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Why Similar Policies Resulted in Different COVID-19 

Outcomes: How Responsiveness and Culture Influenced 

Mortality Rates 

Abstract:  

In the first two years of COVID-19, per-capita mortality varied over 

a hundredfold across countries, despite most implementing similar 

non-pharmaceutical interventions (NPIs). Factors like policy 

stringency, GDP, and age distribution only explain a small fraction 

of mortality variation. To address this puzzle, we build on a 

previously validated pandemic model in which perceived risk alters 

societal responses impacting transmission. Using data from over 100 

countries, we show that a key factor explaining heterogeneous death 

rates was not policy responses themselves but rather variation in 

responsiveness. Responsiveness measures how sensitive communities 

are to evolving mortality risks and how readily they adopt NPIs in 

response to curb transmission. We further find that responsiveness 

correlates with two cultural constructs across countries: openness 

to novelty and power distance. Our findings show that more 

responsive adoption of similar policies saves many lives, with 

important implications for the design and implementation of future 

outbreak responses. 

 

Keyword: COVID-19, Pandemic Policy, System Dynamics, Mortality, 

Policy Responsiveness  
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1. Introduction 

The COVID-19 pandemic has caused millions of deaths and major 

health, economic, and social disruptions around the world. But the 

mortality burden was not distributed evenly. In the first two years 

of the pandemic the same SARS-CoV-2 virus (and its variants) led to 

per capita death rates that varied by more than two orders of 

magnitude across countries.1 Importantly, differences in many usual 

explanatory factors such as demographics, per capita income, 

pandemic preparedness, or healthcare capacity do not explain these 

vastly divergent outcomes, hinting that the differences in 

fatalities may instead be due to divergent responses of governments 

and individuals.2-4 

The pandemic elicited major responses both from governments and 

from affected communities globally. Governmental policy responses 

included imposing a range of non-pharmaceutical interventions 

(NPIs), such as lockdowns, activity closures, mask mandates, and 

limits on social gatherings and mobility; as well as pharmaceutical 

measures, such as novel treatments and vaccination, which started 

being deployed at scale after the first year and a half.5, 6 

Responses from individuals and communities, from voluntary NPI 

adoption to adherence to various government mandates, further 

moderated the spread of the disease.  

While studies focused on the short-term impacts (days to weeks) 

of specific NPIs identify some benefits,7-9 examining the data over 

longer time horizons points to three unexpected regularities. First, 

while specific combinations of NPIs vary, the average stringency of 

governmental policies was rather similar across countries.10  Second, 

important outcomes (such as mortality) were substantially different 

in various regions,11, 12 a feature robust to controlling for 

undercount.4 Finally, over the horizon of months there is little 

correlation between stringency of policies and mortality outcomes.13-

15 Appendix S4a provides a simple demonstration of these regularities 

across 231 countries and regions.16 The latter observation extends 

not just to measures of policy but to individual and community 

responses, such as reductions in mobility, which are likewise not 

correlated with longer term mortality outcomes(e.g. see Appendix 

S4b16). This policy outcome variation presents a puzzle: How have 

different countries achieved such vastly different mortality 

outcomes despite relative similarity in the stringency of their 

policies and the magnitude of community responses? This variation is 

especially intriguing as it suggests that more stringent responses 

are not necessarily required to achieve significantly better 

outcomes.  

In this paper, we offer a novel explanation for the policy 

outcome variation puzzle, one with important policy implications. We 

start with the observation that past analyses have not accounted for 

the feedback loop between health outcomes and implemented policies 

(with some exceptions 17-19). In most policy analyses, policies are 

treated as independent variables affecting the dependent variable of 

health outcomes. Less appreciated is the other pathway in the 

feedback loop: that both government policies and public compliance 
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also change in response to the perceived risk of the disease, as 

inferred from, e.g., recent deaths. This feedback perspective 

refocuses the analysis on societal sensitivity to a continuously 

evolving risk situation. In contrast to thinking about the 

effectiveness of specific policy responses, one needs to consider 

‘collective governmental and societal responsiveness’ to risk (for 

brevity ‘collective responsiveness’ or ‘responsiveness’ from here 

on). Greater responsiveness indicates a community’s willingness to 

adopt and adhere to various NPIs even at lower levels of perceived 

risk. As such, collective responsiveness is a social and cultural 

construct likely related to risk perception, government priorities 

and agility, and societal preferences for health outcomes, economic 

performance, and personal freedoms among others.20 Explicitly 

accounting for the feedback loop between health outcomes and 

societal responses, we first estimate responsiveness for 136 

countries around the world and show that this single measure can 

predict a significant proportion of variation in future mortality 

rates. We then explore some of the cultural constructs that may 

explain the observed variations in responsiveness across nations. 

