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Abstract 

The genomes of the fungus Magnaporthe oryzae that causes blast diseases on diverse grass species, including major crops, ha v e indispensable 
core-chromosomes and may contain supernumerary chromosomes, also known as mini-chromosomes. These mini-chromosomes are speculated 
to provide effector gene mobility, and may transfer between strains. To understand the biology of mini-chromosomes, it is valuable to be able 
to detect whether a M. oryzae strain possesses a mini-chromosome. Here, we applied recurrent neural network models for classifying DNA 

sequences as arising from core- or mini-chromosomes. The models were trained with sequences from a v ailable core- and mini-chromosome 
assemblies, and then used to predict the presence of mini-chromosomes in a global collection of M. oryzae isolates using short-read DNA 

sequences. The model predicted that mini-chromosomes were prevalent in M . oryzae isolates. Interestingly, at least one mini-chromosome 
was present in all recent wheat isolates, but no mini-chromosomes were found in early isolates collected before 1991, indicating a preferential 
selection for strains carrying mini-chromosomes in recent years. The model was also used to identify assembled contigs derived from mini- 
chromosomes. In summary, our study has de v eloped a reliable method for categorizing DNA sequences and sho w cases an application of 
recurrent neural networks in predictive genomics. 
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ntroduction 

he fungus Magnaporthe oryzae , also known as Pyricularia
ryzae , is responsible for causing blast diseases on diverse
rass species, including major crops ( 1–3 ). Rice blast disease,
aused by M. oryzae Oryza (MoO) pathotype, poses a sig-
ificant threat to rice production ( 4 ). Wheat blast disease,
aused by a distinct pathotype, M. oryzae Triticum (MoT),
merged in Brazil in 1985 and spread within South Amer-
ca and recently to South Asia and Africa ( 5–9 ). Additionally,
last diseases caused by the Setaria pathotype ( M. oryzae Se-
aria , MoS) on foxtail millet and by the Eleusine pathotype
 M. oryzae Eleusine , MoE) on finger millet are significant dis-
ases of these ancient subsistence crops ( 10 ,11 ). Since the early
990 ′ s, the Lolium pathotype ( M. oryzae Lolium , MoL) has
merged in the US to cause serious blast diseases on popular
urf grass or forage crops, including perennial ryegrass, an-
ual ryegrass, and tall fescue ( 12 ). There are other M . oryzae
trains from other hosts, such as oats ( Avena ), buffelgrass
 Cenchrus ), crabgrass ( Digitaria ) and signalgrass ( Urochloa )
 3 ,12 ). 
The genome of M. oryzae contains seven essential core-

hromosomes and many genomes possess one or a few ex-
ra, non-essential supernumerary chromosomes ( 13 ,14 ). Be-
ides M. oryzae , many plants, animals, and other fungi carry
upernumerary chromosomes, which are also known as ex-
eceived: October 10, 2023. Revised: June 27, 2024. Editorial Decision: August 1
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tra chromosomes, dispensable chromosomes, accessory chro-
mosomes, or B-chromosomes. Supernumerary chromosomes
are hypothesized to be an accelerator for fungal adaptive
evolution ( 15 ). Supernumerary chromosomes in M . oryzae
are referred to as mini-chromosomes because their sizes
are typically smaller than core-chromosomes ( 14 , 16 , 17 ). As
compared to core-chromosomes, mini-chromosomes in M.
oryzae are more repetitive, containing more transposable el-
ements and fewer genes. The repeat-rich characteristic pro-
vides ample intrachromosomal homology for DNA duplica-
tion, loss, and rearrangements, creating conducive environ-
ments to accelerate genome evolution ( 14 ,18 ). Indeed, mini-
chromosomes are highly variable among M . oryzae strains
( 8 , 14 , 17 ). Mini-chromosomes carry effector genes that can
be found in core-chromosomes in different strains, suggesting
crosstalk between mini- and core-chromosomes ( 14 , 17 , 19 ).
Therefore, mini-chromosomes are thought to be capable of
mediating the mobility of effector genes, facilitating fungal
adaptation. 

