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Abstract
Let A be an nXn symmetric matrix with (A;, ;);<; independent and identically distributed according to a subgaussian
distribution. We show that

P(omin(A) < en™1?) < Ce+ 7",

where opin (A) denotes the least singular value of A and the constants C, ¢ > 0 depend only on the distribution of
the entries of A. This result confirms the folklore conjecture on the lower tail of the least singular value of such
matrices and is best possible up to the dependence of the constants on the distribution of A; ;. Along the way, we
prove that the probability that A has a repeated eigenvalue is e thys confirming a conjecture of Nguyen, Tao
and Vu [Probab. Theory Relat. Fields 167 (2017), 777-816].
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1. Introduction

Let A be an n X n random symmetric matrix whose entries on and above the diagonal (A; ;)i<; are
independent and identically distributed (i.i.d.) with mean 0 and variance 1. This matrix model, sometimes
called the Wigner matrix ensemble, was introduced in the 1950s in the seminal work of Wigner [50],
who established the famous “semicircular law” for the eigenvalues of such matrices.

In this paper, we study the extreme behavior of the least singular value of A, which we denote by
Omin (A). Heuristically, we expect that oy (A) = @(n‘l/ 2), and thus it is natural to consider

P(0min(A) < en™'/?), (1.1)

for all £ > 0 (see Section 1.2). In this paper, we prove a bound on this quantity which is optimal up to
constants, for all random symmetric matrices with i.i.d. subgaussian entries. This confirms the folklore
conjecture, explicitly stated by Vershynin in [46].

Theorem 1.1. Let ¢ be a subgaussian random variable with mean 0 and variance 1, and let A be an n X n
random symmetric matrix whose entries above the diagonal (A, j)i<; are independent and distributed
according to {. Then for every € > 0,

Pa(0min(A) < en”"?) < Ce + 7", (1.2)

where C,c > 0 depend only on (.

This conjecture is sharp up to the value of the constants C, ¢ > 0 and resolves the “up-to-constants”
analogue of the Spielman—Teng [38] conjecture for random symmetric matrices (see Section 1.2). Also
note that the special case € = 0 tells us that the singularity probability of any random symmetric A with
subgaussian entry distribution is exponentially small, generalizing our previous work [4] on the {—1, 1}
case.

1.1. Repeated eigenvalues

Before we discuss the history of the least singular value problem, we highlight one further contribution
of this paper: a proof that a random symmetric matrix has no repeated eigenvalues with probability
1 — e,

In the 1980s, Babai [43] conjectured that the adjacency matrix of the binomial random graph
G (n, 1/2) has no repeated eigenvalues with probability 1 — o(1) (see [43]). Tao and Vu [43] proved this
conjecture in 2014 and, in subsequent work on the topic with Nguyen [24], went on to conjecture the
probability that a random symmetric matrix with i.i.d. subgaussian entries has no repeated eigenvalues
is 1 —e~2(" _In this paper, we prove this conjecture en route to proving Theorem 1.1, our main theorem.

Theorem 1.2. Let { be a subgaussian random variable with mean 0 and variance 1, and let A be an
n X n random symmetric matrix, where (A;_ j)i<; are independent and distributed according to {. Then
A has no repeated eigenvalues with probability at least 1 — e™", where ¢ > 0 is a constant depending
only on (.

Theorem 1.2 is easily seen to be sharp whenever A; ; is discrete: consider the event that three rows
of A are identical; this event has probability ¢~®") and results in two 0 eigenvalues. Also note that the
constant in Theorem 1.2 can be made arbitrary small; consider the entry distribution £, which takes
value 0 with probability 1 — p and each of {—p~'/2, p~1/2} with probability p/2. Here, the probability
of 0 being a repeated root is > ¢~ (G+o())pn,

We in fact prove a more refined version of Theorem 1.2, which gives an upper bound on the probability
that two eigenvalues of A fall into an interval of length €. This is the main result of Section 7. For this,
we let 21(A) > ... > 1,,(A) denote the eigenvalues of the n X n real symmetric matrix A.
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Theorem 1.3. Let { be a subgaussian random variable with mean 0 and variance 1, and let A be an
n X n random symmetric matrix, where (A; j)i<; are independent and distributed according to {. Then
for each € < cn and all € > 0, we have

max, P(|Akse(A) = A (A)] < n”'12) < (Ce)t + 27",
<n-—

where C, c > 0 are constants, depending only on (.

In the following subsection, we describe the history of the least singular value problem. In Section 1.3,
we discuss a technical theme which is developed in this paper, and then, in Section 2, we go on to give
a sketch of Theorem 1.1.

1.2. History of the least singular value problem

The behavior of the least singular value was first studied for random matrices B,, with i.i.d. coefficients,
rather than for symmetric random matrices. For this model, the history goes back to von Neumann [48],
who suggested that one typically has

o'min(Bn) ~ n—1/2’
while studying approximate solutions to linear systems. This was then more rigorously conjectured by
Smale [36] and proved by Szarek [39] and Edelman [8] in the case that B, = G, is a random matrix

with i.i.d. standard gaussian entries. Edelman found an exact expression for the density of the least
singular value in this case. By analyzing this expression, one can deduce that

P(0min(Gp) < en”'?) < &, (1.3)

for all & > O (see, e.g. [38]). While this gives a very satisfying understanding of the gaussian case, one
encounters serious difficulties when trying to extend this result to other distributions. Indeed, Edelman’s
proof relies crucially on an exact description of the joint distribution of eigenvalues that is available in
the gaussian setting. In the last 20 or so years, intense study of the least singular value of i.i.d. random
matrices has been undertaken with the overall goal of proving an appropriate version of (1.3) for different
entry distributions and models of random matrices.

An important and challenging feature of the more general problem arises in the case of discrete
distributions, where the matrix B,, can become singular with nonzero probability. This singularity event
will affect the quantity (1.1) for very small & and thus estimating the probability that omin(B,) = 0
is a crucial aspect of generalizing (1.3). This is reflected in the famous and influential Spielman—Teng
conjecture [37] which proposes the bound

P(omin(Bp) < en” V%) < g +2¢7", (1.4)
where B,, is a Bernoulli random matrix. Here, this added exponential term “comes from” the singularity
probability of B,,. In this direction, a key breakthrough was made by Rudelson [30], who proved that if
By, has i.i.d. subgaussian entries, then

P(omin(Bn) < 81171/2) <Cen+n'?.

This result was extended in a series of works [32, 40, 44, 49], culminating in the influential work of
Rudelson and Vershynin [31], who showed the “up-to-constants” version of Spielman-Teng:

P(Omin(By) < en~'/?) < Ce + 7", (1.5)
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where B, is a matrix with i.i.d. entries that follow any subgaussian distribution and C, ¢ > 0 depend
only on . A key ingredient in the proof of (1.5) is a novel approach to the “inverse Littlewood-Offord
problem,” a perspective pioneered by Tao and Vu [44] (see Section 1.3 for more discussion).

Another very different approach was taken by Tao and Vu [41], who showed that the distribution of
the least singular value of B, is identical to the least singular value of the Gaussian matrix G, up to
scales of size n™¢. In particular, they prove that

[P(Tmin(Bn) < en™'12) = P(0min(Gp) < en” %)= O(n™), (1.6)

thus resolving the Spielman-Teng conjecture for £ > n~, in a rather strong form. While falling
just short of the Spielman-Teng conjecture, the work of Tao and Vu [41], Rudelson and Vershynin
[31], and subsequent refinements by Tikhomirov [45] and Livshyts et al. [22] (see also [21, 29])
leave us with a very strong understanding of the least singular value for i.i.d. matrix models. How-
ever, progress on the analogous problem for random symmetric matrices, or Wigner random ma-
trices, has come somewhat more slowly and more recently: In the symmetric case, even proving
that A, is nonsingular with probability 1 — o(1) was not resolved until the important 2006 paper of
Costello et al. [7].

Progress on the symmetric version of Spielman—Teng continued with Nguyen [25, 26] and, indepen-
dently, Vershynin [46]. Nguyen proved that for any B > 0, there exists an A > 0 for which'

P(omin(An) < n74) <n™B.
Vershynin [46] proved that if A, is a matrix with subgaussian entries then, for all £ > 0, we have
P(0min(An) < en”'?) < Cpe'371 4277, 1.7)

forall 7 > 0, where the constants C,;, ¢ > 0 may depend on the underlying subgaussian random variable.
He went on to conjecture that & should replace £'/8-% as the correct order of magnitude, and that ="
should replace e ™.

After Vershynin, a series of works [3, 5, 16, 17, 19] made progress on singularity probability (i.e., the
& = 0 case of Vershynin’s conjecture), and we, in [4], ultimately showed that the singularity probability
is exponentially small, when A; ; is uniform in {1, 1}:

P(det(A,) = 0) < ™",

which is sharp up to the value of ¢ > 0.
However, for general &, the state of the art is due to Jain et al. [19], who improved on Vershynin’s
bound (1.7) by showing

P(omin(An) < Sn_l/z) < ce'l® + e_Q(”I/Z) ,

under the subgaussian hypothesis on A,,.

For large ¢, for example, € > n~¢, another very different and powerful set of techniques have
been developed, which in fact apply more generally to the distribution of other “bulk” eigenvalues
and additionally give distributional information on the eigenvalues. The works of Tao and Vu [40,

42], Erd@s, Schlein and Yau [10, 11, 13], ErdSs et al. [9], and specifically, Bourgade et al. [2] tell us
that
P(omin(An) < en™1?) < e +0(1), (1.8)

INguyen in [26] actually proves the same result for random matrices of the form A,, + F', where F is a fixed symmetric n X n
matrix satisfying [|F ||o), < nOWM,
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thus obtaining the correct dependence? on € when 7 is sufficiently large compared to €. These results
are similar in flavor to (1.6) in that they show the distribution of various eigenvalue statistics is closely
approximated by the corresponding statistics in the gaussian case. We note, however, that it appears
these techniques are limited to these large & and different ideas are required for & < n~C, and certainly
for & as small as e ©,

Our main theorem, Theorem 1.1, proves Vershynin’s conjecture and thus proves the optimal depen-
dence on ¢ for all € > ¢™°", up to constants.

1.3. Approximate negative correlation

Before we sketch the proof of Theorem 1.1, we highlight a technical theme of this paper: the approximate
negative correlation of certain “linear events.” While this is only one of several new ingredients in this
paper, we isolate these ideas here, as they seem to be particularly amenable to wider application. We
refer the reader to Section 2 for a more complete overview of the new ideas in this paper.

We say that two events A, B in a probability space are negatively correlated if

P(A N B) < P(A)P(B).

Here, we state and discuss two approximate negative correlation results: one of which is from our paper
[4], but is used in an entirely different context, and one of which is new.

We start by describing the latter result, which says that a “small ball”” event is approximately negatively
correlated with a large deviation event. This complements our result from [4], which says that two “small
ball events,” of different types, are negatively correlated. In particular, we prove something in the spirit
of the following inequality, though in a slightly more technical form.

Px ({(X,v)| < gand (X,u) > 1) < Px(|{X,v)| < &)Px({X,u) > 1), (1.9)

where u, v are unit vectors and 7,& > 0 and X = (X1, ..., X,) with i.i.d. subgaussian random variables
with mean 0 and variance 1.

To state and understand our result, it makes sense to first consider, in isolation, the two events present
in (1.9). The easier of the two events is (X, u) > ¢, which is a large deviation event for which we may
apply the essentially sharp and classical inequality (see Chapter 3.4 in [47])

Py ((X,u) > 1) < e,

where ¢ > 0 is a constant depending only on the distribution of X.

We now turn to understand the more complicated small-ball event |[(X,v)| < & appearing in (1.9).
Here, we have a more subtle interaction between v and the distribution of X, and thus we first consider
the simplest possible case: when X has i.i.d. standard gaussian entries. Here, one may calculate

Px([{X,v)| < ¢) < Ceg, (1.10)

for all € > 0, where C > 0 is an absolute constant. However, as we depart from the case when X is
gaussian, a much richer behavior emerges when the vector v admits some “arithmetic structure.” For
example, if v =n""/2(1,...,1) and the X; are uniform in {-1, 1}, then

Px(I(X,v)| <) =02,

2Tao and Vu, with Corollary 24 in [42], prove that the distribution of o'min remains asymptotically invariant if the distribution
of the entries A; ; is replaced by a distribution that matches four moments with the original distribution. A follow-up work [9]
joint with Erdds et al. describes an approach to combine ideas from the works [10, 11, 13] to remove the moment matching
assumptions of [42], but does not explicitly address the problem of the least singular value. The work [2] builds on these works
to prove the sharp, nonquantitative statement at (1.8). See the discussion below Theorem 2.2 of [2] for more detail.
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forany 0 < & < n~1/2. This, of course, stands in contrast to (1.10) for all & < n~1/2

we employ an appropriate measure of the arithmetic structure of v.

For this, we use the notion of the “least common denominator” of a vector, introduced by Rudelson
and Vershynin [31]. For parameters @, y € (0, 1) define the least common denominator (LCD) of v € R"
to be

and suggests that

Dgoy(v) = inf{gb >0: |l¢vllr < min {yg||v|L, Van} } (1.11)

where ||v||p := dist(v, Z"), for all v € R". What makes this definition useful is the important “inverse
Littlewood-Offord theorem” of Rudelson and Vershynin [31], which tells us (roughly speaking) that one
has (1.10) whenever D, (v) = Q(g~!). This notion of least common denominator is inspired by Tao
and Vu’s introduction and development of “inverse Littlewood-Offord theory,” which is a collection of
results guided by the meta-hypothesis: “If Px ((X, v) = 0) is large then v must have structure.” We refer
the reader to the paper of Tao and Vu [44] and the survey of Nguyen and Vu [28] for more background
and history on inverse Littlewood-Offord theory and its role in random matrix theory. We may now state
our version of (1.9), which uses Da,.y(v)‘l as a proxy for P([{X,v)| < &).

Theorem 1.4. For n € N, g,t > 0 and a,y € (0,1), let v € S*! satisfy D4 (v) > Cle and
let u € S"\. Let ¢ be a subgaussian random variable, and let X € R" be a random vector whose
coordinates are i.i.d. copies of {. Then

Px ((X,v)| < & and (X, u) > 1) < Cee " + ¢=clan+t?),

where C, c > 0 depend only on vy and the distribution of {.

In fact, we need a significantly more complicated version of this result (Lemma 5.2), where the
small-ball event |(X, v)| < & is replaced with a small-ball event of the form

|f(Xl’-'~3Xn)| < &,

where f is a quadratic polynomial in variables Xi, ..., X,,. The proof of this result is carried out in
Section 5 and is an important aspect of this paper. Theorem 1.4 is stated here to illustrate the general
flavor of this result, and is not actually used in this paper. We do provide a proof in Appendix 9 for
completeness and to suggest further inquiry into inequalities of the form (1.9).

We now turn to discuss our second approximate negative dependence result, which deals with the
intersection of two different small ball events. This was originally proved in our paper [4], but is put to
a different use here. This result tells us that the events

(X,v)| <e and KX, wi)| < 1,...,KX,wp)| < 1 (1.12)
are approximately negatively correlated, where X = (Xi,..., X,) is a vector with i.i.d. subgaussian
entries and wy, . .., wy are orthonormal. That is, we prove something in the spirit of

k k
Px({|<x,v>| <epn( [ wal < 1}) < Px (14X, v)] < S)PX(

i=1

{|<X7Wl>| < 1})7

i=1

though in a more technical form.

To understand our result, again, it makes sense to consider the two events in (1.12) in isolation. Since
we have already discussed the subtle event |[(X,v)| < &, we consider the event on the right of (1.12).
Returning to the gaussian case, we note that if X has independent standard gaussian entries, then one
may compute directly that

Px (KX, w)| < L., (X, wi) | < D) =P(X1| < 1,...|Xk| < 1) < e 20, (1.13)

https://doi.org/10.1017/fmp.2023.29 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.29

8 Campos Marcelo et al.

by rotational invariance of the gaussian. Here, the generalization to other random variables is not as
subtle, and the well-known Hanson-Wright [18] inequality tells us that (1.13) holds more generally
when X has general i.i.d. subgaussian entries.

Our innovation in this line is our second “approximate negative correlation theorem,” which allows
us to control these two events simultaneously. Again, we use Da,y(v)‘l as a proxy for P(|{X,v)| < &).

Here, for ease of exposition, we state a less general version for X = (X1,...,X,) € {-1,0, 1} with
ii.d. c-lazy coordinates, meaning that P(X; = 0) > 1 — c¢. Our theorem is stated in full generality in
Section 9 (see Theorem 9.2).

Theorem 1.5. Lety € (0,1),d €N, a € (0,1), 0 < k < cjad, and & > exp(—cad). Let v € S, let
Wiy ..., wi € S9! pe orthogonal, and let W be the matrix with rows wi, ..., Wg.
IfX € {-1,0,1}4 is a 1/4-lazy random vector and Do (v) > 16/¢, then

Px (|<X, W <& and ||WX|2 < C2\/E) < Cee 1k,

where C, c1,co > 0 are constants, depending only on vy.

In this paper, we will put Theorem 1.5 to a very different use than to that in [4], where we used it to
prove a version of the following statement.

Let v € S9! be a vector on the sphere, and let H be an n X d random {-1, 0, 1}-matrix conditioned
on the event ||Hv|l, < en'/?, for some & > e~“"*. Here, d = cn and ¢ > 0 is a sufficiently small constant.
Then the probability that the rank of H is n — k is < e~<¥".,

In this paper, we use (the generalization of) Theorem 1.5 to obtain good bounds on quantities of the
form

Px (||BX|lx < en'/?),

where B is a fixed matrix with an exceptionally large eigenvalue (possibly as large as e“"), but is
otherwise pseudo-random, meaning (among other things) that the rest of the spectrum does not deviate
too much from that of a random matrix. We use Theorem 1.5 to decouple the interaction of X with the
largest eigenvector of B, from the interaction of X with the rest of B. We refer the reader to (2.10) in the
sketch in Section 2 and to Section 9 for more details.

The proof of Theorem 9.2 follows closely along the lines of the proof of Theorem 1.5 from [4],
requiring only technical modifications and adjustments. So as not to distract from the new ideas of this
paper, we have sidelined this proof to the Appendix.

Finally, we note that it may be interesting to investigate these approximate negative correlation results
in their own right, and investigate to what extent they can be sharpened.

2. Proof sketch

Here, we sketch the proof of Theorem 1.1. We begin by giving the rough “shape” of the proof, while
making a few simplifying assumptions, (2.2) and (2.3). We shall then come to discuss the substantial
new ideas of this paper in Section 2.2, where we describe the considerable lengths we must go to in
order to remove our simplifying assumptions. Indeed, if one were to only tackle these assumptions using
standard tools, one cannot hope for a bound much better than £'/3 in Theorem 1.1 (see Section 2.2.2).

2.1. The shape of the proof

Recall that A, is a (n + 1) X (n + 1) random symmetric matrix with subgaussian entries. Let
X = Xj,..., X1 be the columns of A,,41, let

V =Span{Xa, ..., Xp+1},
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and let A, be the matrix A,4; with the first row and column removed. We now use an important
observation from Rudelson and Vershynin [31] that allows for a geometric perspective on the least
singular value problem?

P(0min(Ans1) < en”?) < P(dist(X, V) < &).

Here, our first significant challenge presents itself: X and V are not independent, and thus the event
dist(X, V) < & is hard to understand directly. However, one can establish a formula for dist(X, V) that is
a rational function in the vector X with coefficients that depend only on V. This brings us to the useful
inequality* due to Vershynin [46],

P(Tmin(Ans1) < en” /%) < supPa, x ([(A'X, X) — 7| < &]|A,' X ), 2.1
reR

where we are ignoring the possibility of A,, being singular for now. We thus arrive at our main technical
focus of this paper, bounding the quantity on the right-hand side of (2.1).

We now make our two simplifying assumptions that shall allow us to give the overall shape of our
proof without any added complexity. We shall then layer-on further complexities as we discuss how to
remove these assumptions.

As afirst simplifying assumption, let us assume that the collection of X that dominates the probability
at (2.1) satisfies

14, X b ~ |4, [l 2.2)

This is not, at first blush, an unreasonable assumption to make as Ex ||A;;' X ||§ =||A;! ||£IS. Indeed, the
Hanson-Wright inequality tells us that || A, X||, is concentrated about its mean, for all reasonable A;".
However, as we will see, this concentration is not strong enough for us here.

As a second assumption, we assume that the relevant matrices A, in the right-hand side of (2.1)
satisfy

1A, s ~ cn'/?. (2.3)

This turns out to be a very delicate assumption, as we will soon see, but is not entirely unreasonable
to make for the moment: for example, we have ||A;;![lus = ©5(n!/?) with probability 1 — &. This, for
example, follows from Vershynin’s theorem [46] along with Corollary 8.4, which is based on the work
of [13].

