we prove something in the spirit of

P𝑋

(
{|〈𝑋, 𝑣〉| � 𝜀} ∩

𝑘⋂
𝑖=1

{|〈𝑋, 𝑤𝑖〉| 	 1}
)
� P𝑋
(
|〈𝑋, 𝑣〉| � 𝜀

)
P𝑋

( 𝑘⋂
𝑖=1

{|〈𝑋, 𝑤𝑖〉| 	 1}
)
,

though in a more technical form.
To understand our result, again, it makes sense to consider the two events in (1.12) in isolation. Since

we have already discussed the subtle event |〈𝑋, 𝑣〉| � 𝜀, we consider the event on the right of (1.12).
Returning to the gaussian case, we note that if X has independent standard gaussian entries, then one
may compute directly that

P𝑋 ( |〈𝑋, 𝑤1〉| 	 1, . . . , |〈𝑋, 𝑤𝑘〉| 	 1) = P(|𝑋1 | 	 1, . . . |𝑋𝑘 | 	 1) � 𝑒−Ω(𝑘) , (1.13)
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by rotational invariance of the gaussian. Here, the generalization to other random variables is not as
subtle, and the well-known Hanson-Wright [18] inequality tells us that (1.13) holds more generally
when X has general i.i.d. subgaussian entries.

Our innovation in this line is our second “approximate negative correlation theorem,” which allows
us to control these two events simultaneously. Again, we use 𝐷𝛼,𝛾 (𝑣)−1 as a proxy for P(|〈𝑋, 𝑣〉| � 𝜀).

Here, for ease of exposition, we state a less general version for 𝑋 = (𝑋1, . . . , 𝑋𝑛) ∈ {−1, 0, 1} with
i.i.d. c-lazy coordinates, meaning that P(𝑋𝑖 = 0) � 1 − 𝑐. Our theorem is stated in full generality in
Section 9 (see Theorem 9.2).

Theorem 1.5. Let 𝛾 ∈ (0, 1), 𝑑 ∈ N, 𝛼 ∈ (0, 1), 0 � 𝑘 � 𝑐1𝛼𝑑, and 𝜀 � exp(−𝑐1𝛼𝑑). Let 𝑣 ∈ S𝑑−1, let
𝑤1, . . . , 𝑤𝑘 ∈ S𝑑−1 be orthogonal, and let W be the matrix with rows 𝑤1, . . . , 𝑤𝑘 .

If 𝑋 ∈ {−1, 0, 1}𝑑 is a 1/4-lazy random vector and 𝐷𝛼,𝛾 (𝑣) > 16/𝜀, then

P𝑋

(
|〈𝑋, 𝑣〉| � 𝜀 and ‖𝑊𝑋 ‖2 � 𝑐2

√
𝑘
)
� 𝐶𝜀𝑒−𝑐1𝑘 ,

where 𝐶, 𝑐1, 𝑐2 > 0 are constants, depending only on 𝛾.

In this paper, we will put Theorem 1.5 to a very different use than to that in [4], where we used it to
prove a version of the following statement.

Let 𝑣 ∈ S𝑑−1 be a vector on the sphere, and let H be an 𝑛 × 𝑑 random {−1, 0, 1}-matrix conditioned
on the event ‖𝐻𝑣‖2 � 𝜀𝑛1/2, for some 𝜀 > 𝑒−𝑐𝑛. Here, 𝑑 = 𝑐𝑛 and 𝑐 > 0 is a sufficiently small constant.
Then the probability that the rank of H is 𝑛 − 𝑘 is � 𝑒−𝑐𝑘𝑛.

In this paper, we use (the generalization of) Theorem 1.5 to obtain good bounds on quantities of the
form

P𝑋 (‖𝐵𝑋 ‖2 � 𝜀𝑛1/2),

where B is a fixed matrix with an exceptionally large eigenvalue (possibly as large as 𝑒𝑐𝑛), but is
otherwise pseudo-random, meaning (among other things) that the rest of the spectrum does not deviate
too much from that of a random matrix. We use Theorem 1.5 to decouple the interaction of X with the
largest eigenvector of B, from the interaction of X with the rest of B. We refer the reader to (2.10) in the
sketch in Section 2 and to Section 9 for more details.

The proof of Theorem 9.2 follows closely along the lines of the proof of Theorem 1.5 from [4],
requiring only technical modifications and adjustments. So as not to distract from the new ideas of this
paper, we have sidelined this proof to the Appendix.

Finally, we note that it may be interesting to investigate these approximate negative correlation results
in their own right, and investigate to what extent they can be sharpened.

2. Proof sketch

Here, we sketch the proof of Theorem 1.1. We begin by giving the rough “shape” of the proof, while
making a few simplifying assumptions, (2.2) and (2.3). We shall then come to discuss the substantial
new ideas of this paper in Section 2.2, where we describe the considerable lengths we must go to in
order to remove our simplifying assumptions. Indeed, if one were to only tackle these assumptions using
standard tools, one cannot hope for a bound much better than 𝜀1/3 in Theorem 1.1 (see Section 2.2.2).

2.1. The shape of the proof

Recall that 𝐴𝑛+1 is a (𝑛 + 1) × (𝑛 + 1) random symmetric matrix with subgaussian entries. Let
𝑋 := 𝑋1, . . . , 𝑋𝑛+1 be the columns of 𝐴𝑛+1, let

𝑉 = Span{𝑋2, . . . , 𝑋𝑛+1},
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and let 𝐴𝑛 be the matrix 𝐴𝑛+1 with the first row and column removed. We now use an important
observation from Rudelson and Vershynin [31] that allows for a geometric perspective on the least
singular value problem3

P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2) � P(dist(𝑋,𝑉) � 𝜀).

Here, our first significant challenge presents itself: X and V are not independent, and thus the event
dist(𝑋,𝑉) � 𝜀 is hard to understand directly. However, one can establish a formula for dist(𝑋,𝑉) that is
a rational function in the vector X with coefficients that depend only on V. This brings us to the useful
inequality4 due to Vershynin [46],

P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2) � sup
𝑟 ∈R
P𝐴𝑛 ,𝑋
(
|〈𝐴−1

𝑛 𝑋, 𝑋〉 − 𝑟 | � 𝜀‖𝐴−1
𝑛 𝑋 ‖2
)
, (2.1)

where we are ignoring the possibility of 𝐴𝑛 being singular for now. We thus arrive at our main technical
focus of this paper, bounding the quantity on the right-hand side of (2.1).

We now make our two simplifying assumptions that shall allow us to give the overall shape of our
proof without any added complexity. We shall then layer-on further complexities as we discuss how to
remove these assumptions.

As a first simplifying assumption, let us assume that the collection of X that dominates the probability
at (2.1) satisfies

‖𝐴−1
𝑛 𝑋 ‖2 ≈ ‖𝐴−1

𝑛 ‖HS. (2.2)

This is not, at first blush, an unreasonable assumption to make as E𝑋 ‖𝐴−1
𝑛 𝑋 ‖2

2 = ‖𝐴−1
𝑛 ‖2

HS. Indeed, the
Hanson-Wright inequality tells us that ‖𝐴−1

𝑛 𝑋 ‖2 is concentrated about its mean, for all reasonable 𝐴−1
𝑛 .

However, as we will see, this concentration is not strong enough for us here.
As a second assumption, we assume that the relevant matrices 𝐴𝑛 in the right-hand side of (2.1)

satisfy

‖𝐴−1
𝑛 ‖HS ≈ 𝑐𝑛1/2. (2.3)

This turns out to be a very delicate assumption, as we will soon see, but is not entirely unreasonable
to make for the moment: for example, we have ‖𝐴−1

𝑛 ‖HS = Θ𝛿 (𝑛1/2) with probability 1 − 𝛿. This, for
example, follows from Vershynin’s theorem [46] along with Corollary 8.4, which is based on the work
of [13].

With these assumptions, we return to (2.1) and obverse our task has reduced to proving

min
𝑟
P𝑋
(
|〈𝐴−1𝑋, 𝑋〉 − 𝑟 | � 𝜀𝑛1/2) � 𝜀, (2.4)

for all 𝜀 > 𝑒−𝑐𝑛, where we have written 𝐴−1 = 𝐴−1
𝑛 and think of 𝐴−1 as a fixed (pseudo-random) matrix.

We observe, for a general fixed matrix 𝐴−1, there is no hope in proving such an inequality: Indeed, if
𝐴−1 = 𝑛−1/2𝐽, where J is the all-ones matrix, then the left-hand side of (2.4) is � 𝑐𝑛−1/2 for all 𝜀 > 0,
falling vastly short of our desired (2.4).

Thus, we need to introduce a collection of fairly strong “quasi-randomness properties” of A that hold
with, probably 1 − 𝑒−𝑐𝑛. These will ensure that 𝐴−1 is sufficiently “non-structured” to make our goal
(2.4) possible. The most important and difficult of these quasi-randomness conditions is to show that
the eigenvectors v of A satisfy

𝐷𝛼,𝛾 (𝑣) > 𝑒𝑐𝑛,

3Here and throughout, we understand 𝐴 � 𝐵 to mean that there exists an absolute constant 𝐶 > 0 for which 𝐴 � 𝐶𝐵.
4In this sketch, we will be ignoring a few exponentially rare events, and so the inequalities listed here should be understood as

“up to an additive error of 𝑒−𝑐𝑛.”
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for some appropriate 𝛼, 𝛾, where 𝐷𝛼,𝛾 (𝑣) is the least common denominator of v defined at (1.11).
Roughly, this means that none of the eigenvectors of A “correlate” with a rescaled copy of the integer
lattice 𝑡Z𝑛, for any 𝑒−𝑐𝑛 � 𝑡 � 1.

To prove that these quasi-randomness properties hold with probability 1− 𝑒−𝑐𝑛 is a difficult task and
depends fundamentally on the ideas in our previous paper [4]. Since we don’t want these ideas to distract
from the new ideas in this paper, we have opted to carry out the details in the Appendix. With these
quasi-randomness conditions in tow, we can return to (2.4) and apply Esseen’s inequality to bound the
left-hand side of (2.4) in terms of the characteristic function 𝜑(𝜃) of the random variable 〈𝐴−1𝑋, 𝑋〉,

min
𝑟
P𝑋
(
|〈𝐴−1𝑋, 𝑋〉 − 𝑟 | � 𝜀𝑛1/2) � 𝜀 ∫ 1/𝜀

−1/𝜀
|𝜑(𝜃) | 𝑑𝜃.

While this maneuver has been quite successful in work on characteristic functions for (linear) sums of
independent random variables, the characteristic function of such quadratic functions has proved to be
a more elusive object. For example, even the analogue of the Littlewood-Offord theorem is not fully
understood in the quadratic case [6, 23]. Here, we appeal to our quasi-random conditions to avoid some
of the traditional difficulties: we use an application of Jensen’s inequality to decouple the quadratic form
and bound 𝜑(𝜃) pointwise in terms of an average over a related collection of characteristic functions of
linear sums of independent random variables

|𝜑(𝜃) |2 � E𝑌 |𝜑(𝐴−1𝑌 ; 𝜃) |,

where Y is a random vector with i.i.d. entries and 𝜑(𝑣; 𝜃) denotes the characteristic function of the sum∑
𝑖 𝑣𝑖𝑋𝑖 , where 𝑋𝑖 are i.i.d. distributed according to the original distribution 𝜁 . We can then use our

pseudo-random conditions on A to bound

|𝜑(𝐴−1𝑌 ; 𝜃) | � exp
(
−𝑐𝜃2
)
,

for all but exponentially few Y, allowing us to show∫ 1/𝜀

−1/𝜀
|𝜑(𝜃) | 𝑑𝜃 �

∫ 1/𝜀

−1/𝜀

[
E𝑌 |𝜑(𝐴−1𝑌 ; 𝜃) |

]1/2
�
∫ 1/𝜀

−1/𝜀

(
exp
(
−𝑐𝜃2
)
+ 𝑒−𝑐𝑛

)
𝑑𝜃 = 𝑂 (1)

and thus completing the proof, up to our simplifying assumptions.

2.2. Removing the simplifying assumptions

While this is a good story to work with, the challenge starts when we turn to remove our simplifying
assumptions (2.2), (2.3). We also note that if one only applies standard methods to remove these
assumptions, then one would get stuck at the “base case” outlined below. We start by discussing how to
remove the simplifying assumption (2.3), whose resolution governs the overall structure of the paper.

2.2.1. Removing the assumption (2.3)
What is most concerning about making the assumption ‖𝐴−1

𝑛 ‖HS ≈ 𝑛−1/2 is that it is, in a sense, circular:
If we assume the modest-looking hypothesis E ‖𝐴−1‖HS � 𝑛1/2, we would be able to deduce

P(𝜎min(𝐴𝑛) � 𝜀𝑛−1/2) = P(𝜎max(𝐴−1
𝑛 ) � 𝑛1/2/𝜀) � P(‖𝐴−1

𝑛 ‖HS � 𝑛1/2/𝜀) � 𝜀,

by Markov. In other words, showing that ‖𝐴−1‖HS is concentrated about 𝑛−1/2 (in the above sense)
actually implies Theorem 1.1. However, this is not as worrisome as it appears at first. Indeed, if we are
trying to prove Theorem 1.1 for (𝑛+1)× (𝑛+1) matrices using the above outline, we only need to control
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the Hilbert-Schmidt norm of the inverse of the minor 𝐴−1
𝑛 . This suggests an inductive or (as we use) an

iterative “bootstrapping argument” to successively improve the bound. Thus, in effect, we look to prove

E ‖𝐴−1
𝑛 ‖𝛼HS1(𝜎min(𝐴𝑛) � 𝑒−𝑐𝑛) � 𝑛𝛼/2,

for successively larger 𝛼 ∈ (0, 1]. Note, we have to cut out the event of A being singular from our
expectation, as this event has nonzero probability.

2.2.2. Base case
In the first step of our iteration, we prove a “base case” of

P(𝜎min(𝐴𝑛) � 𝜀𝑛−1/2) � 𝜀1/4 + 𝑒−𝑐𝑛 (2.5)

without the assumption (2.3) which is equivalent to

E ‖𝐴−1
𝑛 ‖1/4

HS 1(𝜎min(𝐴𝑛) � 𝑒−𝑐𝑛) � 𝑛1/8.

To prove this “base case,” we upgrade (2.1) to

P

(
𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2

)
� 𝜀 + sup

𝑟 ∈R
P

(
|〈𝐴−1

𝑛 𝑋, 𝑋〉 − 𝑟 |
‖𝐴−1

𝑛 𝑋 ‖2
� 𝐶𝜀, ‖𝐴−1

𝑛 ‖HS �
𝑛1/2

𝜀

)
. (2.6)

In other words, we can intersect with the event

‖𝐴−1
𝑛 ‖HS � 𝑛1/2/𝜀 (2.7)

at a loss of only 𝐶𝜀 in probability.
We then push through the proof outlined in Section 2.1 to obtain our initial weak bound of (2.5). For

this, we first use the Hanson-Wright inequality to give a weak version of (2.2), and then use (2.7) as a
weak version of our assumption (2.3). We note that this base step (2.5) already improves the best known
bounds on the least singular value problem for random symmetric matrices.

2.2.3. Bootstrapping
To improve on this bound, we use a “bootstrapping” lemma which, after applying it three times, allows
us to improve (2.5) to the near-optimal result

P(𝜎min(𝐴𝑛) � 𝜀𝑛−1/2) � 𝜀
√

log 1/𝜀 + 𝑒−𝑐𝑛 . (2.8)

Proving this bootstrapping lemma essentially reduces to the problem of getting good estimates on

P𝑋

(
‖𝐴−1𝑋 ‖2 � 𝑠

)
for 𝑠 ∈ (𝜀, 𝑛−1/2), (2.9)

where A is a matrix with ‖𝐴−1‖𝑜𝑝 = 𝛿−1 and 𝛿 ∈ (𝜀, 𝑐𝑛−1/2) but is “otherwise pseudo-random.” Here,
we require two additional ingredients.

To start unpacking (2.9), we use that ‖𝐴−1‖𝑜𝑝 = 𝛿−1 to see that if v is a unit eigenvector corresponding
to the largest eigenvalue of 𝐴−1, then

‖𝐴−1𝑋 ‖2 � 𝑠 implies that |〈𝑋, 𝑣〉| < 𝛿𝑠.

While this leads to a decent first bound of 𝑂 (𝛿𝑠) on the probability (2.9) (after using the quasi-
randomness properties of A), however, this is not enough for our purposes, and in fact, we have to use
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the additional information that X must also have small inner product with many other eigenvectors of A
(assuming s is sufficiently small). Working along these lines, we show that (2.9) is bounded above by

P𝑋

(
|〈𝑋, 𝑣1〉| � 𝑠𝛿 and |〈𝑋, 𝑣𝑖〉| � 𝜎𝑖𝑠 for all 𝑖 = 2, . . . , 𝑛 − 1

)
, (2.10)

where 𝑤𝑖 is a unit eigenvector of A corresponding to the singular value 𝜎𝑖 = 𝜎𝑖 (𝐴). Now, appealing
to the quasi-random properties of the eigenvectors of 𝐴−1, we may apply our approximate negative
correlation theorem (Theorem 1.5) to see that (2.10) is at most

𝑂 (𝛿𝑠) exp(−𝑐𝑁𝐴(−𝑐/𝑠, 𝑐/𝑠)), (2.11)

where 𝑐 > 0 is a constant and 𝑁𝐴(𝑎, 𝑏) denotes the number of eigenvalues of the matrix A in the interval
(𝑎, 𝑏). The first 𝑂 (𝛿𝑠) factor comes from the event |〈𝑋, 𝑣1〉| � 𝑠𝛿, and the second factor comes from
approximating

P𝑋

(
|〈𝑋, 𝑤𝑖〉| < 𝑐 for all 𝑖 s.t. 𝑠𝜎𝑖 < 𝑐

)
= exp
(
− Θ(𝑁𝐴(−𝑐/𝑠, 𝑐/𝑠))

)
. (2.12)

This bound is now sufficiently strong for our purposes, provided the spectrum of A adheres sufficiently
closely to the typical spectrum of 𝐴𝑛. This now leads us to understand the rest of the spectrum of 𝐴𝑛
and, in particular, the next smallest singular values 𝜎𝑛−1, 𝜎𝑛−2, . . ..

Now, this might seem like a step in the wrong direction, as we are now led to understand the behavior
of many singular values and not just the smallest. However, this “loss” is outweighed by the fact that
we need only to understand these eigenvalues on scales of size Ω(𝑛−1/2), which is now well understood
due to the important work of Erdős et al. [13].

These results ultimately allow us to derive sufficiently strong results on quantities of the form (2.9),
which, in turn, allow us to prove our “bootstrapping lemma.” We then use this lemma to prove the
near-optimal result

P(𝜎min(𝐴𝑛) � 𝜀𝑛−1/2) � 𝜀
√

log 1/𝜀 + 𝑒−𝑐𝑛 . (2.13)

2.2.4. Removing the assumption (2.2) and the last jump to Theorem 1.1
We now turn to discuss how to remove our simplifying assumption (2.2), made above, which will allow
us to close the gap between (2.13) and Theorem 1.1.

To achieve this, we need to consider how ‖𝐴−1𝑋 ‖2 varies about ‖𝐴−1‖HS, where we are, again,
thinking of 𝐴−1 = 𝐴−1

𝑛 as a sufficiently quasi-random matrix. Now, the Hanson-Wright inequality tells
us that, indeed, ‖𝐴−1𝑋 ‖2 is concentrated about ‖𝐴−1‖HS, on a scale � ‖𝐴−1‖𝑜𝑝 . While this is certainly
useful for us, it is far from enough to prove Theorem 1.1. For this, we need to rule out any “macroscopic”
correlation between the events

{|〈𝐴−1𝑋, 𝑋〉 − 𝑟 | < 𝐾𝜀‖𝐴−1‖HS} and {‖𝐴−1𝑋 ‖2 > 𝐾 ‖𝐴−1‖HS} (2.14)

for all 𝐾 > 0. Our first step toward understanding (2.14) is to replace the quadratic large deviation event
‖𝐴−1𝑋 ‖2 > 𝐾 ‖𝐴−1‖HS with a collection of linear large deviation events:

〈𝑋, 𝑤𝑖〉 > 𝐾 log(𝑖 + 1),

where 𝑤𝑛, 𝑤𝑛−1, . . . , 𝑤1 are the eigenvectors of A corresponding to singular values 𝜎𝑛 � 𝜎𝑛−1 � . . . �
𝜎1, respectively, and the log(𝑖 + 1) factor should be seen as a weight function that assigns more weight
to the smaller singular values.

Interestingly, we run into a similar obstacle as before: If the “bulk” of the spectrum of 𝐴−1 is
sufficiently erratic, this replacement step will be too lossy for our purposes. Thus, we are led to prove
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another result, showing that we may assume that the spectrum of 𝐴−1 adheres sufficiently to the typical
spectrum of 𝐴𝑛. This reduces to proving

E𝐴𝑛

[∑𝑛
𝑖=1 𝜎

−2
𝑛−𝑖−1(log 𝑖)2∑𝑛

𝑖=1 𝜎
−2
𝑛−𝑖−1

]
= 𝑂 (1),

where the left-hand side is a statistic which measures the degree of distortion of the smallest singular
values of 𝐴𝑛. To prove this, we again lean on the work of Erdős et al. [13].

Thus, we have reduced the task of proving the approximate independence of the events at (2.14) to
proving the approximate independence of the collection of events

{|〈𝐴−1𝑋, 𝑋〉 − 𝑟 | < 𝐾𝜀‖𝐴−1‖HS} and {〈𝑣𝑖 , 𝑋〉 > 𝐾 log(𝑖 + 1)}.

This is something, it turns out, that we can handle on the Fourier side by using a quadratic analogue of
our negative correlation inequality, Theorem 1.4. The idea, here, is to prove an Esseen-type bound of
the form

P(|〈𝐴−1𝑋, 𝑋〉 − 𝑡 | < 𝛿, 〈𝑋, 𝑢〉 � 𝑠) � 𝛿𝑒−𝑠
∫ 1/𝛿

−1/𝛿

���E𝑒2𝜋𝑖𝜃 〈𝐴−1𝑋,𝑋 〉+〈𝑋,𝑢〉
��� 𝑑𝜃 . (2.15)

Which introduces this extra “exponential tilt” to the characteristic function. From here, one can carry
out the plan sketched in Section 2.1 with this more complicated version of Esseen, then integrate over s
to upgrade (2.13) to Theorem 1.1.

2.3. Outline of the rest of the paper

In the next short section, we introduce some key definitions, notation, and preliminaries that we use
throughout the paper. In Section 4, we establish a collection of crucial quasi-randomness properties
that hold for the random symmetric matrix 𝐴𝑛 with probability 1 − 𝑒−Ω(𝑛) . We shall condition on these
events for most of the paper. In Section 5, we detail our Fourier decoupling argument and establish an
inequality of the form (2.15). This allows us to prove our new approximate negative correlation result
Lemma 5.2. In Section 6, we prepare the ground for our iterative argument by establishing (2.6), thereby
switching our focus to the study of the quadratic form 〈𝐴−1

𝑛 𝑋, 𝑋〉. In Section 7, we prove Theorem 1.2
and Theorem 1.3, which tell us that the eigenvalues of A cannot “crowd” small intervals. In Section 8,
we establish regularity properties for the bulk of the spectrum of 𝐴−1. In Section 9, we deploy the
approximate negative correlation result (Theorem 1.5) in order to carry out the portion of the proof
sketched between (2.9) and (2.12). In Section 10, we establish our base step (2.5) and bootstrap this to
prove the near optimal bound (2.13). In the final section, Section 11, we complete the proof of our main
Theorem 1.1.

3. Key definitions and preliminaries

We first need a few notions out of the way, which are related to our paper [4] on the singularity of
random symmetric matrices.

3.1. Subgaussian and matrix definitions

Throughout, 𝜁 will be a mean 0, variance 1 random variable. We define the subgaussian moment of 𝜁
to be

‖𝜁 ‖𝜓2 := sup
𝑝�1
𝑝−1/2 (E |𝜁 |𝑝)1/𝑝 .
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A mean 0, variance 1 random variable is said to be subgaussian if ‖𝜁 ‖𝜓2 is finite. We define Γ to be the set
of subgaussian random variables and, for 𝐵 > 0, we define Γ𝐵 ⊆ Γ to be a subset of 𝜁 with ‖𝜁 ‖𝜓2 � 𝐵.

For 𝜁 ∈ Γ, define Sym 𝑛 (𝜁) to be the probability space on 𝑛 × 𝑛 symmetric matrices A for which
(𝐴𝑖, 𝑗 )𝑖� 𝑗 are independent and distributed according to 𝜁 . Similarly, we write 𝑋 ∼ Col 𝑛 (𝜁) if 𝑋 ∈ R𝑛 is
a random vector whose coordinates are i.i.d. copies of 𝜁 .

We shall think of the spaces {Sym 𝑛 (𝜁)}𝑛 as coupled in the natural way: The matrix 𝐴𝑛+1 ∼
Sym 𝑛+1 (𝜁) can be sampled by first sampling 𝐴𝑛 ∼ Sym 𝑛 (𝜁), which we think of as the principal minor
(𝐴𝑛+1)[2,𝑛+1]×[2,𝑛+1] , and then generating the first row and column of 𝐴𝑛+1 by generating a random
column 𝑋 ∼ Col 𝑛 (𝜁). In fact, it will make sense to work with a random (𝑛 + 1) × (𝑛 + 1) matrix, which
we call 𝐴𝑛+1 throughout. This is justified, as much of the work is done with the principal minor 𝐴𝑛 of
𝐴𝑛+1, due to the bound (2.1) as well as Lemma 6.1.

3.2. Compressible vectors

We shall require the now-standard notions of compressible vectors, as defined by Rudelson and Vershynin
[31].

For parameters 𝜌, 𝛿 ∈ (0, 1), we define the set of compressible vectors Comp (𝛿, 𝜌) to be the set
of vectors in S𝑛−1 that are distance at most 𝜌 from a vector supported on at most 𝛿𝑛 coordinates.
We then define the set of incompressible vectors to be all other unit vectors, that is Incomp (𝛿, 𝜌) :=
S
𝑛−1 \ Comp (𝛿, 𝜌). The following basic fact about incompressible vectors from [31] will be useful

throughout:

Fact 3.1. For each 𝛿, 𝜌 ∈ (0, 1), there is a constant 𝑐𝜌, 𝛿 ∈ (0, 1), so that for all 𝑣 ∈ Incomp (𝛿, 𝜌), we
have that |𝑣 𝑗 |𝑛1/2 ∈ [𝑐𝜌, 𝛿 , 𝑐−1

𝜌, 𝛿] for at least 𝑐𝜌, 𝛿𝑛 values of j.

Fact 3.1 assures us that for each incompressible vector, we can find a large subvector that is “flat.”
Using the work of Vershynin [46], we will safely be able to ignore compressible vectors. In particular,
[46, Proposition 4.2] implies the following lemma. We refer the reader to Appendix XII for details.

Lemma 3.2. For 𝐵 > 0 and 𝜁 ∈ Γ𝐵, let 𝐴 ∼ Sym 𝑛 (𝜁). Then there exist constants 𝜌, 𝛿, 𝑐 ∈ (0, 1),
depending only on B, so that

sup
𝑢∈R𝑛
P
(
∃𝑥 ∈ Comp (𝛿, 𝜌),∃𝑡 ∈ R : 𝐴𝑥 = 𝑡𝑢

)
� 2𝑒−𝑐𝑛

and

P
(
∃𝑢 ∈ Comp (𝛿, 𝜌),∃𝑡 ∈ R : 𝐴𝑢 = 𝑡𝑢

)
� 2𝑒−𝑐𝑛 .

The first statement says, roughly, that 𝐴−1𝑢 is incompressible for each fixed u; the second states that
all unit eigenvectors are incompressible.

Remark 3.3 (Choice of constants, 𝜌, 𝛿, 𝑐𝜌, 𝛿). Throughout, we let 𝜌, 𝛿 denote the constants guaranteed by
Lemma 3.2 and 𝑐𝜌, 𝛿 the corresponding constant from Fact 3.1. These constants shall appear throughout
the paper and shall always be considered as fixed.

Lemma 3.2 follows easily from [46, Proposition 4.2] with a simple net argument.

3.3. Notation

We quickly define some notation. For a random variable X, we use the notation E𝑋 for the expectation
with respect to X and we use the notation P𝑋 analogously. For an event E , we write 1E or 1{E} for the
indicator function of the event E . We write EE to be the expectation defined by EE [ · ] = E[ · 1E ]. For a
vector 𝑣 ∈ R𝑛 and 𝐽 ⊂ [𝑛], we write 𝑣𝐽 for the vector whose ith coordinate is 𝑣𝑖 if 𝑖 ∈ 𝐽 and 0 otherwise.
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We shall use the notation 𝑋 � 𝑌 to indicate that there exists a constant 𝐶 > 0 for which 𝑋 � 𝐶𝑌 .
In a slight departure from convention, we will always allow this constant to depend on the subgaussian
constant B, if present. We shall also let our constants implicit in big-O notation to depend on B, if this
constant is relevant in the context. We hope that we have been clear as to where the subgaussian constant
is relevant, and so this convention is to just reduce added clutter.

4. Quasi-randomness properties

In this technical section, we define a list of “quasi-random” properties of 𝐴𝑛 that hold with probability
1 − 𝑒−Ω(𝑛) . This probability is large enough that we can assume that these properties hold for all the
principal minors of 𝐴𝑛+1. Showing that several of these quasi-random properties hold with probability
1 − 𝑒−Ω(𝑛) will prove to be a challenging task, and our proof will depend deeply on ideas from our
previous paper [4], on the singularity probability of a random symmetric matrix. So as not to distract
from the new ideas in this paper, we do most of this work in the Appendix.

4.1. Defining the properties

It will be convenient to assume throughout that every minor of 𝐴𝑛+1 is invertible, and so we will perturb
the matrix slightly so that we may assume this. If we add to 𝐴𝑛+1 an independent random symmetric
matrix whose upper triangular entries are independent gaussian random variables with mean 0 and
variance 𝑛−𝑛, then with probability 1 − 𝑒−Ω(𝑛) , the singular values of 𝐴𝑛+1 move by at most, say, 𝑛−𝑛/3.
Further, after adding this random gaussian matrix, every minor of the resulting matrix is invertible with
probability 1. Thus, we will assume without loss of generality throughout that every minor of 𝐴𝑛+1 is
invertible.

In what follows, we let 𝐴 = 𝐴𝑛 ∼ Sym 𝑛 (𝜁) and let 𝑋 ∼ Col 𝑛 (𝜁) be a random vector, independent of
A. Our first quasi-random property is standard from the concentration of the operator norm of a random
symmetric matrix. We define E1 by

E1 = {‖𝐴‖𝑜𝑝 � 4
√
𝑛}. (4.1)

For the next property, we need a definition. Let 𝑋, 𝑋 ′ ∼ Col 𝑛 (𝜁), and define the random vector in
R
𝑛 as 𝑋̃ := 𝑋𝐽 − 𝑋 ′

𝐽 , where 𝐽 ⊆ [𝑛] is a 𝜇-random subset, that is, for each 𝑗 ∈ [𝑛], we have 𝑗 ∈ 𝐽
independently with probability 𝜇. The reason behind this definition is slightly opaque at present, but
will be clear in the context of Lemma 5.2 in Section 5. Until we get there, it is reasonable to think of
𝑋̃ as being essentially X; in particular, it is a random vector with i.i.d. subgaussian entries with mean 0
and variance 𝜇. We now define E2 to be the event in A defined by

E2 =
{
P𝑋

(
𝐴−1𝑋/‖𝐴−1𝑋 ‖2 ∈ Comp (𝛿, 𝜌)

)
� 𝑒−𝑐2𝑛

}
. (4.2)

We remind the reader that Comp (𝛿, 𝜌) is defined in Section 3.2, and 𝛿, 𝜌 ∈ (0, 1) are constants, fixed
throughout the paper, and chosen according to Lemma 3.2. In the (rare) case that 𝑋 = 0, we interpret
P𝑋 (𝐴−1𝑋/‖𝐴−1𝑋 ‖2 ∈ Comp (𝛿, 𝜌)) = 1.