1.1. Risk-response feedback and the puzzle of policy outcome 

variation 

The policy outcome variation puzzle asks why responses to COVID-

19 had modest variation across nations and barely correlated with 

the large variations in the COVID-19 outcomes (notably mortality). 

In response we first observe that while more stringent policies can 

reduce deaths, the causality can also operate in the opposite 

direction: more stringent policies are potentially adopted in 

response to increases in perceived risk due to recent deaths. Such a 

bidirectional relationship constitutes a risk-response feedback loop 

where responses reduce deaths, and deaths increase responses. To 

explore the second part of the relationship further, we correlate, 

within each country, the weekly policy stringency as a function of 

recent deaths. A positive correlation emerges where deaths over the 

previous three weeks predict current-week stringency (average 

correlation across all countries/regions in our sample is 0.24, 

SD=0.36; also see Appendix, figure S216). The idea that risk 

perception and change in responses should be incorporated in 

epidemic modeling is well recognized.20 However, its full 

implications only emerge when the mechanism is modeled as an 

endogenous feedback process in which epidemic and societal behaviors 

co-evolve.10 With a few exceptions,19, 21, 22 this endogenous feedback 

mechanism is missing from current models. For example, a recent 

review of models in CDC’s COVID-19 forecast hub finds only 1 of 61 

models captures this feedback mechanism.21 

 Transmission reductions in this risk-response feedback result 

from a combination of official policies and individual behavioral 

changes, including adherence to those policies; for simplicity, we 

combine these factors into a single construct of overall response. 

The feedback from risk levels to this overall response implies that 

long-term COVID-19 risks (and thus death rates) in each country 

converge to a threshold that triggers just enough of a response to 

contain transmission. If perceived COVID-19 risks are below this 
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threshold, responses remain insufficient to contain transmission, 

allowing continued disease spread and thus, with some lag, 

increasing perceived risks. If perceived COVID-19 risks are above 

that threshold, they trigger responses that bring down transmission 

and ultimately reduce perceived risk. This feedback framing raises 

the question of what risk threshold prompts a sufficient response - 

in other words, how responsive are governments and societies to 

perceived risks? 

This study's central hypothesis is that such collective 

responsiveness to risk varies across countries, and this variability 

accounts for a large part of the differences observed in policy 

outcomes. The subsequent sections of this paper elaborate on this 

hypothesis, providing a formal estimation of responsiveness to 

COVID-19 risk across nations and its impact on mortality outcomes. 

Acknowledging that responsiveness is influenced by social and 

cultural factors, we further delve into the potential for predicting 

responsiveness by analyzing specific cultural traits across nations. 

Understanding the role of responsiveness, and the societal factors 

that shape responsiveness, is key to better adapting policies to 

mitigate disease transmission.  

2. Study Data and Methods 

We use a previously validated model of pandemic dynamics in which 

governmental policies and behavioral change are a function of the 

state of the pandemic, operationalized as a response to recent death 

rates.21 We first use the model to estimate collective responsiveness 

across 136 countries and regions by quantifying how recent perceived 

risk levels drive the societal responses that change transmission 

rates. We then examine whether the estimated responsiveness measures 

predict future (out of sample) death rates, and thus policy 

outcomes, over long-time horizons. We conclude our analysis by 

exploring the cultural features that predict responsiveness, and 

thus death rates, across countries. 