To confirm and further understand the evolutionary role
of mini-chromosomes, it is critical to be able to determine
if a particular M. oryzae strain carries a mini-chromosome.
Contour-clamped homogeneous electric field (CHEF) elec-
trophoresis of intact chromosomes is the means to provide
conclusive evidence for the presence or absence of chromo-
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somes with sizes smaller than core-chromosomes ( 16 ,20 ).
However, the technique is laborious and requires specific
equipment. This is a significant hurdle as research labs may
not have access to all strains published in the literature, es-
pecially given that MoT wheat blast causing strains are quar-
antined in the United States. A reliable method to determine
the presence of a mini-chromosome from publicly available or
newly generated sequencing data would be fast, cost-effective,
and decentralized. A simple strategy is to align sequencing
reads to known mini-chromosome genomes for the determi-
nation of the proportion of mini-chromosome genomes sup-
ported by reads. The lack of knowledge about critical elements
required for mini-chromosomes, the high-level of variabil-
ity among mini-chromosomes, and the potential exchanges
between core- and mini-chromosomes complicate the anal-
ysis. Fortunately, multiple complete core-chromosome and
mini-chromosome genomes are currently available, provid-
ing the opportunity to deploy deep learning algorithms to
learn features of core- and mini-chromosome sequences for
prediction. 

Use of neural network based deep learning techniques has
rapidly increased due to availability of large data, and their
ability to find complex patterns. Recurrent Neural Network
(RNN) and, specifically, Long Short-Term Memory (LSTM)
networks have been used in genomics to utilize the sequen-
tial property of DNA sequences for making various predic-
tions ( 21–23 ). An RNN represents a group of artificial neu-
ral networks that incorporate feedback connections to retain
and utilize information from prior input events as activation.
These networks leverage their internal state to process input
sequences of varying lengths. However, training RNNs to ef-
fectively capture long-term dependencies poses challenges as
the error signals flowing backward often suffer from issues of
either explosive amplification or rapid attenuation, a.k.a. ex-
ploding or vanishing gradients ( 24 ,25 ). To address this prob-
lem, the LSTM architecture was introduced as an extension
to the vanilla RNN, a simple form of RNN ( 24 ). Another en-
hancement is the Bidirectional LSTM (Bi-LSTM), which con-
siders sequential context from both directions and can im-
prove performance ( 26 ,27 ). In our study, we apply Bi-LSTM
deep learning to predict the presence of mini-chromosome se-
quences based on the genomic sequence data. Experimental
results show that a Bi-LSTM neural network model can ac-
curately infer the presence of mini-chromosomes in strains of
M . oryzae . 

Methods 

Near-finished genome assemblies for model 
training 

Near-finished genome assemblies of isolates that are known
to carry or not to carry mini-chromosomes were collected
for training Bi-LSTM models, which include the assem-
blies from mini-chromosome-bearing isolates B71 (MoT,
Genbank accession: GCA_004785725.2) ( 8 ,14 ), LpKY97
(MoL, Genbank accession: GCA_012272995.1) ( 28 ), TF05-
1 (MoL, Genbank accession: JAVBIT010000000), and
O135 (MoO, https:// github.com/ PlantG3/ miniC/ tree/ main/
data/training _ data ) ( 29 ), as well as assemblies from mini-
chromosome-free isolates 70-15 (MoO, Genbank accession:
GCA_000002495.2) ( 13 ) and MZ5-1-6 (MoE, Genbank ac-
cession: GCA_004346965.1) ( 30 ). 
Contour-clamped homogeneous electric field 

(CHEF) electrophoresis of TF05-1 

TF05-1 protoplasts were prepared with the procedure slightly 
modified from the approach used in Orbach et al. ( 16 ). Briefly,
harvested mycelia were washed with 1 M sorbitol and digested 
with 10 mg / ml Lysing Enzymes from Trichoderma harzianum 

(Sigma Aldrich, CAT#L1412) in 1 M sorbitol at 28 ◦C, 90 
rpm for 2.5 h. The digested product was filtered through ster- 
ile Nytex nylon mesh l and centrifuged at 4500 rpm at 4 ◦C 

for 10 min to collect protoplasts. Protoplasts were washed 
with SE buffer (1 M sorbitol, 50 mM EDTA) and adjusted 
to 1 × 10 9 cells / ml. The CHEF Genomic DNA Plug Kit (Bio- 
Rad, CAT#1703591) was used for the preparation of proto- 
plast plugs. Protoplasts were mixed with a 2% low melting 
agarose gel and transferred to modules to form protoplast 
plugs. After incubating in the proteinase K buffer overnight 
at 50 ◦C, plugs were washed four times with 1 × wash buffer 
at 25 ◦C, and then stored in 0.5 × TBE at 4 ◦C. A CHEF Map- 
per XA System (Bio-Rad, CAT#1703671) was used for CHEF 
gel electrophoresis using 0.7% Certified Megabase Agarose 
in 0.5 × TBE buffer. The electrophoresis was run at 1.5 V / cm 

and 6 ◦C, with switch times ranging from 1200 to 4800 sec- 
onds for 120 h. 