With these assumptions, we return to (2.1) and obverse our task has reduced to proving

min Py ((A™'X, X) —r| < en'/?) < g, 2.4)

for all & > e, where we have written A~' = A>! and think of A~! as a fixed (pseudo-random) matrix.

We observe, for a general fixed matrix A~!, there is no hope in proving such an inequality: Indeed, if
A" = n71/2J where J is the all-ones matrix, then the left-hand side of Q24 is = cen 2 forall e > 0,
falling vastly short of our desired (2.4).

Thus, we need to introduce a collection of fairly strong “quasi-randomness properties” of A that hold
with, probably 1 — e=". These will ensure that A~! is sufficiently “non-structured” to make our goal
(2.4) possible. The most important and difficult of these quasi-randomness conditions is to show that
the eigenvectors v of A satisfy

Da,y(v) > e,

3Here and throughout, we understand A < B to mean that there exists an absolute constant C > 0 for which A < CB.
4In this sketch, we will be ignoring a few exponentially rare events, and so the inequalities listed here should be understood as
“up to an additive error of e=<".”
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for some appropriate @,y, where D, ,(v) is the least common denominator of v defined at (1.11).
Roughly, this means that none of the eigenvectors of A “correlate” with a rescaled copy of the integer
lattice 12", for any e " <t < 1.

To prove that these quasi-randomness properties hold with probability 1 — e™“" is a difficult task and
depends fundamentally on the ideas in our previous paper [4]. Since we don’t want these ideas to distract
from the new ideas in this paper, we have opted to carry out the details in the Appendix. With these
quasi-randomness conditions in tow, we can return to (2.4) and apply Esseen’s inequality to bound the
left-hand side of (2.4) in terms of the characteristic function ¢(6) of the random variable (A~ X, X),

/e
minPy ({A™'X, X) - r| < en'/?) < g/ lo(8)] d6.

-1/

While this maneuver has been quite successful in work on characteristic functions for (linear) sums of
independent random variables, the characteristic function of such quadratic functions has proved to be
a more elusive object. For example, even the analogue of the Littlewood-Offord theorem is not fully
understood in the quadratic case [6, 23]. Here, we appeal to our quasi-random conditions to avoid some
of the traditional difficulties: we use an application of Jensen’s inequality to decouple the quadratic form
and bound ¢(#) pointwise in terms of an average over a related collection of characteristic functions of
linear sums of independent random variables

lp(0)1* < Eylp(A™'Y;6),

where Y is a random vector with i.i.d. entries and ¢(v; 8) denotes the characteristic function of the sum
> viX;, where X; are i.i.d. distributed according to the original distribution . We can then use our
pseudo-random conditions on A to bound

$(A71Y;0)] < exp (~c6?),

for all but exponentially few Y, allowing us to show

[1/8 I6(0)] d6 < /1/8 [Eylo(A71Y:0)]]"* < /1/8 (exp (~c6?) + ) do = 0(1)

/e -1/ -1/e

and thus completing the proof, up to our simplifying assumptions.

2.2. Removing the simplifying assumptions

While this is a good story to work with, the challenge starts when we turn to remove our simplifying
assumptions (2.2), (2.3). We also note that if one only applies standard methods to remove these
assumptions, then one would get stuck at the “base case” outlined below. We start by discussing how to
remove the simplifying assumption (2.3), whose resolution governs the overall structure of the paper.

2.2.1. Removing the assumption (2.3)
What is most concerning about making the assumption ||A;,!||ys = n is that it is, in a sense, circular:
If we assume the modest-looking hypothesis E ||A~! |lys < n!/2, we would be able to deduce

-1/2

P(0min(An) < en”'1%) = P(oman (A1) > n'%/) < P(1A; Ins > n'?/e) < e,
by Markov. In other words, showing that ||A~!||ss is concentrated about n~'/2 (in the above sense)
actually implies Theorem 1.1. However, this is not as worrisome as it appears at first. Indeed, if we are

trying to prove Theorem 1.1 for (n+1) X (n+1) matrices using the above outline, we only need to control
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the Hilbert-Schmidt norm of the inverse of the minor A;,'. This suggests an inductive or (as we use) an
iterative “bootstrapping argument” to successively improve the bound. Thus, in effect, we look to prove

E “A;l ”]f[lsl(o-min(An) > eic”) < na/Z’

for successively larger @ € (0, 1]. Note, we have to cut out the event of A being singular from our
expectation, as this event has nonzero probability.

2.2.2. Base case
In the first step of our iteration, we prove a “base case” of

P(0min(An) < en™'/?) s &'t 4 e7n 2.5)
without the assumption (2.3) which is equivalent to

E ||A;1||Il{/s41(0'min(An) > e ") < '8,

To prove this “base case,” we upgrade (2.1) to

AN X, X) - 1/2
P (o-min(An+1) < sn_l/z) <Se+supP (w < Ce, ||A; s < . (2.6)
reR 1AL X1l2 &
In other words, we can intersect with the event
A, s < n'/?/e @7

at a loss of only Ce¢ in probability.

We then push through the proof outlined in Section 2.1 to obtain our initial weak bound of (2.5). For
this, we first use the Hanson-Wright inequality to give a weak version of (2.2), and then use (2.7) as a
weak version of our assumption (2.3). We note that this base step (2.5) already improves the best known
bounds on the least singular value problem for random symmetric matrices.

2.2.3. Bootstrapping

To improve on this bound, we use a “bootstrapping” lemma which, after applying it three times, allows
us to improve (2.5) to the near-optimal result

P(omin(An) < en”?) < eflog /e + 7" . (2.8)

Proving this bootstrapping lemma essentially reduces to the problem of getting good estimates on
Py (||A-1X||z < s) for  se(sn '), 2.9)

where A is a matrix with ||A7!]|,, = 67! and § € (e, cn~'/?) but is “otherwise pseudo-random.” Here,
we require two additional ingredients.

To start unpacking (2.9), we use that ||A~]|,, p=0 ~! to see that if v is a unit eigenvector corresponding
to the largest eigenvalue of A~!, then

|A'X|l, <s  impliesthat (X, v)| < &s.

While this leads to a decent first bound of O(ds) on the probability (2.9) (after using the quasi-
randomness properties of A), however, this is not enough for our purposes, and in fact, we have to use
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the additional information that X must also have small inner product with many other eigenvectors of A
(assuming s is sufficiently small). Working along these lines, we show that (2.9) is bounded above by

Px||{X,vi)| < séand |[{X,v;)| < oysforalli=2,...,n—1], (2.10)

where w; is a unit eigenvector of A corresponding to the singular value o; = 0 (A). Now, appealing
to the quasi-random properties of the eigenvectors of A~!, we may apply our approximate negative
correlation theorem (Theorem 1.5) to see that (2.10) is at most

0 (6s) exp(—cNa(-c/s,c/s)), (2.11)

where ¢ > 0 is a constant and N4 (a, b) denotes the number of eigenvalues of the matrix A in the interval
(a,b). The first O(ds) factor comes from the event |(X,v;)| < s8, and the second factor comes from
approximating

Px(l(X, w;)| < cforallis.t. so; < c) =exp (- O(Na(-c/s,c/s))). (2.12)

This bound is now sufficiently strong for our purposes, provided the spectrum of A adheres sufficiently
closely to the typical spectrum of A,. This now leads us to understand the rest of the spectrum of A,
and, in particular, the next smallest singular values o,—1, 05—2, . . ..

Now, this might seem like a step in the wrong direction, as we are now led to understand the behavior
of many singular values and not just the smallest. However, this “loss” is outweighed by the fact that
we need only to understand these eigenvalues on scales of size Q(n~'/?), which is now well understood
due to the important work of Erdés et al. [13].

These results ultimately allow us to derive sufficiently strong results on quantities of the form (2.9),
which, in turn, allow us to prove our “bootstrapping lemma.” We then use this lemma to prove the
near-optimal result

P(0min(An) < en" %) < eflog1/e +e". (2.13)

2.2.4. Removing the assumption (2.2) and the last jump to Theorem 1.1
We now turn to discuss how to remove our simplifying assumption (2.2), made above, which will allow
us to close the gap between (2.13) and Theorem 1.1.

To achieve this, we need to consider how ||A~!X||, varies about ||A~!||gs, where we are, again,
thinking of A~! = A;! as a sufficiently quasi-random matrix. Now, the Hanson-Wright inequality tells
us that, indeed, ||A~' X|| is concentrated about ||A~! ||, on a scale < [|A™" |, p- While this is certainly
useful for us, it is far from enough to prove Theorem 1. 1. For this, we need to rule out any “macroscopic”
correlation between the events

{KA™'X, X) - r| < Kel|A™"|lus} and {|[A™' X[ > K||A™" [lus} (2.14)

for all K > 0. Our first step toward understanding (2.14) is to replace the quadratic large deviation event
IA~'X|l» > K||A~"||us with a collection of linear large deviation events:

(X,w;) > Klog(i + 1),

where w,,, w,_1, . .., w] are the eigenvectors of A corresponding to singular values 0, < 0j-1 < ... <
o1, respectively, and the log(i + 1) factor should be seen as a weight function that assigns more weight
to the smaller singular values.

Interestingly, we run into a similar obstacle as before: If the “bulk” of the spectrum of A~! is
sufficiently erratic, this replacement step will be too lossy for our purposes. Thus, we are led to prove
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another result, showing that we may assume that the spectrum of A~! adheres sufficiently to the typical
spectrum of A,,. This reduces to proving

2t 0';72571 (logi)®

where the left-hand side is a statistic which measures the degree of distortion of the smallest singular
values of A,,. To prove this, we again lean on the work of Erdds et al. [13].

Thus, we have reduced the task of proving the approximate independence of the events at (2.14) to
proving the approximate independence of the collection of events

{{AT'X, X) —r| < Ke||A™ lus} and {(v;, X) > Klog(i + 1)}.

This is something, it turns out, that we can handle on the Fourier side by using a quadratic analogue of
our negative correlation inequality, Theorem 1.4. The idea, here, is to prove an Esseen-type bound of
the form

1/6

P(HAT'X, X) —t] < 6,(X,u) > 5) < 5e-~‘/ )Eez’”'"</*"x’x>+<x’“> de. (2.15)

/6

Which introduces this extra “exponential tilt” to the characteristic function. From here, one can carry
out the plan sketched in Section 2.1 with this more complicated version of Esseen, then integrate over s
to upgrade (2.13) to Theorem 1.1.

2.3. Outline of the rest of the paper

In the next short section, we introduce some key definitions, notation, and preliminaries that we use
throughout the paper. In Section 4, we establish a collection of crucial quasi-randomness properties
that hold for the random symmetric matrix A,, with probability 1 — e~2(") . We shall condition on these
events for most of the paper. In Section 5, we detail our Fourier decoupling argument and establish an
inequality of the form (2.15). This allows us to prove our new approximate negative correlation result
Lemma 5.2. In Section 6, we prepare the ground for our iterative argument by establishing (2.6), thereby
switching our focus to the study of the quadratic form (A;! X, X). In Section 7, we prove Theorem 1.2
and Theorem 1.3, which tell us that the eigenvalues of A cannot “crowd” small intervals. In Section 8§,
we establish regularity properties for the bulk of the spectrum of A~!. In Section 9, we deploy the
approximate negative correlation result (Theorem 1.5) in order to carry out the portion of the proof
sketched between (2.9) and (2.12). In Section 10, we establish our base step (2.5) and bootstrap this to
prove the near optimal bound (2.13). In the final section, Section 11, we complete the proof of our main
Theorem 1.1.

3. Key definitions and preliminaries

We first need a few notions out of the way, which are related to our paper [4] on the singularity of
random symmetric matrices.

3.1. Subgaussian and matrix definitions

Throughout, ¢ will be a mean 0, variance 1 random variable. We define the subgaussian moment of {
to be

€11y, == sup p~ (B Z1P)/P .
p>1
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A mean 0, variance 1 random variable is said to be subgaussian if || ||y, is finite. We define I to be the set
of subgaussian random variables and, for B > 0, we define I'z C I to be a subset of  with ||{]]y, < B.

For ¢ € T, define Sym ,,(¢) to be the probability space on n X n symmetric matrices A for which
(A;,j)i>; are independent and distributed according to {. Similarly, we write X ~ Col ,({) if X € R" is
a random vector whose coordinates are i.i.d. copies of £.

We shall think of the spaces {Sym,({)}, as coupled in the natural way: The matrix A, ~
Sym,,,; ({) can be sampled by first sampling A,, ~ Sym ,, (), which we think of as the principal minor
(An+1)[2,n+1]x[2,n+1]> and then generating the first row and column of A,.; by generating a random
column X ~ Col ,,(¢). In fact, it will make sense to work with a random (n + 1) X (n + 1) matrix, which
we call A, throughout. This is justified, as much of the work is done with the principal minor A,, of
A1, due to the bound (2.1) as well as Lemma 6.1.

3.2. Compressible vectors

We shall require the now-standard notions of compressible vectors, as defined by Rudelson and Vershynin
[31].

For parameters p,6 € (0, 1), we define the set of compressible vectors Comp (8, p) to be the set
of vectors in §"~! that are distance at most p from a vector supported on at most 6n coordinates.
We then define the set of incompressible vectors to be all other unit vectors, that is Incomp (6, p) :=
S"=1'\ Comp (6, p). The following basic fact about incompressible vectors from [31] will be useful
throughout:

Fact 3.1. For each &, p € (0, 1), there is a constant ¢, s € (0, 1), so that for all v € Incomp (6, p), we
have that |vj|nl/2 € [cp,ss c;ld] for at least ¢,, sn values of j.

Fact 3.1 assures us that for each incompressible vector, we can find a large subvector that is “flat.”
Using the work of Vershynin [46], we will safely be able to ignore compressible vectors. In particular,
[46, Proposition 4.2] implies the following lemma. We refer the reader to Appendix XII for details.

Lemma 3.2. For B > 0 and { € T'p, let A ~ Sym , ({). Then there exist constants p,d,c € (0, 1),
depending only on B, so that

sup P(3x € Comp (6, p), It € R: Ax = tu) < 2e™"

ueRrn
and
P(3u € Comp (6,p), It € R : Au = tu) < 2e™".
The first statement says, roughly, that A~!x is incompressible for each fixed u; the second states that
all unit eigenvectors are incompressible.

Remark 3.3 (Choice of constants, p, 6, ¢, 5). Throughout, we let p, § denote the constants guaranteed by
Lemma 3.2 and ¢,, s the corresponding constant from Fact 3.1. These constants shall appear throughout
the paper and shall always be considered as fixed.

Lemma 3.2 follows easily from [46, Proposition 4.2] with a simple net argument.

3.3. Notation

We quickly define some notation. For a random variable X, we use the notation Ex for the expectation
with respect to X and we use the notation Py analogously. For an event £, we write 1¢ or 1{€} for the
indicator function of the event £. We write E€ to be the expectation defined by E€[ -] = E[ - 1¢]. Fora
vector v € R" and J C [n], we write v for the vector whose ith coordinate is v; if i € J and 0 otherwise.
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We shall use the notation X < Y to indicate that there exists a constant C > O for which X < CY.
In a slight departure from convention, we will always allow this constant to depend on the subgaussian
constant B, if present. We shall also let our constants implicit in big-O notation to depend on B, if this
constant is relevant in the context. We hope that we have been clear as to where the subgaussian constant
is relevant, and so this convention is to just reduce added clutter.

4. Quasi-randomness properties

In this technical section, we define a list of “quasi-random” properties of A, that hold with probability
1 — ¢~ This probability is large enough that we can assume that these properties hold for all the
principal minors of A,41. Showing that several of these quasi-random properties hold with probability
1 — =2 will prove to be a challenging task, and our proof will depend deeply on ideas from our
previous paper [4], on the singularity probability of a random symmetric matrix. So as not to distract
from the new ideas in this paper, we do most of this work in the Appendix.

4.1. Defining the properties

It will be convenient to assume throughout that every minor of A, is invertible, and so we will perturb
the matrix slightly so that we may assume this. If we add to A, an independent random symmetric
matrix whose upper triangular entries are independent gaussian random variables with mean 0 and
variance n~", then with probability 1 — e~ the singular values of A,;; move by at most, say, n~"3,
Further, after adding this random gaussian matrix, every minor of the resulting matrix is invertible with
probability 1. Thus, we will assume without loss of generality throughout that every minor of A, is
invertible.

In what follows, we let A = A,, ~ Sym ,,({) and let X ~ Col ,,(¢) be a random vector, independent of
A. Our first quasi-random property is standard from the concentration of the operator norm of a random
symmetric matrix. We define £ by

& = {llAllop < 4n}. (4.1)

For the next property, we need a definition. Let X, X’ ~ Col ,,(¢), and define the random vector in
R"as X := X; — X}, where J C [n] is a u-random subset, that is, for each j € [n], we have j € J
independently with probability u. The reason behind this definition is slightly opaque at present, but
will be clear in the context of Lemma 5.2 in Section 5. Until we get there, it is reasonable to think of
X as being essentially X; in particular, it is a random vector with i.i.d. subgaussian entries with mean 0
and variance p. We now define &, to be the event in A defined by

&= {P}; (A"f/HA’l)?IIz € Comp ((5,p)) < e*Q"} . 42)

We remind the reader that Comp (8, p) is defined in Section 3.2, and 6, p € (0, 1) are constants, fixed
throughout the paper, and chosen according to Lemma 3.2. In the (rare) case that X = 0, we interpret
Pg(A™'X/||A™' X2 € Comp (6,p)) = 1.

Recalling the least common denominator defined at (1.11), we now define the event &3 by

& ={Dq,y(u) > " for every unit eigenvector u of A}. 4.3)

The next condition tells us that the random vector A™'X is typically unstructured. We will need a
slightly stronger notion of structure than just looking at the LCD, in that, we will need all sufficiently
large subvectors to be unstructured. For u € (0, 1), define the subvector least common denominator, as

DAQ,%#(V) = min ~ Dg i/lvell) -
Ic[n]
>(1-2w)n
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We note that this is closely related to the notion of “regularized least common denominator” introduced
by Vershynin in [46]. _ _

Now, if we define the random vector v = v(X) := A~'X, then we define &, to be the event that A
satisfies

E4={Pg (Dayyu (v) <) <7} (4.4)

As is the case for &, under the event that X = 0, we interpret ]P’f(DAa’”, (v) <e“™) =1.
We now define our main quasi-randomness event £ to be the intersection of these events:

E=ENENENE,. 4.5)

The following lemma essentially allows us to assume that £ holds in what follows.

Lemma 4.1. For B > 0, { € T'p, and all sufficiently small a,y,u € (0,1), there exist constants
c2,c3,c4 € (0,1) appearing in (4.2), (4.3), and (4.4) so that

PA(EC) < 279, (4.6)

Remark 4.2 (Choice of constants, «@,7y, u). We take a,y € (0,1) to be sufficiently small so that
Lemma 4.1 holds. For u, we will choose it to be sufficiently small so that (1) Lemma 4.1 holds; (2)
we have u € (0,271); and so that (3) u > 0 is small enough to guarantee that every set I C [n] with
[I] = (1 — 2u)n satisfies

)
Wl < ¢, slwrll, (4.7)

for every w € Incomp (68, p). This is possible by Fact 3.1. These constants «, y, u will appear throughout
the paper and will always be thought of as fixed according to this choice.

4.2. Statement of our master quasi-randomness theorem and the deduction of Lemma 4.1

We will deduce Lemma 4.1 from a “master quasi-randomness theorem” together with a handful of
now-standard results in the area.
For the purposes of the following sections, we shall informally consider a vector as “structured” if

Dy ypu(v) <e",

where ¢y € (0, 1) is a small constant, to be chosen shortly. Thus, it makes sense to define the set of
“structured directions” on the sphere

=S4, = v eSS i Dy u(v) < e} (4.8)

We now introduce our essential quasi-randomness measure of a random matrix. For { € T,
A ~ Sym ,({), and a given vector w € R", define

gn(w) = gn(wia,y, 1) :=Pa (Iv € T and 3s,1 € [-4Vn, 4vn] : Av = sv +1tw) 4.9)
and set

qn = qn(@,y,p) = sup qp(w). (4.10)

wesn-l

We now state our “master quasi-randomness theorem,” from which we deduce Lemma 4.1.
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Theorem 4.3 (Master quasi-randomness theorem). For B > 0 and { € D'p, there exist constants
a,y, U, cs,c € (0,1) depending only on B so that

qn(a,y,p) < 2e™".

The proof of Theorem 4.3 is quite similar to the main theorem of [4], albeit with a few technical
adaptations, and is proved in the Appendix. Note that ¢, (a, y, 1) is monotone decreasing as «, y, and u
decrease. As such, Theorem 4.3 implies that its conclusion holds for all sufficiently small «, y, u as well.

