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Why Similar Policies Resulted in Different COVID-19
Outcomes: How Responsiveness and Culture Influenced
Mortality Rates

Abstract:

In the first two years of COVID-19, per-capita mortality varied over
a hundredfold across countries, despite most implementing similar
non-pharmaceutical interventions (NPIs). Factors like policy
stringency, GDP, and age distribution only explain a small fraction
of mortality variation. To address this puzzle, we build on a
previously validated pandemic model in which perceived risk alters
societal responses impacting transmission. Using data from over 100
countries, we show that a key factor explaining heterogeneous death
rates was not policy responses themselves but rather variation in
responsiveness. Responsiveness measures how sensitive communities
are to evolving mortality risks and how readily they adopt NPIs in
response to curb transmission. We further find that responsiveness
correlates with two cultural constructs across countries: openness
to novelty and power distance. Our findings show that more
responsive adoption of similar policies saves many lives, with
important implications for the design and implementation of future
outbreak responses.

Keyword: COVID-19, Pandemic Policy, System Dynamics, Mortality,
Policy Responsiveness



1. Introduction

The COVID-19 pandemic has caused millions of deaths and major
health, economic, and social disruptions around the world. But the
mortality burden was not distributed evenly. In the first two years
of the pandemic the same SARS-CoV-2 virus (and its variants) led to
per capita death rates that varied by more than two orders of
magnitude across countries.! Importantly, differences in many usual
explanatory factors such as demographics, per capita income,
pandemic preparedness, or healthcare capacity do not explain these
vastly divergent outcomes, hinting that the differences in
fatalities may instead be due to divergent responses of governments
and individuals.?™

The pandemic elicited major responses both from governments and
from affected communities globally. Governmental policy responses
included imposing a range of non-pharmaceutical interventions
(NPIs), such as lockdowns, activity closures, mask mandates, and
limits on social gatherings and mobility; as well as pharmaceutical
measures, such as novel treatments and vaccination, which started
being deployed at scale after the first year and a half.® ©
Responses from individuals and communities, from voluntary NPI
adoption to adherence to various government mandates, further
moderated the spread of the disease.

While studies focused on the short-term impacts (days to weeks)
of specific NPIs identify some benefits,’® examining the data over
longer time horizons points to three unexpected regularities. First,
while specific combinations of NPIs vary, the average stringency of
governmental policies was rather similar across countries.!® Second,
important outcomes (such as mortality) were substantially different
in various regions,!!" 2 a feature robust to controlling for
undercount.® Finally, over the horizon of months there is little
correlation between stringency of policies and mortality outcomes.?!3"
15 Appendix Sda provides a simple demonstration of these regularities
across 231 countries and regions.!® The latter observation extends
not just to measures of policy but to individual and community
responses, such as reductions in mobility, which are likewise not
correlated with longer term mortality outcomes(e.g. see Appendix
S4b'®) . This policy outcome variation presents a puzzle: How have
different countries achieved such vastly different mortality
outcomes despite relative similarity in the stringency of their
policies and the magnitude of community responses? This variation is
especially intriguing as it suggests that more stringent responses
are not necessarily required to achieve significantly better
outcomes.

In this paper, we offer a novel explanation for the policy
outcome variation puzzle, one with important policy implications. We
start with the observation that past analyses have not accounted for
the feedback loop between health outcomes and implemented policies
(with some exceptions '7"!?). In most policy analyses, policies are
treated as independent variables affecting the dependent variable of
health outcomes. Less appreciated is the other pathway in the
feedback loop: that both government policies and public compliance
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also change in response to the perceived risk of the disease, as
inferred from, e.g., recent deaths. This feedback perspective
refocuses the analysis on societal sensitivity to a continuously
evolving risk situation. In contrast to thinking about the
effectiveness of specific policy responses, one needs to consider
‘collective governmental and societal responsiveness’ to risk (for
brevity ‘collective responsiveness’ or ‘responsiveness’ from here
on) . Greater responsiveness indicates a community’s willingness to
adopt and adhere to various NPIs even at lower levels of perceived
risk. As such, collective responsiveness is a social and cultural
construct likely related to risk perception, government priorities
and agility, and societal preferences for health outcomes, economic
performance, and personal freedoms among others.?’ Explicitly
accounting for the feedback loop between health outcomes and
societal responses, we first estimate responsiveness for 136
countries around the world and show that this single measure can
predict a significant proportion of variation in future mortality
rates. We then explore some of the cultural constructs that may
explain the observed variations in responsiveness across nations.

1.1. Risk-response feedback and the puzzle of policy outcome
variation

The policy outcome variation puzzle asks why responses to COVID-
19 had modest variation across nations and barely correlated with
the large variations in the COVID-19 outcomes (notably mortality).
In response we first observe that while more stringent policies can
reduce deaths, the causality can also operate in the opposite
direction: more stringent policies are potentially adopted in
response to increases in perceived risk due to recent deaths. Such a
bidirectional relationship constitutes a risk-response feedback loop
where responses reduce deaths, and deaths increase responses. To
explore the second part of the relationship further, we correlate,
within each country, the weekly policy stringency as a function of
recent deaths. A positive correlation emerges where deaths over the
previous three weeks predict current-week stringency (average
correlation across all countries/regions in our sample is 0.24,
SD=0.36; also see Appendix, figure S2'°%). The idea that risk
perception and change in responses should be incorporated in
epidemic modeling is well recognized.?’ However, its full
implications only emerge when the mechanism is modeled as an
endogenous feedback process in which epidemic and societal behaviors
co-evolve.!® With a few exceptions,?!® 2!+ 22 this endogenous feedback
mechanism is missing from current models. For example, a recent
review of models in CDC’s COVID-19 forecast hub finds only 1 of 61
models captures this feedback mechanism.?!

Transmission reductions in this risk-response feedback result
from a combination of official policies and individual behavioral
changes, including adherence to those policies; for simplicity, we
combine these factors into a single construct of overall response.
The feedback from risk levels to this overall response implies that
long-term COVID-19 risks (and thus death rates) in each country
converge to a threshold that triggers just enough of a response to
contain transmission. If perceived COVID-19 risks are below this
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threshold, responses remain insufficient to contain transmission,
allowing continued disease spread and thus, with some lag,
increasing perceived risks. If perceived COVID-19 risks are above
that threshold, they trigger responses that bring down transmission
and ultimately reduce perceived risk. This feedback framing raises
the question of what risk threshold prompts a sufficient response -
in other words, how responsive are governments and societies to
perceived risks?

This study's central hypothesis is that such collective
responsiveness to risk varies across countries, and this variability
accounts for a large part of the differences observed in policy
outcomes. The subsequent sections of this paper elaborate on this
hypothesis, providing a formal estimation of responsiveness to
COVID-19 risk across nations and its impact on mortality outcomes.
Acknowledging that responsiveness is influenced by social and
cultural factors, we further delve into the potential for predicting
responsiveness by analyzing specific cultural traits across nations.
Understanding the role of responsiveness, and the societal factors
that shape responsiveness, is key to better adapting policies to
mitigate disease transmission.

2. Study Data and Methods

We use a previously validated model of pandemic dynamics in which
governmental policies and behavioral change are a function of the
state of the pandemic, operationalized as a response to recent death
rates.?’ We first use the model to estimate collective responsiveness
across 136 countries and regions by quantifying how recent perceived
risk levels drive the societal responses that change transmission
rates. We then examine whether the estimated responsiveness measures
predict future (out of sample) death rates, and thus policy
outcomes, over long-time horizons. We conclude our analysis by
exploring the cultural features that predict responsiveness, and
thus death rates, across countries.