Recalling the least common denominator defined at (1.11), we now define the event E3 by

E3 = {𝐷𝛼,𝛾 (𝑢) � 𝑒𝑐3𝑛 for every unit eigenvector 𝑢 of 𝐴} . (4.3)

The next condition tells us that the random vector 𝐴−1𝑋 is typically unstructured. We will need a
slightly stronger notion of structure than just looking at the LCD, in that, we will need all sufficiently
large subvectors to be unstructured. For 𝜇 ∈ (0, 1), define the subvector least common denominator, as

𝐷̂𝛼,𝛾,𝜇 (𝑣) := min
𝐼 ⊂[𝑛]

|𝐼 |� (1−2𝜇)𝑛

𝐷𝛼,𝛾 (𝑣𝐼 /‖𝑣𝐼 ‖2) .
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We note that this is closely related to the notion of “regularized least common denominator” introduced
by Vershynin in [46].

Now, if we define the random vector 𝑣 = 𝑣(𝑋) := 𝐴−1𝑋 , then we define E4 to be the event that A
satisfies

E4 =
{
P𝑋

(
𝐷̂𝛼,𝛾,𝜇 (𝑣) < 𝑒𝑐4𝑛

)
� 𝑒−𝑐4𝑛

}
. (4.4)

As is the case for E2, under the event that 𝑋 = 0, we interpret P𝑋 (𝐷̂𝛼,𝛾,𝜇 (𝑣) < 𝑒𝑐4𝑛) = 1.
We now define our main quasi-randomness event E to be the intersection of these events:

E := E1 ∩ E2 ∩ E3 ∩ E4 . (4.5)

The following lemma essentially allows us to assume that E holds in what follows.

Lemma 4.1. For 𝐵 > 0, 𝜁 ∈ Γ𝐵, and all sufficiently small 𝛼, 𝛾, 𝜇 ∈ (0, 1), there exist constants
𝑐2, 𝑐3, 𝑐4 ∈ (0, 1) appearing in (4.2), (4.3), and (4.4) so that

P𝐴(E𝑐) � 2𝑒−Ω(𝑛) . (4.6)

Remark 4.2 (Choice of constants, 𝛼, 𝛾, 𝜇). We take 𝛼, 𝛾 ∈ (0, 1) to be sufficiently small so that
Lemma 4.1 holds. For 𝜇, we will choose it to be sufficiently small so that (1) Lemma 4.1 holds; (2)
we have 𝜇 ∈ (0, 2−15); and so that (3) 𝜇 > 0 is small enough to guarantee that every set 𝐼 ⊆ [𝑛] with
|𝐼 | � (1 − 2𝜇)𝑛 satisfies

‖𝑤‖2 � 𝑐−2
𝜌, 𝛿 ‖𝑤𝐼 ‖2, (4.7)

for every 𝑤 ∈ Incomp (𝛿, 𝜌). This is possible by Fact 3.1. These constants 𝛼, 𝛾, 𝜇 will appear throughout
the paper and will always be thought of as fixed according to this choice.

4.2. Statement of our master quasi-randomness theorem and the deduction of Lemma 4.1

We will deduce Lemma 4.1 from a “master quasi-randomness theorem” together with a handful of
now-standard results in the area.

For the purposes of the following sections, we shall informally consider a vector as “structured” if

𝐷̂𝛼,𝛾,𝜇 (𝑣) � 𝑒𝑐Σ𝑛,

where 𝑐Σ ∈ (0, 1) is a small constant, to be chosen shortly. Thus, it makes sense to define the set of
“structured directions” on the sphere

Σ = Σ𝛼,𝛾,𝜇 := {𝑣 ∈ S𝑛−1 : 𝐷̂𝛼,𝛾,𝜇 (𝑣) � 𝑒𝑐Σ𝑛} . (4.8)

We now introduce our essential quasi-randomness measure of a random matrix. For 𝜁 ∈ Γ,
𝐴 ∼ Sym 𝑛 (𝜁), and a given vector 𝑤 ∈ R𝑛, define

𝑞𝑛 (𝑤) = 𝑞𝑛 (𝑤;𝛼, 𝛾, 𝜇) := P𝐴
(
∃𝑣 ∈ Σ and ∃𝑠, 𝑡 ∈ [−4

√
𝑛, 4

√
𝑛] : 𝐴𝑣 = 𝑠𝑣 + 𝑡𝑤

)
(4.9)

and set

𝑞𝑛 = 𝑞𝑛 (𝛼, 𝛾, 𝜇) := sup
𝑤 ∈S𝑛−1

𝑞𝑛 (𝑤) . (4.10)

We now state our “master quasi-randomness theorem,” from which we deduce Lemma 4.1.
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Theorem 4.3 (Master quasi-randomness theorem). For 𝐵 > 0 and 𝜁 ∈ Γ𝐵, there exist constants
𝛼, 𝛾, 𝜇, 𝑐Σ, 𝑐 ∈ (0, 1) depending only on B so that

𝑞𝑛 (𝛼, 𝛾, 𝜇) � 2𝑒−𝑐𝑛 .

The proof of Theorem 4.3 is quite similar to the main theorem of [4], albeit with a few technical
adaptations, and is proved in the Appendix. Note that 𝑞𝑛 (𝛼, 𝛾, 𝜇) is monotone decreasing as 𝛼, 𝛾, and 𝜇
decrease. As such, Theorem 4.3 implies that its conclusion holds for all sufficiently small 𝛼, 𝛾, 𝜇 as well.

We now prove that our pseudo-random event E = E1 ∩E2 ∩E3 ∩E4 holds with probability 1− 𝑒−Ω(𝑛) .

Proof of Lemma 4.1. The event E1: From [15], we may deduce5 the following concentration bound

P
(
‖𝐴‖𝑜𝑝 � (3 + 𝑡)

√
𝑛
)
� 𝑒−𝑐𝑡

3/2𝑛, (4.11)

which holds6 for all 𝑡 � 0. Thus, by (4.11), the event E1 at (4.1) fails with probability � 𝑒−Ω(𝑛) .
The event E2: By Lemma 3.2, there is a 𝑐 > 0 so that for each 𝑢 ≠ 0, we have

P𝐴(𝐴−1𝑢/‖𝐴−1𝑢‖2 ∈ Comp (𝛿, 𝜌)) � 𝑒−𝑐𝑛 .

Applying Markov’s inequality shows

P𝐴

(
P𝑋

(
𝐴−1𝑋/‖𝐴−1𝑋 ‖2 ∈ Comp (𝛿, 𝜌), 𝑋 ≠ 0

)
> 𝑒−𝑐𝑛/2

)
� 𝑒−𝑐𝑛/2 ,

and so the event in (4.2) fails with probability at most 𝑂
(
𝑒−Ω(𝑛) ) , under the event 𝑋 ≠ 0. By Theorem

3.1.1, in [47], we have that

P𝑋 (𝑋 = 0) � 𝑒−Ω(𝜇𝑛) . (4.12)

Choosing 𝑐2 small enough shows an exponential bound on P(E𝑐2 ).
The event E3: If 𝐷𝛼,𝛾 (𝑢) � 𝑒𝑐3𝑛, for an u an eigenvector 𝐴𝑢 = 𝜆𝑣, we have that

𝐷̂𝛼,𝛾,𝜇 (𝑢) � 𝐷𝛼,𝛾 (𝑢) � 𝑒𝑐3𝑛,

where the first inequality is immediate from the definition. Now, note that if E1 holds, then 𝜆 ∈
[−4

√
𝑛, 4

√
𝑛], and so

P(E𝑐3 ) � P
(
∃𝑢 ∈ Σ, 𝜆 ∈ [−4

√
𝑛, 4

√
𝑛] : 𝐴𝑢 = 𝜆𝑢

)
+ P(E𝑐1 ) � 𝑞𝑛 (0) + 𝑒−Ω(𝑛) ,

where the first inequality holds if we choose 𝑐3 � 𝑐Σ. We now apply Theorem 4.3 to see 𝑞𝑛 (0) � 𝑞𝑛 �
𝑒−Ω(𝑛) , yielding the desired result.
The event E4: Note first that, by (4.12), we may assume 𝑋 ≠ 0. For a fixed instance of 𝑋 ≠ 0, we have

P𝐴

(
𝐷̂𝛼,𝛾,𝜇

(
𝐴−1 𝑋̃/‖ 𝑋̃ ‖2

)
< 𝑒𝑐4𝑛
)
� P𝐴
(
∃𝑣 ∈ Σ : 𝐴𝑣 = 𝑋̃/‖ 𝑋̃ ‖2

)
� 𝑞𝑛
(
𝑋̃/‖ 𝑋̃ ‖2

)
, (4.13)

which is at most 𝑒−Ω(𝑛) , by Theorem 4.3. Here, the first inequality holds when 𝑐4 � 𝑐Σ.
We now write 𝑣 = 𝐴−1 𝑋̃/‖ 𝑋̃ ‖2 and apply Markov’s inequality

P(E𝑐4 ) = P𝐴
(
P𝑋̃

(
𝐷̂𝛼,𝛾,𝜇 (𝑣) < 𝑒𝑐4𝑛

)
� 𝑒−𝑐4𝑛

)
� 𝑒𝑐4𝑛E𝑋̃P𝐴(𝐷̂𝛼,𝛾,𝜇 (𝑣) < 𝑒𝑐4𝑛) = 𝑒−Ω(𝑛) ,

5Technically, the result of [15] is sharper and for random matrices whose entries are symmetric random variables. However,
(4.11) follows from [15] along with a “symmetrization trick.”

6We use this bound rather than the more standard concentration bounds for the norm of subgaussian random matrices for
aesthetic purposes: It allows us to use the absolute constant “4” in (4.1).
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where the last line follows when 𝑐4 is taken small relative to the implicit constant in the bound on the
right-hand side of (4.13).

Since we have shown that each of E1, E2, E3, E4 holds with probability 1 − 𝑒−Ω(𝑛) , the intersection
fails with exponentially small probability. �

5. Decoupling quadratic forms

In this section, we will prove our Esseen-type inequality that will allow us to deal with a small ball event
and a large deviation event simultaneously.

Lemma 5.1. For 𝐵 > 0, let 𝜁 ∈ Γ𝐵 and 𝑋 ∼ Col 𝑛 (𝜁). Let M be an 𝑛 × 𝑛 symmetric matrix, 𝑢 ∈ R𝑛,
𝑡 ∈ R, and 𝑠, 𝛿 � 0. Then

P(|〈𝑀𝑋, 𝑋〉 − 𝑡 | < 𝛿, 〈𝑋, 𝑢〉 � 𝑠) � 𝛿𝑒−𝑠
∫ 1/𝛿

−1/𝛿

���E 𝑒2𝜋𝑖𝜃 〈𝑀𝑋,𝑋 〉+〈𝑋,𝑢〉
��� 𝑑𝜃 . (5.1)

We will then bound the integrand (our so-called “titled” characteristic function) with a decoupling
maneuver, somewhat similar to a “van der Corput trick” in classical Fourier analysis. This amounts
to a clever application of Cauchy-Schwarz, inspired by Kwan and Sauermann’s work on Costello’s
conjecture [20] (a similar technique appears in [1] and [25]). We shall then be able to mix in our quasi-
random conditions on our matrix A to ultimately obtain Lemma 5.2, which gives us a rather tractable
bound on the left-hand side of (5.1). To state this lemma, let us recall that E (defined at (4.5)) is the set
of symmetric matrices satisfying the quasi-randomness conditions in the previous section, Section 4.
Also recall that the constant 𝜇 ∈ (0, 2−15) is defined in Section 4 so that Lemma 4.1 holds and is treated
as a fixed constant throughout this paper.

Lemma 5.2. For 𝐵 > 0, let 𝜁 ∈ Γ𝐵, 𝑋 ∼ Col 𝑛 (𝜁) and let A be a real symmetric 𝑛 × 𝑛 matrix with
𝐴 ∈ E and set 𝜇1 := 𝜎max(𝐴−1). Also let 𝑠 � 0, 𝛿 > 𝑒−𝑐𝑛 and 𝑢 ∈ S𝑛−1. Then

P𝑋

(��〈𝐴−1𝑋, 𝑋〉 − 𝑡
�� � 𝛿𝜇1, 〈𝑋, 𝑢〉 � 𝑠

)
� 𝛿𝑒−𝑠

∫ 1/𝛿

−1/𝛿
𝐼 (𝜃)1/2 𝑑𝜃 + 𝑒−Ω(𝑛) ,

where

𝐼 (𝜃) := E𝐽 ,𝑋𝐽 ,𝑋
′
𝐽

exp
(
〈(𝑋 + 𝑋 ′)𝐽 , 𝑢〉 − 𝑐𝜃2𝜇−2

1 ‖𝐴−1(𝑋 − 𝑋 ′)𝐽 ‖2
2

)
,

𝑋 ′ ∼ Col 𝑛 (𝜁) is independent of X, and 𝐽 ⊆ [𝑛] is a 𝜇-random set. Here, 𝑐 > 0 is a constant depending
only on B.

While the definition of 𝐼 (𝜃) (and therefore the conclusion of the lemma) is a bit mysterious at this
point, we assure the reader that this is a step in the right direction.

All works bounding the singularity probability for random symmetric matrices contain a related
decoupling step [3, 4, 5, 16, 25, 46], starting with Costello et al.’s breakthrough [7], building off of
Costello’s earlier work [6] on anticoncentration of bilinear and quadratic forms. A subtle difference in
the decoupling approach from [20] used here is that the quadratic form is decoupled after bounding a
small ball probability in terms of the integral of a characteristic function rather than on the probability
itself; the effect of this approach is that we do not lose a power of 𝛿, but only lose by a square root
“under the integral” on the integrand 𝐼 (𝜃).

5.1. Proofs

We now dive in and prove our Esseen-type inequality. For this, we shall appeal to the classical Esseen
inequality [14]: If Z is a random variable taking values in R with characteristic function 𝜑𝑍 (𝜃) :=
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E𝑍 𝑒
2𝜋𝑖𝜃𝑍 , then for all 𝑡 ∈ R, we have

P𝑋 (|𝑍 − 𝑡 | � 𝛿) � 𝛿
∫ 1/𝛿

−1/𝛿
|𝜑𝑍 (𝜃) | 𝑑𝜃.

We shall also use the following basic fact about subgaussian random vectors (see, for example, [47,
Proposition 2.6.1]): If 𝜁 ∈ Γ𝐵 and 𝑌 ∼ Col 𝑛 (𝜁), then for every vector 𝑢 ∈ R𝑛, we have

E𝑌 𝑒
〈𝑌 ,𝑢〉 � exp(2𝐵2‖𝑢‖2

2 ) . (5.2)

Proof of Lemma 5.1. Since 1{𝑥 � 𝑠} � 𝑒𝑥−𝑠 , we may bound

P𝑋 (|〈𝑀𝑋, 𝑋〉 − 𝑡 | < 𝛿, 〈𝑋, 𝑢〉 � 𝑠) � 𝑒−𝑠E
[
1{|〈𝑀𝑋, 𝑋〉 − 𝑡 | < 𝛿}𝑒 〈𝑋,𝑢〉

]
. (5.3)

Define the random variable 𝑌 ∈ R𝑛 by

P(𝑌 ∈ 𝑈) = (E 𝑒 〈𝑋,𝑢〉)−1
E[1𝑈 𝑒 〈𝑋,𝑢〉], (5.4)

for all open𝑈 ⊆ R𝑛. Note that the expectation E𝑋 𝑒 〈𝑋,𝑢〉 is finite by (5.2). We now use this definition to
rewrite the expectation on the right-hand side of (5.3),

E𝑋

[
1{|〈𝑀𝑋, 𝑋〉 − 𝑡 | < 𝛿}𝑒 〈𝑋,𝑢〉

]
=
(
E 𝑒 〈𝑋,𝑢〉

)
P𝑌 (|〈𝑀𝑌,𝑌〉 − 𝑡 | � 𝛿) .

Thus, we may apply Esseen’s lemma to the random variable Y to obtain

P𝑌 (|〈𝑀𝑌,𝑌〉 − 𝑡 | � 𝛿) � 𝛿
∫ 1/𝛿

−1/𝛿
|E𝑌 𝑒2𝜋𝑖𝜃 〈𝑀𝑌 ,𝑌 〉 | 𝑑𝜃 .

By the definition of Y, we have

E𝑌 𝑒
2𝜋𝑖𝜃 〈𝑀𝑌 ,𝑌 〉 =

(
E𝑋 𝑒

〈𝑋,𝑢〉
)−1
E 𝑒2𝜋𝑖𝜃 〈𝑀𝑋,𝑋 〉+〈𝑋,𝑢〉 ,

completing the lemma. �

To control the integral on the right-hand side of Lemma 5.1, we will appeal to the following decoupling
lemma, which is adapted from Lemma 3.3 from [20].
Lemma 5.3 (Decoupling with an exponential tilt). Let 𝜁 ∈ Γ, let 𝑋, 𝑋 ′ ∼ Col 𝑛 (𝜁) be independent, and
let 𝐽 ∪ 𝐼 = [𝑛] be a partition of [𝑛]. Let M be an 𝑛 × 𝑛 symmetric matrix and let 𝑢 ∈ R𝑛. Then���E𝑋 𝑒2𝜋𝑖𝜃 〈𝑀𝑋,𝑋 〉+〈𝑋,𝑢〉

���2 � E𝑋𝐽 ,𝑋
′
𝐽
𝑒 〈(𝑋+𝑋 ′)𝐽 ,𝑢〉 ·

���E𝑋𝐼 𝑒
4𝜋𝑖𝜃 〈𝑀 (𝑋−𝑋 ′)𝐽 ,𝑋𝐼 〉+2〈𝑋𝐼 ,𝑢〉

��� .
Proof. After partitioning the coordinates of X according to J and writing E𝑋 = E𝑋𝐼E𝑋𝐽 , we apply
Jensen’s inequality to obtain

𝐸 :=
���E𝑋 𝑒2𝜋𝑖𝜃 〈𝑀𝑋,𝑋 〉+〈𝑋,𝑢〉

���2 =
���E𝑋𝐼E𝑋𝐽 𝑒

2𝜋𝑖𝜃 〈𝑀𝑋,𝑋 〉+〈𝑋,𝑢〉
���2 � E𝑋𝐼

���E𝑋𝐽 𝑒
2𝜋𝑖𝜃 〈𝑀𝑋,𝑋 〉+〈𝑋,𝑢〉

���2 .
We now expand the square

��E𝑋𝐽 𝑒
2𝜋𝑖𝜃 〈𝑀𝑋,𝑋 〉+〈𝑋,𝑢〉 �� 2 as

E𝑋𝐽 ,𝑋
′
𝐽
𝑒2𝜋𝑖𝜃 〈𝑀 (𝑋𝐼+𝑋𝐽 ) , (𝑋𝐼+𝑋𝐽 ) 〉+〈(𝑋𝐼+𝑋𝐽 ) ,𝑢〉−2𝜋𝑖𝜃 〈𝑀 (𝑋𝐼+𝑋 ′

𝐽 ) , (𝑋𝐼+𝑋 ′
𝐽 ) 〉+〈(𝑋𝐼+𝑋 ′

𝐽 ) ,𝑢〉

= E𝑋𝐽 ,𝑋
′
𝐽
𝑒4𝜋𝑖𝜃 〈𝑀 (𝑋𝐽−𝑋 ′

𝐽 ) ,𝑋𝐼 〉+〈𝑋𝐽+𝑋 ′
𝐽 ,𝑢〉+2〈𝑋𝐼 ,𝑢〉+2𝜋𝑖 〈𝑀𝑋𝐽 ,𝑋𝐽 〉−2𝜋𝑖 〈𝑀𝑋 ′

𝐽 ,𝑋
′
𝐽 〉 ,
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where we used the fact that M is symmetric. Thus, swapping expectations yields

𝐸 � E𝑋𝐽 ,𝑋
′
𝐽
E𝑋𝐼 𝑒

4𝜋𝑖𝜃 〈𝑀 (𝑋𝐽−𝑋 ′
𝐽 ) ,𝑋𝐼 〉+〈𝑋𝐽+𝑋 ′

𝐽 ,𝑢〉+2〈𝑋𝐼 ,𝑢〉+2𝜋𝑖 〈𝑀𝑋𝐽 ,𝑋𝐽 〉−2𝜋𝑖 〈𝑀𝑋 ′
𝐽 ,𝑋

′
𝐽 〉

� E𝑋𝐽 ,𝑋
′
𝐽

���E𝑋𝐼 𝑒
4𝜋𝑖𝜃 〈𝑀 (𝑋𝐽−𝑋 ′

𝐽 ) ,𝑋𝐼 〉+〈𝑋𝐽+𝑋 ′
𝐽 ,𝑢〉+2〈𝑋𝐼 ,𝑢〉+2𝜋𝑖 〈𝑀𝑋𝐽 ,𝑋𝐽 〉−2𝜋𝑖 〈𝑀𝑋 ′

𝐽 ,𝑋
′
𝐽 〉
���

= E𝑋𝐽 ,𝑋
′
𝐽
𝑒 〈𝑋𝐽+𝑋 ′

𝐽 ,𝑢〉
���E𝑋𝐼 𝑒

4𝜋𝑖𝜃 〈𝑀 (𝑋−𝑋 ′)𝐽 ,𝑋𝐼 〉+2〈𝑋𝐼 ,𝑢〉
��� ,

as desired. Here, we could swap expectations, since all expectations are finite, due to the subgaussian
assumption on 𝜁 . �

We need a basic bound that will be useful for bounding our tilted characteristic function. This bound
appears in the proof of Theorem 6.3 in Vershynin’s paper [46].

Fact 5.4. For 𝐵 > 0, let 𝜁 ∈ Γ𝐵, let 𝜁 ′ be an independent copy of 𝜁 , and set 𝜉 = 𝜁 − 𝜁 ′. Then for all
𝑎 ∈ R𝑛, we have ∏

𝑗

E𝜉 | cos(2𝜋𝜉𝑎 𝑗 ) | � exp
(
−𝑐 min

𝑟 ∈[1,𝑐−1 ]
‖𝑟𝑎‖2

T

)
,

where 𝑐 > 0 depends only on B.

A simple symmetrization trick along with Cauchy-Schwarz will allow us to prove a similar bound
for the tilted characteristic function.

Lemma 5.5. For 𝐵 > 0, let 𝜁 ∈ Γ𝐵, 𝑋 ∼ Col 𝑛 (𝜁) and let 𝑢, 𝑣 ∈ R𝑛. Then���E𝑋 𝑒2𝜋𝑖 〈𝑋,𝑣 〉+〈𝑋,𝑢〉
��� � exp

(
−𝑐 min

𝑟 ∈[1,𝑐−1 ]
‖𝑟𝑣‖2

T
+ 𝑐−1‖𝑢‖2

2

)
, (5.5)

where 𝑐 ∈ (0, 1) depends only on B.

Proof. Let 𝜁 ′ be an independent copy of 𝜁 , and note that��E𝜁 𝑒2𝜋𝑖𝜁 𝑣𝑗+𝜁 𝑢 𝑗
��2 = E𝜁 ,𝜁 ′ 𝑒2𝜋𝑖 (𝜁−𝜁 ′)𝑣𝑗+(𝜁+𝜁 ′)𝑢 𝑗 = E𝜁 ,𝜁 ′

[
𝑒 (𝜁+𝜁

′)𝑢 𝑗 cos(2𝜋(𝜁 − 𝜁 ′)𝑣 𝑗 )
]
.

Let 𝑋 = (𝑋𝑖)𝑛𝑖=1, 𝑌 = (𝑌𝑖)𝑛𝑖=1 denote vectors with i.i.d. coordinates distributed as 𝜉 := 𝜁 − 𝜁 ′ and 𝜁 + 𝜁 ′,
respectively. We have

���E𝑋 𝑒2𝜋𝑖 〈𝑋,𝑣 〉+〈𝑋,𝑢〉
���2 � E 𝑒 〈𝑌 ,𝑢〉∏

𝑗

cos(2𝜋𝑋 𝑗𝑣 𝑗 ) �
(
E𝑌 𝑒

2〈𝑌 ,𝑢〉
)1/2
(∏

𝑗

E𝜉 | cos(2𝜋𝜉𝑣 𝑗 ) |
)1/2

, (5.6)

where we have applied the Cauchy-Schwarz inequality along with the bound | cos(𝑥) |2 � | cos(𝑥) |
to obtain the last inequality. By (5.2), the first expectation on the right-hand side of (5.6) is at most
exp(𝑂 (‖𝑢‖2

2 )). Applying Fact 5.4 completes the lemma. �

5.2. Quasi-random properties for triples (𝑱, 𝑿𝑱 , 𝑿
′
𝑱 )

We now prepare for the proof of Lemma 5.2 by introducing a quasi-randomness notion on triples
(𝐽, 𝑋𝐽 , 𝑋 ′

𝐽 ). Here, 𝐽 ⊆ [𝑛] and 𝑋, 𝑋 ′ ∈ R𝑛. For this, we fix an 𝑛 × 𝑛 real symmetric matrix 𝐴 ∈ E and
define the event F = F (𝐴) as the intersection of the events F1,F2,F3, and F4, which are defined as
follows. Given a triple (𝐽, 𝑋𝐽 , 𝑋 ′

𝐽 ), we write 𝑋̃ := 𝑋𝐽 − 𝑋 ′
𝐽 .
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Define events F1,F2,F3(𝐴) by

F1 := {|𝐽 | ∈ [𝜇𝑛/2, 2𝜇𝑛]} (5.7)

F2 := {‖𝑋 ‖2𝑛
−1/2 ∈ [𝑐, 𝑐−1]} (5.8)

F3(𝐴) := {𝐴−1𝑋/‖𝐴−1𝑋 ‖2 ∈ Incomp (𝛿, 𝜌)} . (5.9)

Finally, we write 𝑣 = 𝑣( 𝑋̃) := 𝐴−1𝑋 and 𝐼 := [𝑛] \ 𝐽 and then define F4(𝐴) by

F4(𝐴) :=
{
𝐷𝛼,𝛾

(
𝑣𝐼
‖𝑣𝐼 ‖

)
> 𝑒𝑐𝑛
}
. (5.10)

We now define F (𝐴) := F1 ∩ F2 ∩ F3(𝐴) ∩ F4(𝐴) and prove the following basic lemma that will
allow us to essentially assume that (5.7),(5.8),(5.9),(5.10) hold in all that follows. We recall that the
constants 𝛿, 𝜌, 𝜇, 𝛼, 𝛾 were chosen in Lemmas 3.2 and 4.1 as a function of the subgaussian moment B.
Thus, the only new parameter in F is the constant c in lines (5.8) and (5.10).

Lemma 5.6. For 𝐵 > 0, let 𝜁 ∈ Γ𝐵, let 𝑋, 𝑋 ′ ∼ Col 𝑛 (𝜁) be independent, and let 𝐽 ⊆ [𝑛] be a 𝜇-random
subset. Let A be an 𝑛 × 𝑛 real symmetric matrix with 𝐴 ∈ E . We may choose the constant 𝑐 ∈ (0, 1)
appearing in (5.8) and (5.10) as a function of B and 𝜇 so that

P𝐽 ,𝑋𝐽 ,𝑋
′
𝐽
(F 𝑐) � 𝑒−𝑐𝑛 .

Proof. For F1, we use Hoeffding’s inequality to see P(F 𝑐
1 ) � 𝑒

−Ω(𝑛) . To bound P(F 𝑐
2 ), we note that

the entries of 𝑋 are independent, subgaussian, and have variance 2𝜇, and so 𝑋/(
√

2𝜇) has i.i.d. entries
with mean zero, variance 1 and subgaussian moment bounded by 𝐵/

√
2𝜇. Thus, from Theorem 3.1.1 in

[47], we have

P
(
|‖𝑋 ‖2 −

√
2𝑛𝜇 | > 𝑡

)
< exp(−𝑐𝜇𝑡2/𝐵4).

For F3(𝐴),F4(𝐴), recall that 𝐴 ∈ E means that (4.2) and (4.4) hold, thus exponential bounds on
P(F 𝑐

3 ) and P(F 𝑐
4 ) follow from Markov’s inequality. �

5.3. Proof of Lemma 5.2

We now prove Lemma 5.2 by applying the previous three lemmas in sequence.

Proof of Lemma 5.2. Let 𝛿 � 𝑒−𝑐1𝑛, where we will choose 𝑐1 > 0 to be sufficiently small later in the
proof. Apply Lemma 5.1 to write

P𝑋

(��〈𝐴−1𝑋, 𝑋〉 − 𝑡
�� � 𝛿𝜇1, 〈𝑋, 𝑢〉 � 𝑠

)
� 𝛿𝑒−𝑠

∫ 1/𝛿

−1/𝛿

����E𝑋 𝑒2𝜋𝑖𝜃 〈𝐴−1𝑋,𝑋〉
𝜇1

+〈𝑋,𝑢〉
���� 𝑑𝜃 , (5.11)

where we recall that 𝜇1 = 𝜎max(𝐴−1). We now look to apply our decoupling lemma, Lemma 5.3. Let J
be a 𝜇-random subset of [𝑛], define 𝐼 := [𝑛] \ 𝐽, and let 𝑋 ′ be an independent copy of X. By Lemma
5.3, we have����E𝑋 𝑒2𝜋𝑖𝜃 〈𝐴−1𝑋,𝑋〉

𝜇1
+〈𝑋,𝑢〉
����2 � E𝐽E𝑋𝐽 ,𝑋

′
𝐽
𝑒 〈(𝑋+𝑋 ′)𝐽 ,𝑢〉 ·

����E𝑋𝐼 𝑒
4𝜋𝑖𝜃
〈
𝐴−1𝑋
𝜇1

,𝑋𝐼

〉
+2〈𝑋𝐼 ,𝑢〉

���� , (5.12)

where we recall that 𝑋 = (𝑋 − 𝑋 ′)𝐽 .
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We first consider the contribution to the expectation on the right-hand side of (5.12) from triples
(𝐽, 𝑋𝐽 , 𝑋 ′

𝐽 ) ∉ F . For this, let Y be a random vector, such that 𝑌 𝑗 = 𝑋 𝑗 + 𝑋 ′
𝑗 , if 𝑗 ∈ 𝐽, and 𝑌 𝑗 = 2𝑋 𝑗 , if

𝑗 ∈ 𝐼. Applying the triangle inequality, we have

E
F𝑐

𝐽 ,𝑋𝐽 ,𝑋
′
𝐽
𝑒 〈(𝑋+𝑋 ′)𝐽 ,𝑢〉 ·

����E𝑋𝐼 𝑒
4𝜋𝑖𝜃 〈 𝐴−1𝑋

𝜇1
,𝑋𝐼 〉+2〈𝑋𝐼 ,𝑢〉

���� � EF𝑐

𝐽 ,𝑋𝐽 ,𝑋
′
𝐽
𝑒 〈(𝑋+𝑋 ′)𝐽 ,𝑢〉E𝑋𝐼 𝑒

2〈𝑋𝐼 ,𝑢〉

= EF
𝑐

𝐽 ,𝑋,𝑋 ′𝑒 〈𝑌 ,𝑢〉 .

By Cauchy-Schwarz, (5.2), and Lemma 5.6, we have

E
F𝑐

𝐽 ,𝑋,𝑋 ′ 𝑒 〈𝑌 ,𝑢〉 � E𝐽 ,𝑋,𝑋 ′

[
𝑒 〈𝑌 ,2𝑢〉

]1/2
P𝐽 ,𝑋𝐽 ,𝑋

′
𝐽
(F 𝑐)1/2 � 𝑒−Ω(𝑛) . (5.13)

We now consider the contribution to the expectation on the right-hand side of (5.12) from triples
(𝐽, 𝑋𝐽 , 𝑋 ′

𝐽 ) ∈ F . For this, let 𝑤 = 𝑤(𝑋) := 𝐴−1𝑋
𝜇1

and assume (𝐽, 𝑋𝐽 , 𝑋 ′
𝐽 ) ∈ F . By Lemma 5.5, we

have ��E𝑋𝐼 𝑒
4𝜋𝑖𝜃 〈𝑋𝐼 ,𝑤 〉+〈𝑋𝐼 ,2𝑢〉

�� � exp
(
−𝑐 min

𝑟 ∈[1,𝑐−1 ]
‖2𝑟𝜃𝑤𝐼 ‖2

T

)
. (5.14)

Note that ‖𝑤𝐼 ‖2 � ‖𝑋 ‖2 � 𝑐−1√𝑛, by the definition of 𝜇1 = 𝜎max(𝐴−1) and line (5.8) in the definition
of F (𝐴).