We now prove that our pseudo-random event £ = £; N &, N E; N E, holds with probability 1 — e

Proof of Lemma 4.1. The event £;: From [15], we may deduce’ the following concentration bound
P(|Allop > 3 +1)Vn) < e, @.11)

which holds® for all ¢ > 0. Thus, by (4.11), the event £, at (4.1) fails with probability < )
The event £: By Lemma 3.2, there is a ¢ > 0 so that for each u # 0, we have

Pa(A™'u/||A™"ull € Comp (6,p)) < ™.
Applying Markov’s inequality shows

P, (Pg (A*l)?/nfrlin2 € Comp (5, p), X # 0) > e*C”/z) <en?,

and so the event in (4.2) fails with probability at most O (6‘9(”)), under the event X # 0. By Theorem
3.1.1, in [47], we have that

Pz (X =0) < e 2, (4.12)

Choosing ¢, small enough shows an exponential bound on P(£5).
The event E3: If D, ,,(u) < e", for an u an eigenvector Au = Av, we have that

Da,y,u(“) < Da,y(“) < e,

where the first inequality is immediate from the definition. Now, note that if £ holds, then 1 €

[—4+/n, 4+/n], and so
P(ES) < P(Ju € =,A € [-4vVn, 4vn] : Au = Au) + P(E]) < g,(0) + e 2,
where the first inequality holds if we choose ¢3 < ¢x. We now apply Theorem 4.3 to see ¢, (0) < g, <

e 2 yielding the desired result. N N
The event £4: Note first that, by (4.12), we may assume X # 0. For a fixed instance of X # 0, we have

A

P, (Da,y,# (A—IX/||X||2) < ec“") <PA(BveX:Av=X/IXIL) < gn (X/IIX]L) . (4.13)

which is at most (") by Theorem 4.3. Here, the first inequality holds when ¢4 < cx.
We now write v = A~ X/|| X ||, and apply Markov’s inequality

P(&;) =Pa (Py (DA(,,%,I(V) <e“) 2 e ) < ec“"EX]P’A(DAQ,%ﬂ(V) < e%n) = e R,

STechnically, the result of [15] is sharper and for random matrices whose entries are symmetric random variables. However,
(4.11) follows from [15] along with a “symmetrization trick.”

SWe use this bound rather than the more standard concentration bounds for the norm of subgaussian random matrices for
aesthetic purposes: It allows us to use the absolute constant “4” in (4.1).
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where the last line follows when c4 is taken small relative to the implicit constant in the bound on the
right-hand side of (4.13).

Since we have shown that each of &, &, &3, & holds with probability 1 — e~ the intersection
fails with exponentially small probability. O

5. Decoupling quadratic forms

In this section, we will prove our Esseen-type inequality that will allow us to deal with a small ball event
and a large deviation event simultaneously.

Lemma 5.1. For B > 0, let { € I'g and X ~ Col ,,({). Let M be an n X n symmetric matrix, u € R",
teR, and s, = 0. Then

1/6 _
P((MX,X) —t] < 6,(X,u) >s) < 5e*/ |IE HTIOMX XN+ X)) g (5.1
-1/6

We will then bound the integrand (our so-called “titled” characteristic function) with a decoupling
maneuver, somewhat similar to a “van der Corput trick” in classical Fourier analysis. This amounts
to a clever application of Cauchy-Schwarz, inspired by Kwan and Sauermann’s work on Costello’s
conjecture [20] (a similar technique appears in [1] and [25]). We shall then be able to mix in our quasi-
random conditions on our matrix A to ultimately obtain Lemma 5.2, which gives us a rather tractable
bound on the left-hand side of (5.1). To state this lemma, let us recall that £ (defined at (4.5)) is the set
of symmetric matrices satisfying the quasi-randomness conditions in the previous section, Section 4.
Also recall that the constant u € (0,2719) is defined in Section 4 so that Lemma 4.1 holds and is treated
as a fixed constant throughout this paper.

Lemma 5.2. For B > 0, let { € T'g, X ~ Col ,({) and let A be a real symmetric n X n matrix with
A € & and set uy = omax (A™Y). Also let s > 0,6 > e " and u € S""'. Then

1/6
Py (|<A—1X, X) — 1] < o, (X, u) > s) < 6e_S/ 1(6)'12 do + =@ |
~1/s

where
1(0) := Ey x, x;, exp (<(X +X')y u) — O AT X - X), 115

X’ ~ Col ,,(£) is independent of X, and J C [n] is a u-random set. Here, ¢ > 0 is a constant depending
only on B.

While the definition of 7(6) (and therefore the conclusion of the lemma) is a bit mysterious at this
point, we assure the reader that this is a step in the right direction.

All works bounding the singularity probability for random symmetric matrices contain a related
decoupling step [3, 4, 5, 16, 25, 46], starting with Costello et al.’s breakthrough [7], building off of
Costello’s earlier work [6] on anticoncentration of bilinear and quadratic forms. A subtle difference in
the decoupling approach from [20] used here is that the quadratic form is decoupled after bounding a
small ball probability in terms of the integral of a characteristic function rather than on the probability
itself; the effect of this approach is that we do not lose a power of ¢, but only lose by a square root
“under the integral” on the integrand 7(6).

5.1. Proofs

We now dive in and prove our Esseen-type inequality. For this, we shall appeal to the classical Esseen
inequality [14]: If Z is a random variable taking values in R with characteristic function ¢z () :=
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E, 2792 then for all 7 € R, we have

1/6
Pe(z-<0) <5 [ lpz0)lds
-1/6
We shall also use the following basic fact about subgaussian random vectors (see, for example, [47,

Proposition 2.6.1]): If £ € T'g and Y ~ Col ,(¢), then for every vector u € R", we have

EyeY" < exp(2B2|ull?). (5.2)

Proof of Lemma 5.1. Since 1{x > s} < ¢*™, we may bound
Py (KMX,X) — 1] < 6,(X,u) > s) < eE |1{|{MX,X) — 1] < 6}e<X’“>] . (5.3)
Define the random variable Y € R" by
P(Y € U) = (EeX*) 1E[15e X, (5.4)

for all open U C R”". Note that the expectation Ex e X-*’ is finite by (5.2). We now use this definition to
rewrite the expectation on the right-hand side of (5.3),

By |1{/(MX, X) -] < 5}e<X’">] - (Ee<x’”>) Py ((MY,Y) —1] < 8) .

Thus, we may apply Esseen’s lemma to the random variable Y to obtain

1/6 )
Py ((MY.,Y)—1] <) < 5/ |Ey &> 10MY X)) qg
-1/6

By the definition of Y, we have

By e270MY.Y) _ (Ex e<x,u>)—1 E o270 (MX X )+ (Xu)

completing the lemma. O

To control the integral on the right-hand side of Lemma 5.1, we will appeal to the following decoupling
lemma, which is adapted from Lemma 3.3 from [20].

Lemma 5.3 (Decoupling with an exponential tilt). Let { € T, let X, X’ ~ Col ,,({) be independent, and
let J U I = [n] be a partition of [n]. Let M be an n X n symmetric matrix and let u € R". Then

g (
< EXJ,X‘/] e

|Ex P2RIO(MX X )+(X u)

(X+X")u) . ‘Ex, GATIOM (X=X"); X[ +2(X )

Proof. After partitioning the coordinates of X according to J and writing Ex = Ex,Ex,, we apply
Jensen’s inequality to obtain

E = ‘Ex P20 (MX X )+ (X u) 2 _ ’EX, Ey, 2RO (MX X )+(X ) 2 < Ex, )Ex, P20 (MX X )+ (X u) 2_

We now expand the square |EXJ e2mIOM X, X)+(Xu) | 2 g

EXJ,X} g2ﬂi9<M(X[+XJ)9<X[+Xj)>+<(X[+XJ),M>—27Ti9<M(X1+X}),(XI+X})>+<(XI+X‘/I)’M>
= Ex,,x} eATIOM (Xy=X). X1 )+ (X +X ) up+2(Xp ) +27i (M X 1 Xy )-27i (M X, ,x”’
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where we used the fact that M is symmetric. Thus, swapping expectations yields

E < ]EXJ,X.,]EXI e4ﬂi9<M(XJ—X}),X] >+<XJ+X},u>+2<X[,M>+27Ti<MXJ,XJ>-2ﬂ'i<MX},X}>

< EXJ,X} |]EXI e47ri0<M(X_/—X}),X1 >+<XJ+X},M>+2(X[,M>+27Ti<MXJ,XJ >—27Ti<MX},X}>

o Xr+X5u) Ex, eHTIOM (X=X")y X1 )+2(X1,u) ,

=Ex, x;

as desired. Here, we could swap expectations, since all expectations are finite, due to the subgaussian
assumption on ¢. |

We need a basic bound that will be useful for bounding our tilted characteristic function. This bound
appears in the proof of Theorem 6.3 in Vershynin’s paper [46].

Fact 5.4. For B > 0, let { € ', let {’ be an independent copy of £, and set & = ¢ — ¢’. Then for all
a € R", we have

l_[Eg |cos(2réaj)| < exp (—c min ||ra||%) ,
. re[l,c!]

J
where ¢ > 0 depends only on B.

A simple symmetrization trick along with Cauchy-Schwarz will allow us to prove a similar bound
for the tilted characteristic function.

Lemma 5.5. For B > 0, let € T'g, X ~ Col ,({) and let u,v € R". Then

]EXeZHi(X,v)+(X,u)

<exp(—c min ||rv||%+c1||u||§), (5.5)
rell,c!]

where ¢ € (0, 1) depends only on B.

Proof. Let ¢’ be an independent copy of ¢, and note that

|E§ 627ri§Vj+§uj|2 = ]E{ Vg ezﬂi(g—{')\/j+(§+{')uj = Eév e [e({+§’)uj COS(27T(§ - é’l)vj)] .
Let X = ()Z)l.":l, Y = (Y:)2, denote vectors with i.i.d. coordinates distributed as ¢ := ¢ - " and { + ¢,
respectively. We have

1/2

. 2 > _ S W12
Ex ™ XX ¢ g e l_[cos(Zanvj) < (Ei;ez(Y’”)) (1_[ Eflcos(anvj)l) , (5.6)
J J

where we have applied the Cauchy-Schwarz inequality along with the bound | cos(x)|?> < |cos(x)]
to obtain the last inequality. By (5.2), the first expectation on the right-hand side of (5.6) is at most
exp(0(||u||§)). Applying Fact 5.4 completes the lemma. O

5.2. Quasi-random properties for triples (J, Xj, X})

We now prepare for the proof of Lemma 5.2 by introducing a quasi-randomness notion on triples
J, Xy, X;). Here, J C [n] and X, X’ € R”". For this, we fix an n X n real symmetric matrix A € £ and
define the event F = F(A) as the intersection of the events Fi, F», F3, and F4, which are defined as
follows. Given a triple (J, X;, X7), we write X:=X,- X.
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Define events F1, F», F3(A) by

Fr={J] € [un/2,2un]} (5.7)
Fo = {IX|bn~ "2 € [e,c7'} (5.8)
F3(A) = {A"'X/|A7'X||, € Incomp (5, p)} . (5.9)

Finally, we write v = v(X) := A"'X and I := [n] \ J and then define F4(A) by

Fa(A) = {DM (V—’) > eC"} . (5.10)
vl

We now define F(A) := F; N F, N F3(A) N F4(A) and prove the following basic lemma that will
allow us to essentially assume that (5.7),(5.8),(5.9),(5.10) hold in all that follows. We recall that the
constants 6, p, i, @,y were chosen in Lemmas 3.2 and 4.1 as a function of the subgaussian moment B.
Thus, the only new parameter in JF is the constant c¢ in lines (5.8) and (5.10).

Lemma 5.6. For B > 0, let{ € ', let X, X’ ~ Col () be independent, and let J C [n] be a u-random
subset. Let A be an n X n real symmetric matrix with A € £. We may choose the constant ¢ € (0, 1)
appearing in (5.8) and (5.10) as a function of B and u so that

Pyx,x,(F) se .

Proof. For Fi, we use Hoeffding’s inequality to see P(F}) < e 2 To bound P(F5), we note that
the entries of X are independent, subgaussian, and have variance 2y, and so X /(+\/2u) has i.i.d. entries

with mean zero, variance 1 and subgaussian moment bounded by B/+/2u. Thus, from Theorem 3.1.1 in
[47], we have

B([1Xll ~ v2nul > 1) < exp(~cur®/B*).

For F3(A), F4(A), recall that A € £ means that (4.2) and (4.4) hold, thus exponential bounds on
P(F5) and P(Fy) follow from Markov’s inequality. O

5.3. Proof of Lemma 5.2
We now prove Lemma 5.2 by applying the previous three lemmas in sequence.

Proof of Lemma 5.2. Let § > e~“!"", where we will choose ¢; > 0 to be sufficiently small later in the
proof. Apply Lemma 5.1 to write

/6 L (A”x x)
Py (|(A’1X,X)—t|<6y1,(X,u) >s) s(se*/ By 20w X0 4g (5.11)

-1/6

where we recall that u; = oyax (A™!). We now look to apply our decoupling lemma, Lemma 5.3. Let J
be a y-random subset of [n], define I := [n] \ J, and let X’ be an independent copy of X. By Lemma
5.3, we have

~1
H1

L (ATX x) jg( A X
'EX e2ﬂ10T+<X’u> 347”6< X’XI>+2<XI’M> R (512)

< E]EX_/,X,/ e<(X+X,)J’u> . 'EX]

where we recall that X = (X — X’);.
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We first consider the contribution to the expectation on the right-hand side of (5.12) from triples
J, XJ,X}) ¢ F. For this, let Y be a random vector, such that Y; = X; + X;., ifjeJ,andY; = 2X;, if
j € 1. Applying the triangle inequality, we have ‘

e4ni9<A;ll’? X0 )+2(Xpu)

FC X+X')s.u Fe X+X")y.u 2(X1,u
E],XJ,X} €<( b ’EXI < ]EJ,XJ,X} e« v >IE’XI e K .e)

S ET e,
By Cauchy-Schwarz, (5.2), and Lemma 5.6, we have
C 1/2 .
B e < By [0 TRy, x (F)E g €00 (5.13)

We now consider the contribution to the expectation on the right-hand side of (5.12) from triples
(J,X;,X}) € F. For this, let w = w(X) := % and assume (J, X;, X}) € F. By Lemma 5.5, we
have

|EX1 €4m’9<X1,w>+<X1,2u>| < exp (—C minl ||2r9W1||% ) (5.14)
re[l,c71]

Note that ||[w;|l» < ||X|l2 < ¢!/, by the definition of 1| = omax(A™!) and line (5.8) in the definition
of F(A).

Now, from property (5.10) in that definition and by the hypothesis 6 > e™“'"*, we may choose c¢; > 0
small enough so that

Day(wi/lwrllk) = 2¢720' 218 > 2¢7 wylla /6.

By the definition of the least common denominator, for |#| < 1/§, we have

2r|lwrllz -

> min <79||w1||2,\/a|1|} . (5.15)

min] ||2r9W]||T =
'

min
rell,c [1,e71]

wi
re ||WI||2

T

So, for |0] < 1/68, we use (5.15) in (5.14) to bound the right-hand side of (5.12) as

F X+X")y.u 47i 0w, X)) +2(X1,u
Ej,x,,x;e“ ¥ >-|Ex,e (W, X1 )+2(Xp )

F ((X+X")s.u) ,—c min{y? 02 ||wy |13, I}
< EJ,X,,X; e e 2 .

(5.16)

We now use that (J, X, X)) € F to see that w € Incomp (0, p) and that we chose u to be sufficiently
small, compared to p, J, to guarantee that

Wl < Cliwrll,
for some C > 0 (see (4.7)). Thus, the right-hand side of (5.16) is

F (X+X)g.u) ,~c'O*|[w]3 | ,—Q(n)
< EJ’XJ,X-,,e e 2 +e .

Combining this with (5.16), (5.12) obtains the desired bound in the case (J, X, X)) € F. Combining
this with (5.13) completes the proof of Lemma 5.2. O
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6. Preparation for the “base step” of the iteration
As we mentioned at (2.1), Vershynin [46] gave a natural way of bounding the least singular value of a

random symmetric matrix:

P(min(Ans1) < en” V%) < supPa, x ([(A;'X, X) — 7| < &]|A,' X|)

reR

where we recall that A,, is obtained from A,;; by deleting its first row and column. The main goal
of this section is to prove the following lemma which tells us that we may intersect with the event
Omin(Ay) = en~'/2 in the probability on the right-hand side, at a loss of Ce. This will be crucial for
the base step in our iteration, since the bound we obtain on P(omin(An+1) < en YV 2) deteriorates as
Omin(A,) decreases.

Lemma 6.1. For B > 0, { € I'g, let A,41 ~ Sym . 1({) and let X ~ Col ,({). Then

P (Gmin(An+1) < Sn_l/z) S e+sup P < Ce,omin(Ap) > en™ 2| + 7

(I(AEIX,)O -7l
reR

147" X 12
for all € > 0. Here, C > 0 depends only on B.

We deduce Lemma 6.1 from a geometric form of the lemma, which we state here. Let X; denote the
Jth column of A,,,1, and let

H; =Span{Xy,..., X1, Xj41,..., Xpe1} and d;j(Apy) = dist(X;, Hj).

We shall prove the following “geometric” version of Lemma 6.1.

Lemma 6.2. For B> 0, { € I'g, let Apy1 ~ Sym . ({). Then for all € > 0,
P(0min(An+1) < ‘9”_1/2) Se+P (dl(An+l) < Ce and opin(An) > 3”_1/2) +e 8 >

where C > 0 depends only on B.

The deduction of Lemma 6.1 from Lemma 6.2 is straightforward given the ideas from [46]; so we
turn to discuss the proof of Lemma 6.2.

For this, we want to intersect the event omin(Ans1) < en~'/? with the event omin(A,) > en” /2,
where we understand A, to be the principal minor Ai’:l) of A,.+1. To do this, we first consider the
related “pathological” event

P = {o-min(Afle) < en”'/? for at least cn values of i € [n + 1]}
and then split our probability of interest into the sum
P(0min(Anst) < 1”2 0V P) + P(0min (A1) < en” 2 0P, ©.1)

and work with each term separately. Here, ¢ = ¢, 5/2, where c, s is the constant defined in Section 4.
We deal with the second term on the right-hand side by showing

P(O—min(AnH) < ‘9”71/2 N Pc) < P(dl(AnH) < € and U-min(An) 2 Snil/Z) + eig(n) P (62)

by a straightforward argument in a manner similar to Rudelson and Vershynin in [31]. We then deal
with the first term on the right-hand side of (6.1) by showing that

P(0min(Ans1) < en % n P)<se+ e~ (6.3)

Putting these two inequalities together then implies Lemma 6.2.
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6.1. Proof of the inequality at (6.2)
Here, we prove (6.2) in the following form.
Lemma 6.3. For B > 0, { € I'g, let Apy1 ~ Sym . ({). Then, for all € > 0, we have
P(0min(Ans1) < en 2N PC) < P(di(Ans1) S € and omin(A,) > sn_l/z) e R
For this, we use a basic but important fact which is at the heart of the geometric approach of Rudelson
and Vershynin (see, e.g. [31, Lemma 3.5]).

Fact 6.4. Let M be an n X n matrix and v be a unit vector satisfying ||Mv||y = opin(M). Then
Omin(M) > |vj|-d;(M) foreach j € [n].

We are now ready to prove the inequality mentioned at (6.2).

Proof of Lemma 6.3. We rule out another pathological event: Let v denote a unit eigenvector corre-
sponding to the least singular value of A,;, and let C denote the event that v is (p, §)-compressible.”
By Lemma 3.2, P(C) < e (", Thus

P(0min(Ans1) < en”Y% and P€) < P(0min(Aps1) < en” Y% and C€ N PC) + ¢~ (6.4)

We now look to bound this event in terms of the distance of the column X; to the subspace Hj, in the
style of [31]. For this, we define

S:={j : d;(Ans1) <&/cp.s and omin(AY) ) > ™12},

n+l

We now claim
{Tmin(Ans1) < en'2}NCENPC = |S] > cp.on/2. (6.5)

To see this, fix a matrix A satisfying the left-hand side of (6.5) and let v be an eigenvector corresponding
to the least singular value. Now, since v is not compressible, there are > ¢, sn values of j € [n+ 1]
for which |v;| > ¢, sn~ /2. Thus, Fact 6.4 immediately tells us there are > > cp,sn values of j € [n+1]
for which d;(A) < &/cp,s. Finally, by definition of P€, at most ¢, sn/2 of these values of j satisty
i1 (AD)) < en™12, and so (6.5) is proved.