2.1. Study data

Our estimates of country-level parameters include all 136
countries for which sufficient data are available, covering 7.5
billion people. For simplicity, we limit the estimation period to 1
May 2020 to 31 Mar 2021. We exclude the first 4 months of 2020 to
avoid conflating the rise of the first wave of the pandemic with the
longer-term dynamics (e.g. over multiple waves in the first two
years of the pandemic; see Appendix S4f and S4h for robustness!®). To
reduce model complexity, we choose an end date that largely excludes
vaccination effects (only 5 countries exceeded 10% vaccination by
that date!) and Delta and Omicron variants. For death and case data
we use 7-day rolling averages.! Unless noted, data for the study
come from the OurWorldInData (OWID) global COVID-19 database,! which
draws on different sources, e.g., the Johns Hopkins University CSSE
COVID dashboard for cases and deaths.?® Recognizing significant death
under-reporting in many countries, in sections S4g and S4h we report
robustness to using estimates of true infection and death rates from
IHME.* Other data we use include GDP per capita, population, age
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distribution (to calculate country-level Age Multipliers of
Mortality), hospital beds per capita, Oxford University government
response stringency!® and independent estimates of (maximum)
effective reproduction number R. (number of secondary cases from an
index infection)?*. In addition, we use Hofstede’s cultural
dimensions to examine associations between collective responsiveness
and cultural constructs ?®, available from Hofstede’s database.?®

2.2. Estimating responsiveness

We build on a previously validated epidemic model, the SEIRD
model, which incorporates the feedback loop between mortality and
societal responses.?' This model is intentionally simple to aid
transparency and generalizability of insights. Nevertheless, it has
outperformed many more complex alternatives in forecasting mortality
on an extensive dataset of predictions.?' The model is structurally
similar to the classical SEIR (Susceptible, Exposed, Infectious,
Removed) compartmental model and incorporates a behavioral risk-
response mechanism (thus the b in SEIRb), where transmission
intensity declines (increases) as recent death rates increase
(decline) . ‘Responsiveness’ represents the strength of this
behavioral response mechanism. Formally, rather than being a
constant, transmission intensity, [, is a decreasing function of
perceived risk of death (f'). f' is operationalized as lagged (per
capita) mortality rates. The lag reflects the time it takes for
governments and people to perceive and respond to changing risks and
thus could vary across communities. As perceived risk of death
increases, all else equal, the overall transmission intensity f
declines with a ‘response’ multiplier, k, which captures the impact
of various governmental and societal risk-driven responses on
transmission. We formulate this multiplier to be proportional to
1/(1+ af"). Parameter a represents collective responsiveness of the
government and society to changing perceived risks. With higher
values of responsiveness a, transmission intensity f will be more
sensitive to changes in perceived risk. In short, the model
separates collective responsiveness (a; a country-specific trait)
from changing responses (k), allowing us to estimate responsiveness.

Using the SEIRb model, for each country, we estimate the value
for a(as well as lags in risk perception and response adjustment)
that offers the best fit between simulated and observed cases and
deaths.

2.3. Estimating Contributors to Long-term Deaths Rates

Having estimated country-level collective responsiveness (a), we
assess its predictive value in explaining future COVID-19 death
rates across nations. We use linear regressions to explain (loglO)
deaths as a function of (loglQ) responsiveness. We predict deaths
for the period 01 Apr 2021 to 30 Sep 2021, which is excluded from
the estimation data. We exclude countries where responsiveness is
not reliably identified (is not distinguishable from zero).
Moreover, to account for death undercounts we limit the analysis to
countries where cumulative excess mortality by 30 Sep 2021 (based on
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The Economist’s estimates?’) does not exceed the official COVID-19
deaths by more than 100%. In the Appendix (sections S4f-S4h)!® we
assess robustness to other inclusion thresholds (25% and 50%),
exclusion of countries with significant early vaccination, and use
of estimates for actual (instead of reported) cases and deaths from
THME .

To put into perspective the predictive value of responsiveness
for understanding mortality, we control for a few other explanatory
mechanisms including the impact of age distribution on COVID-19
mortality, GDP per capita, maximum reproduction number, healthcare
capacity, and average government policy stringency.

2.4. Explaining responsiveness through cultural constructs

Finally, we explore potential correlates of collective
responsiveness (@) across countries. Conceptually, responsiveness
relates to distinct social, governance, and cultural factors. For
example, sensitivity to risk may be related to the community’s
tolerance for uncertainty and its emphasis on short- vs. long-term
outcomes. Hofstede's cultural dimensions offer a common set of
measures that inform the hypothesized correlates of responsiveness.
These cultural dimensions include individualism, uncertainty
avoidance, power distance, masculinity, long-term orientation, and
indulgence. They have been estimated for many countries through
representative national surveys, and are available for 46 countries
in our sample. Similar to above, we exclude countries with too much
excess mortality compared to reported COVID-19 deaths. The remaining
sample includes 33 countries with all Hofstede’s measures (an
additional 3 include individualism, uncertainty avoidance, and power
distance). We use these cultural factors to predict (loglO0)
responsiveness, and also as separate predictors of (logl0O) death
rates using linear regressions.

25

2.5. Technical documentation

We follow replicability best practices for model-based analyses,?®
and report full documentation of our data, model, estimation
methods, and supplementary analyses in the Appendix and online
repository.!®

2.6. Study Limitations

The current study focuses on three main points: establishing the
COVID-19 policy outcome variation puzzle, providing a plausible
resolution based on risk-response feedback and variation in
collective responsiveness, and exploring cultural determinants of
responsiveness. As such, we make many simplifications that should be
noted in interpreting the results. First, by estimating a single
‘collective’ responsiveness measure we combine NPIs, government
mandates, and individual behaviors (from adherence to NPIs to
hygiene and social distancing) together. Thus we cannot separate
effects of distinct behaviors or offer recommendations for specific
NPIs; more complex models would be needed for those purposes.
Second, to keep the analysis simple we exclude many relevant factors
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such as variants, vaccination, adherence fatigue, and loss of
immunity. These simplifications increase model transparency and
build intuition, but limit its predictive power and realism. Third,
we focus on the role of collective responsiveness in predicting
mortality, rather than offering a comprehensive explanation of
country-level mortality variation, thus missing potential
determinants such as comorbidities. Fourth, our preliminary
exploration of determinants of responsiveness misses plausible
factors such as recent experience of other epidemics or ideological
leaning of governments during the pandemic. Fifth, we assume
responsiveness is constant, but it likely changes over time due to
factors such as adherence fatigue. Finally, the data we use in the
primary analysis is based on reported cases/deaths. Those may
significantly undercount true incidences and thus we assess the use
of alternative data for cases/deaths, as well as including only
regions with limited undercount, in our robustness checks. With
these simplifications, our analysis provides an illustration of, and
a lower bound for, the value of incorporating risk-response feedback
in understanding pandemic outcomes and designing more effective
policies.??

3. Study Results
3.1. Estimating Collective Responsiveness

Estimated responsiveness values vary widely across nations and
indicate robust effects of risk perception on changing transmission
intensity through adoption of NPIs and behavioral changes. For
example, at median responsiveness, the number of daily deaths per
million that triggers sufficient responses to reduce transmission
intensity (f) by 50% is 0.09, with substantial between-country
variation (90% range: 0.003-2.67). Appendix table S4 provides
estimated responsiveness levels for the sample informing baseline
regressions. Moreover, estimated responses (k values) correlate
positively with the Oxford University measures of policy stringency
(mean/median correlation is 0.35/0.37 across nations) .'® This
provides evidence that our estimates of changes in responses over
time relate to measures of policy not used in our estimation. Note
that we do not expect the correlation to be very strong because k
values include population adherence and behavioral change beyond
formal policy stringency.

3.2. Collective responsiveness as a predictor of deaths

Exhibit 1 shows that (logl0O) responsiveness estimated from 01 May
2020 to 31 Mar 2021 is strongly and negatively correlated with
(logl0) death rates (R=-0.625) averaged over the subsequent 6 months
(01 Apr 2021 to 30 Sep 2021).



EXHIBIT 1.

Reported daily deaths per million people (averaged over prediction period,
01 Apr-30 Sep 2021) against estimated collective responsiveness o
(estimated from 01 May 2020-31 Mar 2021), with selected larger countries
labeled.