Identification of common sequences between core- 
and mini-chromosomes 

Alignment was performed between core- and mini- 
chromosomes for each of B71, O135, LpKY97 and TF05-1 
with NUCmer ( 31 ). Alignments with at least 105 bp matches 
and 95% identity were retained. Alignment regions were 
merged if neighboring alignments were within a 100 bp 
distance and sequences were extracted from both core- and 
mini-chromosomes. All common sequences identified from 

these four genomes and the mitochondrial sequence of B71 
were combined to form a database of sequences excluded 
from the training. 

Bi-LSTM models 

The Bi-LSTM model was implemented using Python with Ten- 
sorFlow and Keras libraries. The architecture consisted of an 
input layer, hidden LSTM cells layers, and an output layer.
The input layer consists of an embedding layer that encodes 
the input tokens (such as the 11 9-mers tokens of the 99 bp 
sequence) into vectors of size 128. The hidden layers con- 
sisted of two Bidirectional LSTM layers, each with 256 hidden 
units, stacked on top of each other with the hyperbolic tangent 
(tanh) activation function. The output of the last Bi-LSTM 

hidden layer was connected to a dense output layer with sig- 
moid activation function. A model for 99b bp sequence with 
eleven 9-mer tokens contained a total of 34 212 225 trainable 
parameters. The selection of the model architecture and hy- 
perparameters was informed by experimenting with a range 
of values and selecting those that resulted in the best perfor- 
mance on the validation set. 

For training the Bi-LSTM model, backpropagation through 
time (BPTT) was employed, using binary cross entropy loss 
as the loss function. The optimization was performed using 
Adam optimizer with learning rate of 0.001. The training and 
validation data sets, such as sequences with 99 bp with eleven 
9-mers and labeled with either ‘core’ or ‘mini’, were encoded 
using one-hot encoding and used to train and evaluate the 
model. The dataset was split into the train, validation, and 

https://github.com/PlantG3/miniC/tree/main/data/training_data
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est sets with 80 / 10 / 10 splits, respectively. To optimize model
erformance, a large training dataset is required while also
nsuring that the validation and test set closely resemble the
verall data distribution. We achieve this by utilizing a small
ercentage of data as the validation and test set when deal-
ng with a large dataset like ours. A mini-batch size of 2048
as used for the training and evaluation at each epoch. To
ptimize the training and prevent overfitting, an early stop-
ing criterion based on validation loss was implemented. The
odel was trained for a maximum of 150 epochs with pa-
ience of 15 epochs. If the validation loss did not improve
ver the subsequent 15 consecutive epochs, the training was
topped. The model weights corresponding to the lowest val-
dation loss were restored, representing the best-performing
odel. Subsequently, the final trained model was then
ested on an independent test dataset to evaluate its overall
erformance. 

raft genome assemblies of isolates with and 

ithout mini-chromosomes 

enome assembly drafts were downloaded from Gen-
ank: GCA_900474655.3 of FR13 (MoO from rice),
CA_900474175.3 of US71 (MoS from foxtail millet),
CA_900474475.3 of CD156 (MoE from goosegrass) and
CA_900474545.3 of BR32 (MoT from wheat). Field iso-
ates FR13, US71 and CD156 all carried mini-chromosomes
nd BR32 did not contain a mini-chromosome ( 17 ). 

llumina WGS short-reads of 252 M . oryzae isolates 

GS reads were downloaded from Sequence Read Archive
SRA). Data of 252 accessions were collected ( Supplementary 
able S1 ). Reads were trimmed with software Trimmomatic
rior to further analyses ( 32 ). 

ubsampled reads for determining miniC 

roportions 

andom seeds were set for sampling reads from the forward
eads of the original paired-end Illumina reads of the isolates
f P3, B71, T25 and Guy11. Subsampling was implemented
sing seqtk (version 1.2). Subsampled reads were then used
or the prediction with the optimized Bi-LSTM model. 

ndexes of similarity to the B71 mini-chromosome 

GS reads of each strain were used to compare with WGS
eads of B71 to infer the genomic regions of the B71 mini-
hromosome that were absent in the isolate through Com-
arative Genomics Read Depth (CGRD) ( 14 ,33 ). Each CGRD
nalysis may identify B71 mini-chromosome regions that were
bsent in the analyzed strain. The proportion of the B71
ini-chromosome that was not detected as absence regions
epresents the portion of sequences similar to the B71 mini-
hromosome, referred to as the index of similarity to the B71
ini-chromosome of the strain. A low value of the index in-
icates the absence of a mini-chromosome. 

