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ABSTRACT. Let X1, X2,... be independent and identically distributed random variables in C chosen from
a probability measure g and define the random polynomial

Po(z)=(z2—X1)...(z — Xn).
We show that for any sequence k = k(n) satisfying k < logn/(5loglogn), the zeros of the kth derivative

of P, are asymptotically distributed according to the same measure p. This extends work of Kabluchko,
which proved the k = 1 case, as well as Byun, Lee and Reddy who proved the fixed k case.

1. INTRODUCTION

Let p be a probability measure on C. Suppose that X, X5, ... are i.i.d. random variables with values in C
sampled from p, and for each n define the random polynomial

Pu(2)=(z—X1)...(2— Xn).

By the law of large numbers if we consider the empirical measure of P,, where we a put a point mass of 1/n
at each root of P, then we see that the empirical measure converges to i as n approaches infinity. Pemantle
and Rivin [18] conjectured that the same holds for the derivative P,. To make this precise, define ,ug,,l) to be
the probability measure on C that puts a point mass at each critical point of Pj:

1
'E‘al) = m Z 6z.
zEC: P, (z)=0
Pemantle and Rivin conjectured that ,u,(q,l) — p in distribution as n — oo and proved their conjecture under
the assumption that p has finite 1-energy. Subramanian [19] proved the Pemantle-Rivin conjecture in the
special case when p is supported on the unit circle (see also [5] and the discussion below Conjecture 4.4 for
more context and discussion on the mode of convergence). In an influential work, Kabluchko [10] confirmed
Pemantle and Rivin’s conjecture for all probability measures p. Since then, attention has been focused on
higher derivatives. To this end, for each k define the (random) probability measure ,u,(lk) via

pk) = ﬁ Z dz .

zeC: P (z)=0
1
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Byun, Lee and Reddy [3] extended Kabluchko’s work and showed that for each fixed k,! we have ,ug,,k) — .
Looking towards very high derivatives, O'Rourke and Steinerberger [17] conjecture that for each fixed ¢ €
[0,1], one has that the random measure ,u,LfnJ converges to a deterministic measure g;. In the case when
the underlying measure p is radial, O’'Rourke and Steinerberger conjecture that the logarithmic potentials
of the limiting measure (p¢); satisfy a certain partial differential equation. This partial differential equation
has been studied by analysts [1, 13], and O’'Rourke and Steinerberger’s conjecture was proven in the special
case when u has real support [8] (see also [7, 11]). In the ¢ = o(1) case, the prediction of O’'Rourke and

Steinerberger suggests that the limiting measure should be the same as the underlying measure p.

We confirm this in the case that k grows slightly slower than logarithmically:

logn

Theorem 1.1. Let p be a probability measure on C and k = k(n) be a sequence satisfying k < STog logn -

Then the sequence ,u?(lk) — p in probability as n — oco.

Further, we show that the case of k = o(n) would follow from an anti-concentration conjecture for elementary
symmetric polynomials evaluated at i.i.d. random variables (see Conjecture 4.1 and Remark 4.2).

Our proof of Theorem 1.1 takes inspiration from the potential-theoretic approach of Kabluchko’s proof of
the k = 1 case (as does the work of Byun, Lee and Reddy [3]); the key new step is an anti-concentration
ingredient. We take a moment to sketch our proof here.

The starting point is the following classical fact from potential theory: if f is an analytic function not
identically equal to zero then

1
soAlglfl= D & (1)
CEC:f(¢)=0
where the Laplacian is interpreted in the distributional sense.