Deaths per million (prediction period) against
collective responsiveness, for 119 countries
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Source: Authors’ analysis of data on daily confirmed cases and deaths
come from the OWID global COVID-19 database. Note: Graph includes 119
countries as we exclude countries where responsiveness was too small to be
reliability estimated. The correlation in the graph is -0.625.

Regressing the 6-month averaged death rates against
responsiveness and several other predictors (Exhibit 2) provides a
comparison of these factors in explaining death rates.
Responsiveness (loglO o) is the most important driver of variation
in death rates (t=-4.1, p=1.9E-4), enhancing the model’s fit (adj.

R?) by 0.28 (from 0.00 to 0.28); increasing responsiveness by one
standard deviation reduces death rates by a factor of about three
(0.35 (0.15-0.82)). In comparison, we find no evidence that initial

local transmission intensity, hospital capacity, GDP, or policy
9



stringency are significant predictors of deaths.
of Mortality (a variable calculating expected fatality rates in each

country due to age distribution),

which is a statistically

Even Age Multiplier

significant correlate of deaths during the estimation period 3°,
loses its predictive power for cumulative deaths later in the

prediction period

EXHIBIT 2.

(April-September 2021).

Predictors of cross-country variation in mortality rates per capita.

Coefficient (¢ p-value Marginal Effect 95% CI of
std. err.) adj. RZ 2 Sizeb effect size
Collective -0.546+0.227 0.000 0.28 0.35 (0.15-0.82)
responsiveness
(logl0)
Age Multiplier of -0.35740.361 0.474 -0.008 0.84 (0.59-1.19)
Mortality (loglO)
GDP per capita -0.240+0.226 0.266 0.005 0.83 (0.59-1.17)
(logl0)
Hospital beds per 0.018+0.024 0.685 -0.015 1.12 (0.83-1.50)
thousand
Initial -0.14240.152 0.299 0.002 0.74 (0.39-1.40)
reproduction number
Policy stringency 0.016+0.009 0.21 0.011 1.44 (0.98-2.11)
(6 mo. avg.)

Source: Authors’ analysis of data from the OWID global COVID-19 database.
Note: Dependent variable: per capita mortality (reported daily deaths per
million), averaged over the 180 days from 01 Apr 2021 onward. a: Marginal
adj. R? = adj. R? for full model - adj. R? for model excluding this
predictor; b: Effect size = multiplicative change in 6 mo. avg. daily
deaths per million per 1 std. dev. change in predictor; n (number of
countries) = 46; Adj. R2=0.277; F (p-value) = 3.9 (0.003).

We assessed the robustness of these results to various
assumptions such as including the early pandemic period, excluding
countries with early vaccination, excluding countries with less
reliable death data, and using IHME estimates of cases and deaths.
Those analyses are detailed in Appendix s4f-s4h and show none of
those assumptions change any of the results qualitatively: in all
responsiveness remains statistically significant and is the primary
driver of variation in death rates.!® Overall, the results support
the hypothesis that responsiveness to risk is a better predictor of
mortality variation across countries than many commonly considered
factors, from policy stringency, to demographics, healthcare
capacity, and transmission potential.
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3.3.
rates

Exhibit 3 reports the regression results of collective
responsiveness and death outcomes against Hofstede’s cultural

dimensions.

responsiveness show that

distance’

and ‘power
In Model M1

Cultural measures associated with responsiveness and death

Regression columns M1-M3 with the dependent variable of
‘uncertainty avoidance’
are important predictors of responsiveness.

these two cultural constructs explain about 28 percent of variation
and the results are robust after adding other

in responsiveness,
cultural dimensions to the regression in Models M2 and M3.

EXHIBIT 3.

Cultural constructs as explanatory factors for responsiveness and death
outcomes for the prediction period

Collective responsiveness Cumulative death (log)
(log)
M1 M2 M3 M4 M5 M6
Intercept 1.887* -0.363 1.478 0.654 -5.148%* -4.427*
Uncertainty avoidance -0.035*** -0.030** -0.030** 0.047**** 0.032**
Power distance 0.035** 0.051**x* 0.048** 0.015 0.038%*
Individualism 0.022 0.019 0.016 0.025
Masculinity -0.001 -0.002 -0.003
Long-term orientation -0.001 -0.026%* -0.027*
Indulgence -0.025 0.031 0.019
responsci(ileeztei\:s (log) ~0.554xxx ~0.488xxx
n 36 36 33 33 33 33
R? 0.28 0.33 0.34 0.27 0.48 0.62
Adjusted R? 0.24 0.26 0.18 0.24 0.36 0.51
F-statistics 6.42%*x* S5.17*x** 2.20%* 11.16%*x* 3.98x** S.TL***xx*
Source: Authors’ analysis of data from the OWID global COVID-19
database and Hofstede’s cultural measures from Geert Hofstede’s
database. Note: * p < .1 ** p < .05 *** p < .01 **** p < .,001; Blank

cells are for variables not included in the regression model of the

column;
responsiveness
capita mortality

Models M4-Mo,
daily)

M: Regression model;

Dependent variables:
(estimated from 01 May 2020-31 Mar 2021)
(reported daily deaths per million),
the 180 days from 01 Apr 2021 onward.

with the dependent variable of
deaths during the prediction period show that these cultural
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dimensions can partially explain differences in mortality outcomes.
Model M4 shows the predictive value of responsiveness alone for the
subset of countries for which cultural measures are available. In M5
we show that the association between risk avoidance (and, to a
lesser extent, long-term orientation) with deaths is statistically
significant, and the cultural constructs alone explain about 48
percent of variation in deaths across different countries. Model M6
adds responsiveness to the predictors and shows improved predictive
power against Model M5. As in model M5 long-term orientation is
negatively associated with deaths. Interestingly, controlling for
responsiveness, power distance also becomes marginally predictive of
deaths. In summary, we note that 1) two cultural constructs,
uncertainty avoidance and power distance, partially predict the
variation in responsiveness, 2) they are also associated with the
variation in mortality outcomes; and 3) cultural constructs partly
explain the association between responsiveness and deaths, yet the
impact of responsiveness is not limited to the pathways overlapping
with cultural precepts.

4. Discussion

Examining COVID-19 mortality globally points to a puzzling
variation in policy outcomes. Specifically, during the acute phase
of the pandemic, the stringency of government and societal responses
was similar across most countries, yet mortality outcomes wvaried by
more than a hundred-fold. While some studies have shown immediate
effects of NPIs which seem intuitive,’"® others have found
variability in effects,!!” 2 or concluded that such policies are
ineffective.!®> To resolve this conundrum, we noted that not only
policies and responses impact the state of an epidemic, but also the
state of the epidemic regulates those responses, via risk
perception. Thus the primary factor driving variation in mortality
rates is not specific policies implemented, but rather different
societies’ responsiveness to perceived risk. By explicitly modeling
the feedback loop between societal responses and the pandemic's
progression, we estimated a measure of responsiveness and correlated
it with future deaths. We then explored cultural antecedents of
responsiveness.

Three findings emerge. First, the degree of responsiveness to
evolving pandemic risks varies markedly among nations. Second,
estimated responsiveness is highly predictive of future COVID-19
mortality rates. In fact, responsiveness is a stronger predictor of
mortality outcomes than several intuitive predictors, including
demographics, healthcare capacity, NPI policy stringency, the
maximum reproduction number, and GDP per capita. Responsiveness
encapsulates societal and policymaking sensitivity to the pandemic's
risks: the number of daily deaths required to compel the adoption of
sufficient responses to curb transmission, as well as the speed and
effectiveness of policy implementation.