Now, from property (5.10) in that definition and by the hypothesis 𝛿 > 𝑒−𝑐1𝑛, we may choose 𝑐1 > 0
small enough so that

𝐷𝛼,𝛾 (𝑤𝐼 /‖𝑤𝐼 ‖2) � 2𝑐−2𝑛1/2/𝛿 � 2𝑐−1‖𝑤𝐼 ‖2/𝛿.

By the definition of the least common denominator, for |𝜃 | � 1/𝛿, we have

min
𝑟 ∈[1,𝑐−1 ]

‖2𝑟𝜃𝑤𝐼 ‖T = min
𝑟 ∈[1,𝑐−1 ]

����2𝑟𝜃‖𝑤𝐼 ‖2 ·
𝑤𝐼

‖𝑤𝐼 ‖2

����
T

� min
{
𝛾𝜃‖𝑤𝐼 ‖2,

√
𝛼 |𝐼 |
}
. (5.15)

So, for |𝜃 | � 1/𝛿, we use (5.15) in (5.14) to bound the right-hand side of (5.12) as

E
F
𝐽 ,𝑋𝐽 ,𝑋

′
𝐽
𝑒 〈(𝑋+𝑋 ′)𝐽 ,𝑢〉 ·

���E𝑋𝐼 𝑒
4𝜋𝑖𝜃 〈𝑤,𝑋𝐼 〉+2〈𝑋𝐼 ,𝑢〉

��� � EF𝐽 ,𝑋𝐽 ,𝑋
′
𝐽
𝑒 〈(𝑋+𝑋 ′)𝐽 ,𝑢〉𝑒−𝑐 min{𝛾2 𝜃2 ‖𝑤𝐼 ‖2

2 ,𝛼 |𝐼 | } .

(5.16)

We now use that (𝐽, 𝑋𝐽 , 𝑋 ′
𝐽 ) ∈ F to see that 𝑤 ∈ Incomp (𝛿, 𝜌) and that we chose 𝜇 to be sufficiently

small, compared to 𝜌, 𝛿, to guarantee that

‖𝑤‖2 � 𝐶‖𝑤𝐼 ‖2,

for some 𝐶 > 0 (see (4.7)). Thus, the right-hand side of (5.16) is

� EF𝐽 ,𝑋𝐽 ,𝑋
′
𝐽
𝑒 〈(𝑋+𝑋 ′)𝐽 ,𝑢〉𝑒−𝑐

′𝜃2 ‖𝑤 ‖2
2 + 𝑒−Ω(𝑛) .

Combining this with (5.16), (5.12) obtains the desired bound in the case (𝐽, 𝑋𝐽 , 𝑋 ′
𝐽 ) ∈ F . Combining

this with (5.13) completes the proof of Lemma 5.2. �
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6. Preparation for the “base step” of the iteration

As we mentioned at (2.1), Vershynin [46] gave a natural way of bounding the least singular value of a
random symmetric matrix:

P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2) � sup
𝑟 ∈R
P𝐴𝑛 ,𝑋
(
|〈𝐴−1

𝑛 𝑋, 𝑋〉 − 𝑟 | � 𝜀‖𝐴−1
𝑛 𝑋 ‖2
)
,

where we recall that 𝐴𝑛 is obtained from 𝐴𝑛+1 by deleting its first row and column. The main goal
of this section is to prove the following lemma which tells us that we may intersect with the event
𝜎min(𝐴𝑛) � 𝜀𝑛−1/2 in the probability on the right-hand side, at a loss of 𝐶𝜀. This will be crucial for
the base step in our iteration, since the bound we obtain on P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2) deteriorates as
𝜎min(𝐴𝑛) decreases.
Lemma 6.1. For 𝐵 > 0, 𝜁 ∈ Γ𝐵, let 𝐴𝑛+1 ∼ Sym 𝑛+1(𝜁) and let 𝑋 ∼ Col 𝑛 (𝜁). Then

P

(
𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2

)
� 𝜀 + sup

𝑟 ∈R
P

(
|〈𝐴−1

𝑛 𝑋, 𝑋〉 − 𝑟 |
‖𝐴−1

𝑛 𝑋 ‖2
� 𝐶𝜀, 𝜎min(𝐴𝑛) � 𝜀𝑛−1/2

)
+ 𝑒−Ω(𝑛) ,

for all 𝜀 > 0. Here, 𝐶 > 0 depends only on B.

We deduce Lemma 6.1 from a geometric form of the lemma, which we state here. Let 𝑋 𝑗 denote the
jth column of 𝐴𝑛+1, and let

𝐻 𝑗 = Span{𝑋1, . . . , 𝑋 𝑗−1, 𝑋 𝑗+1, . . . , 𝑋𝑛+1} and 𝑑 𝑗 (𝐴𝑛+1) := dist(𝑋 𝑗 , 𝐻 𝑗 ).

We shall prove the following “geometric” version of Lemma 6.1.
Lemma 6.2. For 𝐵 > 0, 𝜁 ∈ Γ𝐵, let 𝐴𝑛+1 ∼ Sym 𝑛+1(𝜁). Then for all 𝜀 > 0,

P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2) � 𝜀 + P
(
𝑑1(𝐴𝑛+1) � 𝐶𝜀 and 𝜎min(𝐴𝑛) � 𝜀𝑛−1/2

)
+ 𝑒−Ω(𝑛) ,

where 𝐶 > 0 depends only on B.

The deduction of Lemma 6.1 from Lemma 6.2 is straightforward given the ideas from [46]; so we
turn to discuss the proof of Lemma 6.2.

For this, we want to intersect the event 𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2 with the event 𝜎min(𝐴𝑛) � 𝜀𝑛−1/2,
where we understand 𝐴𝑛 to be the principal minor 𝐴(𝑛+1)

𝑛+1 of 𝐴𝑛+1. To do this, we first consider the
related “pathological” event

P :=
{
𝜎min(𝐴(𝑖)

𝑛+1) � 𝜀𝑛
−1/2 for at least 𝑐𝑛 values of 𝑖 ∈ [𝑛 + 1]

}
and then split our probability of interest into the sum

P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2 ∩ P) + P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2 ∩ P𝑐), (6.1)

and work with each term separately. Here, 𝑐 = 𝑐𝜌, 𝛿/2, where 𝑐𝜌, 𝛿 is the constant defined in Section 4.
We deal with the second term on the right-hand side by showing

P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2 ∩ P𝑐) � P(𝑑1 (𝐴𝑛+1) � 𝜀 and 𝜎min(𝐴𝑛) � 𝜀𝑛−1/2) + 𝑒−Ω(𝑛) , (6.2)

by a straightforward argument in a manner similar to Rudelson and Vershynin in [31]. We then deal
with the first term on the right-hand side of (6.1) by showing that

P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2 ∩ P) � 𝜀 + 𝑒−Ω(𝑛) . (6.3)

Putting these two inequalities together then implies Lemma 6.2.
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6.1. Proof of the inequality at (6.2)

Here, we prove (6.2) in the following form.

Lemma 6.3. For 𝐵 > 0, 𝜁 ∈ Γ𝐵, let 𝐴𝑛+1 ∼ Sym 𝑛+1(𝜁). Then, for all 𝜀 > 0, we have

P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2 ∩ P𝑐) � P
(
𝑑1(𝐴𝑛+1) � 𝜀 and 𝜎min(𝐴𝑛) � 𝜀𝑛−1/2) + 𝑒−Ω(𝑛) .

For this, we use a basic but important fact which is at the heart of the geometric approach of Rudelson
and Vershynin (see, e.g. [31, Lemma 3.5]).

Fact 6.4. Let M be an 𝑛 × 𝑛 matrix and v be a unit vector satisfying ‖𝑀𝑣‖2 = 𝜎min(𝑀). Then

𝜎min(𝑀) � |𝑣 𝑗 | · 𝑑 𝑗 (𝑀) for each 𝑗 ∈ [𝑛] .

We are now ready to prove the inequality mentioned at (6.2).

Proof of Lemma 6.3. We rule out another pathological event: Let v denote a unit eigenvector corre-
sponding to the least singular value of 𝐴𝑛+1, and let C denote the event that v is (𝜌, 𝛿)-compressible.7
By Lemma 3.2, P(C) � 𝑒−Ω(𝑛) . Thus

P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2 and P𝑐) � P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2 and C𝑐 ∩ P𝑐) + 𝑒−Ω(𝑛) . (6.4)

We now look to bound this event in terms of the distance of the column 𝑋 𝑗 to the subspace 𝐻 𝑗 , in the
style of [31]. For this, we define

𝑆 := { 𝑗 : 𝑑 𝑗 (𝐴𝑛+1) � 𝜀/𝑐𝜌, 𝛿 and 𝜎min(𝐴( 𝑗)
𝑛+1) � 𝜀𝑛

−1/2}.

We now claim

{𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2} ∩ C𝑐 ∩ P𝑐 =⇒ |𝑆 | � 𝑐𝜌, 𝛿𝑛/2. (6.5)

To see this, fix a matrix A satisfying the left-hand side of (6.5) and let v be an eigenvector corresponding
to the least singular value. Now, since v is not compressible, there are � 𝑐𝜌, 𝛿𝑛 values of 𝑗 ∈ [𝑛 + 1]
for which |𝑣 𝑗 | � 𝑐𝜌, 𝛿𝑛−1/2. Thus, Fact 6.4 immediately tells us there are � 𝑐𝜌, 𝛿𝑛 values of 𝑗 ∈ [𝑛 + 1]
for which 𝑑 𝑗 (𝐴) � 𝜀/𝑐𝜌, 𝛿 . Finally, by definition of P𝑐 , at most 𝑐𝜌, 𝛿𝑛/2 of these values of j satisfy
𝜎𝑛+1 (𝐴( 𝑗) ) � 𝜀𝑛−1/2, and so (6.5) is proved.

We now use (6.5) along with Markov’s inequality to bound

P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2 and C𝑐 ∩ P𝑐) � P(|𝑆 | � 𝑐𝜌, 𝛿𝑛/2) � 2
𝑐𝜌, 𝛿𝑛

E|𝑆 |. (6.6)

Now, by definition of S and symmetry of the coordinates, we have

E|𝑆 | =
∑
𝑗

P
(
𝑑 𝑗 (𝐴𝑛+1) � 𝜀/𝑐𝜌, 𝛿 , 𝜎min(𝐴( 𝑗)

𝑛+1) � 𝜀𝑛
−1/2)

= 𝑛 · P
(
𝑑1(𝐴𝑛+1) � 𝜀/𝑐𝜌, 𝛿 , 𝜎min(𝐴(1)

𝑛+1) � 𝜀𝑛
−1/2) .

Putting this together with (6.6) and (6.5) finishes the proof. �

6.2. Proof of the inequality at (6.3)

We now prove the inequality discussed at (6.3) in the following form.

7See Section 3 for definition and Section 4 for choice of 𝛿, 𝜌.
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Lemma 6.5. For 𝐵 > 0, 𝜁 ∈ Γ𝐵, let 𝐴𝑛+1 ∼ Sym 𝑛+1(𝜁). Then, for all 𝜀 > 0, we have

P

(
𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2 and P

)
� 𝜀 + 𝑒−Ω(𝑛) . (6.7)

For the proof of this lemma, we will need a few results from the random matrix literature. The first
such result is a more sophisticated version of Lemma 3.2, which tells us that the mass of the eigenvectors
of A does not “localize” on a set of coordinates of size 𝑜(𝑛). The theorem we need, due to Rudelson and
Vershynin (Theorem 1.5 in [35]), tells us that the mass of the eigenvectors of our random matrix does
not “localize” on a set of coordinates of size (1 − 𝑐)𝑛, for any fixed 𝑐 > 0. We state this result in a way
to match our application.

Theorem 6.6. For 𝐵 > 0, 𝜁 ∈ Γ𝐵, let 𝐴 ∼ Sym 𝑛 (𝜁) and let v denote the unit eigenvector of A
corresponding to the least singular value of A. Then there exists 𝑐2 > 0, such that for all sufficiently
small 𝑐1 > 0, we have

P
(
|𝑣 𝑗 | � (𝑐2𝑐1)6𝑛−1/2 for at least (1 − 𝑐1)𝑛 values of 𝑗

)
� 1 − 𝑒−𝑐1𝑛 ,

for n sufficiently large.

We also require an elementary, but extremely useful, fact from linear algebra. This fact is a key step
in the work of Nguyen et al. on eigenvalue repulsion in random matrices (see [24, Section 4]); we state
it here in a form best suited for our application.

Fact 6.7. Let M be an 𝑛 × 𝑛 real symmetric matrix, and let 𝜆 be an eigenvalue of M with corresponding
unit eigenvector u. Let 𝑗 ∈ [𝑛], and let 𝜆′ be an eigenvector of the minor 𝑀 ( 𝑗) with corresponding unit
eigenvector v. Then

|〈𝑣, 𝑋 ( 𝑗) 〉 | � |𝜆 − 𝜆′|/|𝑢 𝑗 |,

where 𝑋 ( 𝑗) is the jth column of M with the jth entry removed.

Proof. Without loss of generality, take 𝑗 = 𝑛 and express 𝑢 = (𝑤, 𝑢𝑛), where 𝑤 ∈ R𝑛−1. Then we have
(𝑀 (𝑛) − 𝜆𝐼)𝑤 + 𝑋 (𝑛)𝑢𝑛 = 0. Multiplying on the left by 𝑣𝑇 yields

|𝑢𝑛〈𝑣, 𝑋 (𝑛) 〉 | = |𝜆 − 𝜆′| |〈𝑣, 𝑤〉| � |𝜆 − 𝜆′| . �

We shall also need the inverse Littlewood-Offord theorem of Rudelson and Vershynin [31], which
we have stated here in simplified form. Recall that 𝐷𝛼,𝛾 (𝑣) is the least common denominator of the
vector v, as defined at (1.11).

Theorem 6.8. For 𝑛 ∈ N, 𝐵 > 0, 𝛾, 𝛼 ∈ (0, 1), and 𝜀 > 0, let 𝑣 ∈ S𝑛−1 satisfy 𝐷𝛼,𝛾 (𝑣) > 𝑐𝜀−1 and let
𝑋 ∼ Col 𝑛 (𝜁), where 𝜁 ∈ Γ𝐵. Then

P(|〈𝑋, 𝑣〉| � 𝜀) � 𝜀 + 𝑒−𝑐𝛼𝑛 .

Here, 𝑐 > 0 depends only on B and 𝛾.

We are now in a position to prove Lemma 6.5.

Proof of Lemma 6.5. Let A be an instance of our random matrix, and let v be the unit eigenvector
corresponding to the least singular value of A. Let 𝑤 𝑗 = 𝑤(𝐴( 𝑗) ) denote a unit eigenvector of 𝐴( 𝑗)

corresponding to the least singular value of 𝐴( 𝑗) .
We introduce two “quasi-randomness” events Q and A that will hold with probability 1 − 𝑒Ω(𝑛) .

Indeed, define

Q 𝑗 = {𝐷𝛼,𝛾 (𝑤 𝑗 ) � 𝑒𝑐3𝑛} for all 𝑗 ∈ [𝑛 + 1] and set Q =
⋂

Q 𝑗 .
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Here, 𝛼, 𝛾, 𝑐3 are chosen according to Lemma 4.1, which tells us that P(Q𝑐) � 𝑒−Ω(𝑛) . Define

𝑆1 = { 𝑗 : 𝜎𝑛 (𝐴( 𝑗)
𝑛+1) � 𝜀𝑛

−1/2 } and 𝑆2 = { 𝑗 : |𝑣 𝑗 | � (𝑐𝑐2/2)6𝑛−1/2}.

Note that P holds exactly when |𝑆1 | � 𝑐𝑛. Let A be the “non-localization” event that |𝑆2 | � (1− 𝑐/2)𝑛.
By Theorem 6.6, we have P(A𝑐) � 𝑒−Ω(𝑛) . Here, 𝑐/2 = 𝑐𝜌, 𝛿/4. Now, if we let 𝑋 ( 𝑗) denote the jth
column of A with the jth entry removed, we define

𝑇 = { 𝑗 : |〈𝑤 𝑗 , 𝑋
( 𝑗) 〉 | � 𝐶𝜀},

where 𝐶 = 27/(𝑐2𝑐)6. We now claim

{𝜎min(𝐴) � 𝜀𝑛−1/2} ∩ P ∩A =⇒ |𝑇 | � 𝑐𝑛/2. (6.8)

To see this, first note that if P∩A holds, then |𝑆1∩𝑆2 | � 𝑐𝑛/2. Also, for each 𝑗 ∈ 𝑆1∩𝑆2, we may apply
Fact 6.7 to see that |〈𝑤 𝑗 , 𝑋

( 𝑗) 〉 | � 𝐶𝜀 since j is such that 𝜎min(𝐴( 𝑗) ) � 𝜀𝑛−1/2 and 𝜎min(𝐴) � 𝜀𝑛−1/2.
This proves (6.8).

To finish the proof of Lemma 6.5, we define the random variable

𝑅 = 𝑛−1
∑
𝑗

1
(
|〈𝑤 𝑗 , 𝑋

( 𝑗) 〉 | � 𝐶𝜀 and Q 𝑗

)
,

and observe that P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2 ∩ P) is at most

P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2 and A ∩Q ∩ P) + 𝑒−Ω(𝑛) � P(𝑅 � 𝑐/4) + 𝑒−Ω(𝑛) .

We now apply Markov and expand the definition of R to bound

P(𝑅 � 𝑐/4) � 𝑛−1
∑
𝑗

E
𝐴
( 𝑗)
𝑛+1
P𝑋 ( 𝑗)

(
|〈𝑤 𝑗 , 𝑋

( 𝑗) 〉 | � 𝐶𝜀 ∩Q 𝑗

)
� 𝜀 + 𝑒−Ω(𝑛) ,

where the last inequality follows from the fact that 𝑋 ( 𝑗) is independent of the events 𝑄 𝑗 and 𝑤 𝑗 , and
therefore we may put the property Q 𝑗 to use by applying the inverse Littlewood-Offord theorem of
Rudelson and Vershynin, Theorem 6.8. �

6.3. Proofs of Lemmas 6.2 and 6.1

All that remains is to put the pieces together and prove Lemmas 6.2 and 6.1.

Proof of Lemma 6.2. As we saw at (6.1), we simply express P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2) as

P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2 and P) + P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2 and P𝑐),

and then apply Lemma 6.5 to the first term and Lemma 6.3 to the second term. �

Proof of Lemma 6.1. If we set 𝑎1,1 to be the first entry of 𝐴 = 𝐴𝑛+1, then, by [46, Proposition 5.1], we
have that

𝑑1(𝐴𝑛+1) =
|〈𝐴−1𝑋, 𝑋〉 − 𝑎1,1 |√

1 + ‖𝐴−1𝑋 ‖2
2

.

Additionally, by [46, Proposition 8.2], we have ‖𝐴−1𝑋 ‖2 > 1/15 with probability at least 1 − 𝑒−Ω(𝑛) .
Replacing 𝑎1,1 with r and taking a supremum completes the proof of Lemma 6.1. �
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7. Eigenvalue crowding (and the proofs of Theorems 1.2 and 1.3)
The main purpose of this section is to prove the following theorem, which gives an upper bound on the
probability that 𝑘 � 2 eigenvalues of a random matrix fall in an interval of length 𝜀. The case 𝜀 = 0 of
this theorem tells us that the probability that a random symmetric matrix has simple spectrum (that is,
has no repeated eigenvalue) is 1−𝑒−Ω(𝑛) , which is sharp and confirms a conjecture of Nguyen et al. [24].

Given an 𝑛 × 𝑛 real symmetric matrix M, we let 𝜆1(𝑀) � . . . � 𝜆𝑛 (𝑀) denote its eigenvalues.

Theorem 7.1. For 𝐵 > 0, 𝜁 ∈ Γ𝐵, let 𝐴𝑛+1 ∼ Sym 𝑛+1(𝜁). Then for each 𝑗 � 𝑐𝑛 and all 𝜀 � 0, we have

max
𝑘�𝑛− 𝑗

P(|𝜆𝑘+ 𝑗 (𝐴𝑛) − 𝜆𝑘 (𝐴𝑛) | � 𝜀𝑛−1/2) � (𝐶𝜀) 𝑗 + 2𝑒−𝑐𝑛 ,

where 𝐶, 𝑐 > 0 are constants depending on B.

We suspect that the bound in Lemma 1.3 is actually far from the truth, for 𝜀 > 𝑒−𝑐𝑛 and 𝑗 � 1. In
fact, one expects quadratic dependence on j in the exponent of 𝜀. This type of dependence was recently
confirmed by Nguyen [27] for 𝜀 > 𝑒−𝑛𝑐 .

For the proof of Lemma 1.3, we remind the reader that if 𝑢 ∈ R𝑛 ∩ Incomp (𝜌, 𝛿), then at least 𝑐𝜌, 𝛿𝑛
coordinates of u have absolute value at least 𝑐𝜌, 𝛿𝑛−1/2.

In what follows, for an 𝑛 × 𝑛 symmetric matrix A, we use the notation 𝐴(𝑖1 ,...,𝑖𝑟 ) to refer to the minor
of A for which the rows and columns indexed by 𝑖1, . . . , 𝑖𝑟 have been deleted. We also use the notation
𝐴𝑆×𝑇 to refer to the |𝑆 | × |𝑇 | submatrix of A defined by (𝐴𝑖, 𝑗 )𝑖∈𝑆, 𝑗∈𝑇 .

The following fact contains the key linear algebra required for the proof of Theorem 1.3.

Fact 7.2. For 1 � 𝑘 + 𝑗 < 𝑛, let A be an 𝑛 × 𝑛 symmetric matrix for which

|𝜆𝑘+ 𝑗 (𝐴) − 𝜆𝑘 (𝐴) | � 𝜀𝑛−1/2.

Let (𝑖1, . . . , 𝑖 𝑗 ) ∈ [𝑛] 𝑗 be such that 𝑖1, . . . , 𝑖 𝑗 are distinct. Then there exist unit vectors 𝑤 (1) , . . . , 𝑤 (𝑘)

for which

〈𝑤 (𝑟 ) , 𝑋𝑟 〉 � (𝜀𝑛−1/2) · (1/|𝑤 (𝑟−1)
𝑖𝑟

|),

where 𝑋𝑟 ∈ R𝑛−𝑟 is the 𝑖𝑟 th column of A with coordinates indexed by 𝑖1, . . . , 𝑖𝑟 removed. That is,
𝑋𝑟 := 𝐴[𝑛]\{𝑖1 ,...,𝑖𝑟 }×{𝑖𝑟 } and 𝑤 (𝑟 ) is a unit eigenvector corresponding to 𝜆𝑘 (𝐴(𝑖1 ,...,𝑖𝑟 ) ).

Proof. For (𝑖1, . . . , 𝑖 𝑗 ) ∈ [𝑛] 𝑗 , define the matrices 𝑀0, 𝑀1, . . . , 𝑀 𝑗 by setting 𝑀𝑟 = 𝐴(𝑖1 ,...,𝑖𝑟 ) for
𝑟 = 1, . . . , 𝑗 and then 𝑀0 := 𝐴. Now if

|𝜆𝑘+ 𝑗 (𝐴) − 𝜆𝑘 (𝐴) | � 𝜀𝑛−1/2,

then Cauchy’s interlacing theorem implies

|𝜆𝑘 (𝑀𝑟 ) − 𝜆𝑘 (𝑀𝑟−1) | � 𝜀𝑛−1/2,

for all 𝑟 = 1, . . . , 𝑗 . So let 𝑤 (𝑟 ) denote a unit eigenvector of 𝑀𝑟 corresponding to eigenvalue 𝜆𝑘 (𝑀𝑟 ).
Thus, by Fact 6.7, we see that

|〈𝑤 (𝑟 ) , 𝑋𝑟 〉| � (𝜀𝑛−1/2) · (1/|𝑤 (𝑟−1)
𝑖𝑟

|),

for 𝑟 = 1, . . . , 𝑗 , where 𝑋𝑟 ∈ R𝑛−𝑟 is the 𝑖𝑟 th column of 𝑀𝑟−1, with the diagonal entry removed. In
other words, 𝑋𝑟 ∈ R𝑛−𝑟 is the 𝑖𝑟 th column of A with coordinates indexed by 𝑖1, . . . , 𝑖𝑟 removed. This
completes the proof of Fact 7.2. �

Proof of Theorem 1.3. Note, we may assume that 𝜀 > 𝑒−𝑐𝑛; the general case follows by taking c
sufficiently small. Now, define A to be the event that all unit eigenvectors v of all

(𝑛
𝑗

)
of the minors
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𝐴
(𝑖1 ,...,𝑖 𝑗 )
𝑛 lie in Incomp (𝜌, 𝛿) and satisfy 𝐷𝛼,𝛾 (𝑣) > 𝑒𝑐3𝑛, where 𝛼, 𝛾, 𝑐3 are chosen according to

Lemma 4.1. Note that by Lemmas 4.1 and 3.2, we have

P(A𝑐) �
(
𝑛

𝑗 + 1

)
𝑒−Ω(𝑛) � 𝑛

(
𝑒𝑛

𝑗

) 𝑗
𝑒−Ω(𝑛) � 𝑒−𝑐𝑛,

by taking c small enough, so that 𝑗 log(𝑒𝑛/ 𝑗) < 𝑐𝑛 is smaller than the Ω(𝑛) term.
With Fact 7.2 in mind, we define the event, E𝑖1 ,...,𝑖 𝑗 , for each (𝑖1, . . . , 𝑖 𝑗 ) ∈ [𝑛] 𝑗 , 𝑖𝑟 distinct, to be the

event that

|〈𝑤 (𝑟 ) , 𝑋𝑟 〉| � 𝜀/𝑐𝜌, 𝛿 for all 𝑟 ∈ [ 𝑗] ,

where 𝑋𝑟 ∈ R𝑛−𝑟 is the 𝑖𝑟 th column of A with coordinates indexed by 𝑖1, . . . , 𝑖𝑟 removed and 𝑤 (𝑟 ) is a
unit eigenvector corresponding to 𝜆𝑘 (𝐴(𝑖1 ,...,𝑖𝑟 ) ).

If A holds, then each 𝑤 (𝑟 ) has at least 𝑐𝜌, 𝛿𝑛 coordinates with absolute value at least 𝑐𝜌, 𝛿𝑛−1/2. Thus,
if additionally we have

|𝜆𝑘+ 𝑗 (𝐴𝑛) − 𝜆𝑘 (𝐴𝑛) | � 𝜀𝑛−1/2.

Fact 7.2 tells us that E𝑖1 ,...,𝑖 𝑗 occurs for at least (𝑐𝜌, 𝛿𝑛/2) 𝑗 tuples (𝑖1, . . . , 𝑖 𝑗 ).
Define N to be the number of indices (𝑖1, . . . , 𝑖 𝑗 ) for which E𝑖1 ,...,𝑖 𝑗 occurs, and note

P( |𝜆𝑘+ 𝑗 (𝐴𝑛) − 𝜆𝑘 (𝐴𝑛) | � 𝜀𝑛−1/2) � P
(
𝑁 � (𝑐𝜌, 𝛿𝑛/2) 𝑗 and A

)
+𝑂 (𝑒−𝑐𝑛) (7.1)

�
(

2
𝑐𝜌, 𝛿

) 𝑗
P(E1,..., 𝑗 ∩A) +𝑂 (𝑒−𝑐𝑛), (7.2)

where, for the second inequality, we applied Markov’s inequality and used the symmetry of the events
E𝑖1 ,...,𝑖 𝑗 .

Thus, we need only show that there exists 𝐶 > 0, such that P(E1,..., 𝑗 ∩ A) � (𝐶𝜀) 𝑗 . To use
independence, we replace each of 𝑤 (𝑟 ) with the worst case vector, under A

P(E1,..., 𝑗 ∩A) � max
𝑤1 ,...,𝑤𝑗 :𝐷𝛼,𝛾 (𝑤𝑖)>𝑒𝑐3𝑛

P𝑋1 ,...,𝑋𝑟

(
|〈𝑤𝑟 , 𝑋𝑟 〉| � 𝜀/𝑐𝜌, 𝛿 for all 𝑟 ∈ [ 𝑗]

)
(7.3)

� max
𝑤1 ,...,𝑤𝑗 :𝐷𝛼,𝛾 (𝑤𝑖 )>𝑒𝑐3𝑛

𝑗∏
𝑟=1
P𝑋𝑟

(
|〈𝑤𝑟 , 𝑋𝑟 〉| � 𝜀/𝑐𝜌, 𝛿

)
, � (𝐶𝜀) 𝑗 , (7.4)

where the first inequality follows from the independence of the vectors {𝑋𝑟 }𝑟� 𝑗 and the last inequality
follows from the fact that 𝐷𝛼,𝛾 (𝑤𝑟 ) > 𝑒𝑐3𝑛 � 1/𝜀 (by choosing 𝑐 > 0 small enough relative to 𝑐3), and
the Littlewood-Offord theorem of Rudelson and Vershynin, Lemma 6.8. Putting (7.2) and (7.4) together
completes the proof of Theorem 1.3. �

Of course, the proof of Theorem 1.2 follows immediately.

Proof of Theorem 1.2. Simply take 𝜀 = 0 in Theorem 1.3. �

8. Properties of the spectrum

In this section, we describe and deduce Lemma 8.1 and Corollary 8.2, which are the tools we will use
to control the “bulk” of the eigenvalues of 𝐴−1. Here, we understand “bulk” relative to the spectral
measure of 𝐴−1: our interest in an eigenvalue 𝜆 of 𝐴−1 is proportional to its contribution to ‖𝐴−1‖HS.
Thus, the behavior of smallest singular values of A are of the highest importance for us.
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For this, we let 𝜎𝑛 � 𝜎𝑛−1 � · · · � 𝜎1 be the singular values of A and let 𝜇1 � . . . � 𝜇𝑛 be the
singular values of 𝐴−1. Of course, we have 𝜇𝑘 = 1/𝜎𝑛−𝑘+1 for 1 � 𝑘 � 𝑛.

In short, these two lemmas, when taken together, tell us that

𝜎𝑛−𝑘+1 ≈ 𝑘𝑛−1/2, (8.1)

for all 𝑛 � 𝑘 � 1 in some appropriate sense.
Lemma 8.1. For 𝑝 > 1, 𝐵 > 0 and 𝜁 ∈ Γ𝐵, let 𝐴 ∼ Sym 𝑛 (𝜁). There is a constant 𝐶𝑝 depending on
𝐵, 𝑝 so that

E

( √
𝑛

𝜇𝑘 𝑘

) 𝑝
� 𝐶𝑝 ,

for all k.
We shall deduce Lemma 8.1 from the “local semicircular law” of Erdős et al. [13], which gives us

good control of the bulk of the spectrum at “scales” of size � 𝑛−1/2.
We also record a useful corollary of this lemma. For this, we define the function ‖ · ‖∗ for an 𝑛 × 𝑛

symmetric matrix M to be

‖𝑀 ‖2
∗ =

𝑛∑
𝑘=1
𝜎𝑘 (𝑀)2(log(1 + 𝑘))2. (8.2)

The point of this definition is to give some measure to how the spectrum of 𝐴−1 is “distorted” from
what it “should be,” according to the heuristic at (8.1). Indeed, if we have 𝜎𝑛−𝑘+1 = Θ(𝑘/

√
𝑛) for all k,

say, then we have that

‖𝐴−1‖∗ = Θ(𝜇1).

Conversely, any deviation from this captures some macroscopic misbehavior on the part of the spectrum.
In particular, the “weight function” 𝑘 ↦→ (log(1 + 𝑘))2 is designed to bias the smallest singular values,
and thus we are primarily looking at this range for any poor behavior.
Corollary 8.2. For 𝑝 > 1, 𝐵 > 0, and 𝜁 ∈ Γ𝐵, let 𝐴 ∼ Sym 𝑛 (𝜁). Then there exists constants𝐶𝑝 , 𝑐𝑝 > 0
depending on 𝐵, 𝑝, such that

E

[(
‖𝐴−1‖∗
𝜇1

) 𝑝]
� 𝐶𝑝 .

In the remainder of this section, we describe the results of Erdős et al. [13] and deduce Lemma 8.1.
We then deduce Corollary 8.2.