In particular, if we define

PP (2)
L'E‘ak)(z) =D Z }751}]‘32"'1/%: (2)
k!Pn(Z) 1<iy <ig << <N
where Y; := %& for i € [n] :={1,...,n}, then we have
1 1 1 n—k
g Alg|LP () ==~ > G-~ D> =—pP -l (3)
zEC:P,(bH(z):D z€C: Pp(z)=0

By the law of large numbers, the measure ,u?(?) tends to p as n — 0o, and so in order to show ,uﬁf‘) converges
to p it will be enough to show that %log |L,(,1k) (2)| goes to 0 in a sufficiently strong sense to guarantee that

1 Alog |LP(2)| tends to 0.

Obtaining an upper bound on the magnitude of log |L,(qk)(z)| involves controlling two different events: when
|L£,,k)(z)| is large and when |L£,,k)(z)| is very small. The former event will not be too difficult to deal with,
but the latter is trickier. This comes down to an anti-concentration problem for elementary symmetric
polynomials evaluated at i.i.d. random variables.

1The work [3] does not state an explicit rate at which k can be taken to grow. An inspection of the proof shows that it
depends on the Levy concentration of the non-atomic part of the random variable (z — X)~! as z varies in C (see [3, eq. (4.6)]).
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Lemma 1.2. Let Y1,Ys5,..., be i.i.d. copies of a complex-valued non-degenerate random variable. Then for
1gkgw‘;§:ﬁ and each £ > 0 we have
Pl Y WYY se®| <o

1<iy <ia<--<ip<n

Here we think of Y; = (2 — X;)~! as above. The proof of Lemma 1.2 will be deduced from a theorem of Meka,
Nguyen and Vu [16] about anti-concentration of multi-affine polynomials of Bernoulli random variables. We
note that Lemma 1.2 is the only place where we need the assumption of k < ﬁaﬁ]:’g—n; the number 5 may be
replaced by any number strictly larger than 4. Lemma 1.2 will be of crucial use in the proof of Lemma 2.2.

After showing pointwise bounds on log |L£,,k) (2)|, we upgrade these bounds by showing that they hold in some
uniform sense. To take care of this, we again follow Kabluchko and lean on a lemma from Tao and Vu [21]
stating that tightness of an L?-norm will be sufficient to deduce convergence in probability of the measures.
For this, we use the Poisson-Jensen formula to relate values of log |L£;k)(z)| in a disk to its values on the
boundary of a larger disk, and show uniform bounds at the origin and on the boundary of this disk.

We note that the assumption k < Tcl)';g];;—n is due to the use of the general anti-concentration result of Meka,

Nguyen and Vu (which we reproduce as Theorem 3.1) to prove Lemma 1.2. An anti-concentration result
particularly geared towards our application that holds all the way up to k = o(n) would allow for Theorem
1.1 to be extend to the k = o(n) case (see Conjecture 4.1).

1.1. Notation. Throughout, we use B,.(z) to be the disk of radius r centered at z and abbreviate B,.(0)
as B,. We write m for the standard (2-real-dimensional) Lebesgue measure on C and denote L5 for the

N—o0
convergence in probability as n — co. For z > 0 we write logz = log, z —log_ 2z where

|logz|, 0<z<1, 0, 0<=z<1,
log_z= and log, z =
0 z > 1, logz, 2z>1,

3

with the convention log_ 0 = +cc.

2. PROOF OF THE MAIN RESULT

We will show two main lemmas in this section. First, we recall the following result in [21].

Lemma 2.1 (Lemma 3.1 in [21]). Suppose that (X, A,v) is a finite measure space, (fn)n>1 : X = R are
random functions which are defined over a probability space (2, b, P) and are jointly measurable with respect

to A® b. In addition,

(1) For v-a.e. £ € X we have fn(x) = 0 in probability (resp. almost surely) , as n — oo.
(2) For some & > 0, the sequence [ |fr(z)[*Hdv(z) is bounded in probability (resp. almost surely).

Then, | x fn(z)dv(z) converges in probability (resp. almost surely) to 0.

Now we show pointwise convergence of % log |L?(1k)(z)| in probability almost everywhere:
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Lemma 2.2. There is a set ' C C with m(F') = 0 so that for every z € C\F and all sequences k < 51;‘;%
we have
! Jog [LO) (2) 25
—log | L3, ()] 0. (4)
n n—oo

In order to prove Theorem 1.1, we will need to upgrade Lemma 2.2 from pointwise convergence to a more
uniform mode of convergence. By Lemma 2.1, it will be sufficient to show tightness of a second moment.

logn
5loglogn?