enome sequencing and assembly of an early MoT
train T3 

he MoT strain T3 was cultured on oatmeal agar (OMA)
lates followed by liquid culture under Biosafety Level 3
BSL3) laboratory in the Biosecurity Research Institute (BRI)
t Kansas State University in Manhattan, KS ( 8 ,34 ). The
detailed procedure for genomic DNA extraction was pre-
viously described ( 8 ). Briefly, mycelial mats were collected,
lyophilized, and ground for DNA extraction with a CTAB ap-
proach. DNA was stored in the TE buffer containing 1 mg / ml
RNase. Approximately 50 × paired-end (2 × 150 bp) Illumina
data were produced at Novogene USA. Nanopore long reads
were generated using the same genomic DNAs per the pro-
cedure described previously ( 8 ). The genomic DNA was sub-
jected to a size selection ( > 20 kb) using a BluePippin Gel Cas-
sette (Sage Science, USA, Cat.# BLF7510), followed by a li-
brary construction using the SQK-LSK110 kit and sequencing
using a R9.4.1 flow cell on a MinION Mk1B device (Oxford
Nanopore, UK). Nanopore raw FAST5 data were converted
to FASTQ reads using the Guppy Basecaller (version 6.3.2).
Reads were assembled with Canu (version 2.2) with the pa-
rameters of ‘genomeSize = 45 m minReadLength = 10 000
minOverlapLength = 1000 correctedErrorRate = 0.08 raw-
ErrorRate = 0.3 corOutCoverage = 60’ ( 35 ). The contigs in
Canu assemblies were aligned to B71Ref2 to determine the
chromosome number and the orientation using NUCmer with
the parameters of ‘-L10000 -I 90’ (31). The resulting assem-
bly was polished using Nanopolish (version 0.14.0) and then
using Pilon (version 1.24) with Illumina reads ( 36 ,37 ). 

Results 

Training data to assign DNA sequences to core- or 
mini-chromosomes 

The goal of the study was to predict the presence of mini-
chromosomes using genomic sequencing data. Although ge-
nomic data of hundreds of M. oryzae strains are publicly avail-
able, there is very little data regarding if an individual strain
possesses mini-chromosome(s). We addressed this by building
a Bi-LSTM model to classify DNA sequences as originating
from core- or mini-chromosomes (Figure 1 ). The output of
the model is used to infer the presence of mini-chromosomes
in a strain based on the proportion of mini-chromosome-
derived sequences among the total short DNA sequences ex-
amined. We collected finished genome assemblies of M . oryzae
strains with or without mini-chromosomes for model train-
ing, from which short sequences were extracted. The strains
harboring at least one mini-chromosome include B71 (MoT)
( 14 ), LpKY97 (MoL) ( 38 ), TF05-1 (MoL) ( Supplementary 
Figure S1 ) and O135 (MoO) ( 16 ), while the strains containing
no mini-chromosomes include the MoO reference strain 70-
15 ( 13 ) and MZ5-1-6 (MoE) ( 30 ). Approximately 11.2 and
252.2 Mb from mini- and core-chromosomes were collected
for model training (Table 1 ). Note that the presence of at least
one mini-chromosome in B71, TF05-1 and O135 was veri-
fied by CHEF ( 14 , 16 , 29 ). The collected six mini-chromosomes
and 42 core-chromosomes were fragmented into short DNA
sequences and labeled with either mini or core as the sequence
source for model training. 

Training of Bi-LSTM models 

Short sequences (e.g. 99 bp) extracted from the six mini-
chromosomes and 42 core-chromosomes were termed subse-
quences (Figure 1 A). Each subsequence was then tokenized
into non-overlapping k-mers (e.g. 9-mer). Afterwards, the to-
kenized data were split into train, validation, and test sets
with an 80 / 10 / 10 split. Models were trained on the train
set and evaluated for training performance and hyperparam-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae108#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae108#supplementary-data
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Figure 1. Ov ervie w of predicting sequences from mini-c hromosomes. ( A ) Finished assembled genomes of strains with or without mini-c hromosomes 
were used to generate training data. The training data include DNA fragments with the length around 100 bp and labeled with the origins from either 
core- or mini-chromosomes. The deep learning model was trained and the optimal model was selected for predicting the origin of each sequencing read 
from a new strain. The miniC proportion, which is the percentage of reads predicted to originate from mini-chromosomes, is the value for inference of 
the presence of a mini-chromosome in the strain. ( B–D ) Average performance metrics for models trained using different subsequences, each of which 
consists of multiple k-mers. Each X-axis label specifies the size of k and the number of k-mers (e.g. 5–20 stands for a 100 bp subsequence with 20 
5-mers). Performance was evaluated for all genomic data (All, blue lines) or after removing common sequences shared between core- and 
mini-chromosomes (reduced, orange dashed lines). 