We now use (6.5) along with Markov’s inequality to bound

2

Cp.s

P(Omin(Ans1) < en~ /% and C¢ N PC) < P(|S] > > cponf2) < nE|S|. (6.6)

Now, by definition of S and symmetry of the coordinates, we have

EIS| = 3 P(dj(Ant) < 8/cp s, omin(AL) > en'?)
J

(dl(An+1) S/Cp Ss U-mm(A,H,]) _1/2) .

Putting this together with (6.6) and (6.5) finishes the proof. ]

6.2. Proof of the inequality at (6.3)

We now prove the inequality discussed at (6.3) in the following form.
7See Section 3 for definition and Section 4 for choice of &, p.
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Lemma 6.5. For B> 0, { € I'g, let Ay ~ Sym,, .1 ({). Then, for all € > 0, we have
P (o-min(A,,H) <en'? and P) <e+e W, 6.7)

For the proof of this lemma, we will need a few results from the random matrix literature. The first
such result is a more sophisticated version of Lemma 3.2, which tells us that the mass of the eigenvectors
of A does not “localize” on a set of coordinates of size o(n). The theorem we need, due to Rudelson and
Vershynin (Theorem 1.5 in [35]), tells us that the mass of the eigenvectors of our random matrix does
not “localize” on a set of coordinates of size (1 — ¢)n, for any fixed ¢ > 0. We state this result in a way
to match our application.

Theorem 6.6. For B > 0, { € I'p, let A ~ Sym, ({) and let v denote the unit eigenvector of A
corresponding to the least singular value of A. Then there exists co > 0, such that for all sufficiently
small ¢y > 0, we have

P(|v;| > (c2¢1)%n7 Y2 for at least (1 — ¢)n values of j)z1-e ",

for n sufficiently large.

We also require an elementary, but extremely useful, fact from linear algebra. This fact is a key step
in the work of Nguyen et al. on eigenvalue repulsion in random matrices (see [24, Section 4]); we state
it here in a form best suited for our application.

Fact 6.7. Let M be an n X n real symmetric matrix, and let A be an eigenvalue of M with corresponding
unit eigenvector u. Let j € [n], and let A’ be an eigenvector of the minor M /) with corresponding unit
eigenvector v. Then

[, XY < 1A= 21/ luj,

where X /) is the jth column of M with the jth entry removed.
Proof. Without loss of generality, take j = n and express u = (w, u,,), where w € R"~!'. Then we have
(M™ — ADw + X ™y, = 0. Multiplying on the left by v/ yields

ltn (v, XY = |4 = V[[{v, w)| <[4 =] o

We shall also need the inverse Littlewood-Offord theorem of Rudelson and Vershynin [31], which
we have stated here in simplified form. Recall that D, (v) is the least common denominator of the
vector v, as defined at (1.11).

Theorem 6.8. Forn € N, B> 0, y,a € (0,1), and & > 0, let v € S"! satisfy Do (v) > ce™ and let
X ~ Col (&), where { € I'g. Then

P((X,v)| &) S e+e €.

Here, ¢ > 0 depends only on B and vy.
We are now in a position to prove Lemma 6.5.

Proof of Lemma 6.5. Let A be an instance of our random matrix, and let v be the unit eigenvector
corresponding to the least singular value of A. Let w; = w(AU)) denote a unit eigenvector of A
corresponding to the least singular value of A/),

We introduce two “quasi-randomness” events Q and A that will hold with probability 1 — ¢,
Indeed, define

Qj={Da,y(w;) > e?"}forall j € [n+1] and set Q = m Q;.
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Here, @, vy, ¢3 are chosen according to Lemma 4.1, which tells us that P(Q¢) < e~ Define
S1={j: o-n(A(+1) <en 2} and S, ={j: vl > (cc2/2)0n7 1%},

Note that P holds exactly when |S;| > c¢n. Let A be the “non-localization” event that |S»| > (1 —c¢/2)n.
By Theorem 6.6, we have P(A¢) < ¢ 2" Here, ¢/2 = cp,5/4. Now, if we let X ) denote the jth
column of A with the jth entry removed, we define

T={j:w;, XY < Cs},
where C =27 /(c5¢)®. We now claim
{omin(A) < en P} NP N A= |T| > cn/2. (6.8)

To see this, first note that if P N.4 holds, then |S1 N S2| > cn/2. Also, for each j € 1N S,, we may apply
Fact 6.7 to see that |(w],X(1)>| Ce since j is such that orin (AY)) < en™/? and oin(A) < en™'/2.
This proves (6.8).

To finish the proof of Lemma 6.5, we define the random variable

R=n"3"1 (|<wj,x<f>>| < Ceand Q,-) ,
J
and observe that P(omin(Ans1) < en” 2 N P) is at most

P(0min(Ans1) < en” 2 and AN QN P) +e 2 < P(R > c/4) + e 2.

We now apply Markov and expand the definition of R to bound

P(R>c/4) sn”! ZEA(j)IPX(j) (|<Wj,X(j)>| < Cen Qj) <e+e
j n+

where the last inequality follows from the fact that X/) is independent of the events Q; and w, and
therefore we may put the property Q; to use by applying the inverse Littlewood-Offord theorem of
Rudelson and Vershynin, Theorem 6.8. O

6.3. Proofs of Lemmas 6.2 and 6.1
All that remains is to put the pieces together and prove Lemmas 6.2 and 6.1.

Proof of Lemma 6.2. As we saw at (6.1), we simply express P(omin(Ans1) < en”1/?) as
P(0min(Ans1) < en”'/? and P) + B(0in (Ane1) < en”'/% and PO),

and then apply Lemma 6.5 to the first term and Lemma 6.3 to the second term. O

Proof of Lemma 6.1. If we set aj,; to be the first entry of A = A1, then, by [46, Proposition 5.1], we
have that

(A'X, X) — a1

di(Aps1) =
1+ ||A‘1X||§

Additionally, by [46, Proposition 8.2], we have [|[A™'X||, > 1/15 with probability at least 1 — e~
Replacing a;,; with r and taking a supremum completes the proof of Lemma 6.1. O

https://doi.org/10.1017/fmp.2023.29 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.29

Forum of Mathematics, Pi 27

7. Eigenvalue crowding (and the proofs of Theorems 1.2 and 1.3)

The main purpose of this section is to prove the following theorem, which gives an upper bound on the

probability that k > 2 eigenvalues of a random matrix fall in an interval of length €. The case € = 0 of

this theorem tells us that the probability that a random symmetric matrix has simple spectrum (that is,

has no repeated eigenvalue) is 1 —e (") which is sharp and confirms a conjecture of Nguyen et al. [24].
Given an n X n real symmetric matrix M, we let 1; (M) > ... > 1,(M) denote its eigenvalues.

Theorem 7.1. For B > 0, { € I'p, let Ay ~ Sym . ({). Then for each j < cn and all € > 0, we have

kmax P(|Ak+j (An) — A (Ap)| < en %) < (Ce)! +2¢7°",
<n—j

where C, c > 0 are constants depending on B.

We suspect that the bound in Lemma 1.3 is actually far from the truth, fore > e™“" and j > 1. In
fact, one expects quadratic dependence on j in the exponent of . This type of dependence was recently
confirmed by Nguyen [27] for & > ™"

For the proof of Lemma 1.3, we remind the reader that if u € R" N Incomp (p, §), then at least c,, sn

coordinates of u have absolute value at least cp,(;n_l/ 2,
In what follows, for an n X n symmetric matrix A, we use the notation AUs-ir) ¢ refer to the minor
of A for which the rows and columns indexed by iy, .. ., i, have been deleted. We also use the notation

Agxr to refer to the |S| X |T'| submatrix of A defined by (A; j)ies,jer-
The following fact contains the key linear algebra required for the proof of Theorem 1.3.

Fact7.2. For 1 < k+ j < n, let A be an n X n symmetric matrix for which
[kt (A) = A (A)] < en” "2,

Let (i1,...,i;) € [n]/ be such that iy, ...,i; are distinct. Then there exist unit vectors w'", ... w(¥)
for which

WX,y < (en™2) - (1w,

where X, € R"™" is the i, th column of A with coordinates indexed by i1, ..., removed. That is,
X, = A\ fa,....ip yx{ir) and w() is a unit eigenvector corresponding to Ay (A1),
Proof. For (iy,...,i;) € [n]/, define the matrices Mo, M1, . .. ,M; by setting M, = Alir) for

r=1,...,jand then My := A. Now if
A (A) = A (A)] < en™'12,
then Cauchy’s interlacing theorem implies
|k (M,) = Ak (My_1)| < en™"72,

forallr =1,...,j. Solet w() denote a unit eigenvector of M, corresponding to eigenvalue Ay (M,.).
Thus, by Fact 6.7, we see that

W X)) < (en™2) - (1/ w0,

forr =1,...,j, where X, € R"" is the i,th column of M,_;, with the diagonal entry removed. In
other words, X, € R"™" is the i,.th column of A with coordinates indexed by iy, ...,i, removed. This
completes the proof of Fact 7.2. O

Proof of Theorem 1.5. Note, we may assume that € > e “"; the general case follows by taking ¢
sufficiently small. Now, define A to be the event that all unit eigenvectors v of all (:’) of the minors
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.....

Lemma 4.1. Note that by Lemmas 4.1 and 3. 2, we have

J
P(A°) < (Z l)e_g(") <n (ﬂ) e 8 < pmen
J J

by taking ¢ small enough, so that jlog(en/j) < cn is smaller than the Q(n) term.

With Fact 7.2 in mind, we define the event, &;, . ijs for each (i1,...,i;) € [n]/, i, distinct, to be the
event that
w™, X)) < gfc,s forallre[j],
where X, € R"™" is the i, th column of A with coordinates indexed by iy, . . ., i, removed and w) isa
unit eigenvector corresponding to g (A1),

If A holds, then each w(" has at least ¢p,sn coordinates with absolute value at least cp,(;n‘] /2 Thus,
if additionally we have

ke (An) = A (Ap)| < en”'/2.

Fact 7.2 tells us that &, __;; occurs for at least (cp,(sn/2)f tuples (i1, ...,i}).
Define N to be the number of indices (iy, . . .,7;) for which &; __;; occurs, and note
P([Aksj(An) — A (An)] < en”'1?) <P(N > (cp,on/2)7 and A) + O(e™") (7.1)
2 J
< (—) P(&r,.. in A) + 0(€_Cn), (7.2)
Cp,s

where, for the second inequality, we applied Markov’s inequality and used the symmetry of the events

Thus, we need only show that there exists C > 0, such that P(&;,

;i NA) < (Ce). To use
independence, we replace each of w() with the worst case vector, under A

P(&r,..,;NA) < max Px,,..x, ({(wr, Xi)| < &/cp, s forallr € [j]) (7.3)
Wiseees W;iiD g,y (W) >e3"
| | J
< Wi, ..., n}xaf(wz)>e"2" PX, [{wr, X < S/Cp 6) (Ce)’, 74

where the first inequality follows from the independence of the vectors {X, },<; and the last inequality
follows from the fact that D4, (w,) > %" 2 1/& (by choosing ¢ > 0 small enough relative to c3), and
the Littlewood-Offord theorem of Rudelson and Vershynin, Lemma 6.8. Putting (7.2) and (7.4) together
completes the proof of Theorem 1.3. O

Of course, the proof of Theorem 1.2 follows immediately.

Proof of Theorem 1.2. Simply take € = 0 in Theorem 1.3. O

8. Properties of the spectrum

In this section, we describe and deduce Lemma 8.1 and Corollary 8.2, which are the tools we will use
to control the “bulk” of the eigenvalues of A~!. Here, we understand “bulk” relative to the spectral
measure of A~!: our interest in an eigenvalue A of A~! is proportional to its contribution to ||A~!||ys.
Thus, the behavior of smallest singular values of A are of the highest importance for us.
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For this, we let 0, < 051 < -+ < 07 be the singular values of A and let iy > ... > u, be the
singular values of A~L. Of course, we have Up =1/0p_ps forl <k <n.
In short, these two lemmas, when taken together, tell us that

Tntst = kn~'2, (8.1)

for all n > k > 1 in some appropriate sense.

Lemma 8.1. For p > 1, B> 0and { € I'g, let A ~ Sym , ({). There is a constant C,, depending on
B, p so that

<Cp,

( \n )p
Uk
for all k.

We shall deduce Lemma 8.1 from the “local semicircular law” of ErdGs et al. [13], which gives us
good control of the bulk of the spectrum at “scales” of size > n~1/2.

We also record a useful corollary of this lemma. For this, we define the function || - || for an n X n
symmetric matrix M to be

IMIZ = " o (M) (log(1 + k). 8.2)
k=1

The point of this definition is to give some measure to how the spectrum of A~! is “distorted” from
what it “should be,” according to the heuristic at (8.1). Indeed, if we have o,_r41 = O(k/+/n) for all k,
say, then we have that

A7 ] = ©(u1).

Conversely, any deviation from this captures some macroscopic misbehavior on the part of the spectrum.
In particular, the “weight function” k — (log(1 + k))? is designed to bias the smallest singular values,
and thus we are primarily looking at this range for any poor behavior.

Corollary 8.2. Forp > 1, B > 0,and { € I'g, let A ~ Sym ,,({). Then there exists constants Cp,,cp, > 0

depending on B, p, such that
ALY
M1

In the remainder of this section, we describe the results of Erdds et al. [13] and deduce Lemma 8.1.
We then deduce Corollary 8.2.

8.1. The local semicircular law and Lemma 8.1

For a < b, we define N4 (a, b) to be the number of eigenvalues of A in the interval (a, b). One of the
most fundamental results in the theory of random symmetric matrices is the semicircular law, which
says that

1 b
lim Nalavn byn) E/ (4-x2)," dx,

n—oo n

almost surely, where A ~ Sym ,,({).
We use a powerful “local” version of the semicircle law developed by Erdds et al. in a series of
important papers [10, 11, 13]. Their results show that the spectrum of a random symmetric matrix
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actually adheres surprisingly closely to the semicircular law. In this paper, we need control on the
number of eigenvalues in intervals of the form [z, 7], where 1/n'/? <« t <« n'/?. The semicircular law
predicts that

tn~1/2 2tl’ll/2

NA(—t,t)z%‘[ _1/2(4 )2 dx —T(1+0(1)).

Theorem 1.11 of [12] makes this prediction rigorous.®

Theorem 8.3. Let B > 0, { € T, and let A ~ Sym ,,({). Then, for t € [Cn™'/%,n'/?],

|

where C,cq1 > 0 are absolute constants.

Na(—t, 1)

—2x7!
nl/2¢

> 7r) < exp( e n)1/4) (8.3)

Lemma 8.1 follows quickly from Theorem 8.3. In fact, we shall only use two corollaries.

Corollary 8.4. Let B > 0, { € I'p, and let A ~ Sym ,({). Then for all s > C and k € N satisfying
sk < n, we have

P (ﬂ > s) <exp (- c(sk)'?),
Hik
where C, c > 0 are absolute constants.

Proof. Let C be the maximum of the constant C from Lemma 8.3 and x. If % > s, then

Na(=skn™'2, skn'/?) < k. We now apply Lemma 8.3 with t = skn™'/? > sn™1/2 > Cn="/? to see that
this event occurs with probability < exp(—cVsk). m]

An identical argument provides a similar bound in the other direction.
Corollary 8.5. Let B > 0, { € I'g, and let A ~ Sym ,,({). Then for all k € N, we have

where C,c > 0 are absolute constants.

Proof of Lemma 8.1. Let C be the constant from Corollary 8.4. From the standard tail estimates on
|Allop. like (4.11) for example, we immediately see that for all k > n/C, we have

A
E ( ‘/ﬁk) <E4 (‘T‘( )\/_) =0,((n/k)P) = 0, (1).
Hi
Thus, we can restrict our attention to the case when k < n/C. Define the events
E, ={ﬂ <c}, Ezz{ﬂ c [C,n/k]}, E3={ﬂ > ﬁ}.
Hrk ik uk ok
We may bound

4 P 14
E(ﬁ) <CP+E(ﬂ) 1E2+E(ﬁ) 1z, . (8.4)
Mk Mk urk

8Theorem 1.11 of the survey [12] is based on Corollary 3.2 in [13]. In the paper [13], the results are technically stated for
(complex) Hermitian random matrices. However, the same proof goes through for real symmetric matrices. This is why we cite
the later survey [12], where this more general version is stated.
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To deal with the second term in (8.4), we use Corollary 8.4 to see that
p n/k
E (ﬂ) 1, < / psp’lefcmds:OP(l).
Mick c

To deal with the third term in (8.4), we note that since n/k > C, we may apply Corollary 8.4, with
s = n/k, to conclude that P(E3) < e—cvn, Thus, by Cauchy-Schwarz, we have

12
n p ag1\Vn 2p _
E(ﬁ%) 1z, < (E( ‘k‘/_) P(E3)'* < 0,(1)-nPe V" =0, (1),

where we have used the upper tail estimate in o from (4.11) to see E 0'12 P =0,(nP). m}

8.2. Deduction of Corollary 8.2
We now conclude this section by deducing Corollary 8.2 from Lemma 8.1 and Corollary 8.5.

Proof of Corollary 8.2. Recall

1A72 = " 4 (log(1 + k).
k=1

By Holder’s inequality, we may assume without loss of generality that p > 2. Applying the triangle
inequality for the LP/? norm gives

n 2 (log(1+ k)2 \ " o
E (Z "T) < Z(log(l +4k))2E o
k=1 1 k=1 1

2/p
#il

Taking C to be the constant from Corollary 8.5 bound

p r
E #—ﬁ < CPk™PE [(ﬁ) +P(,uk > Cﬁ) < CPEP,
J14 M1 k

where we used Lemma 8.1 and Corollary 8.5 for the second inequality. Combining the previous two
equations completes the proof. O

9. Controlling small balls and large deviations

The goal of this section is to prove the following lemma, which will be a main ingredient in our iteration
in Section 10. We shall then use it again in the final step and proof of Theorem 1.1, in Section 11.

Lemma 9.1. For B> 0and { € g, let A= A, ~ Sym ,(£) and let X ~ Col ,(¢). Letu € R" ' be a
random vector with ||u|, < 1 that depends only on A. Then, for §,& > e " and s > 0, we have

(AIX, X) - r| 1 _
E4 supPx (— <6, (Xu)>s, = <¢
) 1AL Vi
a\" (i 6/7
< e |Ba [ 2L 1{—1 < 8_1} +en, 9.1
(vz) Vi o-b

where ¢ > 0 depends only on B > 0.
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Note that with this lemma, we have eliminated all “fine-grained” information about the spectrum of
A~! and all that remains is y1, which is the reciprocal of the least singular value of the matrix A. We
also note that we will only need the full power of Lemma 9.1 in Section 1 1; until then, we will apply it
withs =0,u = 0.

We now turn our attention to proving Lemma 9.1. We start with an application of Theorem 1.5, our
negative correlation theorem, which we restate here in its full-fledged form.

Theorem 9.2. For n € N, a,y € (0,1),B > 0, and u € (0, 271), there are constants c,R > 0
depending only on a,7, u, B so that the following holds. Let 0 < k < can and & > exp(—can), let
veS™ andletwy, ..., wi € S"! be orthogonal. For ¢ € Tg, let ¢’ be an independent copy of { and
Z, a Bernoulli variable with parameter y; let X € R" be a random vector whose coordinates are i.i.d.
copies of the random variable ({ — {')Z,,.

If Do, (v) > 1/, then

k
Px | (X, V)| < & and Z(wj,)?)z <ck|< Re-e¢k. 9.2)

j=1
The proof of Theorem 9.2 is provided in the Appendix. We now prove Lemma 9.3.

Lemma 9.3. Let A be an n X n real symmetric matrix with A € £, and set yi; == o;(A™"), for alli € [n].
For B > 0, { € I'p, let X,X" ~ Col,({) be independent, let J C [n] be a p-random subset with
1€ (0,271), and set X := (X — X");. If k € [1,cn] is such that s € (e™", ux/u1), then

Pz (llA_lfllz < Sul) < se~ek, 9.3)

where ¢ > 0 depends only on B.