CINCTEEIRTE)

Lemma 2.3. For eachr > 0 and k < the sequence of random variables

n>1

is tight.

‘We now deduce Theorem 1.1 from Lemmas 2.2 and 2.3.

Proof of Theorem 1.1. It is sufficient to show that for every smooth compactly supported function ¢ : C — R
we have

SY e e due)

zeC:P® (z)=0 C

as n — oo (see, e.g., [12, Theorem 14.16]). By, e.g., [9, Formula (2.4.4)], for an analytic function g and
compactly supported smooth function ¢ we have

> o) =5 [ Aele)loglo()| dm)

z:g(z)=0

and so

o [P @DApE ) =L @ -1 P ) -

zeC:PF) (z)=0 2EC: Py (2)=0

Combining Lemmas 2.3 and 2.2 with Lemma 2.1 shows
- [ B LO D) dme) £ 0. (6)
n Je n—oo

By the law of large numbers, the right-most term of (5) tends to [ ¢(z)du(z) almost-surely, completing the
C
proof. O

2.1. Proof of Lemma 2.2.

Lemma 2.4. Let F={2€C: [ |y — z| 'du(y) = oo}. Then m(F) = 0.
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Proof. Since p is a probability measure we have that [ |z —y| 'du(y) < 1 for all z. Thus F is equal
yily—z|21
to the set of z for which |, By (z) ly — 2|t du(y) = co. Apply Fubini’s theorem to compute

/ / Iz—yl_ld;u(y)dm(z)zf / |z — y|~tdm(2)dp(y) = 2.

T Bi(2) T By
Thus m(F) = 0. 0

Proof of Lemma 2.2. If the random variable X; is almost surely a constant, then the lemma follows easily,
and so we assume that X is non-degenerate.
First, we show that for every fixed z € C\ F and every € > 0, we have
1
i - (k) _
lim P [n log |LyY (2)| > s] = 0. (7)

Indeed, defining Y; = (2 — X;)~! for all i € [n], Markov’s inequality bounds

PG > ] < e mBILBE) < o (}) (BIYiD* ®)

Since z € C\ F, the expectation E|Y;| is finite. Thus, the right-hand-side tends to zero as long as k = o(n)
and so the limit (7) follows.

An application of Lemma 1.2 will provide a lower bound, i.e., we prove that for every z € C which is not an
atom of p and every € > 0,

1
; - (k) el =

nl_u}ngoP Ll log |[L3" (2)| < E] 0. (9)

Write
P l1og|Lg=)(,z)| < —s] =P > Y.,V ...V, | <e
n
1<iy<ig<---<ip<n

and note that Lemma 1.2 shows the right-hand-side is o(1), completing the proof of the lemma. O

2.2. Proof of Lemma 2.3. To prove tightness, we will use the Poisson-Jensen formula to write log |L?(1k)(z)|
in terms of a Poisson integral of log |L?(1k) (2)| along the circle of radius R for some R > r, plus a small correction
in terms of the zeros and poles of L&")(z). From here, showing tightness of the L? norm will come in two

steps: %log |L£;k)(z)| is tight at 0 and on the circle of radius R, and that the correction depending on the
zeros and poles is not too large.

Note that by the proof of Lemma 2.4 for any R > 0 we have that

/Bﬁfch—yl_ldp(y)dm(z) < 0.

By switching the outer integral into polar coordinates, we see that for Lebesgue-almost-all R > 0 we have

that )
4 1
—— df < oo. 10
| [ =g e (10)
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Throughout, we assume that R satisfies this assumption.