2.1. Study data 

Our estimates of country-level parameters include all 136 

countries for which sufficient data are available, covering 7.5 

billion people. For simplicity, we limit the estimation period to 1 

May 2020 to 31 Mar 2021. We exclude the first 4 months of 2020 to 

avoid conflating the rise of the first wave of the pandemic with the 

longer-term dynamics (e.g. over multiple waves in the first two 

years of the pandemic; see Appendix S4f and S4h for robustness16). To 

reduce model complexity, we choose an end date that largely excludes 

vaccination effects (only 5 countries exceeded 10% vaccination by 

that date1) and Delta and Omicron variants. For death and case data 

we use 7-day rolling averages.1 Unless noted, data for the study 

come from the OurWorldInData (OWID) global COVID-19 database,1 which 

draws on different sources, e.g., the Johns Hopkins University CSSE 

COVID dashboard for cases and deaths.23 Recognizing significant death 

under-reporting in many countries, in sections S4g and S4h we report 

robustness to using estimates of true infection and death rates from 

IHME.4 Other data we use include GDP per capita, population, age 
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distribution (to calculate country-level Age Multipliers of 

Mortality), hospital beds per capita, Oxford University government 

response stringency10 and independent estimates of (maximum) 

effective reproduction number Re (number of secondary cases from an 

index infection)24. In addition, we use Hofstede’s cultural 

dimensions to examine associations between collective responsiveness 

and cultural constructs 25, available from Hofstede’s database.26  

2.2. Estimating responsiveness  

We build on a previously validated epidemic model, the SEIRb 

model, which incorporates the feedback loop between mortality and 

societal responses.21 This model is intentionally simple to aid 

transparency and generalizability of insights. Nevertheless, it has 

outperformed many more complex alternatives in forecasting mortality 

on an extensive dataset of predictions.21 The model is structurally 

similar to the classical SEIR (Susceptible, Exposed, Infectious, 

Removed) compartmental model and incorporates a behavioral risk-

response mechanism (thus the b in SEIRb), where transmission 

intensity declines (increases) as recent death rates increase 

(decline). ‘Responsiveness’ represents the strength of this 

behavioral response mechanism. Formally, rather than being a 

constant, transmission intensity, 𝛽, is a decreasing function of 
perceived risk of death (𝑓′). 𝑓′ is operationalized as lagged (per 
capita) mortality rates. The lag reflects the time it takes for 

governments and people to perceive and respond to changing risks and 

thus could vary across communities. As perceived risk of death 

increases, all else equal, the overall transmission intensity 𝛽 
declines with a ‘response’ multiplier, 𝑘, which captures the impact 
of various governmental and societal risk-driven responses on 

transmission. We formulate this multiplier to be proportional to 

1/(1 + 𝛼𝑓′). Parameter 𝛼 represents collective responsiveness of the 
government and society to changing perceived risks. With higher 

values of responsiveness 𝛼, transmission intensity 𝛽 will be more 
sensitive to changes in perceived risk. In short, the model 

separates collective responsiveness (𝛼; a country-specific trait) 
from changing responses (𝑘), allowing us to estimate responsiveness.  

Using the SEIRb model, for each country, we estimate the value 

for 𝛼(as well as lags in risk perception and response adjustment) 
that offers the best fit between simulated and observed cases and 

deaths.  

2.3. Estimating Contributors to Long-term Deaths Rates 

Having estimated country-level collective responsiveness (𝛼), we 
assess its predictive value in explaining future COVID-19 death 

rates across nations. We use linear regressions to explain (log10) 

deaths as a function of (log10) responsiveness. We predict deaths 

for the period 01 Apr 2021 to 30 Sep 2021, which is excluded from 

the estimation data. We exclude countries where responsiveness is 

not reliably identified (is not distinguishable from zero). 

Moreover, to account for death undercounts we limit the analysis to 

countries where cumulative excess mortality by 30 Sep 2021 (based on 
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The Economist’s estimates27) does not exceed the official COVID-19 

deaths by more than 100%. In the Appendix (sections S4f-S4h)16 we 

assess robustness to other inclusion thresholds (25% and 50%), 

exclusion of countries with significant early vaccination, and use 

of estimates for actual (instead of reported) cases and deaths from 

IHME. 

To put into perspective the predictive value of responsiveness 

for understanding mortality, we control for a few other explanatory 

mechanisms including the impact of age distribution on COVID-19 

mortality, GDP per capita, maximum reproduction number, healthcare 

capacity, and average government policy stringency. 