Proof. For each j € [n], we let v; denote a unit eigenvector of A~! corresponding to u j- Using the
resulting singular value decomposition of A~!, we may express

1A X2 = (A7'X, A7) = > ud(Xov )%,

Jj=1
and thus
k2
Py (147 Xlbp! <5) < P10 D)l < sand 3 Lo, X <52, 9.4)
= M
We now use that s < 1 and g /¢y < 1in (9.4) to obtain
—_—~ —_~ k —_~
Py (||A‘1X||2,u1‘1 < s) <Pl Xy <sand Y (v, X7 < 1]. 9.5)
=

We now carefully observe that we are in a position to apply Theorem 1.5 to the right-hand side of (9.5).
The coordinates of X are of the form (¢ = ¢')Zy, where Z,, is a Bernoulli random variable taking 1
with probability u € (0, 2‘15) and 0 otherwise. Also, the v, ..., v, are orthogonal and, importantly,
we use that A € £ to learn that® D, ,(v1) > 1/s by property (4.3), provided we choose the constant

9Recall, here, that the constants @, y > 0 are implicit in the definition of £ and are chosen so that Lemma 4.1 holds.
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¢ > 0 (in the statement of Lemma 9.3) to be sufficiently small, depending on u, B. Thus, we may apply
Theorem 1.5 and complete the proof of the Lemma 9.3. O

With this lemma in hand, we establish the following corollary of Lemma 5.2.

Lemma 9.4. For B > 0 and { € T'g, let X ~ Col ,({) and let A be an n X n real symmetric matrix with
Al Ifs>0,6€ (e, 1)andu € "1 then

cn 2/3
sup Py ([(A™ X, X) — r| < Sp1, (X, u) > 5) < 5e™ Z ek (Z—;) +e T, 9.6)
r k=2

where ¢ > 0 is a constant depending only on B.
Proof. We apply Lemma 5.2 to the left-hand side of (9.6) to get
/6
supPy ([{A™'X, X) — r| < 6p1, (X,u) > 5) < 6e"‘/ 1(0)'1? do + e | 9.7)
r -1/6

where
10) =By, x; xp (X + X)) = 022 A7 (X = X' 13)
and ¢’ = ¢’(B) > 0 is a constant depending only on B and J C [n] is a u-random subset. Set
X=(X-X'); and v=A"'X,
and apply Holder’s inequality

1(6) =By x, x, e((X+X/)J,u)e—c/(92||vH%/y]z] < (E)?e_cngz”v”%/#]z)s/9 (EJ,XJ,X_/, e9((X+X/)J,u>)1/9.

9.8)

Thus, we apply (5.2) to see that the second term on the right-hand side of (9.8) is O(1). Thus, for each
6 > 0, we have

1(9)9/8 <p E)_Zefc"az“"“%/l‘% < e*C"H]/S +P)‘(‘(”V”2 < 'ulgf9/|0) )
As a result, we have
1/6 1/6 1
[ dos s [ pelvl <m0 0o < e [ PE(bll < ) ds.
-1/6 1 5

To bound this integral, we partition [8, 1] = [J, uen/p1] VUL, [k /p1, i1/ p1] and apply Lemma 9.3
to bound the integrand depending on which interval s lies in. Note, this lemma is applicable since A € £.
We obtain

-1/

Hi-1/ 1
Lo el < ot < et [ 150 dy < ek ),
M/ M/ 1

while
Hen /M1
L S_lg/gp)?(”VHQ < /J1S)4/9 < e—cn6—3/2 < e—Q(n).
Summing over all k£ and plugging the result into (9.7) completes the lemma. O
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We may now prove Lemma 9.1 by using the previous Lemma 9.4 along with the properties of the
spectrum of A established in Section 8.

Proof of Lemma 9.1. Let € be our quasi-random event as defined in Section 4, and let

M1 -1
Eo=EN{= < .
0 {vz ¢ }

A

For fixed A € & and u = u(A) € R” with ||u|, < 1, we may apply Lemma 9.4 with 6’ = ¢ /;11 I o see

that

1A~ ) < i\
sup Px ( ’(A’IX, Xy —r| <OllAll., (X,u) > 5) < 6e* (—*) Zeid{ (—) +e7 ",
rerR H1 = Mk

By Lemma 4.1, P4(£°) < exp(—Q(n)). Therefore, it is enough to show that

6/7
AL 2/3 7/9
ES (—” I )(ﬂ) <k-ED (ﬂ) : 9.9)
Hi Hk \n

for each k € [2, cn]. For this, apply Holder’s inequality to the left-hand side of (9.9) to get

_ 2/3 1y ) 1411/14 28/371/14 7/916/7

EEO(HA ]||*)(ﬂ)/ g (uA ‘||*) géo (ﬁ) o R (ﬂ)/
A S Fa A A :

Hi Hk Hi Hk \n
We now apply Corollary 8.2 to see the first term is O (1) and Lemma 8.1 to see that the second term is
O (k). This establishes (9.9) and thus Lemma 9.1. O

10. Intermediate bounds: Bootstrapping the lower tail

In this short section, we will use the tools developed so far to prove an “up-to-logarithms” version
of Theorem 1.1. In the next section, Section 11, we will bootstrap this result (once again) to prove
Theorem 1.1.

Lemma 10.1. For B > 0, let { € I'g, and let A, ~ Sym , ({). Then for all € > 0
P(omin(An) < en™V?) < &- (loge™)V/? 4 790

To prove Lemma 10. 1, we first prove the following “base step” (Lemma 10.3), which we then improve
upon in three increments, ultimately arriving at Lemma 10.1.

The “base step” is an easy consequence of Lemmas 6.2 and 9.1 and actually already improves upon
the best known bounds on the least-singular value problem for random symmetric matrices. For this,
we will need the well-known theorem due to Hanson and Wright [18, 51]. See [47, Theorem 6.2.1]) for
a modern exposition.

Theorem 10.2 (Hanson-Wright). For B > 0, let { € T', let X ~ Col ,,({), and let M be an m X n matrix.
Then for any t > 0, we have

ct2
Px ([IMX|]2 = [M]lus| > 1) < 2Zexp (——)
( ) BYM|?

where ¢ > 0 is absolute constant.

‘We now prove the base step of our iteration.
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Lemma 10.3 (Base step). For B > 0, let { € I'g and let A, ~ Sym . ({). Then
P(omin(Ans1) < sn_l/z) < gl 4 0m

forall e > 0.

Proof. Asusual, we let A := A,,. By Lemma 6.1, it will be sufficient to show that for r € R,

KAT'X, X) - |

< Cs, on(A) > en 2| < g/t 4 7R (10.1)
1A=L X]l2 §

Pa,x

By the Hanson-Wright inequality (Theorem 10.2), there exists C’ > 0 so that
Px(IA7'X|l > C'(loge™)"? - A lus ) < e (102)
and so the left-hand side of (10.1) is bounded above by

(AT'X, X) = 7|

<6, 0 (A) = en 12| |
lA= |us "

8+PA’X (

where 6 := C”¢ - (loge™")!/2. Now, by Lemma 9.1 with the choice of u = 0, s = 0, we have

A™'X, X) — 7|

Pa,x
lA= |ns

<0, 0,(A) = sn_l/z) < 673 470N < g4 4 om0 (10.3)

where we have used that ||[A™!]|. > ||A~!||us. We also note that Lemma 9.1 actually gives an upper
bound on E4 sup, Px (A), where A is the event on the left-hand side of (10.7). Since sup, P4 x (A) <
E4 sup, Px (A), the bound (10.3), and thus Lemma 10.3, follows. m]

The next lemma is our “bootstrapping step”: Given bounds of the form
P(min(An) < en”'?) < £+ &7,

this lemma will produce better bounds for the same problem with A, in place of A,,.

Lemma 10.4 (Bootstrapping step). For B > 0, let { € T'p, let Aps1 ~ Sym, . ({), and let k €
(0, 1)\ {7/10}. If for all € > 0O, and all n, we have

P(omin(An) < sn_l/z) <&+ (10.4)
then for all € > 0 and all n, we have
P(O—min(ArHl) < en_l/2) < (10g8_l)l/2 . 8min{l,6k/7+l/3} +e—Q(n) )

Proof. Let ¢ > 0 denote the implicit constant in the exponent on the right-hand side of (10.4). Note that
if 0 < & < 7", by the assumption of the lemma, then we have

P(0min(An) < en”'?) < 790,

for all n, in which case, we are done. So we may assume € > e~ “".
As in the proof of the “base step,” Lemma 10.3, we look to apply Lemmas 6.2 and 9.1 in sequence.
For this, we write A = A,, and bound (9.1) as in the conclusion of Lemma 9.1

&9

7/9
K Ho - ‘ ~9/7 ~1)2
2 () 1)< [0 p ot <o) an (103
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where we used that oin(A) = 1/u1(A). Now use assumption (10.4) to see the right-hand side of
(10.5) is
£7/9
<1+ / (5T ) d < ma {1,657 (10.6)
1
Now, we apply Lemma 9.1 with 6§ = Cs - (loge™")/2, s = 0, and u = 0 to see that

|(A71X,X>—r|< Jas
A= lus T

for all r. Here, we used that ||A~||gs < [|JA7!..
Now, by Hanson-Wright (Theorem 10.2), there exists C’ > 0, such that

Pax < 81) < max {e, 56’(/7”/3} ~(loge™H2 47— (10.7)

Px (|A™' Xl > C’JA [lus - (loge™)'?) < &.

Thus, we choose C”’ to be large enough, so that

ATX, X) -
Pax —|< ; ) =7 <C'g,0,(A) > an‘l/z) < max {e, 86K/7+1/3} . (10g8_])]/2 +e79m
1A~ X]l2
for all ». Lemma 6.1 now completes the proof of Lemma 10.4. O

Lemma 10.1 now follows by iterating Lemma 10.4 three times.
Proof of Lemma 10.1. By Lemmas 10.3 and 10.4, we have
P(O’mm(A) < gn—l/Z) < 813/21 . (10g8—1)1/2+e—§2(n) < 813/21_77 +e—9(n) ,

for some small > 0. Applying Lemma 10.4 twice more gives an exponent of % - gn and then 1, for

1 small, thus completing the proof. O

11. Proof of Theorem 1.1

We are now ready to prove our main result, Theorem 1.1. We use Lemma 6.1 (as in the proof of Lemma
10.1) and the inequality at (4.5) to see that it is enough to prove

e[ KATIX, Xy — 7|
|A=1X ]2

-1/2

< Ceg, and 0, (A) > en <e+e R (11.1)

where C is as in Lemma 6.1 and the implied constants do not depend on r. Recall that £ is the quasi-
random event defined in Section 4.
To prepare ourselves for what follows, we put & := £ N {omin(A) > en~'/?} and

KA™'X, X) —r
A1 Xl2

KA™'X, X) — |

and Q*(A’X) = “A—l” s

0(AX) =

where

n
172 = > 43 (log(1+ k)2,
k=1
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as defined in Section 8. We now split the left-hand side of (11.1) as

-1
lA7' Xl

P (Q(A, X) < Ce) < P2 (0.(A, X) < 2Ce) +P [Q(A, X) < Ce, AT >2|.  (112)

We can take care of the first term easily by combining Lemmas 9.1 and 10.1.

Lemma 11.1. For e > 0,
P(Q.(A,X) <2Ce) S e+e
Proof. Apply Lemma 9.1, with 6 = 2Ce, u = 0, and s = 0 to obtain
pfo Hi " H1 -1 o -Q(n)
(0.(A, X) <2C¢) SS(EA (%) l{ﬁ <e }) +e .
By Lemma 10.1 and the calculation at (10.6), the expectation on the right is bounded by a constant. O

We now focus on the latter term on the right-hand side of (11.2). By considering the dyadic partition
27 < |A7 Xl /IIA7Y). < 27*1, we see the second term on the right hand side (RHS) of (11.2) is

logn

< Z po (Q*(A,X) <2*ce,
Jj=1

-1
IA™ Xl ) (11.3)
AL ' '

Here, we have dealt with the terms for which j > log n by using the fact that
Px (A7 Xl > VallA!l.) s ™2,

which follows from Hanson-Wright and the inequality ||A~!|. > [|A~!||us.
We now show that the event ||[A~'X||y > #||A~!||. implies that X must correlate with one of the
eigenvectors of A.

Lemma 11.2. For t > 0, we have

A~ X]]2

Px (Q*(A,X) < 2Cte,
lA=1]].

n
> t) <23 Px (Q.(A,X) <2Cte, (X, vi) > tlog(1+ k),
k=1

where {vy } is an orthonormal basis of eigenvectors of A.

Proof. Assume that ||A™'X|l, > t||A~!||., and use the singular value decomposition associated with
{vi }k to write

23 i (log(k + 1) = AIAIR < IA7XIE = > 3 (v X)2.
k k

Thus

(1A' X[l > #lA7" L.} < U {[(X.vi)| > tlog(k + D)}
k

To finish the proof of Lemma 11.2, we union bound and treat the case of —X the same as X (by possibly
changing the sign of v;) at the cost of a factor of 2. m}
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Proof of Theorem 1.1. Recall that it suffices to establish (11.1). Combining (11.2) with Lemma 11.2

and Lemma 11.1 tells us that
logn n
P (Q(A.X) < Ce) se+2 ) 3 P (Q*(A, X) < 271Ce, (X, vi) > 2/ log(1 + k)) N
j=1 k=1
(11.4)
We now apply Lemma 9.1 for all > 0, with 6 = 2Cte, s = tlog(k + 1) and u = vy to see that,
P (Q.(A, X) < 2Cte, (X, vi) > tlog(1+ k) < et(k+1)7" - [T 4 79 (11.5)
where
7/9
A A
ey 1{;11( ) 8_1}_
Vn Vn
Using (11.5) in (11.4) yields
logn n )
P2 (Q(A, X) < Ce) < eI°7 Z Z 2k +1)Y 470N < g [017 4 Q)
j=1 k=1
since Y32, Xil, 2/ (k+1)72 = 0(1). Now we write
7/9 119
lll(A)) {#1(1‘\) 1} / ~9/7 ~1)2
I=E 1 <¢ < P(O'- A)<x7''n )dx
A ( \/% \/ﬁ ) mln( )
and apply Lemma 10.1 to see
8_7/9 oo
/ P (o-min(A) < x_9/7n_1/2) dx S / s ds+1 < 1.
0 1
Thus, Lemma 6.1 completes the proof of Theorem 1.1. O

I. Introduction to the appendices

In these appendices, we lay out the proof of Theorem 4.3, the “master quasi-randomness theorem,”
which we left unproved in the main body of the paper, and the proof of Theorem 9.2. The proofs of these
results are technical adaptations of the authors’ previous work on the singularity of random symmetric
matrices [4]. The last three appendices also tie up some other loose ends in the main body of the text.

In particular, the proof of Theorem 4.3 is similar to the proof of the main theorem in [4], with only
a few tweaks and additions required to make the adaptation go through. In several places, we need
only update the constants and will be satisfied in pointing the interested reader to [4] for more detail.
Elsewhere, more significant adaptations are required, and we outline these changes in full detail. As
such, parts of these appendices will bore the restless expert, but we hope it will provide a useful source
for those who are taking up the subject or want to avoid writing out the (sometimes extensive) details
for oneself.

I.1. Definitions

We collect a few definitions from the main body of the text that are most relevant for us here. Throughout,
¢ will be arandom variable with mean 0 and variance 1. Such arandom variable is said to be subgaussian
if the subgaussian moment
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IZIly, := sup p~' 2 (E|¢|P) /P
p>1

is finite. For B > 0, we let I'g denote the set of mean O variance 1 random variables with subgaussian
moment < B, and we letI' = Jg-o 5.

For € T, let Sym ,,({) denote the probability space of n X n symmetric matrices with (A;_;);<; i.i.d.
distributed according to £. Let Col ,,(£) be the probability space on vectors of length n with independent
coordinates distributed according to £.

Forv € $" ! and u,a,y € (0, 1), define the least common denominator (LCD) of the vector v via

Doy (v) :=inf {t > 0: |ltvllr < min{y||tv]}2, Van}}, (I.1)
where ||w||r := dist(w, Z™). We also define

Doyu(v):= min  Dg,(vy). 1.2)
Ic[n]
[11>(1-2)n
Remark I.1. We note that in the main body of the paper, we work with a slightly different notion of
D, where we define ﬁa,y,ﬂ(v) = min; Do, (vi/||lvill2). This makes no difference for us, as Lemma

[1.6 below eliminates those v for which ||v;||; is less than a constant. Thus, we work with the slightly
simpler definition (I.2) throughout.

We define the set of “structured direction on the sphere”
=g, ={ve S Dy (v) < e}
Now, for { e I', A ~ Sym ,({) and a given vector w € R", we define the quantity (as in Section 4)
gn(w) = gn(wia,y, ) :=Pa (Iv € Tand 3s,r € [-4vn,4vn] : Av =sv+1w).
‘We then recall (see (4.10))

gn = max gu(w).
wesn-l

1.2. Main theorems of the appendix

Let us now restate the two main objectives of this appendix. Our first goal is to prove the following.

Theorem 1.2 (Master quasi-randomness theorem). For B > 0 and { € I'p, there exist constants
a,y, U, cs,c € (0,1) depending only on B so that

gn(a,y,p) <2e ",

The second main goal of this appendix is to prove Theorem 9.2, which we will prove on our way to
proving Theorem [.2.

Theorem 1.3. For B > 0, let { € T'g. For d € N, a,y € (0,1), and v € (0, 2713 there are
constants co, R > 0 depending only on a,7y,v, B so that the following holds. Let 0 < k < coad and
t 2 exp(—coad); letv € S and let wy, ..., wi € S9! be orthogonal.

Let ¢’ be an independent copy of ¢, let Z,, be a Bernoulli random variable with parameter v, and let
7 € R? be a random vector whose coordinates are i.i.d. copies of the random variable with distribution
¢ -2,

If Do (v) > 1/t, then

k
P| (T, v)| <t and Z(wj,T)z < cok | < Rt - e~k

Jj=1
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The proofs of Theorems [.2 and 1.3 follow the same path as [4], where the authors proved analogous
statements for the case where the entries of A are uniform in {—1, 1}. We refer the reader to the following
Section 1.3 for a discussion of how this appendix is structured relative to [4].

1.3. A Reader’s guide for the appendices

Here, we describe the correspondence between sections in this appendix and sections in [4] and point
out the key changes that come up.

In Section II, we set up many of the basic notions that we will need for the proof of Theorem 1.2.
The main novelty here is in the definitions of several auxiliary random variables, related to £, that will
be used to study ¢ in the course of the paper.

In Section III, we turn to prove Theorem 1.2, while assuming several key results that we either import
from [4] or prove in later sections. This section is the analogue of Section 9 in [4], and the main difference
between these sections arises from the different definitions of g,, in these two papers (see (4.10)). Here,
qn is defined in terms of the least common denominator D ,, rather than the threshold 77, (see (I1.7)).
In the course of the proof, we also need to break things up according to 77, and define nets as we did
in [4], but another net argument is required to exclude vectors with 77 small but D, ,, large.

In Section IV, we define many of the key Fourier-related notions that we will need to prove the
remaining results, including Theorem I.3. The main differences between the two papers in these sections
comes from the different definition of the sublevel sets Sw (see (IV.1)). This new definition requires us
to reprove a few of our basic lemmas from [4], however, the proofs go through easily.

In Section V.2, we state our main inverse Littlewood-Offord Theorem for conditioned random walks
and deduce Theorem [.3 from it. Lemma V.3 in this section is also one of the main ingredients that
goes into Theorem I11.2. This section corresponds to Section 3 of [4].

Section V deals with Fourier replacement and is the analogue of Appendix B in [4]. Here, the only
difference between the sections is that here we lack an explicit form for the Fourier transform. However,
this difficulty is easily overcome.

In Section VI, we prove Lemma ['V.3. This corresponds to Sections 4 and 5 of [4], from which several
key geometric facts are imported wholesale, making our task significantly lighter here. The difference
in the definitions from Section IV are salient here, but the majority of the proof is the same as in [4,
Section 5], up to the constants involved.

The next three sections, Sections VII, VIII, and IX, correspond to Sections 6, 7, and 8 respectively of
[4]. Here, the adaptation to this paper requires little more than updating constants. These three sections
amount to converting Lemma IV.3 into the main net bound Theorem I11.2.

Finally, in Section X, we deduce the Hanson-Wright inequality, Lemma V1.7, from Talagrand’s
inequality; this corresponds to Appendix E of [4] where the difference, again, is only up to constants.

II. Preparations
I1.1. Symmetrizing and truncating the random variable

We will work with symmetrized, truncated, and lazy versions of the variable {. This is primarily because
these altered versions will have better behaved Fourier properties. Here, we introduce these random
variables and also note some properties of their characteristic functions. These properties are not so
important until Section I'V, but we have them here to help motivate some of the definitions.

Let ’ be an independent copy of ¢ and define

(=¢-1.
We will want to truncate Z to a bounded window, as this will be useful for our construction of a

nondegenerate and not-too-large LCD in Section VI. In this direction, define Iz = (1,16B%) and
p :=P(|{| € Ig). Our first step is to uniformly bound p in terms of B.
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1

Lemmalll. p > 5.