8.1. The local semicircular law and Lemma 8.1

For 𝑎 < 𝑏, we define 𝑁𝐴(𝑎, 𝑏) to be the number of eigenvalues of A in the interval (𝑎, 𝑏). One of the
most fundamental results in the theory of random symmetric matrices is the semicircular law, which
says that

lim
𝑛→∞

𝑁𝐴(𝑎
√
𝑛, 𝑏

√
𝑛)

𝑛
=

1
2𝜋

∫ 𝑏

𝑎
(4 − 𝑥2)1/2

+ 𝑑𝑥,

almost surely, where 𝐴 ∼ Sym 𝑛 (𝜁).
We use a powerful “local” version of the semicircle law developed by Erdős et al. in a series of

important papers [10, 11, 13]. Their results show that the spectrum of a random symmetric matrix
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actually adheres surprisingly closely to the semicircular law. In this paper, we need control on the
number of eigenvalues in intervals of the form [−𝑡, 𝑡], where 1/𝑛1/2 	 𝑡 	 𝑛1/2. The semicircular law
predicts that

𝑁𝐴(−𝑡, 𝑡) ≈
𝑛

2𝜋

∫ 𝑡𝑛−1/2

−𝑡𝑛−1/2
(4 − 𝑥2)1/2

+ 𝑑𝑥 =
2𝑡𝑛1/2

𝜋
(1 + 𝑜(1)).

Theorem 1.11 of [12] makes this prediction rigorous.8
Theorem 8.3. Let 𝐵 > 0, 𝜁 ∈ Γ𝐵, and let 𝐴 ∼ Sym 𝑛 (𝜁). Then, for 𝑡 ∈ [𝐶𝑛−1/2, 𝑛1/2],

P

( ����𝑁𝐴(−𝑡, 𝑡)
𝑛1/2𝑡

− 2𝜋−1
���� > 𝜋) � exp

(
−𝑐1 (𝑡2𝑛)1/4

)
, (8.3)

where 𝐶, 𝑐1 > 0 are absolute constants.
Lemma 8.1 follows quickly from Theorem 8.3. In fact, we shall only use two corollaries.

Corollary 8.4. Let 𝐵 > 0, 𝜁 ∈ Γ𝐵, and let 𝐴 ∼ Sym 𝑛 (𝜁). Then for all 𝑠 � 𝐶 and 𝑘 ∈ N satisfying
𝑠𝑘 � 𝑛, we have

P

( √
𝑛

𝜇𝑘 𝑘
� 𝑠
)
� exp
(
− 𝑐(𝑠𝑘)1/2) ,

where 𝐶, 𝑐 > 0 are absolute constants.

Proof. Let C be the maximum of the constant C from Lemma 8.3 and 𝜋. If
√
𝑛

𝜇𝑘 𝑘
� 𝑠, then

𝑁𝐴(−𝑠𝑘𝑛−1/2, 𝑠𝑘𝑛−1/2) � 𝑘 . We now apply Lemma 8.3 with 𝑡 = 𝑠𝑘𝑛−1/2 � 𝑠𝑛−1/2 � 𝐶𝑛−1/2 to see that
this event occurs with probability � exp(−𝑐

√
𝑠𝑘). �

An identical argument provides a similar bound in the other direction.
Corollary 8.5. Let 𝐵 > 0, 𝜁 ∈ Γ𝐵, and let 𝐴 ∼ Sym 𝑛 (𝜁). Then for all 𝑘 ∈ N, we have

P

(
𝜇𝑘 �

𝐶
√
𝑛

𝑘

)
� exp
(
− 𝑐𝑘1/2) ,

where 𝐶, 𝑐 > 0 are absolute constants.
Proof of Lemma 8.1. Let 𝐶 be the constant from Corollary 8.4. From the standard tail estimates on
‖𝐴‖𝑜𝑝 , like (4.11) for example, we immediately see that for all 𝑘 � 𝑛/𝐶, we have

E

( √
𝑛

𝜇𝑘 𝑘

) 𝑝
� E𝐴

(
𝜎1(𝐴)

√
𝑛

𝑘

) 𝑝
= 𝑂 𝑝 ((𝑛/𝑘) 𝑝) = 𝑂 𝑝 (1).

Thus, we can restrict our attention to the case when 𝑘 � 𝑛/𝐶. Define the events

𝐸1 =

{ √
𝑛

𝜇𝑘 𝑘
� 𝐶
}
, 𝐸2 =

{ √
𝑛

𝜇𝑘 𝑘
∈ [𝐶, 𝑛/𝑘]

}
, 𝐸3 =

{ √
𝑛

𝜇𝑘 𝑘
�
𝑛

𝑘

}
.

We may bound

E

( √
𝑛

𝜇𝑘 𝑘

) 𝑝
� 𝐶 𝑝 + E

( √
𝑛

𝜇𝑘 𝑘

) 𝑝
1𝐸2 + E

( √
𝑛

𝜇𝑘 𝑘

) 𝑝
1𝐸3 . (8.4)

8Theorem 1.11 of the survey [12] is based on Corollary 3.2 in [13]. In the paper [13], the results are technically stated for
(complex) Hermitian random matrices. However, the same proof goes through for real symmetric matrices. This is why we cite
the later survey [12], where this more general version is stated.
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To deal with the second term in (8.4), we use Corollary 8.4 to see that

E

( √
𝑛

𝜇𝑘 𝑘

) 𝑝
1𝐸2 �

∫ 𝑛/𝑘

𝐶
𝑝𝑠𝑝−1𝑒−𝑐

√
𝑠𝑘𝑑𝑠 = 𝑂 𝑝 (1).

To deal with the third term in (8.4), we note that since 𝑛/𝑘 � 𝐶, we may apply Corollary 8.4, with
𝑠 = 𝑛/𝑘 , to conclude that P(𝐸3) � 𝑒−𝑐

√
𝑛. Thus, by Cauchy-Schwarz, we have

E

( √
𝑛

𝜇𝑘 𝑘

) 𝑝
1𝐸3 �

(
E

(
𝜎1

√
𝑛

𝑘

)2𝑝)1/2

P(𝐸3)1/2 � 𝑂 𝑝 (1) · 𝑛𝑝𝑒−𝑐
√
𝑛 = 𝑂 𝑝 (1),

where we have used the upper tail estimate in 𝜎1 from (4.11) to see E𝜎2𝑝
1 = 𝑂 𝑝 (𝑛𝑝). �

8.2. Deduction of Corollary 8.2

We now conclude this section by deducing Corollary 8.2 from Lemma 8.1 and Corollary 8.5.

Proof of Corollary 8.2. Recall

‖𝐴−1‖2
∗ =

𝑛∑
𝑘=1
𝜇2
𝑘 (log(1 + 𝑘))2.

By Hölder’s inequality, we may assume without loss of generality that 𝑝 � 2. Applying the triangle
inequality for the 𝐿 𝑝/2 norm gives⎡⎢⎢⎢⎢⎣E

(
𝑛∑
𝑘=1

𝜇2
𝑘 (log(1 + 𝑘))2

𝜇2
1

) 𝑝/2⎤⎥⎥⎥⎥⎦
2/𝑝

�
𝑛∑
𝑘=1

(log(1 + 𝑘))2
E

[
𝜇𝑝𝑘
𝜇𝑝1

]2/𝑝
.

Taking C to be the constant from Corollary 8.5 bound

E

[
𝜇𝑝𝑘
𝜇𝑝1

]
� 𝐶 𝑝𝑘−𝑝E

[(√
𝑛

𝜇1

) 𝑝]
+ P
(
𝜇𝑘 � 𝐶

√
𝑛

𝑘

)
� 𝐶 𝑝𝑘−𝑝 ,

where we used Lemma 8.1 and Corollary 8.5 for the second inequality. Combining the previous two
equations completes the proof. �

9. Controlling small balls and large deviations

The goal of this section is to prove the following lemma, which will be a main ingredient in our iteration
in Section 10. We shall then use it again in the final step and proof of Theorem 1.1, in Section 11.

Lemma 9.1. For 𝐵 > 0 and 𝜁 ∈ Γ𝐵, let 𝐴 = 𝐴𝑛 ∼ Sym 𝑛 (𝜁) and let 𝑋 ∼ Col 𝑛 (𝜁). Let 𝑢 ∈ R𝑛−1 be a
random vector with ‖𝑢‖2 � 1 that depends only on A. Then, for 𝛿, 𝜀 > 𝑒−𝑐𝑛 and 𝑠 � 0, we have

E𝐴 sup
𝑟
P𝑋

(
|〈𝐴−1𝑋, 𝑋〉 − 𝑟 |

‖𝐴−1‖∗
� 𝛿, 〈𝑋, 𝑢〉 � 𝑠, 𝜇1√

𝑛
� 𝜀−1
)

� 𝛿𝑒−𝑠
[
E𝐴

(
𝜇1√
𝑛

)7/9
1
{
𝜇1√
𝑛
� 𝜀−1
}]6/7

+ 𝑒−𝑐𝑛 , (9.1)

where 𝑐 > 0 depends only on 𝐵 > 0.
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Note that with this lemma, we have eliminated all “fine-grained” information about the spectrum of
𝐴−1 and all that remains is 𝜇1, which is the reciprocal of the least singular value of the matrix A. We
also note that we will only need the full power of Lemma 9.1 in Section 11; until then, we will apply it
with 𝑠 = 0, 𝑢 = 0.

We now turn our attention to proving Lemma 9.1. We start with an application of Theorem 1.5, our
negative correlation theorem, which we restate here in its full-fledged form.

Theorem 9.2. For 𝑛 ∈ N, 𝛼, 𝛾 ∈ (0, 1), 𝐵 > 0, and 𝜇 ∈ (0, 2−15), there are constants 𝑐, 𝑅 > 0
depending only on 𝛼, 𝛾, 𝜇, 𝐵 so that the following holds. Let 0 � 𝑘 � 𝑐𝛼𝑛 and 𝜀 � exp(−𝑐𝛼𝑛), let
𝑣 ∈ S𝑛−1, and let 𝑤1, . . . , 𝑤𝑘 ∈ S𝑛−1 be orthogonal. For 𝜁 ∈ Γ𝐵, let 𝜁 ′ be an independent copy of 𝜁 and
𝑍𝜇 a Bernoulli variable with parameter 𝜇; let 𝑋 ∈ R𝑛 be a random vector whose coordinates are i.i.d.
copies of the random variable (𝜁 − 𝜁 ′)𝑍𝜇.

If 𝐷𝛼,𝛾 (𝑣) > 1/𝜀, then

P𝑋
*+,|〈𝑋, 𝑣〉| � 𝜀 and

𝑘∑
𝑗=1

〈𝑤 𝑗 , 𝑋〉2 � 𝑐𝑘
-./ � 𝑅𝜀 · 𝑒−𝑐𝑘 . (9.2)

The proof of Theorem 9.2 is provided in the Appendix. We now prove Lemma 9.3.

Lemma 9.3. Let A be an 𝑛× 𝑛 real symmetric matrix with 𝐴 ∈ E , and set 𝜇𝑖 := 𝜎𝑖 (𝐴−1), for all 𝑖 ∈ [𝑛].
For 𝐵 > 0, 𝜁 ∈ Γ𝐵, let 𝑋, 𝑋 ′ ∼ Col 𝑛 (𝜁) be independent, let 𝐽 ⊆ [𝑛] be a 𝜇-random subset with
𝜇 ∈ (0, 2−15), and set 𝑋 := (𝑋 − 𝑋 ′)𝐽 . If 𝑘 ∈ [1, 𝑐𝑛] is such that 𝑠 ∈ (𝑒−𝑐𝑛, 𝜇𝑘/𝜇1), then

P𝑋

(
‖𝐴−1𝑋 ‖2 � 𝑠𝜇1

)
� 𝑠𝑒−𝑐𝑘 , (9.3)

where 𝑐 > 0 depends only on B.

Proof. For each 𝑗 ∈ [𝑛], we let 𝑣 𝑗 denote a unit eigenvector of 𝐴−1 corresponding to 𝜇 𝑗 . Using the
resulting singular value decomposition of 𝐴−1, we may express

‖𝐴−1𝑋 ‖2
2 = 〈𝐴−1𝑋, 𝐴−1𝑋〉 =

𝑛∑
𝑗=1
𝜇2
𝑗 〈𝑋, 𝑣 𝑗〉2,

and thus

P𝑋

(
‖𝐴−1𝑋 ‖2𝜇

−1
1 � 𝑠
)
� P𝑋
*+,|〈𝑣1, 𝑋〉| � 𝑠 and

𝑘∑
𝑗=2

𝜇2
𝑗

𝜇2
1
〈𝑣 𝑗 , 𝑋〉2 � 𝑠2

-./ . (9.4)

We now use that 𝑠 � 1 and 𝜇𝑘/𝜇1 � 1 in (9.4) to obtain

P𝑋

(
‖𝐴−1𝑋 ‖2𝜇

−1
1 � 𝑠
)
� P𝑋
*+,|〈𝑣1, 𝑋〉| � 𝑠 and

𝑘∑
𝑗=2

〈𝑣 𝑗 , 𝑋〉2 � 1-./ . (9.5)

We now carefully observe that we are in a position to apply Theorem 1.5 to the right-hand side of (9.5).
The coordinates of 𝑋 are of the form (𝜁 − 𝜁 ′)𝑍𝜇, where 𝑍𝜇 is a Bernoulli random variable taking 1
with probability 𝜇 ∈ (0, 2−15) and 0 otherwise. Also, the 𝑣2, . . . , 𝑣𝑘 are orthogonal and, importantly,
we use that 𝐴 ∈ E to learn that9 𝐷𝛼,𝛾 (𝑣1) > 1/𝑠 by property (4.3), provided we choose the constant

9Recall, here, that the constants 𝛼, 𝛾 > 0 are implicit in the definition of E and are chosen so that Lemma 4.1 holds.
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𝑐 > 0 (in the statement of Lemma 9.3) to be sufficiently small, depending on 𝜇, 𝐵. Thus, we may apply
Theorem 1.5 and complete the proof of the Lemma 9.3. �

With this lemma in hand, we establish the following corollary of Lemma 5.2.

Lemma 9.4. For 𝐵 > 0 and 𝜁 ∈ Γ𝐵, let 𝑋 ∼ Col 𝑛 (𝜁) and let A be an 𝑛 × 𝑛 real symmetric matrix with
𝐴 ∈ E . If 𝑠 > 0, 𝛿 ∈ (𝑒−𝑐𝑛, 1) and 𝑢 ∈ S𝑛−1, then

sup
𝑟
P𝑋
( ��〈𝐴−1𝑋, 𝑋〉 − 𝑟

�� � 𝛿𝜇1, 〈𝑋, 𝑢〉 � 𝑠
)
� 𝛿𝑒−𝑠

𝑐𝑛∑
𝑘=2
𝑒−𝑐𝑘
(
𝜇1
𝜇𝑘

)2/3
+ 𝑒−𝑐𝑛 , (9.6)

where 𝑐 > 0 is a constant depending only on B.

Proof. We apply Lemma 5.2 to the left-hand side of (9.6) to get

sup
𝑟
P𝑋
( ��〈𝐴−1𝑋, 𝑋〉 − 𝑟

�� � 𝛿𝜇1, 〈𝑋, 𝑢〉 � 𝑠
)
� 𝛿𝑒−𝑠

∫ 1/𝛿

−1/𝛿
𝐼 (𝜃)1/2 𝑑𝜃 + 𝑒−Ω(𝑛) , (9.7)

where

𝐼 (𝜃) := E𝐽 ,𝑋𝐽 ,𝑋
′
𝐽

exp
(
〈(𝑋 + 𝑋 ′)𝐽 , 𝑢〉 − 𝑐′𝜃2𝜇−2

1 ‖𝐴−1 (𝑋 − 𝑋 ′)𝐽 ‖2
2

)
,

and 𝑐′ = 𝑐′(𝐵) > 0 is a constant depending only on B and 𝐽 ⊆ [𝑛] is a 𝜇-random subset. Set

𝑋 = (𝑋 − 𝑋 ′)𝐽 and 𝑣 = 𝐴−1𝑋,

and apply Hölder’s inequality

𝐼 (𝜃) = E𝐽 ,𝑋𝐽 ,𝑋
′
𝐽

[
𝑒 〈(𝑋+𝑋 ′)𝐽 ,𝑢〉𝑒−𝑐

′𝜃2 ‖𝑣 ‖2
2/𝜇

2
1

]
�
(
E𝑋 𝑒

−𝑐′′𝜃2 ‖𝑣 ‖2
2/𝜇

2
1

)8/9 (
E𝐽 ,𝑋𝐽 ,𝑋

′
𝐽
𝑒9〈(𝑋+𝑋 ′)𝐽 ,𝑢〉

)1/9
.

(9.8)

Thus, we apply (5.2) to see that the second term on the right-hand side of (9.8) is 𝑂 (1). Thus, for each
𝜃 > 0, we have

𝐼 (𝜃)9/8 �𝐵 E𝑋 𝑒
−𝑐′′𝜃2 ‖𝑣 ‖2

2/𝜇
2
1 � 𝑒−𝑐

′′𝜃1/5 + P𝑋 (‖𝑣‖2 � 𝜇1𝜃
−9/10) .

As a result, we have∫ 1/𝛿

−1/𝛿
𝐼 (𝜃)1/2 𝑑𝜃 � 1 +

∫ 1/𝛿

1
P𝑋 (‖𝑣‖2 � 𝜇1𝜃

−9/10)4/9 𝑑𝜃 � 1 +
∫ 1

𝛿
𝑠−19/9

P𝑋 (‖𝑣‖2 � 𝜇1𝑠)4/9 𝑑𝑠.

To bound this integral, we partition [𝛿, 1] = [𝛿, 𝜇𝑐𝑛/𝜇1]∪
⋃𝑐𝑛

𝑘=2 [𝜇𝑘/𝜇1, 𝜇𝑘−1/𝜇1] and apply Lemma 9.3
to bound the integrand depending on which interval s lies in. Note, this lemma is applicable since 𝐴 ∈ E .
We obtain∫ 𝜇𝑘−1/𝜇1

𝜇𝑘/𝜇1

𝑠−19/9
P𝑋 (‖𝑣‖2 � 𝜇1𝑠)4/9 � 𝑒−𝑐𝑘

∫ 𝜇𝑘−1/𝜇1

𝜇𝑘/𝜇1

𝑠−15/9 𝑑𝑠 � 𝑒−𝑐𝑘 (𝜇1/𝜇𝑘 )2/3,

while ∫ 𝜇𝑐𝑛/𝜇1

𝛿
𝑠−19/9

P𝑋 (‖𝑣‖2 � 𝜇1𝑠)4/9 � 𝑒−𝑐𝑛𝛿−3/2 � 𝑒−Ω(𝑛) .

Summing over all k and plugging the result into (9.7) completes the lemma. �
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We may now prove Lemma 9.1 by using the previous Lemma 9.4 along with the properties of the
spectrum of A established in Section 8.

Proof of Lemma 9.1. Let E be our quasi-random event as defined in Section 4, and let

E0 = E ∩
{
𝜇1√
𝑛
� 𝜀−1
}
.

For fixed 𝐴 ∈ E0 and 𝑢 = 𝑢(𝐴) ∈ R𝑛 with ‖𝑢‖2 � 1, we may apply Lemma 9.4 with 𝛿′ = 𝛿 ‖𝐴−1 ‖∗
𝜇1

to see
that

sup
𝑟 ∈R
P𝑋
( ��〈𝐴−1𝑋, 𝑋〉 − 𝑟

�� � 𝛿‖𝐴‖∗, 〈𝑋, 𝑢〉 � 𝑠) � 𝛿𝑒−𝑠 ( ‖𝐴−1‖∗
𝜇1

) 𝑐𝑛∑
𝑘=2
𝑒−𝑐𝑘
(
𝜇1
𝜇𝑘

)2/3
+ 𝑒−𝑐𝑛 .

By Lemma 4.1, P𝐴(E𝑐) � exp(−Ω(𝑛)). Therefore, it is enough to show that

E
E0
𝐴

(
‖𝐴−1‖∗
𝜇1

) (
𝜇1
𝜇𝑘

)2/3
� 𝑘 · EE0

𝐴

[(
𝜇1√
𝑛

)7/9
]6/7

, (9.9)

for each 𝑘 ∈ [2, 𝑐𝑛]. For this, apply Hölder’s inequality to the left-hand side of (9.9) to get

E
E0
𝐴

(
‖𝐴−1‖∗
𝜇1

) (
𝜇1
𝜇𝑘

)2/3
� EE0

𝐴

[(
‖𝐴−1‖∗
𝜇1

)14]1/14

E
E0
𝐴

[(√
𝑛

𝜇𝑘

)28/3]1/14

E
E0
𝐴

[(
𝜇1√
𝑛

)7/9
]6/7

.

We now apply Corollary 8.2 to see the first term is 𝑂 (1) and Lemma 8.1 to see that the second term is
𝑂 (𝑘). This establishes (9.9) and thus Lemma 9.1. �

10. Intermediate bounds: Bootstrapping the lower tail

In this short section, we will use the tools developed so far to prove an “up-to-logarithms” version
of Theorem 1.1. In the next section, Section 11, we will bootstrap this result (once again) to prove
Theorem 1.1.

Lemma 10.1. For 𝐵 > 0, let 𝜁 ∈ Γ𝐵, and let 𝐴𝑛 ∼ Sym 𝑛 (𝜁). Then for all 𝜀 > 0

P(𝜎min(𝐴𝑛) � 𝜀𝑛−1/2) � 𝜀 · (log 𝜀−1)1/2 + 𝑒−Ω(𝑛) .

To prove Lemma 10.1, we first prove the following “base step” (Lemma 10.3), which we then improve
upon in three increments, ultimately arriving at Lemma 10.1.

The “base step” is an easy consequence of Lemmas 6.2 and 9.1 and actually already improves upon
the best known bounds on the least-singular value problem for random symmetric matrices. For this,
we will need the well-known theorem due to Hanson and Wright [18, 51]. See [47, Theorem 6.2.1]) for
a modern exposition.

Theorem 10.2 (Hanson-Wright). For 𝐵 > 0, let 𝜁 ∈ Γ𝐵, let 𝑋 ∼ Col 𝑛 (𝜁), and let M be an𝑚×𝑛matrix.
Then for any 𝑡 � 0, we have

P𝑋
(
|‖𝑀𝑋 ‖2 − ‖𝑀 ‖HS | > 𝑡

)
� 2 exp

(
− 𝑐𝑡2

𝐵4‖𝑀 ‖2

)
,

where 𝑐 > 0 is absolute constant.

We now prove the base step of our iteration.
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Lemma 10.3 (Base step). For 𝐵 > 0, let 𝜁 ∈ Γ𝐵 and let 𝐴𝑛+1 ∼ Sym 𝑛+1 (𝜁). Then

P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2) � 𝜀1/4 + 𝑒−Ω(𝑛) ,

for all 𝜀 > 0.

Proof. As usual, we let 𝐴 := 𝐴𝑛. By Lemma 6.1, it will be sufficient to show that for 𝑟 ∈ R,

P𝐴,𝑋

(
|〈𝐴−1𝑋, 𝑋〉 − 𝑟 |

‖𝐴−1𝑋 ‖2
� 𝐶𝜀, 𝜎𝑛 (𝐴) � 𝜀𝑛−1/2

)
� 𝜀1/4 + 𝑒−Ω(𝑛) . (10.1)

By the Hanson-Wright inequality (Theorem 10.2), there exists 𝐶 ′ > 0 so that

P𝑋
(
‖𝐴−1𝑋 ‖2 � 𝐶 ′(log 𝜀−1)1/2 · ‖𝐴−1‖HS

)
� 𝜀 (10.2)

and so the left-hand side of (10.1) is bounded above by

𝜀 + P𝐴,𝑋
(
|〈𝐴−1𝑋, 𝑋〉 − 𝑟 |

‖𝐴−1‖HS
� 𝛿, 𝜎𝑛 (𝐴) � 𝜀𝑛−1/2

)
,

where 𝛿 := 𝐶 ′′𝜀 · (log 𝜀−1)1/2. Now, by Lemma 9.1 with the choice of 𝑢 = 0, 𝑠 = 0, we have

P𝐴,𝑋

(
|〈𝐴−1𝑋, 𝑋〉 − 𝑟 |

‖𝐴−1‖HS
� 𝛿, 𝜎𝑛 (𝐴) � 𝜀𝑛−1/2

)
� 𝛿𝜀−2/3 + 𝑒−Ω(𝑛) � 𝜀1/4 + 𝑒−Ω(𝑛) , (10.3)

where we have used that ‖𝐴−1‖∗ � ‖𝐴−1‖HS. We also note that Lemma 9.1 actually gives an upper
bound on E𝐴 sup𝑟 P𝑋 (A), where A is the event on the left-hand side of (10.7). Since sup𝑟 P𝐴,𝑋 (A) �
E𝐴 sup𝑟 P𝑋 (A), the bound (10.3), and thus Lemma 10.3, follows. �

The next lemma is our “bootstrapping step”: Given bounds of the form

P(𝜎min(𝐴𝑛) � 𝜀𝑛−1/2) � 𝜀𝜅 + 𝑒−𝑐𝑛,

this lemma will produce better bounds for the same problem with 𝐴𝑛+1 in place of 𝐴𝑛.

Lemma 10.4 (Bootstrapping step). For 𝐵 > 0, let 𝜁 ∈ Γ𝐵, let 𝐴𝑛+1 ∼ Sym 𝑛+1 (𝜁), and let 𝜅 ∈
(0, 1) \ {7/10}. If for all 𝜀 > 0, and all n, we have

P
(
𝜎min(𝐴𝑛) � 𝜀𝑛−1/2) � 𝜀𝜅 + 𝑒−Ω(𝑛) , (10.4)

then for all 𝜀 > 0 and all n, we have

P(𝜎min(𝐴𝑛+1) � 𝜀𝑛−1/2) � (log 𝜀−1)1/2 · 𝜀min{1,6𝜅/7+1/3} + 𝑒−Ω(𝑛) .

Proof. Let 𝑐 > 0 denote the implicit constant in the exponent on the right-hand side of (10.4). Note that
if 0 < 𝜀 < 𝑒−𝑐𝑛, by the assumption of the lemma, then we have

P(𝜎min(𝐴𝑛) � 𝜀𝑛−1/2) � 𝑒−Ω(𝑛) ,

for all n, in which case, we are done. So we may assume 𝜀 > 𝑒−𝑐𝑛.
As in the proof of the “base step,” Lemma 10.3, we look to apply Lemmas 6.2 and 9.1 in sequence.

For this, we write 𝐴 = 𝐴𝑛 and bound (9.1) as in the conclusion of Lemma 9.1

E𝐴

(
𝜇1√
𝑛

)7/9
1
{
𝜇1√
𝑛
� 𝜀−1
}
�
∫ 𝜀−7/9

0
P

(
𝜎min(𝐴) � 𝑥−9/7𝑛−1/2

)
𝑑𝑥, (10.5)
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where we used that 𝜎min(𝐴) = 1/𝜇1 (𝐴). Now use assumption (10.4) to see the right-hand side of
(10.5) is

� 1 +
∫ 𝜀−7/9

1
(𝑥−9𝜅/7 + 𝑒−𝑐𝑛) 𝑑𝑥 � max

{
1, 𝜀𝜅−7/9

}
. (10.6)

Now, we apply Lemma 9.1 with 𝛿 = 𝐶𝜀 · (log 𝜀−1)1/2, 𝑠 = 0, and 𝑢 = 0 to see that

P𝐴,𝑋

(
|〈𝐴−1𝑋, 𝑋〉 − 𝑟 |

‖𝐴−1‖HS
� 𝛿,

𝜇1√
𝑛
� 𝜀−1
)
� max

{
𝜀, 𝜀6𝜅/7+1/3

}
· (log 𝜀−1)1/2 + 𝑒−Ω(𝑛) , (10.7)

for all r. Here, we used that ‖𝐴−1‖HS � ‖𝐴−1‖∗.
Now, by Hanson-Wright (Theorem 10.2), there exists 𝐶 ′ > 0, such that

P𝑋
(
‖𝐴−1𝑋 ‖2 � 𝐶 ′‖𝐴−1‖HS · (log 𝜀−1)1/2) � 𝜀.

Thus, we choose 𝐶 ′′ to be large enough, so that

P𝐴,𝑋

(
|〈𝐴−1𝑋, 𝑋〉 − 𝑟 |

‖𝐴−1𝑋 ‖2
� 𝐶 ′′𝜀, 𝜎𝑛 (𝐴) � 𝜀𝑛−1/2

)
� max

{
𝜀, 𝜀6𝜅/7+1/3

}
· (log 𝜀−1)1/2 + 𝑒−Ω(𝑛) ,

for all r. Lemma 6.1 now completes the proof of Lemma 10.4. �

Lemma 10.1 now follows by iterating Lemma 10.4 three times.

Proof of Lemma 10.1. By Lemmas 10.3 and 10.4, we have

P(𝜎min(𝐴) � 𝜀𝑛−1/2) � 𝜀13/21 · (log 𝜀−1)1/2 + 𝑒−Ω(𝑛) � 𝜀13/21−𝜂 + 𝑒−Ω(𝑛) ,

for some small 𝜂 > 0. Applying Lemma 10.4 twice more gives an exponent of 127
147 − 6

7𝜂 and then 1, for
𝜂 small, thus completing the proof. �

11. Proof of Theorem 1.1

We are now ready to prove our main result, Theorem 1.1. We use Lemma 6.1 (as in the proof of Lemma
10.1) and the inequality at (4.5) to see that it is enough to prove

P
E
(
|〈𝐴−1𝑋, 𝑋〉 − 𝑟 |

‖𝐴−1𝑋 ‖2
� 𝐶𝜀, and 𝜎𝑛 (𝐴) � 𝜀𝑛−1/2

)
� 𝜀 + 𝑒−Ω(𝑛) , (11.1)

where C is as in Lemma 6.1 and the implied constants do not depend on r. Recall that E is the quasi-
random event defined in Section 4.

To prepare ourselves for what follows, we put E0 := E ∩ {𝜎min(𝐴) � 𝜀𝑛−1/2} and

𝑄(𝐴, 𝑋) :=
|〈𝐴−1𝑋, 𝑋〉 − 𝑟 |

‖𝐴−1𝑋 ‖2
and 𝑄∗(𝐴, 𝑋) :=

|〈𝐴−1𝑋, 𝑋〉 − 𝑟 |
‖𝐴−1‖∗

,

where

‖𝐴−1‖2
∗ =

𝑛∑
𝑘=1
𝜇2
𝑘 (log(1 + 𝑘))2 ,
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as defined in Section 8. We now split the left-hand side of (11.1) as

P
E0 (𝑄(𝐴, 𝑋) � 𝐶𝜀) � PE0 (𝑄∗(𝐴, 𝑋) � 2𝐶𝜀) + PE0

(
𝑄(𝐴, 𝑋) � 𝐶𝜀, ‖𝐴

−1𝑋 ‖2

‖𝐴−1‖∗
� 2
)
. (11.2)

We can take care of the first term easily by combining Lemmas 9.1 and 10.1.

Lemma 11.1. For 𝜀 > 0,

P
E0 (𝑄∗(𝐴, 𝑋) � 2𝐶𝜀) � 𝜀 + 𝑒−Ω(𝑛) .

Proof. Apply Lemma 9.1, with 𝛿 = 2𝐶𝜀, 𝑢 = 0, and 𝑠 = 0 to obtain

P
E0 (𝑄∗(𝐴, 𝑋) � 2𝐶𝜀) � 𝜀

(
E𝐴

(
𝜇1√
𝑛

)7/9
1
{
𝜇1√
𝑛
� 𝜀−1
})6/7

+ 𝑒−Ω(𝑛) .