To understand the importance of responsiveness, consider a
typical outbreak wave in a community. Initially the epidemic grows,
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with increases in cases, deaths, and hence perceived risk. As the
toll escalates, policymakers and the community are compelled to
respond, adopting NPIs and other measures to reduce transmission and
ultimately slowing the spread of the disease. This shift results in
declining transmission rates, with mortality rates soon following
suit. Over time, as the memory of the wave fades and perceived risk
lessens, responses are relaxed, allowing renewed transmission.
Eventually, the laxness of policy in the presence of infection,
seeds the start of a new wave. In essence, the mix of responses
converge to those required to keep the epidemic from growing
exponentially or subsiding fully, keeping perceived risks at levels
just tolerable for the community. Analytically, these response
levels are those needed to keep the effective reproduction numbers
near one. The specific death rates that trigger this strength of
response, however, heavily depend on the community's responsiveness.
Communities with higher responsiveness require lower death rates to
trigger sufficient policies and adherence to those. This mechanism
is fundamental in explaining how variation in responsiveness
predicts observed death rates across communities. The oscillations
in response due to this feedback loop also provide a mechanism for
endogenous emergence of pandemic waves that complements other
triggers such as new variants, loss of immunity, and seasonality.

Third, cultural attitudes partially account for variations in
responsiveness. Hofstede's measures of uncertainty avoidance and
power distance are associated with responsiveness. The association
of power distance with responsiveness indicates that communities
more willing to follow the mandates of a centralized government may
be more responsive to a fast-changing public health threat. The
inverse relationship between uncertainty avoidance and
responsiveness may seem unexpected. However, this relationship may
underscore the value of societal tolerance towards change and
novelty in facilitating rapid policy responses and the adoption of
potentially disruptive NPIs. We also note that combining
responsiveness and Hofstede’s cultural constructs provides a more
accurate prediction for mortality than either alone.

Our findings have significant policy implications. First, they
challenge the perceived trade-off between saving lives and
minimizing disruptions during the critical phase of a pandemic. When
infection fatality rates are sufficiently high, the implementation
of NPIs becomes inevitable as the threat of an exponential outbreak
compels communities to control transmission. Regardless of timing,
every community will need to adopt a mix of NPIs sufficient to
curtail the exponential growth in deaths. Thus, the limited
correlation between policy responses and deaths does not imply that
NPIs against COVID-19 are ineffective, contrary to arguments raised
by some.!®> Rather, the correlation with mortality vanishes because
all communities ultimately needed to adopt stringent enough
responses to curb exponential transmission. Communities that enacted
the requisite policies earlier (i.e., not waiting for high levels of
mortality) achieved life-saving results without imposing additional
societal costs.
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Second, policy-makers would be better off to focus their
attention on responsiveness. Whereas all communities adopted
comparable response levels, their responsiveness varied by two
orders of magnitude. From protocols for rapid response, to having
tighter response thresholds, and openly communicating with the
public about the importance of responsiveness, policy makers can
take actions that enhance responsiveness and thus could contribute
significantly to reducing the burden of an epidemic. In fact, it is
critical for policy makers to articulate the insight that heightened
responsiveness and swifter action would preserve lives without
requiring the implementation of more stringent policies. That could
help secure public backing for more agile, responsive policies in
managing future pandemics with major life-saving benefits. If all
countries had the responsiveness of the top ten percentile, the
COVID-19 death toll in the first two years could have been reduced
by nearly an order of magnitude.

5. Conclusion

This global-scale study points to the importance of policy
responsiveness rather than policy response in reducing mortality
during a deadly pandemic. Responsiveness varies widely across
nations. While cultural factors significantly influence
responsiveness, they account for only about one-third of the
variation in estimated responsiveness, indicating that policymakers
and communities have scope to enhance responsiveness. Understanding
the social mechanisms and organizational structures that enabled
governments in certain countries to adopt more responsive policy
stances, implement coherent sets of NPIs at lower risk levels, and
encourage public adherence to these policies is crucial in preparing
for future pandemics.
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S1) Model specification

Our model (SEIRb) is an extension of the classic compartmental SEIR
model !, which incorporates behavioural responses that endogenously
change contact rates as a continuous function of perceived risk. SEIRDb
is previously reported and validated in peer-reviewed venues and shows
strong predictive power for future deaths despite its simplicity 2.
Figure S1 provides an overview of the model structure.

Incubation Infeqtion
period(T;) period(72)
Susczgs»tible = g Exposed (E) Infected () ReTI%VBd
\ Exposure Onset Removing
Susceptible @
/flraction Infection Death(f)
Population @ Infection
(N) Transmission Sehaviorstoo » fate(1‘IL|lt)y rate
i ; ehavioral/policy . .
Weather ¥ mtensﬁi(‘ﬁ ) reactions RISkoing(;etEP]g?
impact (\\V) -
. . " 'Response (k) Perceived risk
Initial transmission delav period
intensity 1 (TE
{Bo) R .
esponsiveness
(a)

Figure S1: SEIR with a behavioural/policy reaction feedback

In this model, populations are divided into four groups: susceptible
(S), pre-infectious (E), infectious (I), and removed from circulation

due to recovery or death (R):

s _ BSI .
dt N 1)
dE BSI E
T _ = 2
dt N 7 @
dl E I

== ©)

E_Tl T,
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dR I .

T 4)
I

f=u— (5)
T2

The three main parameters are the daily infectious contacts per case
(), the average latent period (7;), and the average infectious
duration (7). Total population N=S+E+I+R. The basic reproduction
number (Rg), 1.e. the expected secondary cases from an index case in a
fully susceptible population, is thus:

Ry = p1; (6)

With a constant f and Ro >> 1 % %, the basic SEIR model predicts a
rapid COVID-19 outbreak that infects most of a population in a few
months, reaching herd immunity when a large fraction of the population
has been infected °. However, behavioural and policy responses to risk
change infectious contact rates (f) and may curtail the epidemic well
before herd immunity. We thus allow f to go below [y in response to
perceived risk of death (f'):

B = kW, (7)

where k represents response to change in perceived risks of f', and
reflects the strength of responses affecting contact rates. k(f’)=1
indicates pre-pandemic behaviour, whereas full societal lockdown may
push k to smaller values, bringing B to ~0. W is the seasonal effect
of weather on COVID-19 transmission, estimated elsewhere % 7. k should
be decreasing in f’, with k(f'=0)=1, but its exact functional form is
not critical, so for simplicity we choose a following form:

1

k() = mam (8)
This leads to
B = (Grar)Who (77)

o represents the collective government and society responsiveness to
risk in a community. a=0 recovers the basic SIR model, and higher o
values indicate a community more sensitive to the perceived risk of
death from the disease. f' is modelled as an exponential average of
reported per-capita daily death rate (f; Equation 9) resulting from an
infection fatality rate of u, with a time constant of 7 reflecting the
time it takes to perceive and respond to changing risks:

df'/dt = (f = f)/t (9)
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Recognizing that responding to growing risks and relaxing responses
based on declining risks may occur on different timescales, we allow

for an asymmetric adjustment time T for increasing vs. decreasing
perceived risk:

T=1,if fi(O) <f) & taif f'(t) = f(D) (10)

In addition, for each country, we estimate the epidemic seeding time
(tz) -

This model includes 8 parameters (Tq,Ty, B0, & W Ty Tatz) as well as one
time-varying input W. Based on prior literature, we specify 71 =4 and
7, =10 days & °. We calculate base IFR (u) for each country based on
age distribution ° (see S3.a)), and use prior estimates for W ¢ 7. The
remaining five parameters (fo, &, Ty T4 tz) are estimated.

Sl.a) Accounting for under-ascertainment

Under-ascertainment is a substantial challenge for models of COVID-19
transmission. The estimation of our model is not sensitive to under
reporting of cases. To illustrate, consider true infection rates (rg)
for each country and how it compared to reported cases:

1s
TEM:yITEzylﬂT (11)

The subscript M denotes reported (rather than true) values, and y; is
the ratio of reported to true infections. To keep the model simple, we
bypass the need to estimate ascertainment by approximating reported
infection rates rgy based on recent reported infections Iy, assuming
that current infections are under-reported to the same degree as
infections over the last few weeks:

BIS _ BImS

TEM = Vi N (12)

Iy=[ (TEM—IT—IZ)dt (13)

This approximation holds as long as y; is relatively stable on the
timescale of the disease duration (~two weeks), even if it changes
over longer time horizons.