Table 1. Summary of genome assembly data for model training 

Strain Pathotype Mini (bp) # mini Core (bp) # core 

70–15 MoO 0 0 41 027 733 7 
MZ5-1-6 MoE 0 0 42 703 282 7 
O135 MoO 1 747 687 1 41 933 874 7 
B71 MoT 1 903 245 1 42 908 164 7 
LpKY97 MoL 3 910 017 2 41 702 954 7 
TF05-1 MoL 3 598 139 2 41 915 541 7 
Total - 11 159 088 6 252 191 548 42 
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eters selection using the validation set. The selected models
were finally evaluated using the test set. When constructing
the training dataset, we encountered imbalanced training se-
quence data from core- and mini-chromosomes in which the
total length of core-chromosomes was markedly larger than
the total length of mini-chromosomes (Table 1 ). To create
balanced training data from core- and mini-chromosomes,
we extracted subsequences with the step size of 1 bp from
mini-chromosomes and the step size of 27 bp from core-
chromosomes. 

Models were trained with DNA sequence data of differ-
ent k-mer sizes, ranging from 5 to 11 mers, and subsequence
lengths. Lengths of subsequences were limited to around
100 bp because lengths of whole genome sequencing (WGS) 
data, or reads, of most M. oryzae strains to be used for the 
prediction are around 100–150 bp. Overall, the evaluation on 
the validation data showed that models trained with the 9- 
mer attained the highest scores in both accuracy and precision,
and the recall score was close to the highest score achieved 
by using 11-mer (Figure 1 B–D, Supplementary Table S2 ).
The assessment with the models on the test data set showed 
the consistent evaluation result ( Supplementary Table S3 ).
We previously showed common sequences, particularly trans- 
posable elements, occurred in core- and mini-chromosomes 
( 14 ), which created ambiguous sequence examples that did 
not have a clear class distinction. To examine if the occur- 
rence of these common sequences impacted the model, we 
re-trained models using genomic data where common se- 
quences were identified per strain and removed from the train- 
ing data. Model performance on the validation data was im- 
proved when removing these sequences (Figure 1 B–D), and 
the model trained using 9-mers became the best for accuracy,
precision and recall ( Supplementary Table S4 ). Within the 9- 
mer model, the two subsequence lengths of 99 bp and 108 bp 
did vary for model performance, and the model trained using 
the 99 bp subsequences (nine 9-mers) attained better scores: 
98.9% accuracy, 97.0% precision and 98.7% recall on both 
the validation and test datasets ( Supplementary Figure S2 ,

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae108#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae108#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae108#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae108#supplementary-data
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upplementary Tables S4 , S5 ). This model was used for sub-
equent analysis. 

urvey of presences of mini-chromosomes in 

ereal blast strains 

he optimized Bi-LSTM model was used to examine the pres-
nce of mini-chromosomes in M . oryzae isolates whose WGS
ata were available. The probability of mini-chromosome
rigin for each WGS read was estimated, and reads with
he prediction probability larger than 0.99 were classified
s mini-chromosome reads ( Supplementary Figure S3 ). The
roportion of mini-chromosome reads among all examined
eads, referred to as the miniC proportion, was determined
or each M . oryzae isolate. In total, WGS data of 252 M .
ryzae isolates from multiple pathotypes were analyzed, re-
ulting in miniC proportions ranging from 0.7% to 9.3%
Figure 2 A, Supplementary Table S6 ). Three isolates, B71
MoT), P3 (MoT) and LpKY97 (MoL), carrying at least one
ini-chromosome had miniC proportions of 3.5%, 5.8% and
.6%, respectively. Note that the P3 and LpKY97 genomes
ach contained two mini-chromosomes based on the pre-
ious reports ( 14 ,28 ). In contrast, the miniC proportions
f four isolates with no mini-chromosomes, 70–15, Guy11
MoO), MZ5-1-6 (MoE) and T25 (MoT), were 0.8%, 0.9%,
.1% and 0.9%, respectively. Based on miniC proportions of
hese isolates, we used 1.5% as the miniC proportion thresh-
ld to classify isolates as with or without mini-chromosomes.
The Comparative Genomics Read Depth (CGRD) pipeline
as employed to identify the genomic regions of the B71 mini-
hromosome that were absent in each isolate ( 14 ,33 ). The pro-
ortion of the B71 mini-chromosome that was not detected
s absence regions represents the similarity of the potential
ini-chromosome of an isolate to the B71 mini-chromosome,
hich was referred to as the index of similarity to the B71
ini-chromosome. Index values of 252 strains ranged from
.03 to 1. A higher index of similarity indicates a higher pos-
ibility that an isolate carries mini-chromosome(s). Based on
he index values of isolates known to carry at least a mini-
hromosome or none ( Supplementary Table S6 ), the index
hreshold of 0.2 was used to classify isolates with or without
 mini-chromosome. 
Comparison between the prediction result from the Bi-
STM model with the result using the CGRD approach
howed that the two methods were highly consistent. Specif-
cally, the prediction of mini-chromosome presence in 98.4%
248 / 252) isolates were the same. In total, 223 were predicted
o contain mini-chromosome(s) using both approaches, in-
icative of a substantial presence of mini-chromosomes across
. oryzae strains. The results also indicated that different
athotypes had varying levels in mini-chromosome preva-
ence (Figure 2 B). More than 90% of both 196 MoO and
5 MoT isolates were predicted to carry mini-chromosomes.
ll isolates collected from Avena spp., Cenchrus spp., Lolium
pp. and Urochloa species, and half of isolates from Digi-
aria spp., and Setaria spp., were predicted to contain mini-
hromosomes. Mini-chromosomes were the least prevalent in
solates from Eleusine spp., of which only 29% (2 / 7) were
redicted to contain mini-chromosomes. Note that the num-
er of isolates of each of the pathotypes other than MoO
nd MoT is relatively small, ranging from 2 to 7. Two MoO
solates, namely IR0095 and JP0091, proved difficult to pre-
ict and produced different predictions from the two predic-
tion approaches. The miniC proportions of the two isolates
were 1.1%, while the indexes of similarity to the B71 mini-
chromosome were 0.211 (IR0095) and 0.278 (JP0091). Both
predictions of the two strains were close to the respective
thresholds. 