By Lemma 10.1 and the calculation at (10.6), the expectation on the right is bounded by a constant. �

We now focus on the latter term on the right-hand side of (11.2). By considering the dyadic partition
2 𝑗 � ‖𝐴−1𝑋 ‖2/‖𝐴−1‖∗ � 2 𝑗+1, we see the second term on the right hand side (RHS) of (11.2) is

�
log 𝑛∑
𝑗=1
P
E0

(
𝑄∗(𝐴, 𝑋) � 2 𝑗+1𝐶𝜀 ,

‖𝐴−1𝑋 ‖2

‖𝐴−1‖∗
� 2 𝑗

)
+ 𝑒−Ω(𝑛) . (11.3)

Here, we have dealt with the terms for which 𝑗 � log 𝑛 by using the fact that

P𝑋
(
‖𝐴−1𝑋 ‖2 �

√
𝑛‖𝐴−1‖∗

)
� 𝑒−Ω(𝑛) ,

which follows from Hanson-Wright and the inequality ‖𝐴−1‖∗ � ‖𝐴−1‖HS.
We now show that the event ‖𝐴−1𝑋 ‖2 � 𝑡‖𝐴−1‖∗ implies that X must correlate with one of the

eigenvectors of A.

Lemma 11.2. For 𝑡 > 0, we have

P𝑋

(
𝑄∗(𝐴, 𝑋) � 2𝐶𝑡𝜀,

‖𝐴−1𝑋 ‖2

‖𝐴−1‖∗
� 𝑡
)
� 2

𝑛∑
𝑘=1
P𝑋 (𝑄∗(𝐴, 𝑋) � 2𝐶𝑡𝜀, 〈𝑋, 𝑣𝑘〉 � 𝑡 log(1 + 𝑘)) ,

where {𝑣𝑘 } is an orthonormal basis of eigenvectors of A.

Proof. Assume that ‖𝐴−1𝑋 ‖2 � 𝑡‖𝐴−1‖∗, and use the singular value decomposition associated with
{𝑣𝑘 }𝑘 to write

𝑡2
∑
𝑘

𝜇2
𝑖 (log(𝑘 + 1))2 = 𝑡2‖𝐴‖2

∗ � ‖𝐴−1𝑋 ‖2
2 =
∑
𝑘

𝜇2
𝑘 〈𝑣𝑘 , 𝑋〉

2.

Thus

{‖𝐴−1𝑋 ‖2 � 𝑡‖𝐴−1‖∗} ⊂
⋃
𝑘

{
|〈𝑋, 𝑣𝑘〉| � 𝑡 log(𝑘 + 1)

}
.

To finish the proof of Lemma 11.2, we union bound and treat the case of −𝑋 the same as X (by possibly
changing the sign of 𝑣𝑘 ) at the cost of a factor of 2. �
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Proof of Theorem 1.1. Recall that it suffices to establish (11.1). Combining (11.2) with Lemma 11.2
and Lemma 11.1 tells us that

P
E0 (𝑄(𝐴, 𝑋) � 𝐶𝜀) � 𝜀 + 2

log 𝑛∑
𝑗=1

𝑛∑
𝑘=1
P
E0
(
𝑄∗(𝐴, 𝑋) � 2 𝑗+1𝐶𝜀, 〈𝑋, 𝑣𝑘〉 � 2 𝑗 log(1 + 𝑘)

)
+ 𝑒−Ω(𝑛) .

(11.4)

We now apply Lemma 9.1 for all 𝑡 > 0, with 𝛿 = 2𝐶𝑡𝜀, 𝑠 = 𝑡 log(𝑘 + 1) and 𝑢 = 𝑣𝑘 to see that,

P
E0
(
𝑄∗(𝐴, 𝑋) � 2𝐶𝑡𝜀, 〈𝑋, 𝑣𝑘〉 � 𝑡 log(1 + 𝑘)

)
� 𝜀𝑡 (𝑘 + 1)−𝑡 · 𝐼6/7 + 𝑒−Ω(𝑛) , (11.5)

where

𝐼 := E𝐴
(
𝜇1 (𝐴)√
𝑛

)7/9
1
{
𝜇1 (𝐴)√
𝑛
� 𝜀−1
}
.

Using (11.5) in (11.4) yields

P
E0 (𝑄(𝐴, 𝑋) � 𝐶𝜀) � 𝜀𝐼6/7

log 𝑛∑
𝑗=1

𝑛∑
𝑘=1

2 𝑗 (𝑘 + 1)−2 𝑗 + 𝑒−Ω(𝑛) � 𝜀 · 𝐼6/7 + 𝑒−Ω(𝑛) ,

since
∑∞

𝑗=1
∑∞

𝑘=1 2 𝑗 (𝑘 + 1)−2 𝑗
= 𝑂 (1). Now we write

𝐼 = E𝐴

(
𝜇1 (𝐴)√
𝑛

)7/9
1
{
𝜇1(𝐴)√
𝑛
� 𝜀−1
}
�
∫ 𝜀−7/9

0
P

(
𝜎min(𝐴) � 𝑥−9/7𝑛−1/2

)
𝑑𝑥

and apply Lemma 10.1 to see∫ 𝜀−7/9

0
P

(
𝜎min(𝐴) � 𝑥−9/7𝑛−1/2

)
𝑑𝑥 �
∫ ∞

1
𝑠−9/7 𝑑𝑠 + 1 � 1.

Thus, Lemma 6.1 completes the proof of Theorem 1.1. �

I. Introduction to the appendices

In these appendices, we lay out the proof of Theorem 4.3, the “master quasi-randomness theorem,”
which we left unproved in the main body of the paper, and the proof of Theorem 9.2. The proofs of these
results are technical adaptations of the authors’ previous work on the singularity of random symmetric
matrices [4]. The last three appendices also tie up some other loose ends in the main body of the text.

In particular, the proof of Theorem 4.3 is similar to the proof of the main theorem in [4], with only
a few tweaks and additions required to make the adaptation go through. In several places, we need
only update the constants and will be satisfied in pointing the interested reader to [4] for more detail.
Elsewhere, more significant adaptations are required, and we outline these changes in full detail. As
such, parts of these appendices will bore the restless expert, but we hope it will provide a useful source
for those who are taking up the subject or want to avoid writing out the (sometimes extensive) details
for oneself.

I.1. Definitions

We collect a few definitions from the main body of the text that are most relevant for us here. Throughout,
𝜁 will be a random variable with mean 0 and variance 1. Such a random variable is said to be subgaussian
if the subgaussian moment
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‖𝜁 ‖𝜓2 := sup
𝑝�1
𝑝−1/2 (E|𝜁 |𝑝)1/𝑝

is finite. For 𝐵 > 0, we let Γ𝐵 denote the set of mean 0 variance 1 random variables with subgaussian
moment � 𝐵, and we let Γ =

⋃
𝐵>0 Γ𝐵.

For 𝜁 ∈ Γ, let Sym 𝑛 (𝜁) denote the probability space of 𝑛×𝑛 symmetric matrices with (𝐴𝑖, 𝑗 )𝑖� 𝑗 i.i.d.
distributed according to 𝜁 . Let Col 𝑛 (𝜁) be the probability space on vectors of length n with independent
coordinates distributed according to 𝜁 .

For 𝑣 ∈ S𝑛−1 and 𝜇, 𝛼, 𝛾 ∈ (0, 1), define the least common denominator (LCD) of the vector v via

𝐷𝛼,𝛾 (𝑣) := inf
{
𝑡 > 0 : ‖𝑡𝑣‖T < min{𝛾‖𝑡𝑣‖2,

√
𝛼𝑛}
}
, (I.1)

where ‖𝑤‖T := dist(𝑤,Z𝑛). We also define

𝐷̂𝛼,𝛾,𝜇 (𝑣) := min
𝐼 ⊂[𝑛]

|𝐼 |� (1−2𝜇)𝑛

𝐷𝛼,𝛾 (𝑣𝐼 ) . (I.2)

Remark I.1. We note that in the main body of the paper, we work with a slightly different notion of
𝐷̂, where we define 𝐷̂𝛼,𝛾,𝜇 (𝑣) = min𝐼 𝐷𝛼,𝛾 (𝑣𝐼 /‖𝑣𝐼 ‖2). This makes no difference for us, as Lemma
II.6 below eliminates those v for which ‖𝑣𝐼 ‖2 is less than a constant. Thus, we work with the slightly
simpler definition (I.2) throughout.

We define the set of “structured direction on the sphere”

Σ = Σ𝛼,𝛾,𝜇 :=
{
𝑣 ∈ S𝑛−1 : 𝐷̂𝛼,𝛾,𝜇 (𝑣) � 𝑒𝑐Σ𝑛

}
.

Now, for 𝜁 ∈ Γ, 𝐴 ∼ Sym 𝑛 (𝜁) and a given vector 𝑤 ∈ R𝑛, we define the quantity (as in Section 4)

𝑞𝑛 (𝑤) = 𝑞𝑛 (𝑤;𝛼, 𝛾, 𝜇) := P𝐴
(
∃𝑣 ∈ Σ and ∃𝑠, 𝑡 ∈ [−4

√
𝑛, 4

√
𝑛] : 𝐴𝑣 = 𝑠𝑣 + 𝑡𝑤

)
.

We then recall (see (4.10))

𝑞𝑛 := max
𝑤 ∈S𝑛−1

𝑞𝑛 (𝑤) .

I.2. Main theorems of the appendix

Let us now restate the two main objectives of this appendix. Our first goal is to prove the following.
Theorem I.2 (Master quasi-randomness theorem). For 𝐵 > 0 and 𝜁 ∈ Γ𝐵, there exist constants
𝛼, 𝛾, 𝜇, 𝑐Σ, 𝑐 ∈ (0, 1) depending only on B so that

𝑞𝑛 (𝛼, 𝛾, 𝜇) � 2𝑒−𝑐𝑛 .

The second main goal of this appendix is to prove Theorem 9.2, which we will prove on our way to
proving Theorem I.2.
Theorem I.3. For 𝐵 > 0, let 𝜁 ∈ Γ𝐵. For 𝑑 ∈ N, 𝛼, 𝛾 ∈ (0, 1), and 𝜈 ∈ (0, 2−15), there are
constants 𝑐0, 𝑅 > 0 depending only on 𝛼, 𝛾, 𝜈, 𝐵 so that the following holds. Let 0 � 𝑘 � 𝑐0𝛼𝑑 and
𝑡 � exp(−𝑐0𝛼𝑑); let 𝑣 ∈ S𝑑−1, and let 𝑤1, . . . , 𝑤𝑘 ∈ S𝑑−1 be orthogonal.

Let 𝜁 ′ be an independent copy of 𝜁 , let 𝑍𝜈 be a Bernoulli random variable with parameter 𝜈, and let
𝜏 ∈ R𝑑 be a random vector whose coordinates are i.i.d. copies of the random variable with distribution
(𝜁 − 𝜁 ′)𝑍𝜈 .

If 𝐷𝛼,𝛾 (𝑣) > 1/𝑡, then

P
*+,|〈𝜏, 𝑣〉| � 𝑡 and

𝑘∑
𝑗=1

〈𝑤 𝑗 , 𝜏〉2 � 𝑐0𝑘
-./ � 𝑅𝑡 · 𝑒−𝑐0𝑘 .

https://doi.org/10.1017/fmp.2023.29 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.29


40 Campos Marcelo et al.

The proofs of Theorems I.2 and I.3 follow the same path as [4], where the authors proved analogous
statements for the case where the entries of A are uniform in {−1, 1}. We refer the reader to the following
Section I.3 for a discussion of how this appendix is structured relative to [4].

I.3. A Reader’s guide for the appendices

Here, we describe the correspondence between sections in this appendix and sections in [4] and point
out the key changes that come up.

In Section II, we set up many of the basic notions that we will need for the proof of Theorem I.2.
The main novelty here is in the definitions of several auxiliary random variables, related to 𝜁 , that will
be used to study 𝜁 in the course of the paper.

In Section III, we turn to prove Theorem I.2, while assuming several key results that we either import
from [4] or prove in later sections. This section is the analogue of Section 9 in [4], and the main difference
between these sections arises from the different definitions of 𝑞𝑛 in these two papers (see (4.10)). Here,
𝑞𝑛 is defined in terms of the least common denominator 𝐷𝛼,𝛾 , rather than the threshold T𝐿 (see (II.7)).
In the course of the proof, we also need to break things up according to T𝐿 , and define nets as we did
in [4], but another net argument is required to exclude vectors with T𝐿 small but 𝐷𝛼,𝛾 large.

In Section IV, we define many of the key Fourier-related notions that we will need to prove the
remaining results, including Theorem I.3. The main differences between the two papers in these sections
comes from the different definition of the sublevel sets 𝑆𝑊 (see (IV.1)). This new definition requires us
to reprove a few of our basic lemmas from [4], however, the proofs go through easily.

In Section IV.2, we state our main inverse Littlewood-Offord Theorem for conditioned random walks
and deduce Theorem I.3 from it. Lemma IV.3 in this section is also one of the main ingredients that
goes into Theorem III.2. This section corresponds to Section 3 of [4].

Section V deals with Fourier replacement and is the analogue of Appendix B in [4]. Here, the only
difference between the sections is that here we lack an explicit form for the Fourier transform. However,
this difficulty is easily overcome.

In Section VI, we prove Lemma IV.3. This corresponds to Sections 4 and 5 of [4], from which several
key geometric facts are imported wholesale, making our task significantly lighter here. The difference
in the definitions from Section IV are salient here, but the majority of the proof is the same as in [4,
Section 5], up to the constants involved.

The next three sections, Sections VII, VIII, and IX, correspond to Sections 6, 7, and 8 respectively of
[4]. Here, the adaptation to this paper requires little more than updating constants. These three sections
amount to converting Lemma IV.3 into the main net bound Theorem III.2.

Finally, in Section X, we deduce the Hanson-Wright inequality, Lemma VI.7, from Talagrand’s
inequality; this corresponds to Appendix E of [4] where the difference, again, is only up to constants.

II. Preparations

II.1. Symmetrizing and truncating the random variable

We will work with symmetrized, truncated, and lazy versions of the variable 𝜁 . This is primarily because
these altered versions will have better behaved Fourier properties. Here, we introduce these random
variables and also note some properties of their characteristic functions. These properties are not so
important until Section IV, but we have them here to help motivate some of the definitions.

Let 𝜁 ′ be an independent copy of 𝜁 and define

𝜁 = 𝜁 − 𝜁 ′.

We will want to truncate 𝜁 to a bounded window, as this will be useful for our construction of a
nondegenerate and not-too-large LCD in Section VI. In this direction, define 𝐼𝐵 = (1, 16𝐵2) and
𝑝 := P(|𝜁 | ∈ 𝐼𝐵). Our first step is to uniformly bound p in terms of B.
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Lemma II.1. 𝑝 � 1
27𝐵4 .

Proof. By the Paley-Zygmund inequality

P(|𝜁 | > 1) = P(|𝜁 |2 > E|𝜁 |2/2) �
(1 − 1

2 )
2(E𝜁2)2

(E𝜁4)
�

1
26𝐵4 ,

where we have used E𝜁4 = 2E𝜁4 + 6 � 25𝐵4 + 6 and 𝐵 � 1. By Chebyshev’s inequality, we have

P(|𝜁 | � 16𝐵2) � 2
28𝐵4 .

Combining the bounds completes the proof. �

For a parameter 𝜈 ∈ (0, 1), define 𝜉𝜈 by

𝜉𝜈 := 1{|𝜁 | ∈ 𝐼𝐵}𝜁𝑍𝜈 ,

where 𝑍𝜈 is an independent Bernoulli variable with mean 𝜈. For 𝜈 ∈ (0, 1) and 𝑑 ∈ N, we write
𝑋 ∼ Ξ𝜈 (𝑑; 𝜁) to indicate that X is a random vector in R𝑑 whose entries are i.i.d. copies of the variable
𝜉𝜈; similarly, we write 𝑋 ∼ Φ𝜈 (𝑑; 𝜁) to denote a random vector whose entries are i.i.d. copies of the
random variable 𝜁𝑍𝜈 .

We compute the characteristic function of 𝜉𝜈 to be

𝜙𝜉𝜈 (𝑡) = E𝑒𝑖2𝜋𝑡 𝜉𝜈 = 1 − 𝜈 + 𝜈(1 − 𝑝) + 𝜈𝑝E𝜁 [cos(2𝜋𝑡𝜁 ) | |𝜁 | ∈ (1, 16𝐵2)] .

Define the variable 𝜁 as 𝜁 conditioned on |𝜁 | ∈ 𝐼𝐵, where we note that this conditioning makes sense
since Lemma II.1 shows 𝑝 > 0. In other words, for every Borel set S,

P(𝜁 ∈ 𝑆) = 𝑝−1
P(𝜁 ∈ 𝑆 ∩ (𝐼𝐵 ∪ −𝐼𝐵)) .

Therefore we can write the characteristic function of 𝜉𝜈 as

𝜙𝜉𝜈 (𝑡) = 1 − 𝜈𝑝 + 𝜈𝑝E𝜁 cos(2𝜋𝑡𝜁 ) . (II.1)

For 𝑥 ∈ R, define ‖𝑥‖T := dist(𝑥,Z), and note the elementary inequalities

1 − 20‖𝑎‖2
T
� cos(2𝜋𝑎) � 1 − ‖𝑎‖2

T
,

for 𝑎 ∈ R. These imply that

exp
(
−32𝜈𝑝 · E𝜁 ‖𝑡𝜁 ‖2

T

)
� 𝜙𝜉𝜈 (𝑡) � exp

(
−𝜈𝑝 · E𝜁 ‖𝑡𝜁 ‖2

T

)
. (II.2)

Also note that since 𝜙𝜁 𝑍𝜈
(𝑡) = 1 − 𝜈 + 𝜈E𝜁 [cos(2𝜋𝑡𝜁)], we have

𝜙𝜁 𝑍𝜈
(𝑡) � 1 − 𝜈 + 𝜈(1 − 𝑝) + 𝜈𝑝E𝜁 [cos(2𝜋𝑡𝜁) | |𝜁 | ∈ 𝐼𝐵] = 𝜙𝜉𝜈 (𝑡) . (II.3)

II.2. Properties of subgaussian random variables and matrices

We will use a basic fact about exponential moments of one-dimensional projections of subgaussian
random variables (see, e.g. [47, Proposition 2.6.1]).

Fact II.2. For 𝐵 > 0, let 𝑌 = (𝑌1, . . . , 𝑌𝑑) be a random vector with 𝑌1, . . . , 𝑌𝑑 ∈ Γ𝐵. Then for all
𝑢 ∈ S𝑑−1, we have E 𝑒 〈𝑌 ,𝑢〉 = 𝑂𝐵 (1).

We will also use a large deviation bound for the operator norm of A (see (4.11)).
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Fact II.3. For 𝐵 > 0, let 𝜁 ∈ Γ and 𝐴 ∼ Sym 𝑛 (𝜁). Then

P(‖𝐴‖𝑜𝑝 � 4
√
𝑛) � 2𝑒−Ω(𝑛) .

We also define the event K = {‖𝐴‖𝑜𝑝 � 4
√
𝑛}, and define the measure PK by

P
K (E) = P(K ∩ E), (II.4)

for every event E .

II.3. Compressibility and eliminating nonflat vectors

As in [4], we may limit our attention to vectors that are “flat” on a constant proportion of their coordinates.
This reduction is a consequence of the now-classical work of Rudelson and Vershynin on compressible
and incompressible vectors [31].

Following [31], we say that a vector in S𝑛−1 is (𝛿, 𝜌)-compressible if it has distance at most 𝜌 from
a vector with support of size at most 𝛿𝑛. For 𝛿, 𝜌 ∈ (0, 1), let Comp (𝛿, 𝜌) denote the set of all such
compressible vectors in S𝑛−1. Proposition 4.2 from Vershynin’s paper [46] takes care of all compressible
vectors.

Lemma II.4. For 𝐵 > 0, let 𝜁 ∈ Γ𝐵, let 𝐴𝑛 ∼ Sym 𝑛 (𝜁), and let 𝐾 � 1. Then there exist 𝜌, 𝛿, 𝑐 > 0
depending only on 𝐾, 𝐵, so that for every 𝜆 ∈ R and 𝑤 ∈ R𝑛, we have

P
(

inf
𝑥∈Comp (𝛿,𝜌)

‖ (𝐴𝑛 + 𝜆𝐼)𝑥 − 𝑤‖2 � 𝑐
√
𝑛 and ‖𝐴𝑛 + 𝜆𝐼 ‖𝑜𝑝 � 𝐾

√
𝑛
)
� 2𝑒−𝑐𝑛 .

For the remainder of the paper, we let 𝛿, 𝜌 be the constants given in Lemma II.4. Define

Incomp (𝛿, 𝜌) := S𝑛−1 \ Comp (𝛿, 𝜌)

to be the set of (𝛿, 𝜌)-incompressible vectors. The key property of incompressible vectors is that they
are “flat” for a constant proportion of coordinates. This is made quantitative in the following lemma of
Rudelson and Vershynin [31].

Lemma II.5. Let 𝑣 ∈ Incomp (𝛿, 𝜌). Then

(𝜌/2)𝑛−1/2 � |𝑣𝑖 | � 𝛿−1/2𝑛−1/2

for at least 𝜌2𝛿𝑛/2 values of 𝑖 ∈ [𝑛].
We now fix a few more constants to be held fixed throughout the paper. Let 𝜅0 = 𝜌/3 and 𝜅1 =

𝛿−1/2 + 𝜌/6, where 𝛿, 𝜌 are as in Lemma II.4. For 𝐷 ⊆ [𝑛], define the set of directions in S𝑛−1 that are
“flat on D”:

I (𝐷) =
{
𝑣 ∈ S𝑛−1 : (𝜅0 + 𝜅0/2)𝑛−1/2 � |𝑣𝑖 | � (𝜅1 − 𝜅0/2)𝑛−1/2 for all 𝑖 ∈ 𝐷

}
,

and let

I = I𝑑 :=
⋃

𝐷⊆[𝑛], |𝐷 |=𝑑
I (𝐷).

Applying Lemmas II.4 and II.5 in tandem will allow us to eliminate vectors outside of I.

Lemma II.6. Let 𝛿, 𝜌, 𝑐 > 0 be the constants defined in Lemma II.4, and let 𝑑 < 𝜌2𝛿𝑛/2. Then

max
𝑤 ∈S𝑛−1

P𝐴

(
∃𝑣 ∈ S𝑛−1 \ I and ∃𝑠, 𝑡 ∈ [−4

√
𝑛, +4

√
𝑛] : ‖𝐴𝑣 − 𝑠𝑣 − 𝑡𝑤‖2 � 𝑐

√
𝑛/2
)
� 2𝑒−Ω(𝑛) . (II.5)
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Proof. Lemma II.5, along with the definitions of 𝜅0, 𝜅1, and I, implies that

S
𝑛−1 \ I ⊆ Comp (𝛿, 𝜌).

Now, fix a𝑤 ∈ R𝑛 and take a 𝑐
√
𝑛/8-netN for [−4

√
𝑛, 4

√
𝑛]2 of size𝑂 (𝑐−2) to see that ‖𝐴𝑣−𝑠𝑣−𝑡𝑤‖2 �

𝑐
√
𝑛/2 implies that there exists (𝑠′, 𝑡 ′) ∈ N for which

‖(𝐴 − 𝑠′𝐼)𝑣 − 𝑡 ′𝑤‖2 � 𝑐
√
𝑛.

Thus, the left-hand side of (II.5) is

�
∑

(𝑠′,𝑡′) ∈N
P𝐴
(
∃𝑣 ∈ Comp (𝛿, 𝜌) : ‖(𝐴 − 𝑠′𝐼)𝑣 − 𝑡 ′𝑤‖2 � 𝑐

√
𝑛
)
� |N | · 2𝑒−Ω(𝑛) ,

where the final inequality follows by first intersecting each term in the sum with the event E :=
{‖𝐴 − 𝑠′𝐼 ‖𝑜𝑝 � 16𝑛1/2} (noting that P(E𝑐) � 2𝑒−Ω(𝑛) , by Fact II.3) and applying Lemma II.4 to each
term in the sum with 𝜆 = −𝑠′ and 𝐾 = 16. �

II.4. Zeroed out matrices

To study our original matrix A, it will be useful to work with random symmetric matrices that have
large blocks that are “zeroed out” and entries that are distributed like 𝜁𝑍𝜈 elsewhere (see [4] for more
discussion on this). For this, we set 𝑑 := 𝑐2

0𝑛 (where 𝑐0 > 0 is a small constant to be determined later)
and write 𝑀 ∼ M𝑛 (𝜈) for the 𝑛 × 𝑛 random matrix

𝑀 =

[
0[𝑑 ]×[𝑑 ] 𝐻𝑇

1
𝐻1 0[𝑑+1,𝑛]×[𝑑+1,𝑛]

]
, (II.6)

where 𝐻1 is a (𝑛 − 𝑑) × 𝑑 random matrix whose entries are i.i.d. copies of 𝜁𝑍𝜈 .
In particular, the matrix M will be useful for analyzing events of the form ‖𝐴𝑣‖2 � 𝜀𝑛1/2, when

𝑣 ∈ I ([𝑑]).
We now use the definition of M𝑛 (𝜈) to define another notion of “structure” for vectors 𝑣 ∈ S𝑛−1.

This is a very different measure of “structure” from that provided by the LCD, which we saw above. For
𝐿 > 0 and 𝑣 ∈ R𝑛, define the threshold of v as

T𝐿 (𝑣) := sup
{
𝑡 ∈ [0, 1] : P(‖𝑀𝑣‖2 � 𝑡

√
𝑛) � (4𝐿𝑡)𝑛

}
. (II.7)

One can think of this T𝐿 (𝑣) as the “scale” at which the structure of v (relative to M) starts to emerge.
So “large threshold” means “more structured.”

III. Proof of Theorem I.2

Here, we recall some key notions from [4], state analogous lemmas, and prove Theorem I.2 assuming
these lemmas.

III.1. Efficient nets

Our goal is to obtain an exponential bound on the quantity

𝑞𝑛 = max
𝑤 ∈S
P𝐴
(
∃𝑣 ∈ Σ and ∃𝑠, 𝑡 ∈ [−4

√
𝑛, 4

√
𝑛] : 𝐴𝑣 = 𝑠𝑣 + 𝑡𝑤

)
,
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defined at (4.10), where

Σ = Σ𝛼,𝛾,𝜇 :=
{
𝑣 ∈ S𝑛−1 : 𝐷̂𝛼,𝛾,𝜇 (𝑣) � 𝑒𝑐Σ𝑛

}
.

In the course of the proof, we will choose 𝛼, 𝛾, 𝜇 to be sufficiently small.
We cover Σ ⊆ S𝑛−1 with two regions which will be dealt with in very different ways. First, we define

𝑆 :=
{
𝑣 ∈ S𝑛−1 : T𝐿 (𝑣) � exp(−2𝑐Σ𝑛)

}
.

This will be the trickier region and will depend on the net construction from [4]. We also need to take
care of the region

𝑆′ := {𝑣 ∈ S𝑛−1 : 𝐷̂𝛼,𝛾,𝜇 (𝑣) � exp(𝑐Σ𝑛), T𝐿 (𝑣) � exp(−2𝑐Σ𝑛)} ,

which we take care of using the nets constructed by Rudelson and Vershynin in [31]. We recall that T𝐿
is defined at (II.7).

We also note that since the event K := {‖𝐴‖op � 4𝑛1/2} fails with probability 2𝑒−𝑐𝑛 (Fact II.3) and
we only need to deal with incompressible vectors 𝑣 ∈ I (by Lemma II.6), it is enough to show

sup
𝑤 ∈S𝑛−1

P
K
𝐴

(
∃𝑣 ∈ I ∩ 𝑆, 𝑠, 𝑡 ∈ [−4

√
𝑛, +4

√
𝑛] : 𝐴𝑣 = 𝑠𝑣 + 𝑡𝑤

)
� 𝑒−Ω(𝑛) , (III.1)

and the same with 𝑆′ replacing S. We recall that we define PK (E) := P(K ∩ E) for every event E . To
deal with the above probability, we will construct nets to approximate vectors in I ∩ 𝑆 and I ∩ 𝑆′. To
define the nets used, we recall a few definitions from [4]. For a random variable 𝑌 ∈ R𝑑 and 𝜀 > 0, we
define the Lévy concentration of Y by

L(𝑌, 𝜀) = sup
𝑤 ∈R𝑑

P(‖𝑌 − 𝑤‖2 � 𝜀) . (III.2)

Now, for 𝑣 ∈ R𝑛, 𝜀 > 0, define

L𝐴,𝑜𝑝 (𝑣, 𝜀
√
𝑛) := sup

𝑤 ∈R𝑛
P
K (‖𝐴𝑣 − 𝑤‖2 � 𝜀

√
𝑛) . (III.3)

Slightly relaxing the requirements of I , we define

I ′( [𝑑]) :=
{
𝑣 ∈ R𝑛 : 𝜅0𝑛

−1/2 � |𝑣𝑖 | � 𝜅1𝑛
−1/2 for all 𝑖 ∈ [𝑑]

}
.

Define the (trivial) net

Λ𝜀 := 𝐵𝑛 (0, 2) ∩
(
4𝜀𝑛−1/2 · Z𝑛

)
∩ I ′( [𝑑]) .

III.1.1. Definition of net for 𝒗 ∈ 𝑺
To deal with vectors in S, for 𝜀 � exp(−2𝑐Σ𝑛), define

Σ𝜀 :=
{
𝑣 ∈ I ([𝑑]) : T𝐿 (𝑣) ∈ [𝜀, 2𝜀]

}
. (III.4)

If 𝑣 ∈ Σ𝜀 , for some 𝜀 � exp(−2𝑐Σ𝑛), then the proof will be basically the same as in [4]. As such, we
approximate Σ𝜀 by N𝜀 , where we define

N𝜀 :=
{
𝑣 ∈ Λ𝜀 : (𝐿𝜀)𝑛 � P(‖𝑀𝑣‖2 � 4𝜀

√
𝑛) and L𝐴,𝑜𝑝 (𝑣, 𝜀

√
𝑛) � (210𝐿𝜀)𝑛

}
,

and show that N𝜀 is appropriately small.
First, the following lemma allows us to approximate Σ𝜀 by N𝜀 .
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Lemma III.1. Let 𝜀 ∈ (exp(−2𝑐Σ𝑛), 𝜅0/8). For each 𝑣 ∈ Σ𝜀 , then there is 𝑢 ∈ N𝜀 , such that ‖𝑢−𝑣‖∞ �
4𝜀𝑛−1/2.

This lemma is analogous to Lemma 8.2 in [4], and we postpone its proof to Section IX. The main
difficulty faced in [4] is to prove an appropriate bound on |N𝜀 |. In our case, we have an analogous bound.

Theorem III.2. For 𝐿 � 2 and 0 < 𝑐0 � 2−50𝐵−4, let 𝑛 � 𝐿64/𝑐2
0 , 𝑑 ∈ [𝑐2

0𝑛/4, 𝑐2
0𝑛], and 𝜀 > 0 be so

that log 𝜀−1 � 𝑛𝐿−32/𝑐2
0 . Then

|N𝜀 | �
(
𝐶

𝑐6
0𝐿

2𝜀

)𝑛
,

where 𝐶 > 0 is an absolute constant.
The proof of Theorem III.2 will follow mostly from Lemma IV.3, with the rest of the deduction

following exactly the same path as in [4], which we present in Sections VII and VIII.

III.1.2. Definition of net for 𝒗 ∈ 𝑺′

We now need to tackle the vectors in 𝑆′; that is, those with

T𝐿 (𝑣) � exp(−2𝑐Σ𝑛) and 𝐷̂𝛼,𝛾,𝜇 (𝑣) � exp(𝑐Σ𝑛).

Here, we construct the nets using only the second condition using a construction of Rudelson and
Vershynin [31]. Then the condition T𝐿 (𝑣) � exp(−2𝑐Σ𝑛) will come in when we union bound over nets.
With this in mind, let

Σ′
𝜀 :=
{
𝑣 ∈ I ([𝑑]) ∩ 𝑆′ : 𝐷̂𝛼,𝛾,𝜇 (𝑣) ∈ [(4𝜀)−1, (2𝜀)−1]

}
.

We will approximate 𝑣 ∈ Σ′
𝜀 by the net 𝐺 𝜀 , where we define

𝐺 𝜀 :=
⋃

|𝐼 |� (1−2𝜇)𝑛

{
𝑝

‖𝑝‖2
: 𝑝 ∈
(
Z
𝐼 ⊕

√
𝛼Z𝐼

𝑐
)
∩ 𝐵𝑛 (0, 𝜀−1) \ {0}

}
. (III.5)

The following two lemmas tell us that 𝐺 𝜀 is a good 𝜀
√
𝛼𝑛-net for Σ′

𝜀 . Here, this
√
𝛼 is the “win” over

trivial nets.
Lemma III.3. Let 𝜀 > 0 satisfy 𝜀 � 𝛾(𝛼𝑛)−1/2/4. If 𝑣 ∈ Σ′

𝜀 , then there exists 𝑢 ∈ 𝐺 𝜀 , such that
‖𝑢 − 𝑣‖2 � 16𝜀

√
𝛼𝑛.