In short, even though reported cases are significant undercounts (by
an order of magnitude or more), the fractional change in reported
cases 1s an unbiased estimator of fractional change in actual cases,
as long as ascertainment rate is not changing over a period of a
couple of weeks. As such, we can use that fractional change in cases
to estimate transmission intensity directly.
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S2) Estimation method

Our model yields an expected number of new reported infections (rgy)
and per-capita death rate (dy) for each day for each country. Those
expected numbers are specified in Equations 12 and 8 in S1), as a
function of several known and unknown parameters and the state of the
model prior to the current date. We simulate the system of
differential equations captured in the model to calculate those

outcomes over time. We estimate the vector 8 of unknown parameters for

each country by maximum likelihood, identifying the vector 0 that

maximises the likelihood of observing the true reported infections and

deaths y,; (where t is time (day) and v €[i,d] denotes the series of
infections or deaths) given 0.

We use a negative binomial [log-]likelihood function for both cases
and deaths:

n(1+A,x 1 1
LL(Q,/’[V):Z Z _In( AHt)+F(xvt+/1—>—F(/1—>
v v v

v t

1
~(ret ) 11 (14 230 ®) + 500 (1e(8)) +in ()

Where x,; 1s predicted infections or deaths (analogous to y,:), 4, are
the scaling factors for the likelihood function, and I'(z) represents
the natural logarithm of the generalized factorial function for z-—1
(i.e. I'(z+1)=In(z!) for integer 2z).

The 5 unknown parameters are listed in Table S1. We also estimate the
negative binomial scaling factors (4;,44), leading to a total of 7

estimated parameters for each country.

Table S1. Estimated parameters with allowed ranges.

Parameter Symbol | Range Units

Initial infectious contact Bo 0.1-4.0 1/day

rate

Responsiveness a 0.001-1000 Dimensionless
Time to increase perceived Ty 1-100 Days

risk

Time to reduce perceived risk Ty 10-400 Days

Patient Zero arrival time* t, 1-140 Day
Likelihood scaling factor Ai 1E-06-1 Dimensionless
(infections)

Likelihood scaling factor Ay 1E-12-0.6*%* Dimensionless
(deaths)

S5




Online Appendix

* Patient Zero arrival time (i.e. epidemic seeding time) is expressed in days from
the start of 2020

** To avoid a potential computational problem in which the estimation algorithm
ignores deaths relative to infections in the likelihood function, the scaling factor

for deaths Ay is defined relative to A; as 1E-06-0.6 x A;

We estimate the model separately for each country. Separating
countries significantly speeds up estimation and makes it feasible to
conduct the full analysis with limited computing resources. For each
country, we estimate the parameters using the Powell direction search
method implemented in Vensim™ DSS simulation software, restarting the
optimization at 20 random points in the feasible parameter space.
Overall, estimation for all 130 countries takes approximately 12 hours
when compiled and parallelized on a 48-core Windows 10 server.

Model and calibration files are available at
https://github.com/tseyanglim/CovidRiskResponse.

S3) Data sources & preparation

Data used in Figure S2: Government response index is directly adopted
from Oxford government response tracker database, and is aggregated on
a weekly level. It is a previously published aggregated index that
covers 16 policies in the domains of containment and closure,
economic, and health system!? (https://github.com/0OxCGRT/covid-policy-
dataset/blob/main/documentation and codebook.md#calculation-of-policy-
indices). Death rates for each country and region are collected from
Oxford government response tracker database, sourced from Johns
Hopkins University CSSE Covid-19 data repository
(https://github.com/CSSEGISandData/COVID-19) .

Data on daily confirmed cases and deaths come from the OurWorldInData
(OWID) global COVID-19 database !°, which draws on the Johns Hopkins
University CSSE COVID dashboard !'!. The CSSE dashboard in turn
aggregates its data primarily from official sources such as the US
Centres for Disease Control and Prevention (CDC), the European CDC,
the World Health Organization, and national health ministries,
updating at least daily.

We use OWID’s 7-day rolling averages for new cases

(‘new cases smoothed’) and deaths per million population

(‘new _deaths smoothed per million’). COVID-19 case and death reporting
data show strong weekly cycles in many countries, as well as
occasional anomalous spikes due to e.g. irregularities in test
reporting or redefinitions by government statistical agencies; using
the rolling average data smooths out these cycles, which we are not
attempting to model here, to better reflect underlying trends.

Our analysis includes all countries in the dataset with at least 10000
cumulative cases reported, and at least 20 days of data, by 31 Mar
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2021. We exclude countries with fewer than 10000 cumulative cases to
avoid skewing the results with outliers and ensure robust estimation.
In total, 130 countries meet these criteria by 31 Mar 2021. As
discussed in the main text, we restrict the estimation period to 31
Dec 2019 to 31 Mar 2021 to avoid the confounding impacts of
vaccination and new variants, which are beyond the scope of this
model. In the main analysis, we exclude countries with more than 100%
excess mortality. The data are obtained from the Economist
(https://raw.githubusercontent.com/TheEconomist/covid-19-the-
economist-global-excess—-deaths-model/main/output-
data/export country cumulative.csv). In the Supplementary analysis we
test three other conditions of excluding countries with 50% and 25%
excess death, as well as including all countries.

For countries included, we utilise data starting from the date when
they exceed 100 cumulative cases reported. Excluding early data
entails a trade-off. Excluding it makes estimating the true basic
reproduction number (Rg) more difficult -after forceful outbreaks in
the first-affected countries, most others adopted various responses
that brought R. down below its pre-pandemic level (Rg). Furthermore,
excluding the early data may cut out the initial dynamics of
transmission. As a result, our estimated values for the initial
reproduction number are likely underestimates of the basic
reproduction number. On the other hand, many of the early cases
reported in most countries were due to travellers, so this earliest
importation-dominated stage therefore may not accurately reflect the
community transmission dynamics we are modelling. Moreover, early on
rapid changes in testing coverage impact our ability to assume
ascertainment rates are stable in the 7 time horizon as needed in our
derivations (see Equation 12). We selected the 100 case cut-off to
balance these competing considerations.

For prediction of deaths (but not model estimation), we use several
other country statistics such as GDP, hospital beds per thousand
people, median age, and so on, with data as compiled by OWID! %, We
also use government response stringency data '? and independent
estimates of Re '® compiled by OWID and available through their COVID-
19 data hub. The full list of additional variables used and
corresponding OWID data codes is in Table S2 below.

For mobility data we use Google's COVID-19 Community Mobility Reports?,
accessed via OWID® to provide consistent mapping for country names to
other data we use. These data reflect changes in numbers of visitors
relative to pre-pandemic levels, controlling for weekly (but not
longer seasonal) cycles. We use the averaged value of percentage
changes in visits to two categories of locations - workplaces, and

! https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv
2 https://www.google.com/covid19/mobility
3 https://ourworldindata.org/covid-mobility-trends
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retail & recreation venues - which best reflect normal everyday
economic activity.

Data are downloaded and processed with Python 3 code, using Pandas and
NumPy packages. For the full data processing code, see
https://github.com/tseyanglim/CovidRiskResponse.

Table S2. Additional variables drawn from OWID dataset and variable codes.

Variable Data code

Effective reproduction number Re reproduction rate

Govt. response stringency index stringency index

Hospital beds per thousand population hospital beds per thousand
Median age median age

Per-capita gross domestic product (PPP) gdp per capita

In addition, we use Hofstede’s cultural dimensions % I to examine

associations between collective responsiveness and cultural
constructs. Hofstede’s measures are obtained from Geert Hofstede’s
website and via this link: https://geerthofstede.com/research-and-
vsm/dimension-data-matrix/. The dataset includes all six measures of
power distance, uncertainty avoidance, individualism (vs.
collectivism), masculinity (vs. femininity), long-term orientation,
and indulgence for 111 countries or regions. While the dataset
includes regional categories (e.g., Africa East, Africa West, Arab
countries), we only use data on countries that are explicitly listed.