2.4. Explaining responsiveness through cultural constructs 

Finally, we explore potential correlates of collective 

responsiveness (𝛼) across countries. Conceptually, responsiveness 
relates to distinct social, governance, and cultural factors. For 

example, sensitivity to risk may be related to the community’s 

tolerance for uncertainty and its emphasis on short- vs. long-term 

outcomes. Hofstede's cultural dimensions offer a common set of 

measures that inform the hypothesized correlates of responsiveness.25 

These cultural dimensions include individualism, uncertainty 

avoidance, power distance, masculinity, long-term orientation, and 

indulgence. They have been estimated for many countries through 

representative national surveys, and are available for 46 countries 

in our sample. Similar to above, we exclude countries with too much 

excess mortality compared to reported COVID-19 deaths. The remaining 

sample includes 33 countries with all Hofstede’s measures (an 

additional 3 include individualism, uncertainty avoidance, and power 

distance). We use these cultural factors to predict (log10) 

responsiveness, and also as separate predictors of (log10) death 

rates using linear regressions.  

2.5. Technical documentation 

We follow replicability best practices for model-based analyses,28 

and report full documentation of our data, model, estimation 

methods, and supplementary analyses in the Appendix and online 

repository.16  

2.6. Study Limitations 

The current study focuses on three main points: establishing the 

COVID-19 policy outcome variation puzzle, providing a plausible 

resolution based on risk-response feedback and variation in 

collective responsiveness, and exploring cultural determinants of 

responsiveness. As such, we make many simplifications that should be 

noted in interpreting the results. First, by estimating a single 

‘collective’ responsiveness measure we combine NPIs, government 

mandates, and individual behaviors (from adherence to NPIs to 

hygiene and social distancing) together. Thus we cannot separate 

effects of distinct behaviors or offer recommendations for specific 

NPIs; more complex models would be needed for those purposes. 

Second, to keep the analysis simple we exclude many relevant factors 
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such as variants, vaccination, adherence fatigue, and loss of 

immunity. These simplifications increase model transparency and 

build intuition, but limit its predictive power and realism. Third, 

we focus on the role of collective responsiveness in predicting 

mortality, rather than offering a comprehensive explanation of 

country-level mortality variation, thus missing potential 

determinants such as comorbidities. Fourth, our preliminary 

exploration of determinants of responsiveness misses plausible 

factors such as recent experience of other epidemics or ideological 

leaning of governments during the pandemic. Fifth, we assume 

responsiveness is constant, but it likely changes over time due to 

factors such as adherence fatigue. Finally, the data we use in the 

primary analysis is based on reported cases/deaths. Those may 

significantly undercount true incidences and thus we assess the use 

of alternative data for cases/deaths, as well as including only 

regions with limited undercount, in our robustness checks. With 

these simplifications, our analysis provides an illustration of, and 

a lower bound for, the value of incorporating risk-response feedback 

in understanding pandemic outcomes and designing more effective 

policies.29  

 

3. Study Results 

3.1. Estimating Collective Responsiveness 

Estimated responsiveness values vary widely across nations and 

indicate robust effects of risk perception on changing transmission 

intensity through adoption of NPIs and behavioral changes. For 

example, at median responsiveness, the number of daily deaths per 

million that triggers sufficient responses to reduce transmission 

intensity (𝛽) by 50% is 0.09, with substantial between-country 
variation (90% range: 0.003-2.67). Appendix table S4 provides 

estimated responsiveness levels for the sample informing baseline 

regressions. Moreover, estimated responses (k values) correlate 

positively with the Oxford University measures of policy stringency 

(mean/median correlation is 0.35/0.37 across nations).16 This 

provides evidence that our estimates of changes in responses over 

time relate to measures of policy not used in our estimation. Note 

that we do not expect the correlation to be very strong because k 

values include population adherence and behavioral change beyond 

formal policy stringency.   

3.2. Collective responsiveness as a predictor of deaths 

Exhibit 1 shows that (log10) responsiveness estimated from 01 May 

2020 to 31 Mar 2021 is strongly and negatively correlated with 

(log10) death rates (R=-0.625) averaged over the subsequent 6 months 

(01 Apr 2021 to 30 Sep 2021). 
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EXHIBIT 1.   