Proof. Set 𝐷 = min |𝐼 |� (1−2𝜇)𝑛 𝐷𝛼,𝛾 (𝑣𝐼 ), and let I be a set attaining the minimum. By definition of
𝐷𝛼,𝛾 , there is 𝑝𝐼 ∈ Z𝐼 ∩ 𝐵𝑛 (0, 𝜀−1) so that

‖𝐷𝑣𝐼 − 𝑝𝐼 ‖2 < min{𝛾𝐷‖𝑣𝐼 ‖2,
√
𝛼𝑛} �

√
𝛼𝑛,

and thus 𝑝𝐼 ≠ 0. We now may greedily choose 𝑝𝐼 𝑐 ∈
√
𝛼Z𝐼

𝑐 ∩ 𝐵𝑛 (0, 𝜀−1) so that

‖𝐷𝑣𝐼 𝑐 − 𝑝𝐼 𝑐 ‖2 �
√
𝛼𝑛.

Thus, if we set 𝑝 = 𝑝𝐼 ⊕ 𝑝𝐼 𝑐 , by the triangle inequality, we have����𝑣 − 𝑝

‖𝑝‖2

����
2
�

1
𝐷
(‖𝐷𝑣 − 𝑝‖2 + |𝐷 − ‖𝑝‖2 |) � 4𝐷−1√𝛼𝑛 � 16𝜀

√
𝛼𝑛,

as desired. �

We also note that this net is sufficiently small for our purposes (see [31]).
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Fact III.4. For 𝛼, 𝜇 ∈ (0, 1), 𝐾 � 1 and 𝜀 � 𝐾𝑛−1/2, we have

|𝐺 𝜀 | �
(

32𝐾
𝛼2𝜇𝜀

√
𝑛

)𝑛
,

where 𝐺 𝜀 is as defined at (III.5).

The following simple corollary tells us that we can modify 𝐺 𝜀 to build a net 𝐺 ′
𝜀 ⊆ Σ𝜀 , at the cost of

a factor of 2 in the accuracy of the next. That is, it is a 32𝜀
√
𝛼𝑛-net rather than a 16𝜀

√
𝛼𝑛 net.

Corollary III.5. For 𝛼, 𝜇 ∈ (0, 1), 𝐾 � 1 and 𝜀 � 𝐾𝑛−1/2 there is a 32𝜀
√
𝛼𝑛-net 𝐺 ′

𝜀 for Σ′
𝜀 with

𝐺 ′
𝜀 ⊂ Σ′

𝜀 and

|𝐺 ′
𝜀 | �
(

32𝐾
𝛼2𝜇𝜀

√
𝑛

)𝑛
.

This follows from a standard argument.

III.2. Proof of Theorem I.2

We need the following easy observation to make sure we can use Corollary III.5.

Fact III.6. Let 𝑣 ∈ I, 𝜇 < 𝑑/4𝑛, and 𝛾 < 𝜅0
√
𝑑/2𝑛, then 𝐷̂𝛼,𝛾,𝜇 (𝑣) � (2𝜅1)−1√𝑛.

Proof. Since 𝑣 ∈ I, there is 𝐷 ⊂ [𝑛], such that |𝐷 | = 𝑑 and 𝜅0𝑛
−1/2 � |𝑣𝑖 | � 𝜅1𝑛

−1/2 for all
𝑖 ∈ 𝐷. Now, write 𝐷̂ (𝑣) = min |𝐼 |� (1−2𝜇)𝑛 𝐷𝛼,𝛾 (𝑣𝐼 ), and let I be a set attaining the minimum. Since
|𝐼 | � (1−2𝜇)𝑛 � 𝑛−𝑑/2, we have |𝐼∩𝐷 | � 𝑑/2. So put𝐷 ′ := 𝐼∩𝐷, and note that for all 𝑡 � (2𝜅1)−1√𝑛,
we have

min
𝐼
𝑑 (𝑡𝑣𝐼 ,Z𝑛) � 𝑑 (𝑡𝑣𝐷′ ,Z𝐷

′ ) = 𝑡‖𝑣𝐷′ ‖2 � 𝑡𝜅0
√
𝑑/2𝑛 > 𝛾𝑡.

Therefore, 𝐷𝛼,𝛾 (𝑣𝐼 ) � (2𝜅1)−1√𝑛, by definition. �

When union bounding over the elements of our net, we will also want to use the following lemma to
make sure L(𝐴𝑣, 𝜀) is small whenever T𝐿 (𝑣) � 𝜀.

Lemma III.7. Let 𝜈 � 2−8. For 𝑣 ∈ R𝑛 and 𝑡 � T𝐿 (𝑣), we have

L(𝐴𝑣, 𝑡
√
𝑛) � (50𝐿𝑡)𝑛 .

We prove this lemma in Section V using a fairly straightforward argument on the Fourier side. We now
prove our main theorem, Theorem I.2.

Proof of Theorem I.2. We pick up from (III.1) and look to show that

𝑞𝑛,𝑆 := sup
𝑤 ∈S𝑛−1

P
K
𝐴

(
∃𝑣 ∈ I ∩ 𝑆, 𝑠, 𝑡 ∈ [−4

√
𝑛, +4

√
𝑛] : 𝐴𝑣 = 𝑠𝑣 + 𝑡𝑤

)
� 𝑒−Ω(𝑛) , (III.6)

and the same with 𝑆′ in place of S. We do this in three steps.
We first pause to describe how we choose the constants. We let 𝑐0 > 0 to be sufficiently small so

that Theorem III.2 holds, and we let 𝑑 := 𝑐2
0𝑛. The parameters 𝜇, 𝛾 will be chosen small compared to

𝑑/𝑛 and 𝜅0 so that Fact III.6 holds. L will be chosen to be large enough so that 𝐿 > 1/𝜅0 and so that
it is larger than some absolute constants that appear in the proof. We will choose 𝛼 > 0 to be small
compared to 1/𝐿 and 1/𝜅0, and we will choose 𝑐Σ small compared to 1/𝐿.
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Step 1: Reduction to Σ𝜀 and Σ′
𝜀 . Using that I =

⋃
𝐷 I (𝐷), we union bound over all choices of D. By

symmetry of the coordinates, we have

𝑞𝑛,𝑆 � 2𝑛 sup
𝑤 ∈S𝑛−1

P
K
𝐴

(
∃𝑣 ∈ I ([𝑑]) ∩ 𝑆, 𝑠, 𝑡 ∈ [−4

√
𝑛, +4

√
𝑛] : 𝐴𝑣 = 𝑠𝑣 + 𝑡𝑤

)
. (III.7)

Thus, it is enough to show that the supremum at (III.7) is at most 4−𝑛, and the same with S replaced by 𝑆′.
Now, let W = (2−𝑛Z) ∩ [−4

√
𝑛, +4

√
𝑛] and notice that for all 𝑠, 𝑡 ∈ [−4

√
𝑛, +4

√
𝑛], there is 𝑠′, 𝑡 ′ ∈ W

with |𝑠 − 𝑠′| � 2−𝑛 and |𝑡 − 𝑡 ′| � 2−𝑛. So, union bounding over all (𝑠′, 𝑡 ′), the supremum term in (III.7)
is at most

� 8𝑛 sup
𝑤 ∈R𝑛 , |𝑠 |�4

√
𝑛

P
K
𝐴

(
∃𝑣 ∈ I ([𝑑]) ∩ (𝑆 ∪ 𝑆′) : ‖𝐴𝑣 − 𝑠𝑣 − 𝑤‖2 � 2−𝑛+1

)
and the same with S replaced with 𝑆′.

We now need to treat S and 𝑆′ a little differently. Starting with S, we let 𝜂 := exp(−2𝑐Σ𝑛), and note
that for 𝑣 ∈ 𝑆, we have, by definition, that

𝜂 � T𝐿 (𝑣) � 1/𝐿 � 𝜅0/8, (III.8)

where we will guarantee the last inequality holds by our choice of L later.
Now, recalling the definition of Σ𝜀 := Σ𝜀 ([𝑑]) at (III.4), we may write

I ([𝑑]) ∩ 𝑆 ⊆
𝑛⋃
𝑗=0

{
𝑣 ∈ I : T𝐿 (𝑣) ∈ [2 𝑗𝜂, 2 𝑗+1𝜂]

}
=

𝑗0⋃
𝑗=0

Σ2 𝑗 𝜂 ,

where 𝑗0 is the largest integer, such that 2 𝑗0𝜂 � 𝜅0/2. Thus, by the union bound, it is enough to show

𝑄𝜀 := max
𝑤 ∈R𝑛 , |𝑠 |�4

√
𝑛
P
K
𝐴

(
∃𝑣 ∈ Σ𝜀 : ‖𝐴𝑣 − 𝑠𝑣 − 𝑤‖2 � 2−𝑛+1

)
� 2−4𝑛, (III.9)

for all 𝜀 ∈ [𝜂, 𝜅0/4].
We now organize 𝑆′ in a similar way, relative to the sets Σ′

𝜀 . For this, notice that for 𝑣 ∈ I ([𝑑]) ∩ 𝑆′,
we have

(2𝜅1)−1√𝑛 � 𝐷̂𝛼,𝛾,𝜇 (𝑣) � exp(𝑐Σ𝑛) = 𝜂−1/2,

by Fact III.6. So, if we recall the definition

Σ′
𝜀 := {𝑣 ∈ I ([𝑑]) ∩ 𝑆′ : 𝐷̂𝛼,𝛾,𝜇 (𝑣) ∈ [(4𝜀)−1, (2𝜀)−1]},

then

I ([𝑑]) ∩ 𝑆′ ⊆
𝑗1⋃

𝑗=−1
Σ′

2 𝑗√𝜂 ,

where 𝑗1 is the least integer, such that 2 𝑗1
√
𝜂 � 𝜅1/(2

√
𝑛). Union bounding over j shows that it is

sufficient to show

𝑄 ′
𝜀 := max

𝑤 ∈R𝑛 , |𝑠 |�4
√
𝑛
P
K
𝐴

(
∃𝑣 ∈ Σ′

𝜀 : ‖𝐴𝑣 − 𝑠𝑣 − 𝑤‖2 � 2−𝑛+1
)
� 2−6𝑛, (III.10)

for all 𝜀 ∈ [√𝜂, 𝜅1/
√
𝑛].
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Step 2: A Bound on 𝑄𝜀: Take 𝑤 ∈ R𝑛 and |𝑠 | � 4
√
𝑛; we will bound the probability uniformly over w

and s. Since exp(−2𝑐Σ𝑛) < 𝜀 < 𝜅0/8, for 𝑣 ∈ Σ𝜀 , we apply Lemma III.1, to find a 𝑢 ∈ N𝜀 = N𝜀 ([𝑑])
so that ‖𝑣 − 𝑢‖2 � 4𝜀. So if ‖𝐴‖𝑜𝑝 � 4

√
𝑛, we see that

‖𝐴𝑢 − 𝑠𝑢 − 𝑤‖2 � ‖𝐴𝑣 − 𝑠𝑣 − 𝑤‖2 + ‖𝐴(𝑣 − 𝑢)‖2 + |𝑠 |‖𝑣 − 𝑢‖2

� ‖𝐴𝑣 − 𝑠𝑣 − 𝑤‖2 + 8
√
𝑛‖(𝑣 − 𝑢)‖2

� 33𝜀
√
𝑛,

and thus

{∃𝑣 ∈ Σ𝜀 : ‖𝐴𝑣 − 𝑠𝑣 − 𝑤‖2 � 2−𝑛+1} ∩ {‖𝐴‖ � 4
√
𝑛} ⊆ {∃𝑢 ∈ N𝜀 : ‖𝐴𝑢 − 𝑠𝑢 − 𝑤‖ � 33𝜀

√
𝑛}.

So, by union bounding over our net N𝜀 , we see that

𝑄𝜀 � PK𝐴
(
∃𝑣 ∈ N𝜀 : ‖𝐴𝑣 − 𝑠𝑣 − 𝑤‖ � 33𝜀

√
𝑛
)
�
∑
𝑢∈N𝜀

P
K
𝐴 (‖𝐴𝑢 − 𝑠

′𝑢 − 𝑤‖2 � 33𝜀
√
𝑛)

�
∑
𝑢∈N𝜀

L𝐴,𝑜𝑝
(
𝑢, 33𝜀

√
𝑛
)
,

where L𝐴,𝑜𝑝 is defined at (III.3).
Note that for any u, we have that L𝐴,𝑜𝑝

(
𝑢, 33𝜀

√
𝑛
)
� (67)𝑛L𝐴,𝑜𝑝 (𝑢, 𝜀

√
𝑛) (see, e.g., Fact 6.2 in [4]);

as such, for any 𝑢 ∈ N𝜀 , we have L𝐴,𝑜𝑝
(
𝑢, 33𝜀

√
𝑛
)
� (217𝐿𝜀)𝑛. Using this bound gives

𝑄𝜀 � |N𝜀 | (217𝐿𝜀)𝑛 �
(
𝐶

𝐿2𝜀

)𝑛
(217𝐿𝜀)𝑛 � 2−4𝑛,

where the penultimate inequality follows from our Theorem III.2 and the last inequality holds for the
choice of L large enough relative to the universal constant C and so that (III.8) holds. To see that the
application of Theorem III.2 is valid, note that

log 1/𝜀 � log 1/𝜂 = 2𝑐Σ𝑛 � 𝑛𝐿−32/𝑐2
0 ,

where the last inequality holds for 𝑐Σ small compared to 𝐿−1.

Step 3: A Bound on 𝑄 ′
𝜀 . To deal with 𝑄 ′

𝜀 , we employ a similar strategy. Fix 𝑤 ∈ R𝑛 and |𝑠 | � 4
√
𝑛.

Since we chose 𝜇, 𝛾 to be sufficiently small so that Fact III.6 holds, we have that

𝜀 � 𝜅1/
√
𝑛.

Thus, we may apply Corollary III.5 with 𝐾 = 𝜅1 for each 𝑣 ∈ Σ′
𝜀 to get 𝑢 ∈ 𝐺 ′

𝜀 ⊂ Σ′
𝜀 , such that

‖𝑣 − 𝑢‖2 � 32𝜀
√
𝛼𝑛. Now, since

{∃𝑣 ∈ Σ′
𝜀 : ‖𝐴𝑣 − 𝑠𝑣 − 𝑤‖2 � 2−𝑛+1} ∩ {‖𝐴‖ � 4

√
𝑛} ⊆ {∃𝑢 ∈ 𝐺 ′

𝜀 : ‖𝐴𝑢 − 𝑠𝑢 − 𝑤‖ � 29𝜀
√
𝛼𝑛}

and since 29𝜀
√
𝛼𝑛 � exp(−2𝑐Σ𝑛) � T𝐿 (𝑢), by Lemma III.7, we have

𝑄′
𝜀 �
(

32𝜅1

𝛼𝜇𝜀
√
𝑛

)𝑛
sup
𝑢∈𝐺′

𝜀

L(𝐴𝑢, 29𝜀
√
𝛼𝑛) � (220𝐿𝜅1𝛼

1/4)𝑛 � 2−4𝑛,

assuming that 𝛼 is chosen to be sufficiently small relative to 𝐿𝜅1. This completes the proof of
Theorem I.2. �
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IV. Fourier preparations for Theorem I.3

IV.1. Concentration, level sets, and Esseen-type inequalities

One of the main differences between this work and [4] is the notion of a “level set” of the Fourier
transform, an change that requires us to make a fair number of small adjustments throughout. Here, we
set up this definition along with a few related definitions.

For a random variable 𝑌 ∈ R𝑑 and 𝜀 > 0, we recall that Lévy concentration of Y was defined at
(III.2) by

L(𝑌, 𝜀) = sup
𝑤 ∈R𝑑

P(‖𝑌 − 𝑤‖2 � 𝜀).

Our goal is to compare the concentration of certain random vectors to the gaussian measure of associated
(sub-)level sets. Given a 2𝑑 × ℓ matrix W, define the W-level set for 𝑡 � 0 to be

𝑆𝑊 (𝑡) := {𝜃 ∈ Rℓ : E𝜁 ‖𝜁𝑊𝜃‖2
T
� 𝑡} . (IV.1)

Let 𝑔 = 𝑔𝑑 denote the gaussian random variable in dimension d with mean 0 and covariance matrix
(2𝜋)−1𝐼𝑑×𝑑 . Define 𝛾𝑑 to be the corresponding measure, that is 𝛾𝑑 (𝑆) = P𝑔 (𝑔 ∈ 𝑆) for every Borel set
𝑆 ⊂ R𝑑 . We first upper bound the concentration via an Esseen-like inequality.

Lemma IV.1. Let 𝛽 > 0, 𝜈 ∈ (0, 1/4), let W be a 2𝑑 × ℓ matrix and 𝜏 ∼ Φ𝜈 (2𝑑; 𝜁). Then there is an
𝑚 > 0 so that

L(𝑊𝑇 𝜏, 𝛽
√
ℓ) � 2 exp

(
2𝛽2ℓ − 𝜈𝑝𝑚/2

)
𝛾ℓ (𝑆𝑊 (𝑚)) .

Proof. For 𝑤 ∈ Rℓ , apply Markov’s inequality to obtain

P𝜏
(
‖𝑊𝑇 𝜏 − 𝑤‖2 � 𝛽

√
ℓ
)
� exp
( 𝜋

2
𝛽2ℓ
)
E𝜏 exp

(
−
𝜋‖𝑊𝑇 𝜏 − 𝑤‖2

2
2

)
.

Using the Fourier transform of a gaussian, we compute

E𝜏 exp

(
−
𝜋‖𝑊𝑇 𝜏 − 𝑤‖2

2
2

)
= E𝑔 𝑒

−2𝜋𝑖 〈𝑤,𝑔〉
E𝜏𝑒

2𝜋𝑖𝑔𝑇𝑊𝑇 𝜏 . (IV.2)

Now, denote the rows of W as 𝑤1, . . . , 𝑤2𝑑 and write

E𝜏𝑒
2𝜋𝑖𝑔𝑇𝑊𝑇 𝜏 =

2𝑑∏
𝑖=1
E𝜏𝑖 𝑒

2𝜋𝑖
∑
𝜏𝑖 〈𝑔,𝑤𝑖 〉 =

2𝑑∏
𝑖=1
𝜙𝜏 (〈𝑔, 𝑤𝑖〉),

where 𝜙𝜏 (𝜃) is the characteristic function of 𝜏. Now, apply (II.3) and then (II.2) to see the right-hand
side of (IV.2) is

�
���E𝑔 𝑒−2𝜋𝑖 〈𝑤,𝑔〉

E𝜏𝑒
2𝜋𝑖𝑔𝑇𝑊𝑇 𝜏

��� � E𝑔 exp(−𝜈𝑝E𝜁 ‖𝜁𝑊𝑔‖2
T
).

We rewrite this as∫ 1

0
P𝑔 (exp(−𝜈𝑝E𝜁 ‖𝜁𝑊𝑔‖2

T
) � 𝑡) 𝑑𝑡 = 𝜈𝑝

∫ ∞

0
P𝑔 (E𝜁 ‖𝜁𝑊𝑔‖2

T
� 𝑢)𝑒−𝜈𝑝𝑢 𝑑𝑢

= 𝜈𝑝
∫ ∞

0
𝛾ℓ (𝑆𝑊 (𝑢))𝑒−𝜈𝑝𝑢 𝑑𝑢 ,
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where for the first equality, we made the change of variable 𝑡 = 𝑒−𝜈𝑝𝑢 . Choosing m to maximize
𝛾ℓ (𝑆𝑊 (𝑢))𝑒−𝜈𝑝𝑢/2 as a function of u yields

𝜈𝑝

∫ ∞

0
𝛾ℓ (𝑆𝑊 (𝑢))𝑒−𝜈𝑝𝑢𝑑𝑢 � 𝜈𝑝𝛾ℓ (𝑆𝑊 (𝑚))𝑒−𝜈𝑝𝑚/2

∫ ∞

0
𝑒−𝜈𝑝𝑢/2𝑑𝑢 = 2𝛾ℓ (𝑆𝑊 (𝑚))𝑒−𝜈𝑝𝑚/2 .

Putting everything together, we obtain

P𝜏 (‖𝑊𝑇 𝜏 − 𝑤‖2 � 2𝛽
√
ℓ) � 2𝑒2𝛽2ℓ𝑒−𝜈𝑝𝑚/2𝛾ℓ (𝑆𝑊 (𝑚)) . �

We also prove a comparable lower bound.

Lemma IV.2. Let 𝛽 > 0, 𝜈 ∈ (0, 1/4), let W be a 2𝑑 × ℓ matrix, and let 𝜏 ∼ Ξ𝜈 (2𝑑; 𝜁). Then for all
𝑡 � 0, we have

𝛾ℓ (𝑆𝑊 (𝑡))𝑒−32𝜈𝑝𝑡 � P𝜏
(
‖𝑊𝑇 𝜏‖2 � 𝛽

√
ℓ
)
+ exp
(
−𝛽2ℓ
)
.

Proof. Set 𝑋 = ‖𝑊𝑇 𝜏‖2, and write

E𝑋 𝑒
−𝜋𝑋2/2 = E𝑋 1(𝑋 � 𝛽

√
ℓ)𝑒−𝜋𝑋2/2 + E𝑋 1

(
𝑋 � 𝛽

√
ℓ
)
𝑒−𝜋𝑋

2/2 � P𝑋 (𝑋 � 𝛽
√
ℓ) + 𝑒−𝜋𝛽2ℓ/2 .

Bounding exp(−𝜋𝛽2ℓ/2) � exp(−𝛽2ℓ) implies

E𝜏 exp

(
−𝜋‖𝑊𝑇 𝜏‖2

2
2

)
� P𝜏 (‖𝑊𝑇 𝜏‖2 � 𝛽

√
ℓ) + 𝑒−𝛽2ℓ .

As in the proof of Lemma IV.1 above, use the Fourier transform of the gaussian and (II.2) to lower bound

E𝜏 exp

(
−
𝜋‖𝑊𝑇 𝜏‖2

2
2

)
� E𝑔 [exp(−32𝜈𝑝E𝜁 ‖𝜁𝑊𝑔‖2

T
)] .

Similar to the proof of Lemma IV.1, write

E𝑔 [exp(−32𝜈𝑝E𝜁 ‖𝑊𝑔‖2
T
)] = 32𝜈𝑝

∫ ∞

0
𝛾ℓ (𝑆𝑊 (𝑢))𝑒−32𝜈𝑝𝑢𝑑𝑢 � 32𝜈𝑝𝛾ℓ (𝑆𝑊 (𝑡))

∫ ∞

𝑡
𝑒−32𝜈𝑝𝑢 𝑑𝑢,

where we have used that 𝛾ℓ (𝑆𝑊 (𝑏)) � 𝛾ℓ (𝑆𝑊 (𝑎)) for all 𝑏 � 𝑎. This completes the proof of
Lemma IV.2. �

IV.2. Inverse Littlewood-Offord for conditioned random walks

First, we need a generalization of our important Lemma 3.1 from [4]. Given a 2𝑑 × ℓ matrix W and a
vector 𝑌 ∈ R𝑑 , we define the Y-augmented matrix𝑊𝑌 as

𝑊𝑌 =

[
𝑊 ,

[
0𝑑
𝑌

]
,

[
𝑌
0𝑑

] ]
. (IV.3)

When possible, we are explicit with the many necessary constants and “pin” several to a constant
𝑐0, which we treat as a parameter to be taken sufficiently small. We also recall the definition of “least
common denominator” 𝐷𝛼,𝛾 from (I.1)

𝐷𝛼,𝛾 (𝑣) := inf
{
𝑡 > 0 : ‖𝑡𝑣‖T < min{𝛾‖𝑡𝑣‖2,

√
𝛼𝑛}
}
.

The following is our generalization of Lemma 3.1 from [4].
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Lemma IV.3. For any 0 < 𝜈 � 2−15, 𝑐0 � 2−35𝐵−4𝜈, 𝑑 ∈ N, 𝛼 ∈ (0, 1), and 𝛾 ∈ (0, 1), let
𝑘 � 2−32𝐵−4𝜈𝛼𝑑 and 𝑡 � exp

(
−2−32𝐵−4𝜈𝛼𝑑

)
. Let 𝑌 ∈ R𝑑 satisfy ‖𝑌 ‖2 � 2−10𝑐0𝛾

−1𝑡−1, let W be a
2𝑑 × 𝑘 matrix with ‖𝑊 ‖ � 2, ‖𝑊 ‖HS �

√
𝑘/2, and let 𝜏 ∼ Φ𝜈 (2𝑑; 𝜁).

If 𝐷𝛼,𝛾 (𝑌 ) > 210𝐵2, then

L
(
𝑊𝑇
𝑌 𝜏, 𝑐

1/2
0

√
𝑘 + 1
)
� (𝑅𝑡)2 exp (−𝑐0𝑘) , (IV.4)

where 𝑅 = 235𝐵2𝜈−1/2𝑐−2
0 .

We present the proof of Lemma IV.3 in Section VI, and deduce our standalone “inverse Littlewood-
Offord theorem” Theorem I.3 here:

Proof of Theorem I.3. Let 𝑐0 = 2−35𝐵−4𝛾2𝜈. First, note that

P

(
|〈𝑣, 𝜏〉| � 𝑡 and

𝑘∑
𝑖=1

〈𝑤𝑖 , 𝜏〉2 � 𝑐0𝑘

)2
� P

(
|〈𝑣, 𝜏〉| � 𝑡 , |〈𝑣, 𝜏′〉 | � 𝑡 and

𝑘∑
𝑖=1

〈𝑤𝑖 , 𝜏〉2 � 𝑐0𝑘

)
,

where 𝜏, 𝜏′ ∼ Φ𝜈 (𝑑; 𝜁) are independent. We now look to bound the probability on the right-hand side
using Lemma IV.3.

Let W be the 2𝑑 × 𝑘 matrix

𝑊 =

[
𝑤1 . . . 𝑤𝑘

0d . . . 0d

]
and𝑌 =

√
𝑐0/2𝑣𝑡−1. Note that if |〈𝑣, 𝜏〉| � 𝑡, |〈𝑣, 𝜏′〉 | � 𝑡 and

∑𝑘
𝑖=1〈𝑤𝑖 , 𝜏〉2 � 𝑐0𝑘 , then ‖𝑊𝑇

𝑌 (𝜏, 𝜏′)‖2 �

𝑐1/2
0

√
𝑘 + 1. Therefore

P

(
|〈𝑣, 𝜏〉| � 𝑡 , |〈𝑣, 𝜏′〉 | � 𝑡 and

𝑘∑
𝑖=1

〈𝑤𝑖 , 𝜏〉2 � 𝑐0𝑘

)
� L
(
𝑊𝑇
𝑌 (𝜏, 𝜏′), 𝑐1/2

0

√
𝑘 + 1
)
.

Now, ‖𝑌 ‖2 =
√
𝑐0/2𝑡−1 > 2−10𝑐0𝛾

−1𝑡−1, ‖𝑊 ‖ = 1, ‖𝑊 ‖HS =
√
𝑘 , and

𝐷𝛼,𝛾 (𝑌 ) � 𝑡𝑐−1/2
0 𝐷𝛼,𝛾 (𝑣) > 210𝐵2.

We may therefore apply Lemma IV.3 to bound

L
(
𝑊𝑇
𝑌 (𝜏, 𝜏′), 𝑐1/2

0

√
𝑘 + 1
)
� (𝑅𝑡)2 exp (−𝑐0𝑘) .

The result follows. �

V. Fourier replacement

The goal of this section is to prove Lemma III.7, which relates the “zeroed out and lazy” matrix M,
defined at (II.6), to our original matrix A. We will need a few inequalities on the Fourier side first.

Lemma V.1. For every 𝑡 ∈ R and 𝜈 � 1/4, we have

|𝜙𝜁 (𝑡) | � 𝜙𝜁 𝑍𝜈
(𝑡) .

Proof. Note |𝜙𝜁 (𝑡) |2 = E𝜁 cos(2𝜋𝑡𝜁 ). Use the elementary inequality

cos(𝑎) � 1 − 2𝜈(1 − cos(𝑎)) for 𝜈 � 1/4,
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and that
√

1 − 𝑥 � 1 − 𝑥/2 to bound

|𝜙𝜁 (𝑡) | =
√
E𝜁 cos(2𝜋𝑡𝜁) �

√
1 − 2𝜈E𝜁 (1 − cos(2𝜋𝑡𝜁)) � 𝜙𝜁 𝑍𝜈

(𝑡) . �

We also need a bound on a gaussian-type moment for ‖𝑀𝑣‖2. On a somewhat technical point, we
notice that T𝐿 (𝑣) � 2𝑛, since the definition of T𝐿 (II.7) depends on the definition of M at (II.6), which
trivially satisfies

P𝑀 (𝑀𝑣 = 0) � P𝑀 (𝑀 = 0) = (1 − 𝜈) (
𝑛+1

2 ) ,

for all v and 𝜈 < 1/2.

Fact V.2. For 𝑣 ∈ R𝑛, and 𝑡 � T𝐿 (𝑣), we have

E exp(−𝜋‖𝑀𝑣‖2
2/2𝑡2) � (9𝐿𝑡)𝑛.

Proof. Bound

E exp(−𝜋‖𝑀𝑣‖2
2/2𝑡2) � P(‖𝑀𝑣‖2 � 𝑡

√
𝑛) +

√
𝑛

∫ ∞

𝑡
𝑒−𝑠

2𝑛/𝑡2
P(‖𝑀𝑣‖2 � 𝑠

√
𝑛) 𝑑𝑠 . (V.1)

Since 𝑡 � T𝐿 (𝑣), we have P(‖𝑀𝑣‖2 � 𝑠
√
𝑛) � (4𝐿𝑠)𝑛 for all 𝑠 � 𝑡. Thus, we may bound

√
𝑛

∫ ∞

𝑡
exp
(
− 𝑠

2𝑛

𝑡2

)
P(‖𝑀𝑣‖2 � 𝑠

√
𝑛) 𝑑𝑠 �

√
𝑛(8𝐿𝑡)𝑛

∫ ∞

𝑡
exp
(
− 𝑠

2𝑛

𝑡2

)
(𝑠/𝑡)𝑛 𝑑𝑠 .

Changing variables 𝑢 = 𝑠/𝑡, we may bound the right-hand side by

𝑡−1√𝑛(4𝐿𝑡)𝑛
∫ ∞

1
exp(−𝑢2𝑛)𝑢𝑛 𝑑𝑢 � 𝑡−1√𝑛(4𝐿𝑡)𝑛

∫ ∞

1
exp(−𝑢2/2) 𝑑𝑢 � (9𝐿𝑡)𝑛,

as desired. Note, here, that we used that 𝑡 � 2−𝑛. �

For 𝑣, 𝑥 ∈ R𝑛 and 𝜈 ∈ (0, 1/4), define the characteristic functions of 𝐴𝑣 and 𝑀𝑣, respectively, 𝜓𝑣
and 𝜒𝑣,𝜈 , by

𝜓𝑣 (𝑥) := E𝐴 𝑒2𝜋𝑖 〈𝐴𝑣,𝑥 〉 =

(
𝑛∏
𝑘=1
𝜙𝜁 (𝑣𝑘𝑥𝑘 )

) *+,
∏
𝑗<𝑘

𝜙𝜁 (𝑥 𝑗𝑣𝑘 + 𝑥𝑘𝑣 𝑗 )
-./

and

𝜒𝑣 (𝑥) := E𝑀 𝑒2𝜋𝑖 〈𝑀𝑣,𝑥 〉 =
𝑑∏
𝑗=1

𝑛∏
𝑘=𝑑+1

𝜙𝜁 𝑍𝜈
(𝑥 𝑗𝑣𝑘 + 𝑥𝑘𝑣 𝑗 ) .

Our “replacement” now goes through.