We now write the Poisson-Jensen formula for log |L?(1k)(z) |: Let R > 7 be chosen as above, let T1p,...,%j, n

denote the zeros of P,(2) in the disk Bp, and let yy n,. .., ¥, n be the zeros of P,Ek)(z) in the disk Bgr. Also
note that j, < n and £, < n. We take the following standard facts about the Poisson-Jensen formula from
[15, Chapter 8]:

Lemma 2.5 (Poisson-Jensen formula).

£
) (| — TR (. R(z—yen) R(z —zjn)

log |Li (2)| = I} (z?1%)4—;§;10g }?2__y£ . j{jlog i (11)

where X
fﬁmm=§/l%ﬁﬂ&W&ww—mmw (12)

T Jo

where Pr denotes the Poisson kernel
RZ _ 'l"2

Pp(r, ¢) = r €[0,R], ¢ € [0, 2n]. (13)

R2 + 12 —2Rrcos¢’

The only property of the Poisson kernel we need is that it provides only bounded distortion when r is
uniformly bounded away from R.
Fact 2.6. For all 0 <1 < R there exists M > 1 so that for all z € By and 6 € [0, 2] we have

1

3f < Pa(lz,6) <M. (14)

We first provide an upper bound L(;k)(z; R) in probability that is uniform in B, for all k and n.

Lemma 2.7. For all R satisfying (10) and 0 < v < R there is a constant C > 0 so that for all t > 0 and
1 <k <n we have

PF&mﬁWzﬂZqég. (15)
M zeB, t
Proof. Apply Fact 2.6 and bound
2
1™ (2 R) < QE / log, |L£§“)(Re“’)| da. (16)
T Jo

Bound
llog |L(k)(Reﬁe)‘ < llog (1 + |L(k)(Rei€)|)
T + n —n n

-1
%log (1 + (:) |L£§)(Rei9)|) +1 (17)

A

where we used that n™!log (:’) <1.
Claim 2.8. We have

2 -1 2
Bl log [ 1+ (n) |L¥) (Re')| | db g/ / |Re® — y| ' du(y)df.
0 n k 0 C
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Proof of Claim 2.8. Noting that the function x + log(1+x) is concave for = > 0, Jensen’s inequality bounds

—1 —1
E].Og (]_ + (:) |L£§)(Reie)|) S ]0g (1 +E(:) |L£§)(Rei9)|) .

Since R satisfies (10), for almost all ¢ € [0, 2rr] we may bound
n\ ! . . -1 k
B(}) O < ([ 17 o dutw) -
C

Combining the previous two displayed equations and integrating over # shows that
1 n\ ! : m o -1 g
/ —Elog (1+( ) |L,(,:‘)(Re‘9)|) dﬁg/ —log (1+ (/ |Re® — y| dp(y)) ) do
0o n k 0o n C
2 k " )
<[5 [ 1R —ul" dutw) o
0o "Jc
2m )
<[ [ 1R —ol " duty) a0
0o Jc

where we used the elementary inequality log(1 + z*) < kz for = > 0. O

Combining lines (16) and (17) with Claim 2.8 and Markov’s inequality completes the proof. O

The Poisson-Jensen form will allow us to compare s (z; R) to I,(lk)(O; R). It will be convenient to assume
that 0 ¢ F. If 0 € F, we may find some a ¢ F (recall that F' has measure 0) and replace each X; with
X; — a; thus, we may assume without loss of generality that 0 ¢ F'.

Lemma 2.9. There is a constant Cy depending only on R > 0 such that for k < 51;‘;% we have
lim P [lrgﬂ(o; R) < —01] =0. (18)
n—oo n
Proof. By the Poisson—Jensen formula (12) at z = 0, we have
() (0; R) = *) (0] — Yen |ﬂ
I (0; R) = log |L; (0)] EZ=;10g| 7 + ;bg 2| (19)
For the first term on the right-hand side of (19), by (9), we have
1
; = (k) _ —
lim P [(n log |L&)(0)] < 1)] 0. (20)
For the second term on the right-hand side of (19), we get a trivial bound
1 & Y
£n
- Zhn | <,
n;]og' <o (21)
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For the last term on the right-hand side of (19), using the strong law of large numbers, we see
13z 1 X;
= log [Z&% ) = = 1
n Z 08 R n Z 06— R
j=1 j=1
Observe that z — log_ |z/R| — log_ |z| is a bounded function with compact support and Elog_ |X;| < oo

by the assumption 0 ¢ F, so we have E [log_ |%” < 0o. Combining (19), (20), (21) and (22) completes the
proof. O