S3.a) Age multiplier of mortality calculation

Age strongly influences mortality rates, with older patients far more
likely to die of COVID-19 !®. To account for the impact of demographic
differences on fatality rates and improve model estimation, we
therefore calculate country-specific age multipliers of mortality
based on each country’s age structure.

We use data from the World Bank’s World Development Indicators *!7
the age distribution of each country’s population in 10-year age
strata to calculate an age-weighted average IFR multiplier for COVID
patients by 10-year age group estimated.!® This multiplier is applied
to a baseline IFR of 0.50%. The resulting demography-adjusted country-
specific IFR multipliers range from 0.28 (Uganda) to 3.02 (Japan),
with a mean of 1.08 and median of 0.88 (Lebanon). For the handful of
countries for which up-to-date demographic data are unavailable, we
use a multiplier of 1, leading to a baseline IFR of 0.50%.

on
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S4) Supplementary analysis
S4.a) Correlations of Policy Stringency with Lagged
Death

Figure S2a plots death rates (average weekly deaths per million)
against policy stringency (average weekly level of Government Response
Index from OxCGRT),across 231 countries and regions (USA States) using
data from 03 May 2020 to 01 Jan 2022. It shows that: 1) average (long-
term) government responses are comparable across most regions (around
50); 2) average death rates vary by two orders of magnitude (note the
logarithmic scale); and 3) the two are not strongly associated with
each other. These three features summarize the puzzle of policy
outcome variation.

Figure S2b plots recent COVID-19 deaths (previous three-weeks, per
million population), as a measure of perceived pandemic risk, against
policy stringency (measured using weekly level data of government
response index from Oxford COVID-19 Government Response Tracker),'©
across a sample of 12 countries (Panel b). A common relationship
emerges where an increase in recent deaths corresponds with increased
stringency of policies.

100

Average Weekly Death Per Million

0 25 50 75 100
Average Government Response Index

(2)
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global sample of 231 countries and regions. Each point represents a
country or region. Inset figure plots changes over time in government
response index vs death rates (in past 3 weeks) for two countries
(France: Green Triangles; Australia: Red Circles; each point
represents data in a specific week) as examples and shows how each
point in the main figure is calculated.

Figure S2c plots stringency of government response at median death
rates for each country and region. It shows that while the resulting
stringency levels are fairly similar across nations (levelling off
around 60), the mortality levels at which the stringent policies are
triggered (i.e., responsiveness) vary widely. Specifically, the
government response stringency at median mortality rates is stable
across most regions, despite the median mortality rates varying by two
orders of magnitude (e.g., Australia reaches a high level of
government response stringency at a much lower mortality rate than
France). This points to the importance of analyzing the feedback loop
that includes societal response and the state of the disease.?? 2!

S4.b) Correlations with additional potential
explanatory variables

Figure S3 shows additional correlations (or lack thereof) between
reported per-capita death rates (averaged from 01 Apr-30 Sep 2021) and
various country characteristics. Panel A shows the correlation between
our estimated collective responsiveness and death per million per day,
which is the strongest correlation among depicted variables in the
Figure.

Panels B-F show a modest (or lack of) correlation between various
variables and death rate. Particularly in Panel B age multiplier of
mortality (which drives infection fatality rates) only modestly
correlates with death rate. As depicted in Panel C, across countries,
death rate is actually positively correlated with per-capita GDP.
Hospital capacity and initial reproduction number do not show a strong
association with death rate. Finally, as discussed in the paper the
correlation between policy stringency and death is small, and
interestingly positive, indicating the reciprocal relation between the
two concepts.
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Figure S4 shows estimated death rates per million against change in
visits to retail & recreation venues and workplaces respectively,

relative to pre-pandemic levels.

The two categories separately show
similar negative correlation to the combined mobility index,

as
shown in the main text.
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Figure S4. Estimated death rates per million (average over 6-months ending
in Mar 31, 2021) correlated with change in mobility (during same period)
relative to pre-pandemic levels for A) retail & recreation venues and B)
workplaces.
S4.c) Parameter estimates

Table S3 shows summary statistics across all countries for estimated

model parameters. For the full table of parameter estimates by
country, see https://github.com/tseyanglim/CovidRiskResponse.
Table S3. Summary statistics of estimated parameter values.

Parameter Symbol Mean Median StDev
Initial infectious contact rate ﬁo 1.86 1.36 1.55
Collective Responsiveness a 72 11 187
Time to increase perceived risk Ty 28.2 12.2 35.8
(days)

Time to reduce perceived risk (days) Ty 106 50.3 132
Patient Zero arrival time* t, 86.3 101 29.6
Likelihood scaling factor A 0.578 0.805 0.433
(infections)

Likelihood scaling factor (deaths) Ad 0.235 0.117 0.25
* Patient Zero arrival time is expressed in days from the start of 2020

S4.d)

Estimated collective responsiveness values

Table S4 shows responsiveness values for different countries,
expressed in terms of the death rate per million population that
would be required to trigger responses sufficient to lower
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infectious contact rates by 50%. Lower values therefore indicate
greater responsiveness or sensitivity to death rates. Note the wide
range of values estimated, with some countries (e.g. China,
Thailand) far more responsive than others (e.g. Argentina, France).
Consistent with various regressions and other analyses, the table
excludes countries for which excess deaths exceed twice the reported
COVID-19 deaths for the duration of analysis, or those whose
estimated responsiveness could not be distinguished from zero (and
thus 1/responsiveness is undefined).

Table S4. Estimated responsiveness values for different countries.

Country Population Death rate per million resulting in 50% contact
code (millions) rate reduction (l/collective responsiveness)

AFG 41.1 0.07
AGO 35.6 0.015
ALB 2.8 1.392
ARE 9.4 0.052
ARG 45.5 2.084
ARM 2.8 0.401
AUS 26.2 0.091
AUT 8.9 28.458
AZE 10.4 0.204
BEL 11.7 0.828
BFA 22.7 0.001
BGD 171.2 0.059
BIH 3.2 0.352
BLR 9.5 0.081
BOL 12.2 0.425
BRA 215.3 0.146
BWA 2.6 0.188
CAN 38.5 0.07
CHE 8.7 0.414
CHL 19.6 0.382
CHN 1425.9 0.001
CIV 28.2 0.005
COD 99 0.002
COL 51.9 2.18
CPV 0.6 0.078
CRI 5.2 3.945
CUB 11.2 0.005
DEU 83.4 0.112
DNK 5.9 0.207
DOM 11.2 0.034
DZA 44.9 0.009
ECU 18 0.047
EGY 111 0.204
ESP 47.6 0.414
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EST 1.3 1.992
ETH 123.4 0.015
FIN 5.5 0.045
FRA 67.8 0.404
GAB 2.4 0.054
GBR 67.5 0.136
GHA 33.5 0.012
GIN 13.9 0.001
GTM 17.8 1.161
GUY 0.8 2.975
HND 10.4 0.96
HTI 11.6 0.022
IDN 275.5 0.023
IND 1417.2 0.018
IRL 5 0.066
IRN 88.6 0.097
IRQ 44.5 0.645
ITA 59 0.262
JAM 2.8 0.029
JPN 124 0.023
KAZ 19.4 0.279
KEN 54 0.025
KGZ 6.6 0.426
KOR 51.8 0.072
KWT 4.3 0.136
LBY 6.8 0.691
LKA 21.8 0.008
LSO 2.3 0.053
LUX 0.6 0.517
MAR 37.5 0.045
MDA 3.3 0.207
MDG 29.6 0.011
MDV 0.5 0.052
MEX 127.5 0.088
MKD 2.1 1
MLI 22.6 0.004
MMR 54.2 1.058
MNE 0.6 3.491
MOZ 33 0.016
MRT 4.7 0.044
MWI 20.4 0.007
MYS 33.9 0.009
NAM 2.6 0.081
NGA 218.5 0.003
NLD 17.6 0.242
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NOR 5.4 0.045
NPL 30.5 0.122
OMN 4.6 0.924
PAK 235.8 0.025
PAN 4.4 0.232
PER 34 3.337
PHL 115.6 0.014
POL 39.9 0.242
PRT 10.3 0.401
PRY 6.8 3.322
PSE 5.3 1.268
QAT 2.7 0.276
ROU 19.7 0.414
RUS 144.7 0.057
RWA 13.8 0.017
SAU 36.4 0.619
SDN 46.9 0.014
SEN 17.3 0.031
SGP 5.6 0.43
SLV 6.3 0.694
SOM 17.6 0.003
SSD 10.9 0.005
SWE 10.5 0.401
SWZ 1.2 0.389
SYR 22.1 0.119
TGO 8.8 0.002
THA 71.7 0.001
TJK 10 0.02
TUN 12.4 2.635
TUR 85.3 0.026
UGA 47.2 0.027
UKR 39.7 0.155
URY 3.4 0.019
USA 338.3 0.32
UZB 34.6 0.01
VEN 28.3 0.184
XKX 1.8 1.425
ZAF 59.9 1.182
ZMB 20 0.024
ZWE 16.3 0.017