Proof of Lemma III.7. By Markov, we have

P(‖𝐴𝑣 − 𝑤‖2 � 𝑡
√
𝑛) � exp(𝜋𝑛/2)E exp

(
−𝜋‖𝐴𝑣 − 𝑤‖2

2/(2𝑡
2)
)
. (V.2)

Then use Fourier inversion to write

E𝐴 exp
(
−𝜋‖𝐴𝑣 − 𝑤‖2

2/(2𝑡
2)
)
=
∫
R𝑛
𝑒−𝜋 ‖ 𝜉 ‖

2
2 · 𝑒−2𝜋𝑖𝑡−1 〈𝑤,𝜉 〉𝜓𝑣 (𝑡−1𝜉) 𝑑𝜉 . (V.3)
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Now, apply the triangle inequality, Lemma V.1 and the nonnegativity of 𝜒𝑣 yield that the right-hand
side of (V.3) is

�
∫
R𝑛
𝑒−𝜋 ‖ 𝜉 ‖

2
2 𝜒𝑣 (𝑡−1𝜉) 𝑑𝜉 = E𝑀 exp(−𝜋‖𝑀𝑣‖2

2/2𝑡2) .

Now, use Fact V.2 along with the assumption 𝑡 � T𝐿 (𝑣) to bound

E𝑀 exp(−𝜋‖𝑀𝑣‖2
2/2𝑡2) � (9𝐿𝑡)𝑛,

as desired. �

VI. Proof of Lemma IV.3

In this section, we prove the crucial Lemma IV.3. Fortunately, much of the geometry needed to prove
this theorem can be pulled from the proof of the {−1, 0, 1}-case in [4], and so the deduction of the
theorem becomes relatively straightforward.

VI.1. Properties of gaussian space and level sets

For 𝑟, 𝑠 > 0 and 𝑘 ∈ N, define the cylinder Γ𝑟 ,𝑠 by

Γ𝑟 ,𝑠 :=
{
𝜃 ∈ R𝑘+2 :

��𝜃 [𝑘 ]��2 � 𝑟, |𝜃𝑘+1 | � 𝑠 and |𝜃𝑘+2 | � 𝑠
}
. (VI.1)

For a measurable set 𝑆 ⊂ R𝑘+2 and 𝑦 ∈ R𝑘+2, define the set

𝐹𝑦 (𝑆; 𝑎, 𝑏) := {𝜃 [𝑘 ] = (𝜃1, . . . , 𝜃𝑘 ) ∈ R𝑘 : (𝜃1, . . . , 𝜃𝑘 , 𝑎, 𝑏) ∈ 𝑆 − 𝑦} .

Recall that 𝛾𝑘 is the k-dimensional gaussian measure defined by 𝛾𝑘 (𝑆) = P(𝑔 ∈ 𝑆), where 𝑔 ∼
N (0, (2𝜋)−1𝐼𝑘 ), and where 𝐼𝑘 denotes the 𝑘 × 𝑘 identity matrix. The following is a key geometric
lemma from [4].

Lemma VI.1. Let 𝑆 ⊂ R𝑘+2 and 𝑠 > 0 satisfy

8𝑠2𝑒−𝑘/8 + 32𝑠2 max
𝑎,𝑏,𝑦

(
𝛾𝑘 (𝐹𝑦 (𝑆; 𝑎, 𝑏) − 𝐹𝑦 (𝑆; 𝑎, 𝑏))

)1/4 � 𝛾𝑘+2 (𝑆) . (VI.2)

Then there is an 𝑥 ∈ 𝑆 so that

(Γ2
√
𝑘,16 \ Γ2

√
𝑘,𝑠 + 𝑥) ∩ 𝑆 ≠ ∅ .

This geometric lemma will be of crucial importance for identifying the LCD. Indeed, we will take
S to be a representative level set, on the Fourier side, for the probability implicit on the left-hand
side of Lemma IV.3. The following basic fact will help explain the use of the difference appearing in
Lemma VI.1.

Fact VI.2. For any 2𝑑 × ℓ matrix W and 𝑚 > 0, we have

𝑆𝑊 (𝑚) − 𝑆𝑊 (𝑚) ⊆ 𝑆𝑊 (4𝑚) .

Proof. For any 𝑥, 𝑦 ∈ 𝑆𝑊 (𝑚), we have E𝜁 ‖𝜁𝑊𝑥‖2
T
,E𝜁 ‖𝜁𝑊𝑦‖2

T
� 𝑚 . The triangle inequality implies

‖𝜁𝑊 (𝑥 − 𝑦)‖2
T
� 2‖𝜁𝑊𝑥‖2

T
+ 2‖𝜁𝑊𝑦‖2

T
.

Taking E𝜁 on both sides completes the fact. �
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VI.2. Proof of Lemma IV.3

The following is our main step toward Lemma IV.3.

Lemma VI.3. For 𝑑 ∈ N, 𝛾, 𝛼 ∈ (0, 1) and 0 < 𝜈 � 2−15, let 𝑘 � 2−17𝐵−4𝜈𝛼𝑑 and 𝑡 �
exp(−2−17𝐵−4𝜈𝛼𝑑). For 𝑐0 ∈ (0, 2−50𝐵−4), let 𝑌 ∈ R𝑑 satisfy ‖𝑌 ‖ � 2−10𝑐0𝛾

−1/𝑡 and let W be a
2𝑑 × 𝑘 matrix with ‖𝑊 ‖ � 2.

Let 𝜏 ∼ Ξ𝜈 (2𝑑; 𝜁) and 𝜏′ ∼ Ξ𝜈 (2𝑑; 𝜁) with 𝜈 = 2−7𝜈, and let 𝛽 ∈ [𝑐0/210,
√
𝑐0] and 𝛽′ ∈ (0, 1/2). If

L(𝑊𝑇
𝑌 𝜏, 𝛽

√
𝑘 + 1) � (𝑅𝑡)2 exp(4𝛽2𝑘)

(
P(‖𝑊𝑇 𝜏′‖2 � 𝛽′

√
𝑘) + exp(−𝛽′2𝑘)

)1/4
, (VI.3)

then 𝐷𝛼,𝛾 (𝑌 ) � 210𝐵2. Here, we have set 𝑅 = 235𝜈−1/2𝐵2/𝑐2
0.

Proof. By Lemma IV.1, we may find an m for which the level set 𝑆 = 𝑆𝑊𝑌 (𝑚) satisfies

L(𝑊𝑇
𝑌 𝜏, 𝛽

√
𝑘 + 1) � 4𝑒−𝜈𝑝𝑚/2+2𝛽2𝑘𝛾𝑘+2 (𝑆). (VI.4)

Combining (VI.4) with the assumption (VI.3) provides a lower bound of

𝛾𝑘+2 (𝑆) �
1
4
𝑒𝜈𝑝𝑚/2+2𝛽2𝑘 (𝑅𝑡)2

(
P(‖𝑊𝑇 𝜏′‖2 � 𝛽′

√
𝑘) + exp(−𝛽′2𝑘)

)1/4
. (VI.5)

Now, preparing for an application of Lemma VI.1, define

𝑟0 :=
√
𝑘 and 𝑠0 := 216𝑐−1

0 (
√
𝑚 + 8𝐵2√𝑘)𝑡 . (VI.6)

Recalling the definition of our cylinders from (VI.1), we state the following claim:

Claim VI.4. There exists 𝑥 ∈ 𝑆 ⊆ R𝑘+2 so that(
Γ2𝑟0 ,16 \ Γ2𝑟0 ,𝑠0 + 𝑥

)
∩ 𝑆 ≠ ∅ . (VI.7)

Proof of Claim VI.4. We will use Lemma VI.1 with 𝑠 = 𝑠0, and so we check the hypotheses. We first
observe that for any 𝑦, 𝑎, 𝑏, if 𝜃 [𝑘 ] , 𝜃 ′[𝑘 ] ∈ 𝐹𝑦 (𝑆; 𝑎, 𝑏), then we have

𝜃 ′′ := (𝜃1 − 𝜃 ′1, . . . , 𝜃𝑘 − 𝜃
′
𝑘 , 0, 0) ∈ 𝑆𝑊𝑌 (4𝑚)

by Fact VI.2. This shows that for any 𝑦, 𝑎, 𝑏, we have

𝐹𝑦 (𝑆; 𝑎, 𝑏) − 𝐹𝑦 (𝑆; 𝑎, 𝑏) ⊂ 𝑆𝑊𝑌 (4𝑚) ∩ {𝜃 ∈ R𝑘+2 : 𝜃𝑘+1 = 𝜃𝑘+2 = 0} = 𝑆𝑊 (4𝑚) , (VI.8)

where the equality holds by definition of𝑊𝑌 and the level set 𝑆𝑊𝑌 . Thus, we may apply Lemma IV.2 to
obtain

𝛾𝑘 (𝑆𝑊 (4𝑚)) � 𝑒128𝜈𝑝𝑚
(
P(‖𝑊𝑇 𝜏′‖2 � 𝛽′

√
𝑘) + exp(−𝛽′2𝑘)

)
. (VI.9)

Combining lines (VI.5), (VI.8), and (VI.9), we note that in order to apply Lemma VI.1, it is sufficient
to check

8𝑠20𝑒
−𝑘/8 + 32𝑠20𝑒

32𝜈𝑝𝑚
(
P(‖𝑊𝑇 𝜏′‖2 � 𝛽′

√
𝑘) + exp(−𝛽′2𝑘)

)1/4

<
1
4
𝑒𝜈𝑝𝑚/2+2𝛽2𝑘 (𝑅𝑡)2

(
P(‖𝑊𝑇 𝜏′‖2 � 𝛽′

√
𝑘) + exp(−𝛽′2𝑘)

)1/4
. (VI.10)
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We will show that each term on the left-hand side of (VI.10) is at most half of the right-hand side.
Bound

𝑠20 = 232𝑐−2
0 (

√
𝑚 + 8𝐵2√𝑘)2𝑡2 < 233 (𝑚 + 64𝐵4𝑘) (𝑡/𝑐0)2 � 2−20𝜈(𝑐2

0𝑘 + (2𝐵)−6𝑚) (𝑅𝑡)2 (VI.11)

since 𝑅 = 235𝐵2𝜈−1/2𝑐−2
0 . By Lemma II.1, we have that 𝑝 � 2−7𝐵−4 and so we may bound

8𝑠20𝑒
−𝑘/8 � 𝑒−𝑘/82−17𝜈(𝑐2

0𝑘 + (2𝐵)−4𝑚) (𝑅𝑡)2 �
1
8
𝑒𝜈𝑝𝑚/2(𝑅𝑡)2𝑒−𝛽

′2𝑘/4 .

Similarly, use (VI.11), 𝑐0 � 𝛽 and 𝜈 = 2−7𝜈 to bound

32𝑠20𝑒
32𝜈𝑝𝑚 � 2−15 (𝑐2

0𝑘 + (2𝐵)−4𝑚) (𝑅𝑡)2 exp(𝜈𝑝𝑚/4) � 1
8
(𝑅𝑡)2𝑒𝜈𝑝𝑚/2+𝛽2𝑘,

thus showing (VI.10). Applying Lemma VI.1 completes the claim. �

The following basic consequence of Claim VI.4 will bring us closer to the construction of our LCD:

Claim VI.5. We have that 𝑆𝑊𝑌 (4𝑚) ∩ (Γ2𝑟0 ,16 \ Γ2𝑟0 ,𝑠0 ) ≠ ∅ .

Proof of Claim VI.5. Claim VI.4 shows that there exists 𝑥, 𝑦 ∈ 𝑆 = 𝑆𝑊𝑌 (𝑚) so that 𝑦 ∈ (Γ2𝑟0 ,16 \
Γ2𝑟0 ,𝑠0 + 𝑥

)
. Now define 𝜙 := 𝑦 − 𝑥, and note that 𝜙 ∈ 𝑆𝑊𝑌 (4𝑚) ∩ (Γ2𝑟0 ,16 \Γ2𝑟0 ,𝑠0) due to Fact VI.2. �

We now complete the proof of Lemma VI.3 by showing that an element of the nonempty intersection
above provides an LCD.

Claim VI.6. If 𝜙 ∈ 𝑆𝑊𝑌 (4𝑚) ∩ (Γ2𝑟0 ,16 \ Γ2𝑟0 ,𝑠0), then there is a 𝜁0 ∈ (1, 16𝐵2) and 𝑖 ∈ {𝑘 + 1, 𝑘 + 2}
so that

‖𝜁0𝜙𝑖𝑌 ‖T < min{𝛾𝜁0𝜙𝑖 ‖𝑌 ‖2,
√
𝛼𝑑} .

Proof of Claim VI.6. Note that since 𝜙 ∈ 𝑆𝑊𝑌 (4𝑚), we have

E𝜁 ‖𝜁𝑊𝑌 𝜙‖2
T
� 4𝑚 .

Thus, there is some instance 𝜁0 ∈ (1, 16𝐵2) of 𝜁 so that

‖𝜁0𝑊𝑌 𝜙‖2
T
� 4𝑚 . (VI.12)

For simplicity, define 𝜓 =: 𝜁0𝜙.
By (VI.12), there is a 𝑧 ∈ Z2𝑑 so that𝑊𝑌𝜓 ∈ 𝐵2𝑑 (𝑧, 2

√
𝑚). Expand

𝑊𝑌𝜓 = 𝑊𝜓 [𝑘 ] + 𝜓𝑘+1

[
𝑌
0𝑑

]
+ 𝜓𝑘+2

[
0𝑑
𝑌

]
,

and note that

𝜓𝑘+1

[
𝑌
0𝑑

]
+ 𝜓𝑘+2

[
0𝑑
𝑌

]
∈ 𝐵2𝑑 (𝑧, 2

√
𝑚) −𝑊𝜓 [𝑘 ] ⊆ 𝐵2𝑑 (𝑧, 2

√
𝑚 + 26𝐵2√𝑘) , (VI.13)

where the last inclusion holds because

‖𝑊𝜓 [𝑘 ] ‖2 � ‖𝑊 ‖𝑜𝑝 ‖𝜓 [𝑘 ] ‖2 � 2|𝜁0 |‖𝜙 [𝑘 ] ‖2 � 32
√
𝑘𝐵2,

since 𝜙 ∈ Γ2𝑟0 ,16, |𝜁0 | � 16𝐵2, and ‖𝑊 ‖𝑜𝑝 � 2.
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Since 𝜙 ∉ Γ2𝑟0 ,𝑠0 and 𝜁0 > 1, we have max{|𝜓𝑘+1 |, |𝜓𝑘+2 |} > 𝑠0, and so we assume, without loss,
that |𝜓𝑘+1 | > 𝑠0. Projecting (VI.13) onto the first d coordinates yields

𝜓𝑘+1𝑌 ∈ 𝐵𝑑 (𝑧 [𝑑 ] , 2
√
𝑚 + 26𝐵2√𝑘). (VI.14)

Now, we show that ‖𝜓𝑘+1𝑌 ‖T < 𝛾𝜓𝑘+1‖𝑌 ‖2. Indeed,

𝜓𝑘+1‖𝑌 ‖2𝛾 � 𝑠0‖𝑌 ‖2𝛾 >

(
215 (

√
𝑚 + 8𝐵2√𝑘)𝑡
𝑐0

) (
2−10 𝑐0

𝑡

)
� (2

√
𝑚 + 26𝐵2√𝑘), (VI.15)

where we used the definition of 𝑠0 and that ‖𝑌 ‖2 > 2−10𝑐0𝛾
−1/𝑡.

We now need to show

2
√
𝑚 + 26𝐵2√𝑘 �

√
𝛼𝑑. (VI.16)

Note that since 𝑘 � 2−32𝛼𝑑/𝐵4, we have 28𝐵2√𝑘 �
√
𝛼𝑑/2. We claim that 𝑚 � 2−4𝛼𝑑. To show this,

apply the lower bound (VI.5) and 𝛾𝑘+2 (𝑆) � 1 to see

𝑒−2−11𝜈𝑚/𝐵4
� 𝑒−𝜈𝑝𝑚/2 � 𝛾𝑘+2 (𝑆)𝑒−𝜈𝑝𝑚/2 � (𝑅𝑡)2𝑒−2𝛽′2𝑘 � 𝑡2𝑒−𝑘 � 𝑒−2−15𝜈𝛼𝑑/𝐵4

,

where we have used 𝑘 � 2−17𝜈𝛼𝑑/𝐵4 and 𝑡 � 𝑒−2−17𝜈𝛼𝑑/𝐵4 . Therefore, 𝑚 � 2−4𝛼𝑑, that is 2
√
𝑚 �√

𝛼𝑑/2. Combining this with (VI.14) and (VI.15), we see

‖𝜓𝑘+1𝑌 ‖T �
√
𝛼𝑑,

as desired. This completes the proof of the Claim VI.6. �

Let 𝜙, 𝜁0, and 𝑖 ∈ {𝑘 + 1, 𝑘 + 2} be as guaranteed by Claim VI.6. Then 𝜁0𝜙𝑖 � 210𝐵2, and

‖𝜁0𝜙𝑖𝑌 ‖T < min{‖𝜁0𝜙𝑖𝑌 ‖2𝛾,
√
𝛼𝑑},

and so 𝐷𝛼,𝛾 (𝑌 ) � 210𝐵2, thus completing the proof of Lemma VI.3. �

VI.3. Proof of Lemma IV.3

In order to bridge the gap between Lemmas VI.3 and IV.3, we need an anticoncentration lemma for
‖𝑊𝜎‖2 when 𝜎 is random and W is fixed. We will use the following bound, which is a version of the
Hanson-Wright inequality [18, 33].

Lemma VI.7. Let 𝜈 ∈ (0, 1) and 𝛽′ ∈ (0, 2−7𝐵−2√𝜈). Let W be a 2𝑑×𝑘 matrix satisfying ‖𝑊 ‖HS �
√
𝑘/2

and ‖𝑊 ‖ � 2 and 𝜏′ ∼ Ξ𝜈 (2𝑑; 𝜁). Then

P(‖𝑊𝑇 𝜏′‖2 � 𝛽′
√
𝑘) � 4 exp

(
−2−20𝐵−4𝜈𝑘

)
.

We derive Lemma VI.7 from Talagrand’s inequality in Section X, (see [33] or [18] for more context).
From here, we are ready to prove Lemma IV.3.

Proof of Lemma IV.3. Recalling that 𝑐0 � 2−35𝐵−4𝜈, and that our given W satisfies ‖𝑊 ‖HS �
√
𝑘/2

and ‖𝑊 ‖ � 2, we apply Lemma VI.7, with 𝛽′ = 26√𝑐0 and the 𝜈-lazy random vector 𝜏′ ∼ Ξ𝜈 (2𝑑; 𝜁),
where 𝜈 = 2−7𝜈, to see

P(‖𝑊𝑇 𝜏′‖2 � 𝛽′
√
𝑘) � 4 exp

(
−2−27𝐵−4𝜈𝑘

)
� 4 exp(−32𝑐0𝑘).
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We now consider the right-hand side of (VI.3) in Lemma VI.3: if 𝛽 � √
𝑐0, we have

𝑒4𝛽2𝑘
(
P(‖𝑊𝑇 𝜏′‖2 � 𝛽′

√
𝑘) + exp(−𝛽′2𝑘)

)1/4
� exp (4𝑐0𝑘 − 8𝑐0𝑘) + exp (4𝑐0𝑘 − 16𝑐0𝑘)

� 2 exp(−𝑐0𝑘) .

We now note that the hypotheses in Lemma IV.3 align with the hypotheses in Lemma VI.3 with respect
to the selection of 𝛽, 𝛼, 𝑡, 𝑅,𝑌 ,𝑊 ; if we additionally assume 𝐷𝛼,𝛾 (𝑌 ) > 210𝐵2, we may apply the
contrapositive of Lemma VI.3 to obtain

L
(
𝑊𝑇
𝑌 𝜏, 𝛽

√
𝑘 + 1
)
� (235𝐵2𝜈−1/2𝑐−2

0 𝑡/2)2𝑒4𝛽2𝑘
(
P(‖𝑊𝑇 𝜏′‖2 � 2𝛽′

√
𝑘) + 𝑒−𝛽′2𝑘

)1/4

� (𝑅𝑡)2 exp(−𝑐0𝑘) ,

as desired. �

VII. Inverse Littlewood-Offord for conditioned matrix walks

In this section, we prove an inverse Littlewood-Offord theorem for matrices conditioned on their robust
rank. Everything in this section will be analogous to Section 6 of [4].

Theorem VII.1. For 𝑛 ∈ N and 0 < 𝑐0 � 2−50𝐵−4, let 𝑑 � 𝑐2
0𝑛, and for 𝛼, 𝛾 ∈ (0, 1), let 0 �

𝑘 � 2−32𝐵−4𝛼𝑑 and 𝑁 � exp(2−32𝐵−4𝛼𝑑). Let 𝑋 ∈ R𝑑 satisfy ‖𝑋 ‖2 � 𝑐02−10𝛾−1𝑛1/2𝑁 , and let
H be a random (𝑛 − 𝑑) × 2𝑑 matrix with i.i.d. rows sampled from Φ𝜈 (2𝑑; 𝜁) with 𝜈 = 2−15. If
𝐷𝛼,𝛾 (𝑟𝑛 · 𝑋) > 210𝐵2, then

P𝐻

(
𝜎2𝑑−𝑘+1(𝐻) � 𝑐02−4√𝑛 and ‖𝐻1𝑋 ‖2, ‖𝐻2𝑋 ‖2 � 𝑛

)
� 𝑒−𝑐0𝑛𝑘/3

(
𝑅

𝑁

)2𝑛−2𝑑
, (VII.1)

where we have set 𝐻1 := 𝐻 [𝑛−𝑑 ]×[𝑑 ] , 𝐻2 := 𝐻 [𝑛−𝑑 ]×[𝑑+1,2𝑑 ] , 𝑟𝑛 := 𝑐0
32
√
𝑛

and 𝑅 := 243𝐵2𝑐−3
0 .

VII.1. Tensorization and random rounding step

We import the following tensorization lemma from [4].

Lemma VII.2. For 𝑑 < 𝑛 and 𝑘 � 0, let W be a 2𝑑 × (𝑘 + 2) matrix and let H be a (𝑛− 𝑑) × 2𝑑 random
matrix with i.i.d. rows. Let 𝜏 ∈ R2𝑑 be a random vector with the same distribution as the rows of H. If
𝛽 ∈ (0, 1/8), then

P𝐻
(
‖𝐻𝑊 ‖HS � 𝛽2

√
(𝑘 + 1) (𝑛 − 𝑑)

)
�
(
25𝑒2𝛽2𝑘L

(
𝑊𝑇 𝜏, 𝛽

√
𝑘 + 1
) )𝑛−𝑑

.

Similarly, we use net for the singular vectors of H, constructed in [4]. Let U2𝑑,𝑘 ⊂ R[2𝑑 ]×[𝑘 ] be the
set of 2𝑑 × 𝑘 matrices with orthonormal columns.

Lemma VII.3. For 𝑘 � 𝑑 and 𝛿 ∈ (0, 1/2), there exists W = W2𝑑,𝑘 ⊂ R[2𝑑 ]×[𝑘 ] with |W | � (26/𝛿)2𝑑𝑘

so that for any𝑈 ∈ U2𝑑,𝑘 , any 𝑟 ∈ N, and 𝑟 × 2𝑑 matrix A, there exists𝑊 ∈ W so that

1. ‖𝐴(𝑊 −𝑈)‖HS � 𝛿(𝑘/2𝑑)1/2‖𝐴‖HS,
2. ‖𝑊 −𝑈‖HS � 𝛿

√
𝑘 , and

3. ‖𝑊 −𝑈‖𝑜𝑝 � 8𝛿.
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VII.2. Proof of Theorem VII.1

We also use the following standard fact from linear algebra.

Fact VII.4. For 3𝑑 < 𝑛, let H be a (𝑛− 𝑑) ×2𝑑 matrix. If 𝜎2𝑑−𝑘+1(𝐻) � 𝑥, then there exist k orthogonal
unit vectors 𝑤1, . . . , 𝑤𝑘 ∈ R2𝑑 so that ‖𝐻𝑤𝑖 ‖2 � 𝑥. In particular, there exists 𝑊 ∈ U2𝑑,𝑘 so that
‖𝐻𝑊 ‖HS � 𝑥

√
𝑘 .

We will also need a bound on ‖𝐻‖HS:

Fact VII.5. Let H be the random (𝑛−𝑑) × (2𝑑) matrix whose rows are i.i.d. samples of Φ𝜈 (2𝑑; 𝜁). Then

P(‖𝐻‖HS � 2
√
𝑑 (𝑛 − 𝑑)) � 2 exp

(
−2−21𝐵−4𝑛𝑑

)
.

We are now ready to prove Theorem VII.1.

Proof of Theorem VII.1. Let 𝑌 := 𝑐0
32
√
𝑛
· 𝑋 . We may upper bound the left-hand side of (VII.1) by Fact

VII.4

P(𝜎2𝑑−𝑘+1(𝐻) � 𝑐02−4√𝑛 and ‖𝐻1𝑋 ‖2, ‖𝐻2𝑋 ‖2 � 𝑛)

� P(∃𝑈 ∈ U2𝑑,𝑘 : ‖𝐻𝑈𝑌 ‖HS � 𝑐0
√
𝑛(𝑘 + 1)/8).

Set 𝛿 := 𝑐0/16, and let W be as in Lemma VII.3.
For each fixed H, if we have ‖𝐻‖HS � 2

√
𝑑 (𝑛 − 𝑑) and there is some𝑈 ∈ U2𝑑,𝑘 so that ‖𝐻𝑈𝑌 ‖HS �

𝑐0
√
𝑛(𝑘 + 1)/8, we may apply Lemma VII.3 to find𝑊 ∈ W so that

‖𝐻𝑊𝑌 ‖HS � ‖𝐻 (𝑊𝑌 −𝑈𝑌 )‖HS + ‖𝐻𝑈𝑌 ‖HS � 𝛿(𝑘/2𝑑)1/2‖𝐻‖HS + 𝑐0
√
𝑛(𝑘 + 1)/8

which is at most 𝑐0
√
𝑛(𝑘 + 1)/4. This shows the bound

P𝐻

(
∃𝑈 ∈ U2𝑑,𝑘 : ‖𝐻𝑈𝑌 ‖HS � 𝑐0

√
𝑛(𝑘 + 1)/8

)
� P𝐻
(
∃𝑊 ∈ W : ‖𝐻𝑊𝑌 ‖HS � 𝑐0

√
𝑛(𝑘 + 1)/4

)
.

Conditioning on the event that ‖𝐻‖HS � 2
√
𝑑 (𝑛 − 𝑑), applying Fact VII.5, and union bounding over W

show that the right-hand side of the above is at most∑
𝑊 ∈W

P𝐻

(
‖𝐻𝑊𝑌 ‖2 � 𝑐0

√
𝑛(𝑘 + 1)/4

)
+ 2 exp

(
−2−21𝐵−4𝑛𝑑

)
.

Bound

|W | � (26/𝛿)2𝑑𝑘 � exp(32𝑑𝑘 log 𝑐−1
0 ) � exp(𝑐0𝑘 (𝑛 − 𝑑)/6),

where the last inequality holds since 𝑑 � 𝑐2
0𝑛. Thus∑

𝑊 ∈W
P𝐻 (‖𝐻𝑊𝑌 ‖2 � 𝑐0

√
𝑛(𝑘 + 1)/4) � exp(𝑐0𝑘 (𝑛 − 𝑑)/6) max

𝑊 ∈W
P𝐻 (‖𝐻𝑊 ‖2 � 𝑐0

√
𝑛(𝑘 + 1)/4).

(VII.2)

For each𝑊 ∈ W , apply Lemma VII.2 with 𝛽 :=
√
𝑐0/3 (noting that

√
𝑛 − 𝑑/3 �

√
𝑛/4) to obtain

P𝐻 (‖𝐻𝑊𝑌 ‖2 � 𝑐0
√
𝑛(𝑘 + 1)/4) �

(
25𝑒2𝑐0𝑘/3L

(
𝑊𝑇
𝑌 𝜏, 𝑐

1/2
0

√
𝑘 + 1
) )𝑛−𝑑

. (VII.3)
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Preparing to apply Lemma IV.3, define 𝑡 := (𝑐0𝑁/32)−1 � exp(−2−32𝐵−4𝛼𝑑) and 𝑅0 := 2−8𝑐0𝑅 =
2−8𝑐0 (243𝐵2𝑐−3

0 ) = 235𝐵2𝑐−2
0 so that we have

‖𝑌 ‖2 = 𝑐0‖𝑋 ‖2/(32𝑛1/2) � 2−15𝑐2
0𝑁𝛾

−1 = 2−10𝑐0𝛾
−1/𝑡 .

Since 𝑊 ∈ W , we have ‖𝑊 ‖𝑜𝑝 � 2 and ‖𝑊 ‖HS �
√
𝑘/2. We also note the bounds 𝑘 � 2−32𝐵−4𝛼𝑑,

𝐷𝛼,𝛾 ( 𝑐0
32
√
𝑛
𝑋) = 𝐷𝛼,𝛾 (𝑌 ) > 210𝐵2. Thus, we may apply Lemma IV.3 to see that

L
(
𝑊𝑇
𝑌 𝜏, 𝑐

1/2
0

√
𝑘 + 1
)
� (𝑅0𝑡)2𝑒−𝑐0𝑘 �

(
𝑅

8𝑁

)2
𝑒−𝑐0𝑘 .

Substituting this bound into (VII.3) gives

max
𝑊 ∈W

P𝐻 (‖𝐻𝑊𝑌 ‖2 � 𝑐0
√
𝑛(𝑘 + 1)/4) � 1

2

(
𝑅

𝑁

)2𝑛−2𝑑
𝑒−𝑐0𝑘 (𝑛−𝑑)/3 .

Combining with the previous bounds and noting

2 exp
(
−2−21𝐵−4𝑛𝑑

)
�

1
2

(
𝑅

𝑁

)2𝑛−2𝑑
𝑒−𝑐0𝑘 (𝑛−𝑑)/3

show

P(𝜎2𝑑−𝑘+1 (𝐻) � 𝑐0
√
𝑛/16 and ‖𝐻1𝑋 ‖2, ‖𝐻2𝑋 ‖2 � 𝑛) �

(
𝑅

𝑁

)2𝑛−2𝑑
𝑒−𝑐0𝑘 (𝑛−𝑑)/3 .

This completes the proof of Theorem VII.1. �

VIII. Nets for structured vectors: Size of the net

The goal of this subsection is to prove Theorem III.2. We follow the same path as Section 7 of [4]. As
such, we work with the intersection of N𝜀 with a selection of “boxes” which cover a rescaling of the
trivial net Λ𝜀 . We recall the definition of the relevant boxes from [4].

Definition VIII.1. Define a (𝑁, 𝜅, 𝑑)-box to be a set of the form B = 𝐵1 × . . . × 𝐵𝑛 ⊂ Z𝑛, where
|𝐵𝑖 | � 𝑁 for all 𝑖 � 1; 𝐵𝑖 = [−𝜅𝑁,−𝑁] ∪ [𝑁, 𝜅𝑁], for 𝑖 ∈ [𝑑]; and |B | � (𝜅𝑁)𝑛.

We now interpret these boxes probabilistically and seek to understand the probability that we have

P𝑀 (‖𝑀𝑋 ‖2 � 𝑛) �
(
𝐿

𝑁

)𝑛
,

where X is chosen uniformly at random from B. Theorem III.2 will follow quickly from the following
“box” version:

Lemma VIII.2. For 𝐿 � 2 and 0 < 𝑐0 � 2−50𝐵−4, let 𝑛 > 𝐿64/𝑐2
0 and let 1

4𝑐
2
0𝑛 � 𝑑 � 𝑐

2
0𝑛. For 𝑁 � 2,

satisfying 𝑁 � exp(𝑐0𝐿
−8𝑛/𝑑𝑑), and 𝜅 � 2, let B be a (𝑁, 𝜅, 𝑑)-box. If X is chosen uniformly at random

from B, then

P𝑋

(
P𝑀 (‖𝑀𝑋 ‖2 � 𝑛) �

(
𝐿

𝑁

)𝑛)
�
(
𝑅

𝐿

)2𝑛
,

where 𝑅 := 𝐶𝑐−3
0 and 𝐶 > 0 is an absolute constant.
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VIII.1. Counting with the LCD and anticoncentration for linear projections of random vectors

We first show that if we choose 𝑋 ∈ B uniformly at random, then it typically has a large LCD.