Reported daily deaths per million people (averaged over prediction period, 

01 Apr-30 Sep 2021) against estimated collective responsiveness α 

(estimated from 01 May 2020-31 Mar 2021), with selected larger countries 

labeled. 

 

Source: Authors’ analysis of data on daily confirmed cases and deaths 

come from the OWID global COVID-19 database. Note: Graph includes 119 

countries as we exclude countries where responsiveness was too small to be 

reliability estimated. The correlation in the graph is -0.625. 

  

Regressing the 6-month averaged death rates against 

responsiveness and several other predictors (Exhibit 2) provides a 

comparison of these factors in explaining death rates. 

Responsiveness (log10 α) is the most important driver of variation 

in death rates (t=-4.1, p=1.9E-4), enhancing the model’s fit (adj. 

R2) by 0.28 (from 0.00 to 0.28); increasing responsiveness by one 

standard deviation reduces death rates by a factor of about three 

(0.35 (0.15-0.82)). In comparison, we find no evidence that initial 

local transmission intensity, hospital capacity, GDP, or policy 
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stringency are significant predictors of deaths. Even Age Multiplier 

of Mortality (a variable calculating expected fatality rates in each 

country due to age distribution), which is a statistically 

significant correlate of deaths during the estimation period 30, 

loses its predictive power for cumulative deaths later in the 

prediction period (April-September 2021).  

 

EXHIBIT 2.  

Predictors of cross-country variation in mortality rates per capita.  

  Coefficient(± 

std. err.) 

p-value Marginal 

adj. R2 a 

Effect 

Sizeb 

95% CI of 

effect size 

Collective 

responsiveness 

(log10) 

-0.546±0.227 0.000 0.28 0.35 (0.15-0.82) 

Age Multiplier of 

Mortality (log10) 

-0.357±0.361 0.474 -0.008 0.84 (0.59-1.19) 

GDP per capita 

(log10) 

-0.240±0.226 0.266 0.005 0.83 (0.59-1.17) 

Hospital beds per 

thousand 

0.018±0.024 0.685 -0.015 1.12 (0.83-1.50) 

Initial 

reproduction number 

-0.142±0.152 0.299 0.002 0.74 (0.39-1.40) 

Policy stringency 

(6 mo. avg.) 

0.016±0.009 0.21 0.011 1.44 (0.98-2.11) 

Source: Authors’ analysis of data from the OWID global COVID-19 database. 

Note: Dependent variable: per capita mortality (reported daily deaths per 

million), averaged over the 180 days from 01 Apr 2021 onward.  a: Marginal 

adj. R2 = adj. R2 for full model - adj. R2 for model excluding this 

predictor; b: Effect size = multiplicative change in 6 mo. avg. daily 

deaths per million per 1 std. dev. change in predictor; n (number of 

countries) = 46; Adj. R2=0.277; F (p-value) = 3.9 (0.003). 

  

We assessed the robustness of these results to various 

assumptions such as including the early pandemic period, excluding 

countries with early vaccination, excluding countries with less 

reliable death data, and using IHME estimates of cases and deaths. 

Those analyses are detailed in Appendix s4f-s4h and show none of 

those assumptions change any of the results qualitatively: in all 

responsiveness remains statistically significant and is the primary 

driver of variation in death rates.16 Overall, the results support 

the hypothesis that responsiveness to risk is a better predictor of 

mortality variation across countries than many commonly considered 

factors, from policy stringency, to demographics, healthcare 

capacity, and transmission potential. 
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3.3. Cultural measures associated with responsiveness and death 

rates 

Exhibit 3 reports the regression results of collective 

responsiveness and death outcomes against Hofstede’s cultural 

dimensions. Regression columns M1-M3 with the dependent variable of 

responsiveness show that ‘uncertainty avoidance’ and ‘power 

distance’ are important predictors of responsiveness. In Model M1 

these two cultural constructs explain about 28 percent of variation 

in responsiveness, and the results are robust after adding other 

cultural dimensions to the regression in Models M2 and M3. 

 

EXHIBIT 3.  