Note: Variation in reciprocal of responsiveness across countries. Reported
values are daily death rates triggering a response that brings infectious
contacts to half the baseline value (i.e. 1/alpha).
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S4.e) Predictor variable correlations & variance
inflation factors

Table S5 shows correlations between all predictor variables used in
the full death rate regression (Exhibit 2 of main manuscript), as
well as variance inflation factors (VIFs); all VIF values are < 3,
indicating acceptably low multicollinearity between predictors.

Table S5. Correlation matrix and variance inflation factors for predictor
variables in full regression.

Log gdp :
Log Hosp Hist Variance
alpha Log IFR per't beds RO est str 180 | Inflation
capita Factor
log alpha (LoglO of 1 0.02 -0.018 0.11 0.064 0.268 1.12
Responsiveness)
log IFR (Logl0 of Age 0.02 1 0.371 0.542 0.461 -0.432 1.94
Multiplier of Mortality )
log gdp per capita (LoglO -0.018 0.371 1 0.151 0.339 -0.278 1.28
of GDP per Capita)
hosp beds (Hospital Beds 0.11 0.542 0.151 1 0.429 -0.246 1.56
per Thousand Population)
RO_est (Max Reproduction 0.064 0.461 0.339 0.429 1 -0.056 1.5
Number)
hist str 180 (Stringency 0.268 -0.432 -0.278 -0.246 -0.056 1 1.46
Index)
S4.f) Inclusion of data from early pandemic

Figure S5 shows reported death rates per million people (averaged
over prediction period, 01 Apr-30 Sep 2021) against collective
responsiveness a estimated from 31 Dec 2019-31 Mar 2021, i.e.
including the ‘first wave’ dynamics from early in the pandemic, with
selected larger countries labelled. Similar to the main analysis
(Exhibit 1 of the main manuscript), there is a strong negative
correlation between responsiveness and subsequent death rate.
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Figure S5. Reported daily deaths per million people (averaged over
prediction period, 01 Apr-30 Sep 2021) against estimated collective
responsiveness o (estimated from 31 Dec 2019-31 Mar 2021), with selected
larger countries labelled. Source: Authors’ analysis of data on daily
confirmed cases and deaths come from the OWID global COVID-19 database.

S4.qg) Use of estimated true infection & death data

Figure S6 shows estimated true death rates per million people (from
IHME estimates, averaged over prediction period, 01 Apr-30 Sep 2021)
against collective responsiveness o estimated from 01 May 2020-31
Mar 2021, with selected larger countries labelled. As in the main
analysis (Exhibit 1 of the main manuscript), responsiveness
negatively correlates with subsequent death rates, albeit more
weakly (as expected due to dynamically changing under-reporting
introducing additional variation in death rates).
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Figure S6. IHME’s estimated daily deaths per million people (averaged over
prediction period, 01 Apr-30 Sep 2021) against estimated responsiveness o
(estimated from 01 May 2020-31 Mar 2021), with selected larger countries
labelled. Source: Authors’ analysis of data on daily confirmed cases and
deaths come from the IHME COVID-19 database.

S4 .h) Additional robustness checks for main
regression

The following results are additional robustness checks for the main
death rate regression (Exhibit 2 of main manuscript) using different
sources or subsets of data. Each shows predictors of cross-country
variation in per capita mortality rates per million (reported
mortality in all cases except Table S7, which uses estimated true
mortality from IHME), averaged over the 180 days after April 1,
2021. In all cases, collective responsiveness remains the primary
driver of variation in death rates and the main contributor to model
fit. In short, all tables show the same qualitative result: no
matter the inclusion criteria or data source, responsiveness is the
most important (and often only) predictor of death rates in the
prediction period.

Table S6 uses responsiveness a estimated from 31 Dec 2019-31 Mar
2021, including data from early in the pandemic, corresponding to
Figure S5 above.
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Table S6. Predictors of cross-country vari
capita. Dependent variable: per capita mor
million), averaged over the 180 days from

ation in mortality rates per
tality (reported deaths per
01 Apr 2021 onward.

Coefficient (+ Student’s t Marginal Effect Size
std. err.) (p-value) adj. RZ2 (95% CI) P
Collective Responsiveness -0.816%0.243 -6.9 (0.000) 0.416 0.29 (0.14-
(loglO) 0.60)
Age Multiplier of -0.94540.313 -2.7 (0.009) 0.058 0.66 (0.51-
Mortality (loglO) 0.87)
GDP per capita (loglO) -0.42940.123 -2.6 (0.013) 0.05 0.75 (0.64-
0.88)
Hospital beds per 0.020+0.020 0.6 (0.523) -0.005 1.12 (0.89-
thousand 1.42)
Initial reproduction -0.146%£0.082 -1.5 (0.131) 0.012 0.74 (0.54-
number 1.03)
Policy stringency (6 mo. 0.009x0.006 1.1 (0.285) 0.002 1.23 (0.91-
avg.) 1.65)
a Marginal adj. R? = adj. R? for full model - adj. R? for model excluding this
predictor
b Effect size = multiplicative change in 6 mo. avg. daily deaths per million per 1
std. dev. change in predictor
Countries (n) 56 Adj. R? 0.542 F (p-value) 12.1 (0.000)
Source: Authors’ analysis of data from the OWID global COVID-19 database.

Table S7 uses estimated true

(rather than reported)

per capita

mortality from IHME estimates as the dependent variable,

corresponding to Figure S6 above.
use IHME data,
2021.

Table S7.
capita. Dependent variable:

per million), averaged over the 180 days f

The responsiveness estimates also
and are for the estimation period of May 2020-March

Predictors of cross-country variation in mortality rates per
IHME’ s estimated per capita mortality

(deaths
rom 01 Apr 2021 onward.

Coefficient (% Student’s t Marginal Effect Size
std. err.) (p-value) adj. R?2 (95% CI) »*

Collective -0.53240.256 -5.3 0.162 0.44 (0.20-0.
Responsiveness (loglO0) (0.000)

Age Multiplier of -0.28740.123 -2.2 0.022 0.83 (0.70-0.
Mortality (loglO) (0.033)

GDP per capita (logl0) -0.206+0.129 -1.9 0.014 0.77 (0.55-1.

(0.066)

Hospital beds per 0.02440.027 0.8 (0.450) -0.002 1.15 (0.85-1.
thousand

Initial reproduction -0.096+0.075 -1.2 0.003 0.82 (0.60-1.
number (0.229)

Policy stringency (6 mo. 0.015+0.004 3.0 (0.003) 0.049 1.62 (1.28-2.
avg.)

& Marginal adj. R? = adj. R? for full model - adj. R? for model excluding this
predictor

b Effect size = multiplicative change in 6 mo. avg. daily deaths per million per 1
std. dev. change in predictor

Countries (n) 95 Adj. R? 0.47 F (p-value) 15.0 (0.00
Source: Authors’ analysis of data from the OWID global COVID-19 database

and IHME database.
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Table S8 and S9 show regression results excluding countries with
different thresholds for excess deaths compared to reported deaths,
indicating different levels of reliability in reporting (excess
mortality exceeding official deaths by no more than 50% or 25%
respectively). Table S10 instead shows regression results including
all countries with available data, i.e. including those with excess
mortality over 100% more than official deaths.