Rice isolates (MoO) were classified to four clades ( 29 ). The
classified strains with whole genome sequencing reads longer
than 100 bp were subjected to the miniC analysis. The pre-
diction showed that 75% (9 / 12) isolates from clade I contain
no mini-chromosomes and all isolates ( N = 55) from clades II,
III, IV contain mini-chromosomes with one exception in clade
II ( Supplementary Table S7 ). 

Prediction using subsets of reads 

To determine the minimal amount of sequencing reads re-
quired for reliable prediction, four isolates with known num-
bers of mini-chromosomes were selected for a simulation.
These four isolates included P3 with two mini-chromosomes,
B71 with one mini-chromosome, and two mini-chromosome-
free isolates: T25 and Guy11 ( 14 ,29 ). Random reads, from
1000 to 300 000, were subsampled from the forward read
sets of the original paired-end WGS reads, with subsampling
repeated five times per isolate. As expected, the variation of
miniC proportions was higher when a low amount of reads
were used for the prediction (Figure 3 ). The simulation from
all the four isolates consistently showed that the prediction of
the miniC proportion was not very reliable when the number
of reads was < 20 000. However, even when using such low
numbers of reads, the predicted proportion values of mini-
chromosomes did not deviate dramatically from the predic-
tion value obtained using the original full read set and none of
them caused a misclassification. When 50 000 or more reads
were used, the predicted miniC proportions were reliably close
to that using the original read set, which included millions of
reads. The coefficients of variation, the ratios of standard de-
viation to the mean of predicted miniC values, from five in-
dependent simulations at sampling sizes of 50 000 and above
were not higher than 0.082. Based on the simulation result,
100 000 and more reads are conservatively recommended for
an accurate prediction of miniC proportions using our Bi-
LSTM model. 

Applications to identify 

mini-chromosome-associated sequences 

In addition to predicting if a strain contains mini-
chromosomes, we applied the Bi-LSTM model to predict
if a DNA sequence from an assembly (termed contig here-
after) represented a mini-chromosome. We split each contig
into continuous 99 subsequences and classified each to either
core- or mini-chromosome based on the model prediction.
The proportion of mini-chromosome subsequence of a con-
tig, referred to the miniC proportion of a contig, indicates
the extent to which the contig shares similarity to mini-
chromosomes. To test the prediction strategy, the genome
assembly of B71, including seven core-chromosomes and one
mini-chromosome, was subjected to the analysis. As a result,
the miniC proportion of the B71 mini-chromosome was
54.8%, which was markedly higher than miniC proportions
of core-chromosomes ranging from 0.1% to 1.7%, (Figure
4 A, Supplementary Table S8 ). A previous study produced
draft genome assemblies for MoO FR13 (Figure 4 B), MoS
US71 (Figure 4 C), MoE CD156 (Figure 4 D), and demon-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae108#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae108#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae108#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae108#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae108#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae108#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae108#supplementary-data
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strated that all three contained mini-chromosomes by CHEF
analysis ( 17 ). MiniC proportions of contigs from each drafted
assembly were determined and used to infer if a contig was
derived from a mini-chromosome. Eight contigs larger than
100 kb previously found to be mini-chromosome derived
were supported by the miniC proportion data, which iden-
tified an additional five contigs ( Supplementary Table S8 ).
The five contigs appeared to possess sequence features related
to mini-chromosomes. In the same study, MoT BR32 was
found to contain no mini-chromosomes. Consistently, the
miniC proportions of all contigs are small, ranging from
0.5% to 3.1% (Figure 4 E, Supplementary Table S8 ). Fur-
thermore, we assembled a new MoT genome from the early
isolate T3 (1986) into seven chromosomes, indicative of
no mini-chromosomes. All these seven chromosomes had
small miniC proportions (0.5–1.4%) and can be assigned
to core-chromosomes (Figure 4 F, Supplementary Table S8 ).
Collectively, the Bi-LSTM model we constructed can be 
used to differentiate contigs belonging to core- or mini- 
chromosomes. 