Cultural constructs as explanatory factors for responsiveness and death 

outcomes for the prediction period  

  
Collective responsiveness 

(log) 
Cumulative death (log) 

  M1 M2 M3 M4 M5 M6 

Intercept 1.887* -0.363 1.478 0.654 -5.148* -4.427* 

Uncertainty avoidance -0.035*** -0.030** -0.030**  0.047**** 0.032** 

Power distance 0.035** 0.051*** 0.048**  0.015 0.038* 

Individualism  0.022 0.019  0.016 0.025 

Masculinity   -0.001  -0.002 -0.003 

Long-term orientation   -0.001  -0.026* -0.027* 

Indulgence   -0.025  0.031 0.019 

Collective 
responsiveness (log) 

   -0.554***  -0.488*** 

n 36 36 33 33 33 33 

R2 0.28 0.33 0.34 0.27 0.48 0.62 

Adjusted R2 0.24 0.26 0.18 0.24 0.36 0.51 

F-statistics 6.42*** 5.17*** 2.20* 11.16*** 3.98*** 5.71**** 

Source: Authors’ analysis of data from the OWID global COVID-19 

database and Hofstede’s cultural measures from Geert Hofstede’s 

database. Note: * p < .1 ** p < .05 *** p < .01 **** p < .001; Blank 

cells are for variables not included in the regression model of the 

column; M: Regression model; Dependent variables: collective 

responsiveness (estimated from 01 May 2020-31 Mar 2021) and per 

capita mortality (reported daily deaths per million), averaged over 

the 180 days from 01 Apr 2021 onward.  

Models M4-M6, with the dependent variable of (log10 of average 

daily) deaths during the prediction period show that these cultural 
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dimensions can partially explain differences in mortality outcomes. 

Model M4 shows the predictive value of responsiveness alone for the 

subset of countries for which cultural measures are available. In M5 

we show that the association between risk avoidance (and, to a 

lesser extent, long-term orientation) with deaths is statistically 

significant, and the cultural constructs alone explain about 48 

percent of variation in deaths across different countries. Model M6 

adds responsiveness to the predictors and shows improved predictive 

power against Model M5. As in model M5 long-term orientation is 

negatively associated with deaths. Interestingly, controlling for 

responsiveness, power distance also becomes marginally predictive of 

deaths. In summary, we note that 1) two cultural constructs, 

uncertainty avoidance and power distance, partially predict the 

variation in responsiveness, 2) they are also associated with the 

variation in mortality outcomes; and 3) cultural constructs partly 

explain the association between responsiveness and deaths, yet the 

impact of responsiveness is not limited to the pathways overlapping 

with cultural precepts.  

  

4. Discussion 

Examining COVID-19 mortality globally points to a puzzling 

variation in policy outcomes. Specifically, during the acute phase 

of the pandemic, the stringency of government and societal responses 

was similar across most countries, yet mortality outcomes varied by 

more than a hundred-fold. While some studies have shown immediate 

effects of NPIs which seem intuitive,7-9 others have found 

variability in effects,11, 12 or concluded that such policies are 

ineffective.15 To resolve this conundrum, we noted that not only 

policies and responses impact the state of an epidemic, but also the 

state of the epidemic regulates those responses, via risk 

perception. Thus the primary factor driving variation in mortality 

rates is not specific policies implemented, but rather different 

societies’ responsiveness to perceived risk. By explicitly modeling 

the feedback loop between societal responses and the pandemic's 

progression, we estimated a measure of responsiveness and correlated 

it with future deaths. We then explored cultural antecedents of 

responsiveness. 

Three findings emerge. First, the degree of responsiveness to 

evolving pandemic risks varies markedly among nations. Second, 

estimated responsiveness is highly predictive of future COVID-19 

mortality rates. In fact, responsiveness is a stronger predictor of 

mortality outcomes than several intuitive predictors, including 

demographics, healthcare capacity, NPI policy stringency, the 

maximum reproduction number, and GDP per capita. Responsiveness 

encapsulates societal and policymaking sensitivity to the pandemic's 

risks: the number of daily deaths required to compel the adoption of 

sufficient responses to curb transmission, as well as the speed and 

effectiveness of policy implementation. 