Table S8. Predictors of cross-country variation in mortality rates per
capita, excluding countries with more than 50% excess death. Dependent

variable: per capita mortality (reported deaths per million), averaged over

the 180 days from 01 Apr 2021 onward.

Coefficient (% Student’s t Marginal Effect Size

std. err.) (p-value) adj. RZ 2 (955 CI) b
Collective -0.549+£0.220 -4.0 (0.000) 0.294 0.33 (0.14-0.
Responsiveness (loglO0)
Age Multiplier of -0.416+£0.361 -0.7 (0.463) -0.009 0.83 (0.60-1.
Mortality (loglO)
GDP per capita (loglO) -0.216+£0.236 -0.9 (0.3606) -0.003 0.86 (0.63-1.
Hospital beds per -0.010+0.028 -0.2 (0.845) -0.019 0.94 (0.67-1
thousand
Initial reproduction -0.146+0.155 -1.0 (0.312) 0.001 0.73 (0.37-1.
number
Policy stringency (6 mo. 0.014+£0.009 1.0 (0.301) 0.002 1.39 (0.93-2.
avg.)

a Marginal adj. R? = adj. R? for full model - adj. R? for model excluding this
predictor

79)

14)

18)

.31)

41)

08)

b Effect size = multiplicative change in 6 mo. avg. daily deaths per million per 1

std. dev. change in predictor

Countries (n) 41 Adj. R? 0.294 F (p-value) 3.9 (0.005)

Source: Authors’ analysis of data from the OWID global COVID-19 database.
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Table S9. Predictors of cross-country variation in mortality rates per
capita, excluding countries with more than 25% excess death. Dependent
variable: per capita mortality (reported deaths per million), averaged over
the 180 days from 01 Apr 2021 onward.

Coefficient (% Student’s t Marginal Effect Size

_ : 2
std. err.) (p-value) adj. R= @ (95% CI) ®

Collective -0.546+0.232 -3.8 (0.001) 0.299 0.33 (0.13-0.83)

Responsiveness (loglO0)

Age Multiplier of -0.29240.305 -0.4 (0.665) -0.018 0.88 (0.67-1.15)

Mortality (loglO)

GDP per capita (loglO) -0.22140.222 -0.9 (0.388) -0.005 0.86 (0.64-1.16)

Hospital beds per -0.010+£0.029 -0.2 (0.8506) -0.022 0.94 (0.66-1.34)

thousand

Initial reproduction -0.14940.172 -1.0 (0.330) -0.001 0.72 (0.35-1.51)

number

Policy stringency (6 mo. 0.018+0.011 1.2 (0.258) 0.007 1.49 (0.93-2.37)

avg.)

a Marginal adj. R? = adj. R? for full model - adj. R? for model excluding this
predictor

b Effect size = multiplicative change in 6 mo. avg. daily deaths per million per 1
std. dev. change in predictor

Countries (n) 37 Adj. R? 0.277 F (p-value) 3.4 (0.011)

Source: Authors’ analysis of data from the OWID global COVID-19 database.

Table S10. Predictors of cross-country variation in mortality rates per
capita, including all. Dependent variable: per capita mortality (reported
deaths per million), averaged over the 180 days from 01 Apr 2021 onward.

Coefficient Student’s t Marginal Effect Size

+ — 3 2 a

(+ std. err.) (p-value) adj. R (95% CI) b
Collective -0.460+£0.122 -6.1 (0.000) 0.237 0.39 (0.24-0.64)
Responsiveness (loglO0)
Age Multiplier of 0.171+0.206 1.0 (0.299) 0.001 1.12 (0.86-1.45)
Mortality (loglO)
GDP per capita (loglO) -0.015+0.119 -0.1 (0.895) -0.006 0.98 (0.75-1.29)
Hospital beds per 0.001+0.024 0.0 (0.983) -0.007 1.00 (0.76-1.32)
thousand
Initial reproduction -0.057+£0.089 -0.7 (0.463) -0.003 0.89 (0.62-1.28)
number
Policy stringency (6 mo. 0.016+0.005 3.2 (0.002) 0.061 1.57 (1.16-2.11)
avg.)

a2 Marginal adj. R?> = adj. R? for full model - adj. R? for model excluding this
predictor

b Effect size = multiplicative change in 6 mo. avg. daily deaths per million per 1
std. dev. change in predictor

Countries (n) 100 Adj. R? 0.38 F (p-value) 11.2 (0.000)

Source: Authors’ analysis of data from the OWID global COVID-19 database.

Tables S11 shows regression results excluding countries with 10% or
more of the population having been fully vaccinated by the end of
the estimation period (31 Mar 2021). Table S12 repeats the analysis
excluding countries that are fully or partially vaccinated by 10% at
the same time period.
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Table S11. Predictors of cross-country variation in mortality rates per
capita, excluding countries with 10% or more of the population having been
fully vaccinated by the end of the estimation period (31 Mar 2021).
Dependent variable: per capita mortality (reported deaths per million),
averaged over the 180 days from 01 Apr 2021 onward.

Coefficient Student’s t Marginal Effect Size

+ - 5 2 a

(£ std. err.) (p-value) adj. R (95% CI) ®
Collective -0.53840.220 -4.0 (0.000) 0.274 0.35 (0.15-0.81)
Responsiveness (loglQ)
Age Multiplier of _ n B _ _
Mortality (1og10) 0.39240.355 0.8 (0.439) 0.007 0.82 (0.57-1.17)
GDP per capita (loglO) -0.242+0.225 -1.1 (0.268) 0.005 0.83 (0.59-1.17)
Hospital beds per 0.031+0.024 0.7 (0.511) 20.01 1.21 (0.91-1.62)
thousand
Initial reproduction -0.190+0.158 1.3 (0.190) 0.014 0.67 (0.35-1.29)
number
ig;lfy stringency (6 mo. 4 41540 009 1.2 (0.249) 0.007 1.41 (0.95-2.10)

a Marginal adj. R? = adj. R? for full model - adj. R? for model excluding this
predictor

b Effect size = multiplicative change in 6 mo. avg. daily deaths per million per 1
std. dev. change in predictor

Countries (n) 44 Adj. R? 0.284 F (p-value) 3.9 (0.004)

Source: Authors’ analysis of data from the OWID global COVID-19 database.

Table S12. Predictors of cross-country variation in mortality rates per
capita, excluding countries with 10% or more of the population having been
partially or fully vaccinated by the end of the estimation period (31 Mar
2021) . Dependent variable: per capita mortality (reported deaths per
million), averaged over the 180 days from 01 Apr 2021 onward.

Coefficient (&% Student’s t Marginal Effect Size

std. err.) (p-value) adj. R% 2 (95% CI) b
Collective

- + - -
Responsiveness (logl0) 0.582+0.212 3.8 (0.001) 0.355  0.26 (0.10-0.68)
Age Multiplier of _ " _ _
Mortality (Logl0) 0.803+0.387 1.2 (0.225) 0.014 0.65 (0.43-0.98)
GDP per capita (loglO) -0.283+0.185 -0.9 (0.383) -0.005 0.80 (0.61-1.06)
Hospital beds per 0.048+0.033 0.8 (0.411) -0.008 1.42 (0.88-2.28)
thousand
Initial reproduction ~0.32440.146 -1.9 (0.076) 0.064 0.48 (0.25-0.92)
number
ii;lfy stringency (6 mo.  45.0 g14 0.3 (0.762) -0.023 1.12 (0.62-2.05)

& Marginal adj. R? = adj. R? for full model - adj. R? for model excluding this
predictor

b Effect size = multiplicative change in 6 mo. avg. daily deaths per million per 1
std. dev. change in predictor

Countries (n) 28 Adj. R? 0.405 F (p-value) 4.2 (0.0006)

Source: Authors’ analysis of data from the OWID global COVID-19 database.
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