X1
R

ﬂ. —-E [log

] . (22)

To translate Lemma 2.9 to a uniform lower bound for z € B,., we will use the fact that the Poisson kernel
has bounded distortion, and so it is sufficient to consider the value at 0 and the boundary.

Lemma 2.10. For all 0 < r < R there is a constant C' such that for alln, t >0 and k < ﬁ% we have

p|L inf I®) (2 R) < —t] < c (23)
1 zEB- t

Proof. By Fact 2.6 we may lower bound

2T
2m “ﬂ( ‘R) = / log |L*) (Re')|Pr(|2|, 0 — arg z)d6
0

2

2w
= / log . L (Re™) | Pa(J=|, 0 — arg 2)d6 — / log_ |L;” (Re") | Pa(I, 6 — arg 2)d8
0 0

1 2 _ M 2 .
> / log, |L{¥)(Re*)|dd - — / log_ |L{¥)(Re'?)|db
0

27rM

2m
I(’“)(O R) — (M—%) / log, |L{F) (Re)|db. (24)
0

By Lemma 2.9, we have that 2“M 2T (k)((}; R) > —C asymptotically almost surely. By the proof of Lemma 2.7
we have

P|- log, |L;”7(Re™)|d0 > t| < —.
n Jo t
Combining these two bounds with (24) completes the lemma. 0

Proof of Lemma 2.3. Applying the Cauchy-Schwarz inequality to (11) and dividing both sides by n?, we
have

R(z yfn)
R2— §pnz oz

2| R(z — zjn)

RZ - ff_f:nz ’ (25)

3.7':1 Zl

Note that for any y € Bg and z € B, we have |R? — §z| is uniformly bounded below. Using integrability of
(log |z|)? near 0, this implies that

sup /log
YEBR
By

log |L(’=)(z)|< I“‘)( i R)? + Zl

R(z —

dm(z) + sup /log 2

rEBR

e dm( y<C

R(z—y) y) ‘
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for some constant C'. Bounding j, < n and #;, < n shows a deterministic bound of

/1 R(z y“)d. ()+ | Jn/l

Lemma 2.7 and 2.10 show that ﬁz i (I,(lk)(z; R))%2dm(z) is tight. Since a tight sequence plus a deterministi-

R(z ""3"“) dm(z) < 3C.

By
cally bounded sequence is tight, the proof is complete. O

3. ANTICONCENTRATION OF ELEMENTARY SYMMETRIC POLYNOMIALS

We will deduce Lemma. 1.2 from a Theorem of Meka, Nguyen and Vu concerning anti-concentration of multi-
affine polynomials of Bernoulli random variables. To properly state their theorem, we will need a bit of
setup.

We will consider multi-affine polynomials of the form

Qz1,--,2a) = Y as [ (26)

SC[n] JjES

where the coeflicients as are real and the degree of Q is the largest |S| so that a|g| # 0. If Q is of degree d,
then the rank of Q is the largest integer r such that there exist disjoint sets Si,...,S, C [n] of size d with
las;| > 1 for all j € [r].