Lemma VIII.3. For 𝛼 ∈ (0, 1), 𝐾 � 1, and 𝜅 � 2, let 𝑛 � 𝑑 � 𝐾2/𝛼 and let 𝑁 � 2 be so that 𝐾𝑁 < 2𝑑 .
Let B = ( [−𝜅𝑁,−𝑁] ∪ [𝑁, 𝜅𝑁])𝑑 , and let X be chosen uniformly at random from B. Then

P𝑋
(
𝐷𝛼,𝛾
(
𝑟𝑛𝑋
)
� 𝐾
)
� (220𝛼)𝑑/4 , (VIII.1)

where we have set 𝑟𝑛 := 𝑐02−5𝑛−1/2.

Proof. Writing 𝜙 = 𝜓𝑟𝑛, note that

P𝑋
(
𝐷𝛼,𝛾 (𝑟𝑛𝑋) � 𝐾

)
= P
(
∃ 𝜙 ∈ (0, 𝐾𝑟𝑛] : ‖𝜙𝑋 ‖T < min{𝛾𝜙‖𝑋 ‖2,

√
𝛼𝑑}
)
.

We note that any such 𝜙 must have |𝜙| � (2𝜅𝑁)−1, since if we had 𝜙 < (2𝜅𝑁)−1, then each coordinate
of 𝜙𝑋 would lie in (−1/2, 1/2), implying ‖𝜙𝑋 ‖T = 𝜙‖𝑋 ‖2, that is ‖𝜙𝑋 ‖T > 𝛾𝜙‖𝑋 ‖2. The proof of
Lemma 7.4 in [4] shows that

P𝑋
(
∃ 𝜙 ∈ [(2𝜅𝑁)−1, 𝑟𝑛𝐾] : ‖𝜙𝑋 ‖T <

√
𝛼𝑑
)
� (220𝛼)𝑑/4,

completing the Lemma. �

We also import from [4, Lemma 7.5] a result showing anticoncentration for random vectors 𝐴𝑋 ,
where A is a fixed matrix and X is a random vector with independent entries. As noted in [4], this is
essentially a rephrasing of Corollary 1.4 and Remark 2.3 in Rudelson and Vershynin’s paper [34]:

Lemma VIII.4. Let 𝑁 ∈ N, 𝑛, 𝑑, 𝑘 ∈ N be such that 𝑛 − 𝑑 � 2𝑑 > 2𝑘 , H be a 2𝑑 × (𝑛 − 𝑑) matrix with
𝜎2𝑑−𝑘 (𝐻) � 𝑐0

√
𝑛/16 and 𝐵1, . . . , 𝐵𝑛−𝑑 ⊂ Z with |𝐵𝑖 | � 𝑁 . If X is taken uniformly at random from

B := 𝐵1 × . . . × 𝐵𝑛−𝑑 , then

P𝑋 (‖𝐻𝑋 ‖2 � 𝑛) �
(
𝐶𝑛

𝑑𝑐0𝑁

)2𝑑−𝑘
,

where 𝐶 > 0 is an absolute constant.

VIII.2. Proof of Theorem VIII.2

Recall that the matrix M is defined as

𝑀 =

[
0[𝑑 ]×[𝑑 ] 𝐻𝑇

1
𝐻1 0[𝑛−𝑑 ]×[𝑛−𝑑 ]

]
,

where 𝐻1 is a (𝑛 − 𝑑) × 𝑑 random matrix with whose entries are i.i.d. copies of 𝜁𝑍𝜈 . Let 𝐻2 be an
independent copy of 𝐻1, and define H to be the (𝑛 − 𝑑) × 2𝑑 matrix

𝐻 :=
[
𝐻1 𝐻2

]
.

For a vector 𝑋 ∈ R𝑛, we define the events A1 = A1(𝑋) and A2 = A2(𝑋) by

A1 :=
{
𝐻 : ‖𝐻1𝑋[𝑑 ] ‖2 � 𝑛 and ‖𝐻2𝑋[𝑑 ] ‖2 � 𝑛

}
A2 :=

{
𝐻 : ‖𝐻𝑇 𝑋[𝑑+1,𝑛] ‖2 � 2𝑛

}
.

We now note a simple bound on P𝑀 (‖𝑀𝑋 ‖2 � 𝑛) in terms of A1 and A2.
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Fact VIII.5. For 𝑋 ∈ R𝑛, let A1 = A1 (𝑋), A2 = A2(𝑋) be as above. We have

(P𝑀 (‖𝑀𝑋 ‖2 � 𝑛))2 � P𝐻 (A1 ∩A2).

This fact is a straightforward consequence of Fubini’s theorem, the details of which are in [4, Fact
7.7]. We shall also need the “robust” notion of the rank of the matrix H used in [4]: for 𝑘 = 0, . . . , 2𝑘 ,
define E𝑘 to be the event

E𝑘 :=
{
𝐻 : 𝜎2𝑑−𝑘 (𝐻) � 𝑐0

√
𝑛/16 and 𝜎2𝑑−𝑘+1(𝐻) � 𝑐0

√
𝑛/16
}
,

and note that always at least one of the events E0, . . . , E2𝑑 holds.
We now define

𝛼 := 213𝐿−8𝑛/𝑑 , (VIII.2)

and for a given box B, we define the set of typical vectors 𝑇 (B) ⊆ B by

𝑇 = 𝑇 (B) :=
{
𝑋 ∈ B : 𝐷𝛼 (𝑐0𝑋[𝑑 ]/(32

√
𝑛)) > 210𝐵2} .

Now, set 𝐾 := 210𝐵2 and note the following implication of Lemma VIII.3: if X is chosen uniformly
from B and 𝑛 � 𝐿64/𝑐2

0 � 210𝐵2/𝛼, then we have that

P𝑋 (𝑋 ∉ 𝑇) = P𝑋 (𝐷𝛼 (𝑐0𝑋[𝑑 ]/(32
√
𝑛)) � 210𝐵2) �

(
233𝐿−8𝑛/𝑑

)𝑑/4
�
(

2
𝐿

)2𝑛
. (VIII.3)

Proof of Lemma VIII.2. Let M, 𝐻1, 𝐻2, H, A1,A2, E𝑘 , 𝛼, and 𝑇 := 𝑇 (B) be as above. Define

E := {𝑋 ∈ B : P𝑀 (‖𝑀𝑋 ‖2 � 𝑛) � (𝐿/𝑁)𝑛}

and bound

P𝑋 (E) � P𝑋 (E ∩ {𝑋 ∈ 𝑇}) + P𝑋 (𝑋 ∉ 𝑇) .

For each X, define

𝑓 (𝑋) := P𝑀 (‖𝑀𝑋 ‖2 � 𝑛)1(𝑋 ∈ 𝑇)

and apply (VIII.3) to bound

P𝑋 (E) � P𝑋 ( 𝑓 (𝑋) � (𝐿/𝑁)𝑛) + (2/𝐿)2𝑛 � (𝑁/𝐿)2𝑛
E𝑋 𝑓 (𝑋)2 + (2/𝐿)2𝑛, (VIII.4)

where the last inequality follows from Markov’s inequality. Thus, in order to prove Lemma VIII.2, it is
enough to prove E𝑋 𝑓 (𝑋)2 � 2(𝑅/𝑁)2𝑛.

Apply Fact VIII.5 to write

P𝑀 (‖𝑀𝑋 ‖2 � 𝑛)2 � P𝐻 (A1 ∩A2) =
𝑑∑
𝑘=0
P𝐻 (A2 |A1 ∩ E𝑘 )P𝐻 (A1 ∩ E𝑘 ) (VIII.5)

and so

𝑓 (𝑋)2 �
𝑑∑
𝑘=0
P𝐻 (A2 |A1 ∩ E𝑘 )P𝐻 (A1 ∩ E𝑘 )1(𝑋 ∈ 𝑇). (VIII.6)
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We will now apply Theorem VII.1 to upper bound P𝐻 (A1∩E𝑘 ) for 𝑋 ∈ 𝑇 . For this, note that 𝑑 � 𝑐2
0𝑛,

𝑁 � exp(𝑐0𝐿
−8𝑛/𝑑𝑑) � exp(2−32𝐵−4𝛼𝑛) and set 𝑅0 := 243𝐵2𝑐−3

0 . Also note that by the definition of
a (𝑁, 𝜅, 𝑑)-box and the fact that 𝑑 � 1

4𝑐
2
0𝑛, we have that ‖𝑋[𝑑 ] ‖2 � 𝑑1/2𝑁 � 𝑐02−10√𝑛𝑁 . Now, set

𝛼′ := 2−32𝐵−4𝛼 and apply Theorem VII.1 to see that for 𝑋 ∈ 𝑇 and 0 � 𝑘 � 𝛼′𝑑, we have

P𝐻 (A1 ∩ E𝑘 ) � 𝑒−𝑐0𝑛𝑘/3
(
𝑅0
𝑁

)2𝑛−2𝑑
.

Additionally, by Theorem VII.1, we may bound the tail sum:∑
𝑘�𝛼′𝑑

P𝐻 (A1 ∩ E𝑘 ) � P𝐻
(
{𝜎2𝑑−𝛼′𝑑 (𝐻) � 𝑐0

√
𝑛/16} ∩A1

)
� 𝑒−𝑐0𝛼

′𝑑𝑛/4.

Thus, for all 𝑋 ∈ B, the previous two equations bound

𝑓 (𝑋)2 �
𝛼′𝑑∑
𝑘=0
P𝐻 (A2 |A1 ∩ E𝑘 )𝑒−𝑐0𝑛𝑘/3

(
𝑅0
𝑁

)2𝑛−2𝑑
+ 𝑒−𝑐0𝛼

′𝑑𝑛/3 . (VIII.7)

Seeking to bound the right-hand side of (VIII.7), define 𝑔𝑘 (𝑋) := P𝐻 (A2 |A1 ∩ E𝑘 ). Write

E𝑋 [𝑔𝑘 (𝑋)] = E𝑋E𝐻
[
A2 |A1 ∩ E𝑘

]
= E𝑋[𝑑] E𝐻

[
E𝑋[𝑑+1,𝑛] 1[A2]

��A1 ∩ E𝑘
]
.

Let 𝑘 � 𝛼′𝑑. Note that each 𝐻 ∈ A1 ∩ E𝑘 has 𝜎2𝑑−𝑘 (𝐻) � 𝑐0
√
𝑛/16, and thus we may apply Lemma

VIII.4 to bound

E𝑋[𝑑+1,𝑛] 1[A2] = P𝑋[𝑑+1,𝑛] (‖𝐻
𝑇 𝑋[𝑑+1,𝑛] ‖2 � 𝑛) �

(
𝐶 ′𝑛

𝑐0𝑑𝑁

)2𝑑−𝑘
�

(
4𝐶 ′

𝑐3
0𝑁

)2𝑑−𝑘
for an absolute constant 𝐶 ′ > 0, where we used that 𝑑 � 1

4𝑐
2
0𝑛. Thus, for each 0 � 𝑘 � 𝛼′𝑑, if we define

𝑅 := max{8𝐶 ′𝑐−3
0 , 2𝑅0}, then we have

E𝑋 [𝑔𝑘 (𝑋)] �
(
𝑅

2𝑁

)2𝑑−𝑘
. (VIII.8)

Applying E𝑋 to (VIII.7) using (VIII.8) shows

E𝑋 𝑓 (𝑋)2 �
(
𝑅

2𝑁

)2𝑛 𝛼′𝑑∑
𝑘=0

(
2𝑁
𝑅

) 𝑘
𝑒−𝑐0𝑛𝑘/3 + 𝑒−𝑐0𝛼

′𝑑𝑛/3 .

Using that 𝑁 � 𝑒𝑐0𝐿
−8𝑛/𝑑𝑑 = 𝑒𝑐0𝛼

′𝑑/8 and 𝑁 � 𝑒𝑐0𝑛/3 bounds

E𝑋 𝑓 (𝑋)2 � 2
(
𝑅

2𝑁

)2𝑛
. (VIII.9)

Combining (VIII.9) with (VIII.4) completes the proof of Lemma VIII.2. �

VIII.3. Proof of Theorem III.2

The main work of proving Theorem III.2 is now complete with the proof of Lemma VIII.2. In order
to complete it, we need to cover the sphere with a suitable set of boxes. Recall the definitions from

https://doi.org/10.1017/fmp.2023.29 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2023.29


Forum of Mathematics, Pi 63

Section III.1:

I ′( [𝑑]) :=
{
𝑣 ∈ R𝑛 : 𝜅0𝑛

−1/2 � |𝑣𝑖 | � 𝜅1𝑛
−1/2 for all 𝑖 ∈ [𝑑]

}
,

and

Λ𝜀 := 𝐵𝑛 (0, 2) ∩
(
4𝜀𝑛−1/2 · Z𝑛

)
∩ I ′( [𝑑]) ,

and that the constants 𝜅0, 𝜅1 satisfy 0 < 𝜅0 < 1 < 𝜅1 and are defined in Section II.3.
We import the following simple covering lemma from [4, Lemma 7.8]

Lemma VIII.6. For all 𝜀 ∈ [0, 1], 𝜅 � max{𝜅1/𝜅0, 28𝜅−4
0 }, there exists a family F of (𝑁, 𝜅, 𝑑)-boxes

with |F | � 𝜅𝑛 so that

Λ𝜀 ⊆
⋃
B∈F

(4𝜀𝑛−1/2) · B , (VIII.10)

where 𝑁 = 𝜅0/(4𝜀).

Combining Lemma VIII.6 with Lemma VIII.2 will imply Theorem III.2.

Proof of Theorem III.2. Apply Lemma VIII.6 with 𝜅 = max{𝜅1/𝜅0, 28𝜅−4
0 } and use the fact that N𝜀 ⊆

Λ𝜀 to write

N𝜀 ⊆
⋃
B∈F

(
(4𝜀𝑛−1/2) · B

)
∩N𝜀

and so

|N𝜀 | �
∑
B∈F

| (4𝜀𝑛−1/2 · B) ∩N𝜀 | � |F | · max
B∈F

| (4𝜀𝑛−1/2 · B) ∩N𝜀 | .

Rescaling by
√
𝑛/(4𝜀) and applying Lemma VIII.2 bound

| (4𝜀𝑛−1/2 · B) ∩N𝜀 | � |{𝑋 ∈ B : P𝑀 (‖𝑀𝑋 ‖2 � 𝑛) � (𝐿𝜀)𝑛}| �
(
𝑅

𝐿

)2𝑛
|B |.

To see that the application of Lemma VIII.2 is justified, note that 0 < 𝑐0 � 2−50𝐵−4, 𝑐2
0𝑛/2 � 𝑑 � 𝑐2

0𝑛,
𝜅 � 2, and log 1/𝜀 � 𝑛/𝐿64/𝑐2

0 and so

log 𝑁 = log 𝜅0/(4𝜀) � 𝑛/𝐿64/𝑐2
0 � 𝑐0𝐿

−8𝑛/𝑑𝑑 ,

as required by Lemma VIII.2, since 𝜅0 < 1, 𝑑 � 𝐿−1/𝑐2
0𝑛, 𝑐0 � 𝐿−1/𝑐2

0 , and 8𝑛/𝑑 � 16/𝑐2
0. Using that

|F | � 𝜅𝑛 and |B | � (𝜅𝑁)𝑛 for each B ∈ F bound

|N𝜀 | � 𝜅𝑛
(
𝑅

𝐿

)2𝑛
|B | � 𝜅𝑛

(
𝑅

𝐿

)2𝑛
(𝜅𝑁)𝑛 �

(
𝐶

𝑐6
0𝐿

2𝜀

)𝑛
,

where we set 𝐶 := 𝜅2𝑅2𝑐6
0. This completes the proof of Theorem III.2. �

IX. Nets for structured vectors: Approximating with the net

In this section, we prove Lemma III.1, which tells us that N𝜀 is a net for Σ𝜀 . The proof uses the random
rounding technique developed by Livshyts [21] in the same way as in [4].
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Proof of Lemma III.1. Given 𝑣 ∈ Σ𝜀 , we define a random variable 𝑟 = (𝑟1, . . . , 𝑟𝑛), where the 𝑟𝑖 are
independent and satisfy E 𝑟𝑖 = 0 as well as the deterministic properties |𝑟𝑖 | � 4𝜀𝑛−1/2 and 𝑣 − 𝑟 ∈
4𝜀𝑛−1/2

Z
𝑛. We then define the random variable 𝑢 := 𝑣 − 𝑟. We will show that with positive probability

that 𝑢 ∈ N𝜀 .
By definition, ‖𝑟 ‖∞ = ‖𝑢 − 𝑣‖∞ � 4𝜀𝑛−1/2 for all u. Also, 𝑢 ∈ I ′( [𝑑]) for all u, since 𝑣 ∈ I ([𝑑])

and ‖𝑢 − 𝑣‖∞ � 4𝜀/
√
𝑛 � 𝜅0/(2

√
𝑛). Thus, from the definition of N𝜀 , we need only show that with

positive probability u satisfies

P(‖𝑀𝑢‖2 � 4𝜀
√
𝑛) � (𝐿𝜀)𝑛 and L𝐴,𝑜𝑝 (𝑢, 𝜀

√
𝑛) � (210𝐿𝜀)𝑛. (IX.1)

We first show that all u satisfy the upper bound at (IX.1). To see this, recall K = {‖𝐴‖op � 4
√
𝑛} and

let 𝑤(𝑢) ∈ R𝑛 be such that

L𝐴,𝑜𝑝 (𝑢, 𝜀
√
𝑛) = PK

(
‖𝐴𝑣 − 𝐴𝑟 − 𝑤(𝑢)‖ � 𝜀

√
𝑛
)

� PK
(
‖𝐴𝑣 − 𝑤(𝑢)‖ � 17𝜀

√
𝑛
)

� L𝐴,𝑜𝑝 (𝑣, 17𝜀
√
𝑛) � L(𝐴𝑣, 17𝜀

√
𝑛).

Since 𝑣 ∈ Σ𝜀 , Lemma III.7 bounds

L(𝐴𝑣, 17𝜀
√
𝑛) � (210𝐿𝜀)𝑛 . (IX.2)

We now show that

E𝑢 P𝑀 (‖𝑀𝑢‖2 � 4𝜀
√
𝑛) � (1/2)P𝑀 (‖𝑀𝑣‖2 � 2𝜀

√
𝑛) � (1/4) (2𝜀𝐿)𝑛 , (IX.3)

where the last inequality holds by the fact 𝑣 ∈ Σ𝜀 . From (IX.3), it then follows that there is some 𝑢 ∈ Λ𝜀

satisfying (IX.1). To prove the first inequality in (IX.1), define the event

E := {𝑀 : ‖𝑀𝑣‖2 � 2𝜀
√
𝑛 and ‖𝑀 ‖HS � 𝑛/4}

and note that for all u, we have

P𝑀 (‖𝑀𝑢‖2 � 4𝜀
√
𝑛) = P𝑀 (‖𝑀𝑣 − 𝑀𝑟 ‖2 � 4𝜀

√
𝑛) � P𝑀 (‖𝑀𝑟 ‖2 � 2𝜀

√
𝑛 and E) .

Since by the Bernstein inequality, P(‖𝑀 ‖2
HS � 𝑛

2/16) � 2 exp(−𝑐𝑛2) and the fact that

𝜀 � exp(−2𝑐Σ𝑛) � exp(−𝑐𝑛),

we have

P(E) � (2𝐿𝜀)𝑛 − 2 exp(−𝑐𝑛2) � (1/2) (2𝐿𝜀)𝑛,

assuming that 𝑐Σ is chosen appropriately small compared to this absolute constant. Thus

P𝑀 (‖𝑀𝑢‖2 � 4𝜀
√
𝑛) � P𝑀 (‖𝑀𝑟 ‖2 � 2𝜀

√
𝑛
��E)P(E)

�
(
1 − P𝑀 (‖𝑀𝑟 ‖2 > 2𝜀

√
𝑛
��E)) (1/2) (2𝐿𝜀)𝑛 .

Taking expectations gives

E𝑢P𝑀 (‖𝑀𝑢‖2 � 4𝜀
√
𝑛) �
(
1 − E𝑢P𝑀 (‖𝑀𝑟 ‖2 > 2𝜀

√
𝑛
��E)) (1/2) (2𝐿𝜀)𝑛 . (IX.4)
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Exchanging the expectations and rearranging, we see that it is enough to show

E𝑀

[
P𝑟 (‖𝑀𝑟 ‖2 > 2𝜀

√
𝑛)
�� E ] � 1/2 .

We will show that P𝑟 (‖𝑀𝑟 ‖2 > 2𝜀
√
𝑛) � 1/4 for all 𝑀 ∈ E , by Markov’s inequality. Note that

E𝑟 ‖𝑀𝑟 ‖2
2 =
∑
𝑖, 𝑗

E
(
𝑀𝑖, 𝑗𝑟𝑖
)2 =
∑
𝑖

E 𝑟2
𝑖

∑
𝑗

𝑀2
𝑖, 𝑗 � 16𝜀2‖𝑀 ‖2

HS/𝑛 � 𝜀
2𝑛,

where for the second equality, we have used that the 𝑟𝑖 are mutually independent and E 𝑟𝑖 = 0; for the
third inequality, we used ‖𝑟 ‖∞ � 4𝜀/

√
𝑛; and for the final inequality, we used ‖𝑀 ‖HS � 𝑛/4. Thus, by

Markov’s inequality gives

P𝑟 (‖𝑀𝑟 ‖2 � 2𝜀
√
𝑛) � (2𝜀

√
𝑛)−2
E𝑟 ‖𝑀𝑟 ‖2

2 � 1/4 . (IX.5)

Putting (IX.5) together with (IX.4) proves (IX.3), completing the proof of (IX.1). �

X. Proof of Lemma VI.7

We will derive Lemma VI.7 from Talagrand’s inequality:

Theorem X.1 (Talagrand’s inequality). Let 𝐹 : R𝑛 → R be a convex 1-Lipschitz function and 𝜎 =
(𝜎1, . . . , 𝜎𝑛), where the 𝜎𝑖 are i.i.d. random variables, such that |𝜎𝑖 | � 1. Then for any 𝑡 � 0, we have

P ( |𝐹 (𝜎) − 𝑚𝐹 | � 𝑡) � 4 exp
(
−𝑡2/16

)
,

where 𝑚𝐹 is the median of 𝐹 (𝜎).

Proof of Lemma VI.7. Note the theorem is trivial if 𝑘 � 220𝐵4/𝜈, so assume that 𝑘 > 220𝐵4/𝜈. Set
𝜎 = 2−4𝐵−2𝜏′, define

𝐹 (𝑥) := ‖𝑊 ‖−1‖𝑊𝑇 𝑥‖2,

and note that F is convex and 1-Lipschitz. Since |𝜎𝑖 | � 2−4𝐵−2 |𝜏𝑖 | � 1 and the 𝜎𝑖 are i.i.d., Theorem
X.1 tells us that 𝐹 (𝜎) is concentrated about the median 𝑚𝐹 and so we only need to estimate 𝑚𝐹 . For
this, write

𝑚 := E ‖𝑊𝑇𝜎‖2
2 =
∑
𝑖, 𝑗

𝑊2
𝑖 𝑗E𝜎

2
𝑖 = E𝜎2

𝑖 ‖𝑊 ‖2
HS,

and

𝑚2 := E ‖𝑊𝑇𝜎‖4
2 − (E ‖𝑊𝑇 𝜎‖2

2 )
2 =
∑
𝑖, 𝑗

𝑊2
𝑖 𝑗

(
E𝜎4

𝑖 − (E𝜎2
𝑖 )2) � E𝜎2

𝑖 ‖𝑊 ‖2
HS,

where for the final inequality, we used that E𝜎4
𝑖 � E𝜎

2
𝑖 , since |𝜎𝑖 | � 1. For 𝑡 > 0, Markov’s inequality

bounds

P(‖𝑊𝑇𝜎‖2
2 � 𝑚 − 𝑡) � 𝑡−2

E

(
‖𝑊𝑇𝜎‖2

2 − 𝑚
)2

= 𝑡−2𝑚2 � 𝑡−2
E𝜎2

𝑖 ‖𝑊 ‖2
HS.

Setting 𝑡 = E𝜎2
𝑖 ‖𝑊 ‖2

HS/2 gives

P(‖𝑊𝑇 𝜎‖2
2 � E𝜎

2
𝑖 ‖𝑊 ‖2

HS/2) � 4(E𝜎2
𝑖 ‖𝑊 ‖2

HS)
−1 < 1/2,
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since E𝜎2
𝑖 = 2−8𝐵−4

E𝜏′2𝑖 � 2−8𝐵−4𝜈 and ‖𝑊 ‖2
HS � 𝑘/4 > 211𝜈−1𝐵4 (by assumption). It follows that

𝑚𝐹 �
√
E𝜎2

𝑖 /2‖𝑊 ‖−1‖𝑊 ‖HS � 2−6‖𝑊 ‖−1𝐵−2√𝜈𝑘 ,

since ‖𝑊 ‖HS �
√
𝑘/2. Now, we may apply Talagrand’s inequality (Theorem X.1) with 𝑡 = 𝑚𝐹 −

𝛽′
√
𝑘 ‖𝑊 ‖−1 to obtain

P

(
‖𝑊𝑇𝜎‖2 � 𝛽′

√
𝑘
)
� 4 exp

(
−2−20𝐵−4𝜈𝑘

)
as desired. �

XI. Proof of Theorem 1.4

Here, we deduce Theorem 1.4, which shows negative correlation between a small ball and large deviation
event. The proof is similar in theme to those in Section 5 but is, in fact, quite a bit simpler due to the
fact we are working with a linear form rather than a quadratic form.

Proof of Theorem 1.4. We first write

P(|〈𝑋, 𝑣〉| � 𝜀 and 〈𝑋, 𝑢〉 > 𝑡) � E
[
1{|〈𝑋, 𝑣〉| � 𝜀}𝑒𝜆〈𝑋,𝑢〉−𝜆𝑡

]
, (XI.1)

where 𝜆 � 0 will be optimized later. Now, apply Esseen’s inequality in a similar way to Lemma 5.1 to
bound

E

[
1{|〈𝑋, 𝑣〉| � 𝜀}𝑒𝜆〈𝑋,𝑢〉−𝜆𝑡

]
� 𝜀𝑒−𝜆𝑡

∫ 1/𝜀

−1/𝜀

���E𝑒2𝜋𝑖𝜃 〈𝑋,𝑣 〉+𝜆〈𝑋,𝑢〉
��� 𝑑𝜃 . (XI.2)

Applying Lemma 5.5 bounds���E𝑒2𝜋𝑖𝜃 〈𝑋,𝑣 〉+𝜆〈𝑋,𝑢〉
��� � exp

(
−𝑐 min

𝑟 ∈[1,𝑐−1 ]
‖𝜃𝑟𝑣‖2

T
+ 𝑐−1𝜆2

)
+ 𝑒−𝑐𝛼𝑛 . (XI.3)

Combining the lines (XI.1),(XI.2), and (XI.3) and choosing C large enough give the bound

P(|〈𝑋, 𝑣〉| � 𝜀 and 〈𝑋, 𝑢〉 > 𝑡) � 𝜀𝑒−𝜆𝑡+𝑐−1𝜆2
∫ 1/𝜀

−1/𝜀

(
𝑒−𝑐𝛾

2 𝜃2 + 𝑒−𝑐𝛼𝑛
)
𝑑𝜃

� 𝜀𝑒−𝜆𝑡+𝑐
−1𝜆2
𝛾−1 + 𝑒−𝑐𝛼𝑛−𝜆𝑡+𝑐−1𝜆2

.

Choosing 𝜆 = 𝑐𝑡/2 completes the proof. �

XII. Proof of Lemma 3.2

We deduce the second part of Lemma 3.2 from the following special case of a proposition of Vershynin
[46, Proposition 4.2].

Proposition XII.1. For 𝐵 > 0, let 𝜁 ∈ Γ𝐵, let 𝐴𝑛 ∼ Sym 𝑛 (𝜁), and let𝐾 � 1. Then there exist 𝜌, 𝛿, 𝑐 > 0
depending only on 𝐾, 𝐵 so that for every 𝜆 ∈ R and 𝑤 ∈ R𝑛, we have

P
(

inf
𝑥∈Comp (𝛿,𝜌)

‖ (𝐴𝑛 + 𝜆𝐼)𝑥 − 𝑤‖2 � 𝑐
√
𝑛 and ‖𝐴𝑛 + 𝜆𝐼 ‖𝑜𝑝 � 𝐾

√
𝑛
)
� 2𝑒−𝑐𝑛 .
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Proof of Lemma 3.2. To get the first conclusion of Lemma 3.2, we may assume without loss of generality
that 𝑢 ∈ S𝑛−1. So first let N be a 𝑐

√
𝑛-net for [−4

√
𝑛, 4

√
𝑛], with |N | � 8/𝑐. Note that P(‖𝐴𝑛‖𝑜𝑝 >

4
√
𝑛) � 𝑒−Ω(𝑛) so if 𝐴𝑛𝑥 = 𝑡𝑢, then we may assume 𝑡 ∈ [−4

√
𝑛, 4

√
𝑛]. So

P
(
∃ 𝑥 ∈ Comp (𝛿, 𝜌),∃𝑡 ∈ [−4

√
𝑛, 4

√
𝑛] : 𝐴𝑛𝑥 = 𝑡𝑢

)
�
∑
𝑡0∈N
P
(
∃ 𝑥 ∈ Comp (𝛿, 𝜌) : ‖𝐴𝑛𝑥 − 𝑡0𝑢‖2 � 𝑐

√
𝑛
)
,

since for each 𝑡 ∈ [−4
√
𝑛, 4

√
𝑛] there’s 𝑡0 ∈ N , such that if 𝐴𝑛𝑥 = 𝑡𝑢, then ‖𝐴𝑛𝑥 − 𝑡0𝑢‖2 � 𝑐

√
𝑛. Now

to bound each term in the sum, take 𝜆 = 0, 𝐾 = 4, 𝑤 = 𝑡0𝑢 in Proposition XII.1 and notice we may
assume ‖𝐴𝑛‖𝑜𝑝 � 4

√
𝑛 again. For the second conclusion, it is sufficient to show

P
(
∃ 𝑥 ∈ Comp (𝛿, 𝜌),∃𝑡 ∈ [−4

√
𝑛, 4

√
𝑛] : ‖(𝐴𝑛 − 𝑡 𝐼)𝑥‖2 = 0 and ‖𝐴𝑛 − 𝑡 𝐼 ‖𝑜𝑝 � 8

√
𝑛
)

� 𝑒−Ω(𝑛) ,
(XII.1)

since we have P(‖𝐴𝑛‖𝑜𝑝 � 4
√
𝑛) � 𝑒−Ω(𝑛) , by (4.11), so we may assume that all eigenvalues of 𝐴𝑛 lie

in [−4
√
𝑛, 4

√
𝑛] and ‖𝐴𝑛 − 𝑡 𝐼 ‖𝑜𝑝 � |𝑡 | + ‖𝐴𝑛‖𝑜𝑝 � 8

√
𝑛, for all 𝑡 ∈ [−4

√
𝑛, 4

√
𝑛].

For this, we apply Proposition XII.1 with 𝐾 = 8 to obtain 𝜌, 𝛿, 𝑐. Again, let N be a 𝑐
√
𝑛-net for the

interval [−4
√
𝑛, 4

√
𝑛] with |N | � 8/𝑐. So, if 𝑡 ∈ [−4

√
𝑛, 4

√
𝑛] satisfies 𝐴𝑛𝑥 = 𝑡𝑥 for some 𝑥 ∈ S𝑛−1,

then there is a 𝑡0 ∈ N with |𝑡 − 𝑡0 | � 𝑐
√
𝑛 and

‖(𝐴𝑛 − 𝑡0𝐼)𝑥‖2 � |𝑡 − 𝑡0 |‖𝑥‖2 � 𝑐
√
𝑛 .

Thus, the left-hand side of (XII.1) s at most∑
𝑡0∈N
P
(
∃ 𝑥 ∈ Comp (𝛿, 𝜌) : ‖(𝐴𝑛 − 𝑡0𝐼)𝑥‖2 � 𝑐

√
𝑛 and ‖𝐴𝑛 − 𝑡0𝐼 ‖𝑜𝑝 � 8

√
𝑛
)
� 𝑒−𝑐𝑛,

where the last line follows from Proposition XII.1. �
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