Proof. By the Paley-Zygmund inequality

7 (52 22 (1-5)*(BZ? 1
P(IZ] > 1) = P(|Z]° > E|Z]7/2) > EF) > g

where we have used EC* = 2E/* + 6 < 2°B* + 6 and B > 1. By Chebyshev’s inequality, we have

P(|7] > 16B%) < T

Combining the bounds completes the proof. O
For a parameter v € (0, 1), define &, by
fv = 1{|Z| € IB}EZV7

where Z, is an independent Bernoulli variable with mean v. For v € (0,1) and d € N, we write
X ~ E,(d; ) to indicate that X is a random vector in R¢ whose entries are i.i.d. copies of the variable
&,; similarly, we write X ~ ®,,(d; {) to denote a random vector whose entries are i.i.d. copies of the
random variable £Z,,.

We compute the characteristic function of &, to be

e, (1) = Be™™& =1 —v +v(1 - p) +vpEg[cos(2mtl) | |£] € (1,16B%)] .

Define the variable / as £ conditioned on || € Iz, where we note that this conditioning makes sense
since Lemma I1.1 shows p > 0. In other words, for every Borel set S,

P(le8)=p 'P(leSN(IpU~Ip)).

Therefore we can write the characteristic function of &, as

¢z, (1) =1 —vp +vpE;cos(2ntl) . (IL.1)
For x € R, define ||x||T := dist(x, Z), and note the elementary inequalities

1 -20[|all? < cos(2ma) < 1 - lali?,
for a € R. These imply that

exp (—32vp -E{-HIZH%) < g, (1) < exp (—vp . Eg“tf”%) . (11.2)

Also note that since ¢z, (1) =1 - v +VvE; [cos(2nt£)], we have

$sz, (1) <1-v+v(l-p)+vpE;s [cos(2ntd) | I{] € Ig] = ¢, (1) - (IL.3)

11.2. Properties of subgaussian random variables and matrices

We will use a basic fact about exponential moments of one-dimensional projections of subgaussian
random variables (see, e.g. [47, Proposition 2.6.1]).

Fact ILI.2. For B > 0, let Y = (Yy,...,Y;) be a random vector with Y;,...,Y; € I'g. Then for all
ue S wehave EeY*) = 0p(1).

We will also use a large deviation bound for the operator norm of A (see (4.11)).

https://doi.org/10.1017/fmp.2023.29 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.29

42 Campos Marcelo et al.

Fact IL.3. For B > 0,let { € ' and A ~ Sym ,,({). Then
B(lAllp > 4VR) < 26720
We also define the event K = {||Al|,, > 4+/n}, and define the measure PX by
PR(E) =P(KNE), (IL4)

for every event £.

I1.3. Compressibility and eliminating nonflat vectors

Asin [4], we may limit our attention to vectors that are “flat” on a constant proportion of their coordinates.
This reduction is a consequence of the now-classical work of Rudelson and Vershynin on compressible
and incompressible vectors [31].

Following [31], we say that a vector in $”~! is (8, p)-compressible if it has distance at most p from
a vector with support of size at most §n. For 8, p € (0, 1), let Comp (6, p) denote the set of all such
compressible vectors in $"~!. Proposition 4.2 from Vershynin’s paper [46] takes care of all compressible
vectors.

Lemma I14. For B > 0, let { € I'g, let A, ~ Sym (), and let K > 1. Then there exist p,8,c > 0
depending only on K, B, so that for every A € R and w € R", we have

P( inf  |[(Ap+ADx— w2 < cVnand ||Ay + A |lop < K\n) < 2.
xeComp (6,p)

For the remainder of the paper, we let §, p be the constants given in Lemma II.4. Define
Incomp (6, p) := S"~''\ Comp (6, p)

to be the set of (8, p)-incompressible vectors. The key property of incompressible vectors is that they
are “flat” for a constant proportion of coordinates. This is made quantitative in the following lemma of
Rudelson and Vershynin [31].

Lemma IL.5. Let v € Incomp (6, p). Then
(p/2)n~ "2 < |vi| < 62012

for at least p*6n /2 values of i € [n].

We now fix a few more constants to be held fixed throughout the paper. Let k9 = p/3 and x| =
6712 4+ p/6, where 6, p are as in Lemma 11.4. For D C [n], define the set of directions in $"~! that are
“flat on D”’:

Z(D) = {v € S (ko +ko/2)n % < |vil < (k1 — ko/2)n” V2 foralli € D},
and let

I=Ty:= U (D).
D¢C[n],|D|=d

Applying Lemmas 1.4 and 1.5 in tandem will allow us to eliminate vectors outside of 7.

Lemma IL6. Let 6, p, ¢ > 0 be the constants defined in Lemma I1.4, and let d < p>6n/2. Then

max Pu (Elv € "'\ T and 3s,t € [-4vn, +4vn] : ||Av = sv — tw|]» < c«/ﬁ/z) <2790 | (115)

wesn-1
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Proof. Lemma I1.5, along with the definitions of «, 1, and Z, implies that
§"'\ Z c Comp (6, p).

Now, fixaw € R" and take a cvn/8-net N for [—4~/n, 44/n]? of size O (c¢2) to see that ||Av—sv—tw]||» <
c\/n/2 implies that there exists (s’,¢") € A for which

(A =5y —t'w|, < cyn.
Thus, the left-hand side of (IL.5) is

< Z Pa (3v € Comp (6, p) : (A= s"T)v —t'wll» < cVn) < V] 270,
(s7,t")eN

where the final inequality follows by first intersecting each term in the sum with the event £ :=
{IIA =s'Tlop < 16n'/2} (noting that P(£€) < 2™ by Fact I1.3) and applying Lemma 11.4 to each
term in the sum with 4 = —s" and K = 16. O

I1.4. Zeroed out matrices

To study our original matrix A, it will be useful to work with random symmetric matrices that have
large blocks that are “zeroed out” and entries that are distributed like 7Z, elsewhere (see [4] for more
discussion on this). For this, we set d := c(z)n (where cg > 0 is a small constant to be determined later)
and write M ~ M,,(v) for the n X n random matrix

T
= |Olaixial H , (IL6)
Hi  Og41,n]x[d+1,n]

where Hj is a (n — d) x d random matrix whose entries are i.i.d. copies of /Z,,.

In particular, the matrix M will be useful for analyzing events of the form ||Av|; < en
v eZ([d]).

We now use the definition of M,,(v) to define another notion of “structure” for vectors v € S*!.
This is a very different measure of “structure” from that provided by the LCD, which we saw above. For
L > 0and v € R", define the threshold of v as

1/2, when

TL(v) ==sup{t € [0,1] : P(||Mv]|> < tv/n) > (4L1)"} . (IL.7)

One can think of this 77 (v) as the “scale” at which the structure of v (relative to M) starts to emerge.
So “large threshold” means “more structured.”

III. Proof of Theorem 1.2

Here, we recall some key notions from [4], state analogous lemmas, and prove Theorem 1.2 assuming
these lemmas.

I11.1. Efficient nets

Our goal is to obtain an exponential bound on the quantity

gn =maxPy (Iv € Tand s,1 € [-4Vn, 4Vn] : Av =sv+1w),

weS
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defined at (4.10), where
E=Fayu={ves" Do,y u(v) <)

In the course of the proof, we will choose «, y, u to be sufficiently small.
We cover X C §"~! with two regions which will be dealt with in very different ways. First, we define

S:={ves"!: TL(v) > exp(-2csn)}.

This will be the trickier region and will depend on the net construction from [4]. We also need to take
care of the region

S :={ves™!:D, you(v) <exp(esn), To(v) < exp(—2czh)},

which we take care of using the nets constructed by Rudelson and Vershynin in [31]. We recall that 7},
is defined at (I1.7).

We also note that since the event K := {||Allop > 4n'/?} fails with probability 2e=¢" (Fact I1.3) and
we only need to deal with incompressible vectors v € Z (by Lemma I1.6), it is enough to show

sup Pf (FveZIns, st €[-4vVn,+4vn] : Av=sv+1w) < e R, (1I1.1)

wesn-1

and the same with S replacing S. We recall that we define P* (&) := P(K N &) for every event £. To
deal with the above probability, we will construct nets to approximate vectors in Z N S and Z N S’. To
define the nets used, we recall a few definitions from [4]. For a random variable ¥ € R? and & > 0, we
define the Lévy concentration of Y by

L(Y,g) = sup P(|]Y —w|h < &). (I11.2)
w eRd
Now, for v € R", £ > 0, define
Laop(v,evn) = sup PF(J|[Av —wl < eVh). (IIL3)
w eR?

Slightly relaxing the requirements of Z, we define
7'([d]) = {v eR": kon V% < |vi| < kin”V? foralli € [d]} )
Define the (trivial) net
Ae = Bn(0,2) N (4811_1/2 -z") NT'([d]).

II1.1.1. Definition of net for v € S
To deal with vectors in S, for € > exp(—2czn), define

o= {veZ([d]): TL(v) € [e,2¢]}. (I11.4)

Ifv € X, for some & > exp(—2cgn), then the proof will be basically the same as in [4]. As such, we
approximate X . by N, where we define

Ne = {v € Ag: (Le)" <P(|IMv|x < 4evn) and L4 op (v, Vn) < (210L8)"} ,

and show that AV, is appropriately small.
First, the following lemma allows us to approximate X, by N.
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LemmaIIL1. Let e € (exp(—2cxn), ko/8). Foreachv € X, then thereisu € N, suchthat ||u—vl|je <
4en12,

This lemma is analogous to Lemma 8.2 in [4], and we postpone its proof to Section IX. The main
difficulty faced in [4] is to prove an appropriate bound on |N|. In our case, we have an analogous bound.

Theorem IL.2. For L > 2 and 0 < cg < 27°°B™, letn > L64/CO de [con/4 con] and & > 0 be so
thatloge™' < nL=32/< . Then

C

Nl < | =
A (Cngg

where C > 0 is an absolute constant.

The proof of Theorem II1.2 will follow mostly from Lemma IV.3, with the rest of the deduction
following exactly the same path as in [4], which we present in Sections VII and VIII.

II1.1.2. Definition of net for v € S’
We now need to tackle the vectors in S’; that is, those with

,TL(V) CXP( 2CZn) and D(t LY M (v) exp(czn)

Here, we construct the nets using only the second condition using a construction of Rudelson and
Vershynin [31]. Then the condition 77 (v) < exp(—2cygn) will come in when we union bound over nets.
‘With this in mind, let

2 ={veZ([d)NS : Do,y u(v) € [(48)7", (28)7']}.

We will approximate v € X/, by the net G ., where we define

G, = pe (z’ ® vaz!© )mBn(O,s‘l)\{O}}. (IIL5)

‘1‘2(1_2#)'1 { ||p||2

The following two lemmas tell us that G . is a good evan-net for =/.. Here, this v is the “win” over
trivial nets.

Lemma IIL3. Let ¢ > 0 satisfy & < y(an)™'/2/4. If v € X, then there exists u € G, such that
llu —v]l2 < 16evan.

Proof. Set D = min||>(1-2)n D a,y(vr), and let I be a set attaining the minimum. By definition of
Dy, there is p; € Z! N B, (0,&7") so that

IDvr = prll; < min{yD||v;ll2, Van} < Van,
and thus p; # 0. We now may greedily choose p;c € VaZ!“ N B, (0,&7!) so that

IDvie = prelly < Van.

Thus, if we set p = p; @ pjc, by the triangle inequality, we have

-5

1 -
P2 < 5Dy =Pl 1D = Iplbl) < 407 Van < 165V,

2
as desired. O

We also note that this net is sufficiently small for our purposes (see [31]).
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Fact ITL4. For a, u € (0,1), K > 1 and £ < Kn~'/?, we have

32K \"
Gl < mr] -
a?te\n
where G . is as defined at (II1.5).

The following simple corollary tells us that we can modify G . to build a net G, C X, at the cost of
a factor of 2 in the accuracy of the next. That is, it is a 32&+/an-net rather than a 16e+van net.

Corollary IIL5. For a,u € (0,1), K > 1 and & < Kn™'/? there is a 32e\Jan-net G, for X, with
G, cX,and

This follows from a standard argument.

II1.2. Proof of Theorem 1.2
We need the following easy observation to make sure we can use Corollary IIL.5.
Fact IIL6. Let v € Z, u < d/4n, and y < ko\/d/2n, then Do, ,(v) > (2k1) "' Vn.

Proof. Since v € Z, there is D C [n], such that |[D| = d and kon™'/? < |vi| < kn~'/? for all
i € D. Now, write D(v) = minz > (1—2u)n Da,y(vr), and let I be a set attaining the minimum. Since
1| > (1-2u)n > n—d/2,wehave [IND| > d/2.Soput D’ := IND, and note that forall < (2«;) ™'/,
we have

mIin d(tv;,Z") = d(tvp, ZP") = tllvpe |l = tkoVd/2n > yt.

Therefore, Do, (v7) > (2«1)~'+/n, by definition. |

When union bounding over the elements of our net, we will also want to use the following lemma to
make sure L(Av, £) is small whenever 77 (v) < &.

Lemma IIL7. Let v < 278, Forv e R" and t > T1.(v), we have
L(Av,t\n) < (50LH)".

We prove this lemma in Section V using a fairly straightforward argument on the Fourier side. We now
prove our main theorem, Theorem 1.2.

Proof of Theorem 1.2. We pick up from (III.1) and look to show that

qns = sup P (v eZns, s,te[-4vn,+4Vn] 1 Av =sv+1w) < e 20, (111.6)

wesn-!

and the same with S in place of S. We do this in three steps.

We first pause to describe how we choose the constants. We let ¢y > 0 to be sufficiently small so
that Theorem I11.2 holds, and we let d := c(z)n. The parameters p,y will be chosen small compared to
d/n and kg so that Fact II1.6 holds. L will be chosen to be large enough so that L > 1/« and so that
it is larger than some absolute constants that appear in the proof. We will choose @ > 0 to be small
compared to 1/L and 1/kg, and we will choose cx small compared to 1/L.
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Step 1: Reduction to X, and X/.. Using that Z = | Jp Z(D), we union bound over all choices of D. By
symmetry of the coordinates, we have

qns <2" sup PN (IveZ([d]) NS, s,t € [-4Vn,+4vn] 1 Av=sv+1w). (I11.7)

wesn-1

Thus, it is enough to show that the supremum at (111.7) is at most 47", and the same with S replaced by S’.

Now, let W = (27"Z) N [—-4+/n, +4+/n] and notice that for all 5, t € [—4+/n, +4+/n], thereis s’,t’ € W
with |s —s’| < 27" and |t —¢’| < 27". So, union bounding over all (s’,¢"), the supremum term in (I11.7)
is at most

<8 sup PX (3v e Z([d) N (SUS): [|Av — sv —wlh < z-"“)
weRn, |s|<4yn

and the same with S replaced with S’.
We now need to treat S and S’ a little differently. Starting with S, we let n := exp(—2cyn), and note
that for v € S, we have, by definition, that

n<TL(v) <1/L < ko/8, (IIL.8)

where we will guarantee the last inequality holds by our choice of L later.
Now, recalling the definition of X, := £ .([d]) at (II1.4), we may write

n Jo
It nsc| J{reZ: e e 2702701} =2,
j=0 j=0

where jj is the largest integer, such that 23 < xo/2. Thus, by the union bound, it is enough to show

0,:= max PS (Elv €. llAv—sv—wlh < 2‘"“) <27, (I1L.9)
weR”, |s|<dn

for all € € [n, ko/4].
‘We now organize S’ in a similar way, relative to the sets .. For this, notice that for v € Z([d]) N S’,
we have

(2’(1)_1‘/; < Da,y,u(v) < GXP(CEI/Z) = 77_1/2,
by Fact I11.6. So, if we recall the definition
2 ={veZ([d) NS : Dy u(v) € [(4)7, (28) 7'},
then
J1
Z([d) NS’ ¢ U 5 o
=

where j; is the least integer, such that 2/14/7 > «i/(2+/n). Union bounding over j shows that it is
sufficient to show

0,:= max Pi(Ivex

Ay — sy —wlh < 2—"“) <270, (I11.10)
weRn, |s|<dyn

for all & € [/, k1 /+/n].
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Step 2: A Bound on Q: Take w € R" and |s| < 44/n; we will bound the probability uniformly over w
and s. Since exp(—2czn) < &€ < k/8, forv € ., we apply Lemma I11.1, to find a u € N, = N ([d])
so that ||v — ull> < 4e. Soif ||Allop < 4/, we see that

lAu = su—wlly < |Av —sv = wl + [|A(v —w)|l2 + [s|]|v — ull2
< |Av = sv = wlh + 8Vall(v — w) |2
< 335\/}7,

and thus
(FveZ.: [[Av—sv—wlh <27}y n {||A]| < 4Vn} € {Fu € Ny : ||Au — su— w]|| < 33syn}.
So, by union bounding over our net N, we see that

0. <PL (IveN.:||Av —sv —w| < 33evn) < Z PR (| Au — s'u — wll> < 33evn)
ueN;

< Z EA,OP (M, 338%) >

ueNg

where L4, is defined at (111.3).
Note that for any u, we have that £ ., (1, 33eVn) < (67)"La,0p(u, eVn) (see, e.g., Fact 6.2 in [4]);
as such, for any u € N, we have L4, (4,33evn) < (2! Le)". Using this bound gives

C n
0. <IN Le)" < (LT) QY7Le)r < 274,
E

where the penultimate inequality follows from our Theorem II1.2 and the last inequality holds for the
choice of L large enough relative to the universal constant C and so that (II1.8) holds. To see that the
application of Theorem III.2 is valid, note that

logl/e <logl/np=2csn < nL*32/°3,
where the last inequality holds for cx small compared to L.

Step 3: A Bound on Q.. To deal with Q’,, we employ a similar strategy. Fix w € R" and |s| < 4+/n.
Since we chose p, y to be sufficiently small so that Fact I11.6 holds, we have that

£ < k1 /Vn.

Thus, we may apply Corollary I11.5 with K = «; for each v € X7 to get u € G, C X, such that
lv — ull> < 32ev/an. Now, since

(Bvezl: [[Av—sv—wlh <27y N {||A]l < 4Vn} € {Fu € G, : |Au — su — w| < 2°svan}

and since 2°s+van > exp(—2csn) > Tz (u), by Lemma I11.7, we have

32 "
0, < ( f ) sup L(Au,2evan) < 2P Lija'/*)" < 274,
aten| uea,

assuming that @ is chosen to be sufficiently small relative to Lk;. This completes the proof of
Theorem 1.2. m]
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IV. Fourier preparations for Theorem 1.3
IV.1. Concentration, level sets, and Esseen-type inequalities

One of the main differences between this work and [4] is the notion of a “level set” of the Fourier
transform, an change that requires us to make a fair number of small adjustments throughout. Here, we
set up this definition along with a few related definitions.

For a random variable ¥ € R¥ and & > 0, we recall that Lévy concentration of Y was defined at
(I11.2) by

L(Y,e)= sup P(|[Y —wl] < &).

weRd

Our goal is to compare the concentration of certain random vectors to the gaussian measure of associated
(sub-)level sets. Given a 2d X € matrix W, define the W-level set for t > 0 to be

Sw(t) :={0 e R : Bz |{WO|2 < 1}. IV.1)

Let g = g4 denote the gaussian random variable in dimension d with mean 0 and covariance matrix
(27) "' 1xq. Define y4 to be the corresponding measure, that is y4(S) = Pq (g € S) for every Borel set
S ¢ R¥. We first upper bound the concentration via an Esseen-like inequality.

Lemma IV.1. Let 8 > 0,v € (0,1/4), let W be a 2d X € matrix and T ~ ®,,(2d; ). Then there is an
m > 0 so that

[,(WTT,,B\/Z) < 2exp (2ﬁ2€ - vpm/2) ve(Sw (m)) .

Proof. Forw € RY, apply Markov’s inequality to obtain

P (W7 - wl, < BVE) < exp (gﬁ%’) E, exp (—M) .
Using the Fourier transform of a gaussian, we compute
E, exp (—M) = By e 7 WE 2" Wit (IV.2)
Now, denote the rows of W as wy, ..., wrq and write

2d 2d
B2 W't = [ [Eq e 270 = [ 6 ((3,wi)),
i=1 i=1

where ¢, (60) is the characteristic function of 7. Now, apply (I1.3) and then (I1.2) to see the right-hand
side of (IV.2) is

oy T T
< |Ege Zm(w,g)ETeng whr

< By exp(—vpEs|IEWgll7).

We rewrite this as

00

1
/0 P (exp(—vpEIZWSI2) > 1) dt = vp /O Pe (B IEWgIR < w)e™P" du

:vp/ ve(Sw(u))e"P* du,
0
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where for the first equality, we made the change of variable t = ¢™"P*. Choosing m to maximize
ve(Sw (u))eP4/% as a function of u yields

" / Ye(Sw (@)e™ P du < vpye(Sw (m))e™"" / e P du = 2y, (Sw (m))e P2
0 0

Putting everything together, we obtain

Pr(IWT T = wllz < 28V0) < 262772y (Syy (m)) .
We also prove a comparable lower bound.