To scan along individual chromosomes, the calculated 
miniC proportions were determined for 30 kb intervals 
of each chromosome of B71 and T3, which carried one 
and zero mini-chromosomes, respectively. Almost all inter- 
vals of the B71 mini-chromosome had a miniC propor- 
tion larger than 10%. Many intervals on the ends of core- 
chromosomes showed a relatively high miniC proportion, in- 
dicating that they possess sequence features associated with 
mini-chromosomes. Notably, a region at the end of B71 chro- 
mosome 3 contained sequences with a miniC proportion level 
similar to a mini-chromosome. This region is absent in the 
genome of T3, which did not contain mini-chromosomes (Fig- 
ure 4 G and H). The region represents a potential translocation 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae108#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae108#supplementary-data
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iscussion 

n this study, we employed a Recurrent Neural Network
RNN) deep learning technique, specifically a Bi-directional
ong Short-Term Memory (Bi-LSTM) network, to model the
rigin of DNA sequences as belonging to core- or mini-
hromosomes. The optimized Bi-LSTM model enables exami-
ation of the core- or mini-chromosome origin using the input
ata of WGS reads, assembled contigs or chromosomes, and
NA sequence fragments. The model was trained using multi-
le genomes with or without mini-chromosomes, learning ge-
omic features from divergent core- and mini-chromosomes.
he core- and mini-chromosomes used in training were from
ifferent host-adapted pathotypes (MoO, MoT, MoL and
oE) and with differing composition. The prediction result

rom the Bi-LSTM model was similar to the result from CGRD
hat was an alignment-based approach and used one reference
enome, which indicated that mini-chromosomes from multi-
le M . oryzae pathotypes share certain learnable genomic fea-
ures. In contrast to CGRD that requires high-depth genome
equencing data, the Bi-LSTM prediction is accurate and reli-
ble even using a very small amount of WGS read data. Also,
he Bi-LSTM model is able to analyze both non-repetitive and
epetitive sequences, overcoming a common problem of repet-
tive sequences limiting alignment-based analysis, and thereby
llowing regional scanning along chromosomes. Crosstalk be-
ween core- and mini-chromosomes in M . oryzae was previ-
usly hypothesized ( 14 ). Our efforts to scan assembled chro-
osomes identified the end of chromosome 3 in the B71 as
eing highly similar to mini-chromosomes. Given that this
egion is absent in the B71 related strain, T3, this region
ay represent a genome structural variation arising from a
translocation event from a mini-chromosome. Future analy-
sis of more high-quality reference level assemblies of more di-
verse M. oryzae strains will further illuminate potential core
genome variation influenced by mini-chromosomes. 

Analysis of 252 M . oryzae isolates reveals the prevalence
of mini-chromosomes in at least some field isolates of all M .
oryzae host-adapted pathotypes that we investigated. Specif-
ically, 91% of 196 rice isolates were predicted to carry
mini-chromosomes. The result is consistent with a previ-
ous examination of mini-chromosomes conducted using elec-
trophoretic karyotyping, which found 93% of 14 rice isolates
harbored mini-chromosomes ( 16 ). In the same study, none
of seven wheat isolates carried mini-chromosomes. However,
our analysis showed that 92% of wheat strains carried mini-
chromosomes. The discrepancy appears to be related to the
isolation period for these wheat isolates relative to the first
report of wheat blast disease in 1985 in Brazil ( 39 ). Recent
data indicates that both the Triticum and Lolium pathotypes
evolved through two distinct episodes of sexual crosses involv-
ing individuals from five different host-adapted pathotypes,
including the Eleusine pathotype ( 12 ,40 ). After emergence of
populations adapted to Triticum and to Lolium spp., asexual
reproduction systems apparently predominated during infec-
tions in the field, perhaps allowing mini-chromosome accu-
mulation ( 41 ). All isolates (T1 to T7) examined in Orbach et
al. (1996) were early wheat strains collected in 1988 or ear-
lier. From our analyses, none of the three early wheat strains
(T3, T25 and BR32 collected in 1986, 1988 and 1991, respec-
tively) carried mini-chromosomes. In contrast, all of our wheat
isolates collected after 2005 carried mini-chromosomes. The
result indicated that wheat strains with mini-chromosome(s)

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae108#supplementary-data
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were preferentially selected in the field since the 1990s. All the
Lolium isolates examined were collected since the 1990s and
carried mini-chromosomes. 