Theorem 3.1 (Theorem 1.7 of [16]). There is an absolute constant B such that the following holds. Let Q
be a polynomial of the form (26) whose rank v > 2. Let p be such that 7 := 2% = 2%4n/k > 3 where
a = min{p,1 — p}. Then for any interval I of length 1, if we let {;}]_; be i.i.d. Bernoulli(p) random
variables we have

Bd*/3(log 7)/?
PlQ(e1,...,en) €I] < (/@

To apply this Theorem to the case of Lemma 1.2—where the variables are complex valued and arbitrary—we
will use the non-degeneracy to first sample most of the randomness of each Y, leaving a Bernoulli random
variable’s worth of randomness behind; then we will take either the real or imaginary part of the subsequent
polynomial and show that it has sufficiently high rank with high probability.

Proof of Lemma 1.2. Define
P(Yla"')Yﬂ) = Z H}]j" (27)

SC{l,...n};|S|=kjES

Since Y; is non-degenerate we have that at least one of ReY; or ImYj is non-degenerate. By replacing each
Y; with 7Y if needed, we assume without loss of generality that ReY; is non-degenerate. As such, there
exist t e R,k > 0,q € (0,1) so that

PReY; —t>k|>q and P[ReY;—t<—k]>gq. (28)

Note that since k = O(logn/loglogn) we may bound x* = o(em/z), and so by replacing Y; with Y;/k, we
may assume without loss of generality that « = 1.
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For each 7 =1,...,n, let YJ-+ and Y;~ be independent random variables satisfying P[Yj"' eK|=P[Y;-te
K|ReY; —t > 0] and P[Y] € K| = P[Y; —t € K| ReY; —t < 0] for all measurable subsets K C C.
Let 1; = IRrey,—t>0, j € [n], and note that the collection {n;} are ii.d. Bernoulli random variables with
parameter p := P[ReY; —t > 0]. Let Y] = ?}jY;' + (1 —n;)Y;” +1, and observe that Y and Y; have the
same distribution. Therefore, it suffices show that

PIP(Y,...,Y})| < 1/2] = o(1).

For each fixed instance of the variables {Y;‘, Y; "}, define the polynomial F in the variables {n;} via

F(n,...,nn) =P (Y{" =Y7) + ¥+t om(Y, =Y )+ Y, +1)

= > (e -y ) IIn+e

Scln],|8|=k \jES jes

where @ is a polynomial of degree < k in terms of 7); when all the in are fixed. For r = [n/k], let S51,...,5;,
be disjoint subsets of [n] of size k. For S C [n], define bg := HjES(Y;' -Y7).

|Cla_ilm 3;;2. With probability at least 1 — 2 exp(—cq**n/k), there are at least g;an coefficients bg, satisfying
bs,| = 2F.

Proof of Claim 3.2. For £ € [r], define the event & = {|bs,| > 2*}, and note that the events {&}, are
independent. Further, note that

Pl&] > PV, — Y| > 2,Vj € Si
> P[ReY;' —ReY >2k,Vj € Se]
> P[(Re YJ.+ —t) — (ReYj— —t) > 2,Vj €5y
> q** (29)

by (28), since we have assumed k£ = 1. Let N denote the number of £ for which &, holds. Then by Bernstein’s
inequality there is a constant ¢ > 0 so that

P[N < ¢**7/2] < P[N < EN/2] < 2exp(—cEN) < 2exp (—cqzkn/k) .

Noting that EN > ¢**n/k completes the claim. O
Note that
REF(nla"-:nﬂ): Z (REbS)Hnj' +RBQ: ImF(nl:"-:nﬂ): Z (Lan)HnJ—'_ImQ
SCnl,|S|=k j€s SCInl,|S|=k jes

and so Re F and Im F’ are both multi-affine polynomials in the variables {r;} with real coefficients and degree
at most k. For each coefficient |bs,| with |bs,| > 2¥ we have either | Rebg,| > 28! or | Im bg,| > 2¥~!. Thus,
if we let A be the event that either Re F or Im F' has rank at least ¢?*n/(4k), then Claim 3.2 implies that
P[A°] < 2exp(—cq**n/k).
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Thus, for n sufficiently large, we have

1 1 2
PP(Vi, . Yl <] <P [Re Pl o) < 3 T Flas, . oma)| < 3 | A] 4 2700/

1 1
=P IReF(n...c.m)] < 3. T Flm,ccom)| < 3 4] +o) (30
where for the second bound we used that k = o(logn).