Lemma IV.2. Let 8 > 0, v € (0,1/4), let W be a 2d X € matrix, and let T ~ E,(2d; ). Then for all
t = 0, we have

Ye(Sw (O)e 27 <P (Wt < BVE) +exp (-7¢)
Proof. Set X = ||WT ||, and write
Exe ™2 = By 1(X < BVO)e ™ 2+ Ex 1(X > pVE)e ™12 < Py (X < BVE) + e 7B (12
Bounding exp(-782£/2) < exp(—>¢) implies

—n||WT |2
ET exp (M

) <P (WPl < BVE) + P72

As in the proof of Lemma I'V.1 above, use the Fourier transform of the gaussian and (I1.2) to lower bound

ml|Wlz|?
B o (_ 5

5 ) > By [exp(-32vpE;(I{Wg|17)] -

Similar to the proof of Lemma IV.1, write

Eq [exp(=32vpE;[|Wellf)] = 32vp /0 ye(Sw (w)e™2PUdu > 32vpy(Sw (1)) / e32vpu gy,
t

where we have used that y,(Sw (b)) = y¢(Sw(a)) for all b > a. This completes the proof of
Lemma ['V.2. o

1V.2. Inverse Littlewood-Offord for conditioned random walks

First, we need a generalization of our important Lemma 3.1 from [4]. Given a 2d X £ matrix W and a
vector Y € R9, we define the Y -augmented matrix Wy as

0, Y
v w3
When possible, we are explicit with the many necessary constants and “pin” several to a constant

co, which we treat as a parameter to be taken sufficiently small. We also recall the definition of “least
common denominator” D ,, from (I.1)

IV.3)

Do, (v):=inf {t > 0: [|tv]lr < min{y|[tv]}, Van}}.

The following is our generalization of Lemma 3.1 from [4].
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Lemma IV.3. For any 0 < v < 275, ¢y < 27¥B™, d e N, a € (0,1), and y € (0,1), let
k < 27¥B*vad and t > exp (-2732B *vad). Let Y € R satisfy ||Y|[» > 270y~ 't7!, let W be a
2d x k matrix with ||W|| < 2, |Wllus > Vk/2, and let T ~ ®,,(2d; 0).

If D (Y) > 21982 then

£ (W%» cg*Vie+ 1) < (Ri)*exp (=cok) (IV.4)

where R = 23532v‘1/2c52.

We present the proof of Lemma V.3 in Section VI, and deduce our standalone “inverse Littlewood-
Offord theorem” Theorem 1.3 here:

Proof of Theorem I.3. Let co = 273 B~*y?v. First, note that
k 2 k
B(I¢v.m)l < rand 3 (wi.r)* < Cok) <P (|<v,r>| <t <tand Y (wi ) < eok |,
i=1 i=1

where 7,7’ ~ ®,,(d; {) are independent. We now look to bound the probability on the right-hand side
using Lemma [V.3.
Let W be the 2d X k matrix

_ wi ... Wk
W‘[od...od]

and Y = +/co/2vt™!. Note that if |(v, T)| < t, [{v,7")| < t and Z{.‘:l(wi,‘r)z < cok, then ||W; (r, ™)k <
c(l)/ *Vk + 1. Therefore

k
P(|(v,‘r)| <t,|[{v, ") <tand Z(wi,r)z < cok) <L (W;(T, T'),c(l)/z\/k + 1) .
i=1

Now, [[Y |l = v/eo/2t™" > 2710¢oy~ 1! |W|| = 1, [W|lus = Vk. and
Doy(Y) > 1¢;'? Dy (v) > 2082
We may therefore apply Lemma I'V.3 to bound
L (W; (r, 7)), c(l)/ZM) < (R1)? exp (—cok) .
The result follows. O

V. Fourier replacement

The goal of this section is to prove Lemma II1.7, which relates the “zeroed out and lazy” matrix M,
defined at (11.6), to our original matrix A. We will need a few inequalities on the Fourier side first.

Lemma V.1. For everyt € R and v < 1/4, we have
b (D] < $gz, (1)
Proof. Note |¢s (1) >=E 7 cos(2ntZ). Use the elementary inequality

cos(a) < 1-2v(1—cos(a)) forv < 1/4,
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and that V1 —x < 1 — x/2 to bound

los(0)] = \/Eg~ cos(2ntl) < \/1 - 2vEz(1 - cos(2ntl)) < bzz,(1). o

We also need a bound on a gaussian-type moment for ||Mv||;. On a somewhat technical point, we
notice that 77 (v) > 2", since the definition of 77 (I1.7) depends on the definition of M at (I1.6), which
trivially satisfies

Pas(Mv =0) > Ppr (M =0) = (1 —»)("2),
forallvand v < 1/2.
Fact V.2. Forv € R", and ¢t > T (v), we have
Eexp(—n||Mvl|3/2t*) < (9L1)".

Proof. Bound
Eexp(-n[|Mvll;/21) < P(I[Mvll2 < 1Vn) + Vn / e MER(| Myl < svn) ds. (V.1)
t

Since ¢ > T (v), we have P(||Mv||, < sy/n) < (4Ls)" for all s > ¢. Thus, we may bound
0 2
t

\/ﬁ/wexp (—s:—zn)]P’(HMsz < svn)ds < \/E(SLI)"/ exp (_st_zn) (s/0)"ds.

Changing variables u = s/t, we may bound the right-hand side by
t'Nn(4Lr)" / exp(—u’n)u" du < t~'\n(4Lt)" / exp(—u?/2) du < (9L1)",
1 1
as desired. Note, here, that we used that ¢ > 27", m]

For v,x € R" and v € (0, 1/4), define the characteristic functions of Av and Mv, respectively, ¢,
and y, ., by

Yy (x) 1= By AV = (n ¢{(ka/<)) l_[ ¢r (xXjvi +xkv;)
k=1

j<k
and

d n
o () =By M =TT T g, (epvi+x00))
=1 k=d+1

Our “replacement” now goes through.

Proof of Lemma I11.7. By Markov, we have
P(||Av — wll < 1v) < exp(nn/2)E exp (—7r||Av - w||§/(2t2)) . (V.2)
Then use Fourier inversion to write

B exp (v w3/ @) = [ e 0y a3

n
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Now, apply the triangle inequality, Lemma V.I and the nonnegativity of y, yield that the right-hand
side of (V.3) is

< [ eIy, (716 d = Ba expl-allbvIB/20).
Now, use Fact V.2 along with the assumption ¢ > 77 (v) to bound

Ear exp(—nl|Mv[3/26%) < (OLn)",

as desired. m]

VI. Proof of Lemma IV.3

In this section, we prove the crucial Lemma IV.3. Fortunately, much of the geometry needed to prove
this theorem can be pulled from the proof of the {—1,0, 1}-case in [4], and so the deduction of the
theorem becomes relatively straightforward.

VI.1. Properties of gaussian space and level sets

For r,s > 0 and k € N, define the cylinder I'; s by
Ty = {0 e R |0, < 7. 10ke1] < s and [0)s2] < s} (VL1)
For a measurable set S ¢ R¥*2 and y € R¥*2, define the set
Fy(S;a,b) = {0k = (01,...,0k) €R 1 (6y,...,0k,a,b) € S—y}.

Recall that y; is the k-dimensional gaussian measure defined by yx(S) = P(g € S), where g ~
N (0, (27)~'I;), and where I; denotes the k x k identity matrix. The following is a key geometric
lemma from [4].

Lemma VL1. Let S ¢ R**? and s > 0 satisfy

8s2e 7K/ 4 3042 max (ye(Fy(S:a.b) = Fy(S:a, D)) < yiaa(S) . (V1.2)
a,b,y

Then there is an x € S so that

(FZ\/E,M \ F2\/E,s +x) NS+0.

This geometric lemma will be of crucial importance for identifying the LCD. Indeed, we will take
S to be a representative level set, on the Fourier side, for the probability implicit on the left-hand
side of Lemma [V.3. The following basic fact will help explain the use of the difference appearing in
Lemma VI.1.

Fact VI.2. For any 2d X { matrix W and m > 0, we have
Sw (m) = Sw (m) € Sw (4m) .
Proof. For any x,y € Sy (m), we have Ez||Wx |17, Ez||{Wyl|3 < m . The triangle inequality implies
IZW (x = y)iF < 21ZWx|3 +21ZWylI3.

Taking E; on both sides completes the fact. O
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VI.2. Proof of Lemma IV.3

The following is our main step toward Lemma I'V.3.

Lemma VI3. For d € N, y,a € (0,1) and 0 < v < 2755 let k < 27Y"B*vad and t >
exp(=27V" B *vad). For ¢y € (0,27°°B™), let Y € R? satisfy |Y|| > 270coy~"/t and let W be a
2d x k matrix with |W|| < 2.

Lett ~8,(2d;0) and v’ ~ B, (2d; ¢) withv =27 "v, and let B € [co/2'°, veol and B € (0,1/2). If

1/4
LWF . pVE+T) > (R exp(4K) (AW Il < VE) +exp(-670)) . (VL3)
then D 4 ,(Y) < 21082 Here, we have set R = 2351/_1/232/6%.
Proof. By Lemma IV.1, we may find an m for which the level set S = Sw, (m) satisfies
LOWET, BV + 1) < 4e77 P22y, (). (VL4)

Combining (VI.4) with the assumption (VI1.3) provides a lower bound of

1 1/4
Yis2(8) > 7P (Re)? (B(IW e/ < BN +exp(-pK)) . (VLS)
Now, preparing for an application of Lemma V1.1, define
ro:=Vk  and s := 21" (Vm +8B*Vk)r. (VL6)

Recalling the definition of our cylinders from (VI.1), we state the following claim:

Claim VL4. There exists x € S € R¥*2 o that
(F2r0,16 \ T, 50 +x) NS+0. (VL7)

Proof of Claim VI.4. We will use Lemma VI.1 with s = 59, and so we check the hypotheses. We first
observe that for any y, a, b, if 614, 9’[k] € Fy(S;a, b), then we have

0" = (6; - 6),...,00 —0),0,0) € Sy, (4m)
by Fact VI.2. This shows that for any y, a, b, we have
Fy(S;a,b) — Fy(S;a,b) C Swy, (4m) N {6 € R : 0,1 = O340 = 0} = Sw (4m), (VL8)

where the equality holds by definition of Wy and the level set Sw, . Thus, we may apply Lemma IV.2 to
obtain

Y (Sw (4m)) < 2P (ROIWT 'l < FVE) +exp(—7K)) (VL9)

Combining lines (VI.5), (VI.8), and (V1.9), we note that in order to apply Lemma V1.1, it is sufficient
to check

1/4
8s5¢ 418 + 305332 (B(IWT [y < BVE) +exp(~57K)

1 1/4
< Zevpm/mﬁzk (Rt)? (P(lIWTT’IIz < B'VK) +exp(—ﬂ’2k)) . (VL10)

https://doi.org/10.1017/fmp.2023.29 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.29

Forum of Mathematics, Pi

55

We will show that each term on the left-hand side of (VI.10) is at most half of the right-hand side.

Bound

52 = 22c52 (Vm + 8B°Vk)*1* < 2% (m + 64B%k) (1/c0)* < 2720v(c2k + (2B)"%m) (Rt)?

since R = 2% B*y~1/2¢;%. By Lemma I1.1, we have that p > 277B~* and so we may bound

1 y
8s(2)e7k/8 < e’k/82717v(c(2)k +(2B)*m)(Rt)* < ge"pm/z(Rt)ze’ﬁZk/4 .

Similarly, use (VI.11),co < Sand v = 277y to bound

1
32s5e32P™ < 2715 (c2k + (2B)*m) (Rt)? exp(vpm [4) < g(Rt)ze"”’"/2+ﬁzk’

thus showing (VI.10). Applying Lemma VI.1 completes the claim.

(VL11)

]

The following basic consequence of Claim VI.4 will bring us closer to the construction of our LCD:

Claim VLS. We have that Sw, (4m) N (I'2,16 \ T2ry,s0) # 0.

Proof of Claim VI.5. Claim V1.4 shows that there exists x,y € S = Sw, (m) so that y € (I'z,16 \
[2yy,50 +X). Now define ¢ := y —x, and note that ¢ € Swy, (4m) N (T2, 16 \ Tary,s0) due to Fact VI.2. O

‘We now complete the proof of Lemma V1.3 by showing that an element of the nonempty intersection

above provides an LCD.

Claim VL6. If ¢ € Sy, (4m) N (T2p.16 \ Tary.50)» then there is a &y € (1,16B2) and i € {k + 1,k + 2}

so that
10¢:Y Il < min{ylodilIY ll2, Vad} .
Proof of Claim VI.6. Note that since ¢ € Sw, (4m), we have
EglIZWy ¢117 < 4m.
Thus, there is some instance &y € (1, 16B%) of  so that
120Wy @i < 4m.

For simplicity, define ¢ =: {¢.
By (V1.12), there is a z € Z?¢ so that Wyy € Byy(z, 2+/m). Expand

Y 0
Wydr = Wiy + ¥in 0, +l//k+2[Yd],

and note that

l//k+1

Y 0
0, " Y2 [Yd] € Boa(z,2Nm) = W1 € Baa(z,2Vm +2°B*Vk)
where the last inclusion holds because

W1l < IWlop eyl < 2120llld1 ke < 32VEB,

since ¢ € Ty 16, [do] < 16B%, and |[W||,, < 2.
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Since ¢ ¢ Iy,,5, and lo > 1, we have max{|yx+1|, [¥xs2]} > S0, and so we assume, without loss,
that |r41| > so. Projecting (VI.13) onto the first d coordinates yields

YinY € Ba(z(ay, 2¥m +2°B2Vk). (VL.14)

Now, we show that [[/x1Y It < Y¥i4111Y]l2. Indeed,

215 (vfm + 8B2Vk)t _10C
YeallY by = sollY by > W_CO ))(2 1°7°)>(2vr?+2632«/%>, (VL15)

where we used the definition of sg and that [|Y]l, > 270¢qy~1 /1.
We now need to show

2vm +2°B*Vk < Vad. (VL16)

Note that since k < 2732ad/B*, we have 28B2Vk < Vad/2. We claim that m < 2 *ad. To show this,
apply the lower bound (V1.5) and y42(S) < 1 to see

_n-11 4 _ _ _pnr2 _ _n-15 4
e 2= 'vm/B >e vpm/2 ?’)/k+2(S)€ vpm/2 > (Rt)ze 2Bk > t2€ k >e 2" Pvad/B ,

where we have used k < 27"7vad/B* and t > e~27vad/B* Therefore, m < 2~*ad, that is 2Vm <
Vad /2. Combining this with (VI.14) and (VI.15), we see

lxaYllr < Vad,

as desired. This completes the proof of the Claim VI.6. O

Let ¢, Jo, and i € {k + 1,k + 2} be as guaranteed by Claim VI.6. Then Zp¢; < 2'°B2, and
10¢Y llr < min{[|Zo¢:Y [l2y, Vad},

and s0 D, (Y) < 2'°B2, thus completing the proof of Lemma V1.3. O

VI.3. Proof of Lemma IV.3

In order to bridge the gap between Lemmas VI.3 and V.3, we need an anticoncentration lemma for
[|[Wo ||, when o is random and W is fixed. We will use the following bound, which is a version of the
Hanson-Wright inequality [18, 33].

Lemma VL7. Letv € (0, 1) and B’ € (0,277 B 2\/v). Let W be a 2dxk matrix satisfying |W|lus > Vk/2
and |\W|| € 2and v’ ~ B, (2d; {). Then

P(|WT7’|l» < B/Vk) < 4exp (—2_203_41/1() )

We derive Lemma V1.7 from Talagrand’s inequality in Section X, (see [33] or [18] for more context).
From here, we are ready to prove Lemma [V.3.

Proof of Lemma IV.3. Recalling that ¢o < 273B~*v, and that our given W satisfies ||W|lus > Vk/2
and ||W|| < 2, we apply Lemma V1.7, with 8’ = 264/c and the v-lazy random vector 7/ ~ &, (2d; {),
where v = 277y, to see

PIWT 7|l < BVK) < 4exp (—2-273-4vk) < 4exp(=32¢ok).
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We now consider the right-hand side of (VI1.3) in Lemma V1.3: if 8 < 4/cg, we have

1/4
Bk (P(llWTT'Ilz <pVk) + exp(—ﬁ’zk)) < exp (4cok — 8cok) + exp (4cok — 16¢ok)
< 2exp(—cok) .
We now note that the hypotheses in Lemma IV.3 align with the hypotheses in Lemma V1.3 with respect

to the selection of 8, «,t, R, Y, W; if we additionally assume D, ,(Y) > 21082 e may apply the
contrapositive of Lemma V1.3 to obtain

2\ /4
£ (We gV +1) < @FBA g2 (BUWT T/l < 28'VE) + e 7 )
< (R1)* exp(—cok) ,

as desired. O

VII. Inverse Littlewood-Offord for conditioned matrix walks

In this section, we prove an inverse Littlewood-Offord theorem for matrices conditioned on their robust
rank. Everything in this section will be analogous to Section 6 of [4].

Theorem VIL.1. For n € N and 0 < ¢y < 27084 Jet d < c(z)n, and for a,y € (0,1), let 0 <
k < 2732B*ad and N < exp(2732B~*ad). Let X € R? satisfy ||X|l, > co27'% 'n'2N, and let
H be a random (n — d) x 2d matrix with i.i.d. rows sampled from ®,(2d;() with v = 275 If
Do y(rpn-X) > 21982, then

2n-2d
R
Py (U'Zd—k+l(H) < co2”*Vn and || H\ X o, || H2 X l> < n) < emconk/3 (ﬁ) , (VIL1)
wnere we nave set | := Hin—d\x[d], 12 ‘= H{n-d\x[d+1.2d]> 'n ‘= 7= an = cyo.
h h H\ := Hin-ajx[a}, H2 = H{n-ajx[a+1,24) T and R := 29 B¢’

VII.1. Tensorization and random rounding step

We import the following tensorization lemma from [4].

Lemma VIL.2. Ford < nandk > 0, let W be a 2d X (k +2) matrix and let H be a (n — d) X 2d random
matrix with i.i.d. rows. Let T € R*? be a random vector with the same distribution as the rows of H. If
B €(0,1/8), then

Py (1HWllus < V(K + D (n = d)) < (25e# 5 L(W 7, pVk + 1))"_d .

Similarly, we use net for the singular vectors of H, constructed in [4]. Let Uy ; < RIZ4IXIK] be the
set of 2d X k matrices with orthonormal columns.

Lemma VIL3. Fork < d and § € (0,1/2), there exists W = Wg i, < RIZXIK i W) < (20/6)24%
so that for any U € Uaq x, any r € N, and r X 2d matrix A, there exists W € W so that

L AW = U)llus < 6(k/2d)"?||Allus,
2. |IW - Ullus < 6Vk, and
3. W =Ullyp < 86.
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VIL.2. Proof of Theorem VII.1
We also use the following standard fact from linear algebra.

Fact VIL.4. For 3d < n,let H be a (n—d) X 2d matrix. If o0p4_r+1(H) < x, then there exist k orthogonal
unit vectors wi,...,wi € R?? so that ||[Hw;|, < x. In particular, there exists W € Usa k so that

|HW |lus < xVk.
We will also need a bound on ||H||gs:

Fact VILS5. Let H be the random (n — d) X (2d) matrix whose rows are i.i.d. samples of ®,,(2d; ¢). Then

P(||Hllus > 2/d(n — d)) < 2exp (—2—213—4nd) .

We are now ready to prove Theorem VII.1.

Proof of Theorem VII.1. LetY := %’m - X. We may upper bound the left-hand side of (VII.1) by Fact
VIL4

P(02d-k+1(H) < co2™*Vn and ||H X|l2, [|H2 X |2 < 1)
< PAU € lha i : ||HUy|lus < coyn(k +1)/8).

Set 6 := co/16, and let VW be as in Lemma VII.3.
For each fixed H, if we have ||H|lgs < 24/d(n — d) and there is some U € Uy 1 so that || HUy |lgs <

coyn(k +1)/8, we may apply Lemma VII.3 to find W € W so that
IHWy llus < |H(Wy — Uy)llus + |HUy llus < 6(k/2d)"?||H|lus + covn(k + 1)/8
which is at most co+/n(k + 1)/4. This shows the bound

Py (3U € Usar : |HUyllus < con(k + 1) /8) <Py (aw €W : |HWyllus < covn(k + 1) /4)

Conditioning on the event that ||H||gs < 2+/d(n — d), applying Fact VIL.5, and union bounding over W
show that the right-hand side of the above is at most

> B (||HWY||2 com/4)+26xp( 213—4nd) .

wWew

Bound
W < (25/6)* < exp(32dklogcy') < exp(cok(n — d)/6),

where the last inequality holds since d < c(z)n. Thus

Z Py (|[HWyll2 < covn(k +1)/4) < exp(cok(n — d)/6) vlvngm)/(vPH(“HWHQ < coyn(k +1)/4).