Among all host-adapted pathotypes analyzed, a high
proportion of strains of the Eleusine (MoE) pathotype
lacked mini-chromosomes. Combined with two different MoE
strains analyzed in the Orbach et al. study, 78% of MoE (7 / 9)
isolates contained no mini-chromosomes. MoE strains were
classified to the Eleusine1 and Eleusine2 lineages previously
( 3 ). Our prediction data and previous analyses indicate that
an Eleusine1 strain EI9411 and an Eleusine2 strain CD156
carried mini-chromosomes ( 17 ). Although MoE isolates fre-
quently contained no mini-chromosomes, both lineages could
carry mini-chromosomes. 

Our data showing a relatively low proportion of MoE
strains with mini-chromosomes supports a previous report of
an inverse correlation between high levels of sexual fertility
and low occurrence of mini-chromosomes ( 16 ). For the as-
comycetous M. oryzae , fully fertile strains are hermaphrodites
that are able to serve as a female partner and produce
perithecia in sexual crosses with strains of opposite mating
type and also serve as male partners in crosses with other
hermaphroditic strains. Orbach et al. (1996) reported that
18 fertile hermaphroditic strains, including MoE field iso-
lates and derived fertile laboratory strains, uniformly lacked
mini-chromosomes. In contrast, mini-chromosomes occur fre-
quently in lower fertility strains, such as most rice pathogens,
which either lack any mating ability or cross only as male
partners with other hermaphroditic strains ( 16 ,20 ). Indepen-
dent studies including analysis of complete tetrads showed
that mini-chromosomes fail to segregate normally in sexual
crosses, typically resulting in fewer ascospore progeny with
mini-chromosomes than expected ( 16 ,42 ). Our results sup-
port a correlation between lack of mini-chromosomes and full
female fertility since MoE strains, in general, are known to
possess high levels of female fertility ( 1 , 16 , 43 ). In addition,
the inverse association between sexual fertility and the pres-
ence of mini-chromosomes is supported by our MoO data.
Our mini-chromosome prediction showed that 75% (9 / 12)
of isolates from clade I are devoid of mini-chromosomes and
a mere 2% (1 / 55) of isolates from clades II, III, and IV lack
mini-chromosomes. This aligns consistently with observed re-
productive characteristics because clade I includes strains that
are fully fertile hermaphrodites (e.g. strain Guy11), and the
predominantly asexual clades II, III and IV include infertile
strains and strains that only cross as males ( 29 , 44 , 45 ). Further
studies are needed to confirm any correlation and determine
the precise role of mini-chromosomes in sexual fertility. Our
mini-chromosome prediction model provides a new tool for
addressing the question and tracking mini-chromosome pres-
ence in evolving populations of the blast fungus. 

Our prediction model can be further improved by train-
ing using additional core- and mini-chromosome sequenc-
ing data for predicting mini-chromosomes from broader M.
oryzae isolates. Of the four mini-chromosome-bearing isolates
used for model training, three strains were from either wheat
or Lolium hosts. The wheat and Lolium strains are genet-
ically close, the samples therefore might be biased in favor
of the mini-chromosome of B71, a wheat strain. More mini-
chromosome sequencing data in the future model develop-
ment will allow capturing the high-level diversity among mini-
chromosomes, and thereby improving this approach. In addi-
tion to the prediction of the presence of mini-chromosomes,
the model may predict the number of mini-chromosomes in 
each isolate. Nevertheless, this study demonstrates the poten- 
tial of deep learning techniques in genomics for predicting 
the presence of specific genomic elements. We anticipate that 
in the near future, using improved explainable deep learn- 
ing techniques, the critical sequence components of mini- 
chromosome DNAs may be identified by learning from mas- 
sive genomic data to further understand the origin and evolu- 
tion of mini-chromosomes. 

Data availability 

Nanopore genomic sequencing data of T3 have been de- 
posited in the Sequence Read Archive (SRA) database un- 
der accessions PRJNA1002604, and Illumina sequencing data 
in PRJNA1002398. Training data and related scripts are 
available at GitHub ( https:// github.com/ PlantG3/ miniC ) and 
Zenodo ( https:// doi.org/ 10.5281/ zenodo.13177408 ). The T3 
genome assembly is available from Genbank accessions: 
CP132160–CP132167. 

Supplementary data 

Supplementary Data are available at NARGAB Online. 
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