Conditioned on the event A, suppose that the rank of Re F is at least ¢?*n/(4k). Then we will apply the
first bound in Theorem 3.1; if we set & = min{p, 1 — p} and ¥ = 2¥a*¢?n/(4k) then Theorem 3.1 implies

1/2
rankRe F(n1,...,1m0) > q”‘n/(4k)] < pre/3dosn) (31)

P [|Re F(,...,m)| < 1/2 R

Write k = elogn/loglogn, where ¢ < 1/5 and note we first note that

logr=logn|({1+© _c .
loglogn
and so

1/2
1/3 (logT) < 1 € _ loglogn logn
log (Bk Fy[eTEyy ) <3 log(logn{14+© rg Togn g + 6 | loglog Ei]og Togn

1 1
= (§ — §) loglogn + o(1) + o(loglogn) .
For € < 1/5, the right-hand side tends to negative infinity, completing the proof. O

4. CoMMENTS AND OPEN PROBLEMS

We believe that Lemma 1.2 is suboptimal, and that in fact the same statement should hold provided k = o(n).

Conjecture 4.1. Let Y1,Y5,..., be i.i.d. copies of a complez-valued non-degenerate random variable. Then
for any sequence k = k(n) satisfying k = o(n) and each € > 0 we have

lim P E Y, Y, ...V | <e | =0.
n—oo
1<iy<ig< - <ip<n

The sharpest general statements for anti-concentration for multi-affine polynomials are provided by the work
of Meka, Nguyen and Vu [16], for which Conjecture 4.1 lies well beyond the currently known bounds. For an
example of a polynomial of very high degree for which anti-concentration is known, see Tao and Vu’s work
on the permanent of a random matrix [20] (see also [14]). We note that Conjecture 4.1 appears non-trivial
even in the case of, say, Gaussian random variables.

Remark 4.2. We note that substituting a positive resolution to Conjecture 4.1 for Lemma 1.2 would imme-
diately upgrade Theorem 1.1 to hold for all k = o(n); indeed, throughout the proof the only assumptions on
k used are that k = o(n) and that the conclusion of Lemma 1.2 holds. Additionally, due to Lemma 2.4, one
can further assume that the variable Y7 in Conjecture 4.1 satisfies E|Y7| < oo.
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We recall that a k = o(n) extensions Theorem 1.1 falls under the following more general conjecture:

Conjecture 4.3 ([17], O’'Rourke-Steinerberger). Let p be probability measure p € C. For each t € [0,1]
tn]

there is a measure p; so that for the random sequence of measures pur - converges to py as n — co.

See [1, 7, 8, 11, 13] and the references therein for progress on this conjecture. Additionally, the work
[6] considers the analogue of Conjecture 4.3 for the roots of high derivatives of random polynomials with
independent coefficients rather than roots.

We also highlight a conjecture attributed both to Kabluchko? and Cheung, Ng, Tsai, Yam [4, Conjecture BJ:

Conjecture 4.4 (Kabluchko). For any probability measure pp on C, the sequence of random measures ,u,(q,l)

converges to p almost surely as n — oco.

Subramanian’s work [19] in fact proves Conjecture 4.4 in the case when p is supported on the unit circle and
not the uniform measure; this was extended to the case of the uniform measure on the unit circle by Cheung,
Ng, Tsai, Yam [4] and shown to hold for the kth derivative for each fixed k provided p is supported on the
unit circle (see also [5] for a related work on random Blaschke products). We suspect that Theorem 1.1 can
also be upgraded to almost sure convergence. The main difficulty appears to be in upgrading Lemma 2.2 to
almost-sure convergence. After posting a draft of this work on arXiv, Conjecture 4.4 was proven by Angst,
Malicet and Poly [2].
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