Wew
(VIL2)

For each W € W, apply Lemma VII.2 with 8 := 4/co/3 (noting that Vi — d/3 > \/n/4) to obtain

-d
Pa (|HWyllo < conk+1)/4) < (224w, e Ve 1)) (VIL3)
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Preparing to apply Lemma IV.3, define ¢ := (coN/32)™" > exp(-2"*’B~*ad) and Ry := 278¢oR =
2‘8c0(24332c63) = 23532c62 so that we have

Y12 = collXlla/(32n") > 275 cANy™ = 2710¢oy 7 1

Since W € W, we have ||W|l,, < 2 and ||W|lus > Vk/2. We also note the bounds k < 2732 B *ad,

Da,y(n‘fﬁX) =D, (Y) > 2!°B2 Thus, we may apply Lemma I'V.3 to see that

2
. R .
E(W;T, c(l)/z\/k + 1) < (R()t)2e_‘°k < (_8N) g0k |

Substituting this bound into (VII.3) gives

N =

2n-2d
R .
max Py (IHWy |l < covn(k +1)/4) < (N) e~ Cok(n=d)/3
€

Combining with the previous bounds and noting

2n-2d
2 exp (_2—213—4nd) < 1 (%) e—cok(n=d)/3

[\

show

2n-2d
R
P(02qge1 (H) < coVn/16 and [|H X[, | Ho X < 1) < (ﬁ) -cok(n-d)/3

This completes the proof of Theorem VII.1. O

VIII. Nets for structured vectors: Size of the net

The goal of this subsection is to prove Theorem II1.2. We follow the same path as Section 7 of [4]. As
such, we work with the intersection of A, with a selection of “boxes” which cover a rescaling of the
trivial net A .. We recall the definition of the relevant boxes from [4].

Definition VIIL.1. Define a (N, «, d)-box to be a set of the form B = B; X ... X B, C Z", where
|B;| = N foralli > 1; B; = [-kN,—-N] U [N, «N], fori € [d]; and |B] < («kN)".

We now interpret these boxes probabilistically and seek to understand the probability that we have

L n
Par (IMXI < 1) > (N) ,

where X is chosen uniformly at random from B. Theorem I11.2 will follow quickly from the following
“box” version:

2
=50B~4 letn > L% and let ic%n <d< c%n. For N > 2,

Lemma VIIL2. For L > 2 and 0 < ¢y < 2
> 2, let Bbe a (N, k,d)-box. If X is chosen uniformly at random

satisfying N < exp(coL™8"4d), and k
from B, then

L R

n 2n
By (Bar (IMX]s < ) > (N) )< (z) ,

where R := C 663 and C > 0 is an absolute constant.
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VIII.1. Counting with the LCD and anticoncentration for linear projections of random vectors
We first show that if we choose X € I3 uniformly at random, then it typically has a large LCD.

Lemma VIIL3. Fora € (0,1),K > 1,andk > 2, letn > d > K?/a andlet N > 2 be so that KN < 29.
Let B = ([-kN,=N] U [N, «N))%, and let X be chosen uniformly at random from B. Then

Px (Da,y(raX) < K) < (2%0)?4, (VIIL1)

where we have set ry, := c2>n~1/2.

Proof. Writing ¢ = yr,, note that
Px(Da,y(raX) < K) =P(3 ¢ € (0,Kry] : [|6X|Ir < min{y¢||X|l2, Vad}) .

We note that any such ¢ must have |¢| > (2kN)~!, since if we had ¢ < (2kN)~!, then each coordinate
of ¢ X would lie in (—=1/2,1/2), implying ||¢X||T = ¢||X]||2, that is ||¢X|lr > y¢||X]>. The proof of
Lemma 7.4 in [4] shows that

Px(3 ¢ € [(2kN)"",ruK] : 19X |lr < Vad) < (2%a)?",
completing the Lemma. O

We also import from [4, Lemma 7.5] a result showing anticoncentration for random vectors AX,
where A is a fixed matrix and X is a random vector with independent entries. As noted in [4], this is
essentially a rephrasing of Corollary 1.4 and Remark 2.3 in Rudelson and Vershynin’s paper [34]:

Lemma VIII4. Let N € N, n,d, k € N be such that n —d > 2d > 2k, H be a 2d X (n — d) matrix with
o2a-ik(H) > co\n/16 and By, ...,B,_q C Z with |B;| > N. If X is taken uniformly at random from
B:=B; X...XB,_g4, then

Px (IHX|l2 < n) < (

Cn 2d-k
dC()N ’

where C > 0 is an absolute constant.

VIII.2. Proof of Theorem VIII.2

Recall that the matrix M is defined as

o = |Oaixtar - HY 7
Hy  Op-a)x[n-d]

where Hj is a (n — d) x d random matrix with whose entries are i.i.d. copies of /Z,. Let H, be an
independent copy of Hy, and define H to be the (n — d) X 2d matrix

H:=[H\ Hy].
For a vector X € R", we define the events A; = A;(X) and A; = A>(X) by

Ay :={H : |Hi X[all2 < nand |[HoX[4)|]> < n}
Ao = {H : |H" X{gs1,n1l < 2n} .

We now note a simple bound on Py (|| M X||; < n) in terms of A; and A,.
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Fact VIILS5. For X € R", let A; = A;(X), A; = A>(X) be as above. We have
Bu (IMX[l2 < n)* < P (A1 0 Ay).

This fact is a straightforward consequence of Fubini’s theorem, the details of which are in [4, Fact
7.7]. We shall also need the “robust” notion of the rank of the matrix H used in [4]: for k =0, ..., 2k,
define & to be the event

& = {H : o241k (H) > coVn/16 and 0541 (H) < coVn/16},

and note that always at least one of the events &, . . ., €54 holds.
‘We now define

a =238/ (VIIL.2)
and for a given box B, we define the set of typical vectors 7' (B) C B by
T=T(B):={X € B: Dy(coX[a)/(32Vn)) > 2'°B*} .

Now, set K := 2!°B? and note the following implication of Lemma VIII.3: if X is chosen uniformly
from B and n > L%/ > 21982 /q, then we have that

Px(X ¢ 7) = Px(Da(coXpa/(32vM) < 2082 < (28 1-94) " ¢ (%)2 - (Vi)

Proof of Lemma VIII.2. Let M, Hy, Hy, H, A1, Az, E, @, and T := T () be as above. Define
E={XeB:Pyu(IMX|» <n) > (L/N)"}
and bound
Px(£) <Px(EN{X T} +Px(X ¢T).
For each X, define
f(X) =Py (IMX]2 <n)I(X €T)
and apply (VIII.3) to bound
Px(€) < Bx (f(X) > (L/N)") + (2/L)*" < (N/L)™Ex f(X)* + (2/L)™", (VIIL4)

where the last inequality follows from Markov’s inequality. Thus, in order to prove Lemma VIII.2, it is

enough to prove Ex f(X)? < 2(R/N)*".
Apply Fact VIILS to write

d
Par(IMX|h < n)? <Py (A1 0 A) = > Py (AslAr 0 E)P (Ar 0 Ek) (VIILS)
k=0
and so
d
F(X)? <Y Pu(AA N EDPH (A NENL(X €T). (VIIL6)
k=0
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We will now apply Theorem VII.1 to upper bound Pg (A NEx) for X € T. For this, note that d < c(z)n,
N < exp(coL™%4d) < exp(27>2B~*an) and set Ry := 243Bzc63. Also note that by the definition of
a (N, k,d)-box and the fact that d > jc3n, we have that [|X{41ll, > d'>N > ¢927'ynN. Now, set
a’ := 2732B~*x and apply Theorem VII.1 to see that for X € T and 0 < k < a’d, we have

RO 2n-2d
N .

P (A1 NE) < e/ (

Additionally, by Theorem VII.1, we may bound the tail sum:

D Pu(Ain &) < P ({02a-aa(H) < coVn/16} 01 Ay) < ™04,
k>a'd

Thus, for all X € B, the previous two equations bound

’

a'd 2n-2d
. R o
f(X)? < g Pr (Az | A N Ex)eonk/3 (WO) +emc0@/dn/3 (VIIL7)
k=0

Seeking to bound the right-hand side of (VIIL.7), define g (X) := Py (Az | A1 N E). Write
Ex [gk(X)] = ExBu [A2 | A1 N Ek| = Exyy B [Bxyu,,, 1[A2] | AN & -

Let k < a’d. Note that each H € A; N & has 024 (H) > coyn/16, and thus we may apply Lemma
VIIIL.4 to bound

C'n 2d-k
<
CodN

2d-k
4¢ )

]EX[dJrl,n] 1[./42] = PX[dH,n] (||HTX[d+1,n] ||2 < }’l) < ( C3N
0

for an absolute constant C’ > 0, where we used that d > %c%n. Thus, foreach 0 < k < a’d, if we define
R = max{8C’cE3, 2Ry}, then we have

2d-k
Ex [gx(X)] < (ﬁ) ) (VIIL8)

Applying Ex to (VIIL.7) using (VIIL.8) shows

2n a'd k
R 2N ,
E X 2 < —conk/3 + oC0 dn/3 )
x f(X) (_ZN) k§:0 (_R ) e e

. -8n/d ’
Using that N < e“oF Md = gerdd[8 ypd N < e“0"/3 bounds

2n
R
Ex f(X)? <2(=—] . VIILY
oot <2(2) .
Combining (VIII.9) with (VIIL.4) completes the proof of Lemma VIII.2. |

VIIL.3. Proof of Theorem II1.2

The main work of proving Theorem III.2 is now complete with the proof of Lemma VIIL.2. In order
to complete it, we need to cover the sphere with a suitable set of boxes. Recall the definitions from

https://doi.org/10.1017/fmp.2023.29 Published online by Cambridge University Press


https://doi.org/10.1017/fmp.2023.29

Forum of Mathematics, Pi 63

Section III.1:
Z'([d]) = {v eR": kon V2 < |vi| < kynV? foralli € [d]} ,
and
Ae = Bn(0,2) N (4en™'? .2 nT'([d]),

and that the constants «, 1 satisfy 0 < kg < 1 < 1 and are defined in Section II.3.
We import the following simple covering lemma from [4, Lemma 7.8]

Lemma VIIL6. For all € € [0, 1], k > max{« /o, 28K54}, there exists a family F of (N, k, d)-boxes
with | F| < k" so that

As C U (4en™\?) . B, (VIIL10)

BeF
where N = ko/(4¢€).
Combining Lemma VIII.6 with Lemma VIII.2 will imply Theorem II1.2.
Proof of Theorem I11.2. Apply Lemma VIIL.6 with x = max{k1 /o, 28Ka4} and use the fact that Nz C
A g to write
Ng C U ((48}1_1/2) -B) NNg
BeF

and so

IN:| < BZE;E |(4en™ 2. By N N < | F|- max |(4en™"% . B) N Na|.

Rescaling by vn/(4€) and applying Lemma VIII.2 bound
R 2n
|(4den™? - B)y N N,| < {X € B: Py (IMX| < n) > (Le)"}| < (Z) Bl

To see that the application of Lemma V1I1.2 is justified, note that 0 < c¢o < 27°B™, ¢3n/2 < d < c}n,

x> 2, and log 1/e < n/L®*/< and so
log N =logkg/(4¢e) < n/L64/C§ < coL~84g |

as required by Lemma VIII.2, since kg < 1, d > L*]/Cén, co = L*‘/Cg, and 8n/d < 16/c%. Using that
|F| < k™ and |B| < («N)" for each B € F bound

2n 2n n
R R C
n n n
|Na| < K (Z) |B| <K (Z) (KN) < (—chzg .
where we set C := k*R*c§. This completes the proof of Theorem I11.2. o

IX. Nets for structured vectors: Approximating with the net

In this section, we prove Lemma II1.1, which tells us that A is a net for X .. The proof uses the random
rounding technique developed by Livshyts [21] in the same way as in [4].
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Proof of Lemma I11.1. Given v € X, we define a random variable r = (rq,...,r,), where the r; are
independent and satisfy Er; = 0 as well as the deterministic properties |r;| < 4en™"/? and v —r €
4en~1/27" . We then define the random variable u := v — r. We will show that with positive probability
that u € N.

By definition, ||r|le = |lu — v|lo < 4en~'/? for all u. Also, u € Z’([d]) for all u, since v € Z([d])
and |lu — vl < 4e/+n < ko/(24/n). Thus, from the definition of N, we need only show that with
positive probability u satisfies

P(||Mull; < 4evn) > (Le)" and L4 op(u, eVn) < (2'0Le)". (IX.1)

We first show that all u satisfy the upper bound at (IX.1). To see this, recall K = {||A[lop < 4vn} and
let w(u) € R" be such that

Laop(u,eVn) =P ([ Av = Ar = w(u)|| < evn)
<PX (|Av = w(u)|| < 17evn)
< Laop(v,17evn) < L(Av, 17eVn).

Since v € X, Lemma II1.7 bounds
L(Av,17evn) < (2"°Le)" . (IX.2)
We now show that
Eu Py (IMulla < 4evn) > (1/2)Py (IMv]l2 < 2evn) > (1/4)(26L)", (IX.3)

where the last inequality holds by the fact v € X .. From (IX.3), it then follows that there is some u € A,
satisfying (IX.1). To prove the first inequality in (IX.1), define the event

E:={M :||Mv|» < 2eVn and || M|lus < n/4}

and note that for all u, we have
Py (IMully < 4evn) =Py (IMv — Mr|2 < 4devn) > Pp(|IMr|l2 < 2eVnand €).
Since by the Bernstein inequality, P(||M ”1%15 > n?/16) < 2exp(—cn?) and the fact that
& > exp(—2cxn) = exp(—cn),

we have

P(E) > (2Le)" — 2exp(—cn®) > (1/2)(2Le)",
assuming that cy is chosen appropriately small compared to this absolute constant. Thus

Pu (IMullz < 4evn) > Pag (|Mr]l2 < 2V |E)P(E)
> (1 =Py (IMr]l > 2evn|€)) (1/2)(2Le)" .

Taking expectations gives

EPur(IIMulla < 4evn) > (1 - E Py (IMrla > 26Vn|€)) (1/2)(2Le)" . (IX.4)
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Exchanging the expectations and rearranging, we see that it is enough to show
En [P (IIMrll > 2evVn) | €] < 1/2.

We will show that P, (|| Mr||» > 2evn) < 1/4 for all M € £, by Markov’s inequality. Note that

2
E, |Mr| = § E (M, )" = § Er? § M} < 168%||M|fs/n < &°n,
i,j i J

where for the second equality, we have used that the r; are mutually independent and E r; = 0; for the
third inequality, we used ||7|lc < 4&/+/n; and for the final inequality, we used ||M||ys < n/4. Thus, by
Markov’s inequality gives

B, ([|Mr|l2 > 2eVn) < (2evn)E, |Mr|3 < 1/4. (IX.5)

Putting (IX.5) together with (IX.4) proves (IX.3), completing the proof of (IX.1). m]

X. Proof of Lemma VI.7
We will derive Lemma V1.7 from Talagrand’s inequality:

Theorem X.1 (Talagrand’s inequality). Let F' : R" — R be a convex 1-Lipschitz function and o =
(o1, ...,00), where the o; are i.i.d. random variables, such that |o;| < 1. Then for any t > 0, we have

P(IF(c) = mp| > 1) < 4exp (—t2/16) ,

where my is the median of F(o).

Proof of Lemma VI.7. Note the theorem is trivial if k < 22°B*/v, so assume that k > 220B*/y. Set
o =2"%B72¢’, define

—-1ywT
F(x) =W W x|,
and note that F is convex and 1-Lipschitz. Since |o;| < 27*B~?|7;| < 1 and the oy are i.i.d., Theorem
X.1 tells us that F (o) is concentrated about the median mp and so we only need to estimate mp. For

this, write

m=E|W o|} = > W Ea? = Ba?Wilis,
i,

and

my =E W oll} - BIW ol3)? = ) W2 (Bo - (Bo?)?) <Ba? Wi,
iJj

where for the final inequality, we used that E o-f <E o-l.z, since |o;| < 1. For t > 0, Markov’s inequality
bounds

2
AW ol <m—1) < B (IW ol = m)" = ma < PEGRW.
Setting 1 = E o7 ||W||2/2 gives

PAIWT o ll; < BofIWligs/2) < 4Ea? W)™ < 1/2,
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since Eo-l.2 = 2‘83_4E‘rl.’2 > 28B4y and ||W||£IS > k/4 > 2'1y~1B* (by assumption). It follows that

me > JEa2/2WI™ [Wils > 27|~ B2k,

since ||W|lus > Vk/2. Now, we may apply Talagrand’s inequality (Theorem X.1) with t = mp —
B'Vk||W||~! to obtain

P (||WT0'||2 < ,8'«/%) < dexp (-2-203—4vk)

as desired. O

XI. Proof of Theorem 1.4

Here, we deduce Theorem 1.4, which shows negative correlation between a small ball and large deviation
event. The proof is similar in theme to those in Section 5 but is, in fact, quite a bit simpler due to the
fact we are working with a linear form rather than a quadratic form.

Proof of Theorem 1.4. We first write

P(I(X,v)| < & and (X, u) > 1) < E [1{|<X, Wl < s}e’l<x’“>_”] , (XL1)
where 4 > 0 will be optimized later. Now, apply Esseen’s inequality in a similar way to Lemma 5.1 to
bound

1/e )
E [1{|(X,v)| < s}e’l<X’”>_’l’] < se"”/ Ee2m 0 v+ X gg (X1.2)
-1/e
Applying Lemma 5.5 bounds
)]Eezmﬂ<X’V>+’1<X’“> < exp (—c minI ||9rv||12r + c_l/lz) +e (XL.3)
re[l,c1]

Combining the lines (XI.1),(XI.2), and (XI.3) and choosing C large enough give the bound

B /e

P(KX, V>| < € and <X,u> > [) < Se—/lt+c 1,12/
-1/&
e—/lt+c’1/127_1

(e s emeon) ag

_ _ -152
<e +eccm/lt+cxl.

Choosing A = ct/2 completes the proof. O

XII. Proof of Lemma 3.2

We deduce the second part of Lemma 3.2 from the following special case of a proposition of Vershynin
[46, Proposition 4.2].

Proposition XIL.1. For B > 0,let{ € I'g, let A, ~ Sym (), andlet K > 1. Then there exist p,5,¢ > 0
depending only on K, B so that for every A € R and w € R", we have

P( inf |(An + ADx — w2 < cVnand ||A, + A||op < KNn) < 27"
xeComp (6,p)
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Proof of Lemma 3.2. To get the first conclusion of Lemma 3.2, we may assume without loss of generality
that u € S"!. So first let N be a cy/n-net for [-4+/n, 4v/n], with || < 8/c. Note that P([|A|lop >
4+/n) < e 50 if A, x = tu, then we may assume 7 € [—4+/n, 4y/n]. So

P(3x € Comp (6, p), 3t € [-4Vn,4vn] : Ayx = tu)

< D P(3xeComp(6,p) : 1Anx - toulla < cVi),
t()EN

since for each t € [—4+/n, 44/n] there’s ty € N/, such that if A,,x = tu, then ||A,x — tou|» < cy/n. Now
to bound each term in the sum, take 4 = 0, K = 4, w = fou in Proposition XII.] and notice we may
assume ||A,|lop < 4+/n again. For the second conclusion, it is sufficient to show

P(3x € Comp (6, p), 3t € [-4vn, 4vn] : (A, — tD)x|2 = 0 and ||A,, — t1|,, < 8Vn)

XII.1
s e_Q(n) . ( )

since we have P(||An|lop > 44n) < e by (4.11), so we may assume that all eigenvalues of A,, lie
in [-4+/n,4+/n] and ||A,, — t1|lop < |t] + |Anllop < 84/n, forall t € [—4+/n, 4+/n].

For this, we apply Proposition XII.1 with K = 8 to obtain p, §, c. Again, let N be a cyn-net for the
interval [—4+/n, 4y/n] with |N| < 8/c. So, if t € [—4+/n, 4+/n] satisfies A, x = tx for some x € S,
then there is a ty € A with |t — ty] < c/n and

(An = toD)xll2 < It = tolllxll2 < eV

Thus, the left-hand side of (XII.1) s at most

> P (3x € Comp (5.p) ¢ I1(An — toDxlla < Vi and [| A, = oIy < 8Y7) 5 €™,
toEN

where the last line follows from Proposition XII.1. O
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