To understand the importance of responsiveness, consider a 

typical outbreak wave in a community. Initially the epidemic grows, 
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with increases in cases, deaths, and hence perceived risk. As the 

toll escalates, policymakers and the community are compelled to 

respond, adopting NPIs and other measures to reduce transmission and 

ultimately slowing the spread of the disease. This shift results in 

declining transmission rates, with mortality rates soon following 

suit. Over time, as the memory of the wave fades and perceived risk 

lessens, responses are relaxed, allowing renewed transmission. 

Eventually, the laxness of policy in the presence of infection, 

seeds the start of a new wave. In essence, the mix of responses 

converge to those required to keep the epidemic from growing 

exponentially or subsiding fully, keeping perceived risks at levels 

just tolerable for the community. Analytically, these response 

levels are those needed to keep the effective reproduction numbers 

near one. The specific death rates that trigger this strength of 

response, however, heavily depend on the community's responsiveness. 

Communities with higher responsiveness require lower death rates to 

trigger sufficient policies and adherence to those. This mechanism 

is fundamental in explaining how variation in responsiveness 

predicts observed death rates across communities. The oscillations 

in response due to this feedback loop also provide a mechanism for 

endogenous emergence of pandemic waves that complements other 

triggers such as new variants, loss of immunity, and seasonality.  

Third, cultural attitudes partially account for variations in 

responsiveness. Hofstede's measures of uncertainty avoidance and 

power distance are associated with responsiveness. The association 

of power distance with responsiveness indicates that communities 

more willing to follow the mandates of a centralized government may 

be more responsive to a fast-changing public health threat. The 

inverse relationship between uncertainty avoidance and 

responsiveness may seem unexpected. However, this relationship may 

underscore the value of societal tolerance towards change and 

novelty in facilitating rapid policy responses and the adoption of 

potentially disruptive NPIs. We also note that combining 

responsiveness and Hofstede’s cultural constructs provides a more 

accurate prediction for mortality than either alone. 

Our findings have significant policy implications. First, they 

challenge the perceived trade-off between saving lives and 

minimizing disruptions during the critical phase of a pandemic. When 

infection fatality rates are sufficiently high, the implementation 

of NPIs becomes inevitable as the threat of an exponential outbreak 

compels communities to control transmission. Regardless of timing, 

every community will need to adopt a mix of NPIs sufficient to 

curtail the exponential growth in deaths. Thus, the limited 

correlation between policy responses and deaths does not imply that 

NPIs against COVID-19 are ineffective, contrary to arguments raised 

by some.15 Rather, the correlation with mortality vanishes because 

all communities ultimately needed to adopt stringent enough 

responses to curb exponential transmission. Communities that enacted 

the requisite policies earlier (i.e., not waiting for high levels of 

mortality) achieved life-saving results without imposing additional 

societal costs. 
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Second, policy-makers would be better off to focus their 

attention on responsiveness. Whereas all communities adopted 

comparable response levels, their responsiveness varied by two 

orders of magnitude. From protocols for rapid response, to having 

tighter response thresholds, and openly communicating with the 

public about the importance of responsiveness, policy makers can 

take actions that enhance responsiveness and thus could contribute 

significantly to reducing the burden of an epidemic. In fact, it is 

critical for policy makers to articulate the insight that heightened 

responsiveness and swifter action would preserve lives without 

requiring the implementation of more stringent policies. That could 

help secure public backing for more agile, responsive policies in 

managing future pandemics with major life-saving benefits. If all 

countries had the responsiveness of the top ten percentile, the 

COVID-19 death toll in the first two years could have been reduced 

by nearly an order of magnitude.  

 

5. Conclusion 

This global-scale study points to the importance of policy 

responsiveness rather than policy response in reducing mortality 

during a deadly pandemic. Responsiveness varies widely across 

nations. While cultural factors significantly influence 

responsiveness, they account for only about one-third of the 

variation in estimated responsiveness, indicating that policymakers 

and communities have scope to enhance responsiveness. Understanding 

the social mechanisms and organizational structures that enabled 

governments in certain countries to adopt more responsive policy 

stances, implement coherent sets of NPIs at lower risk levels, and 

encourage public adherence to these policies is crucial in preparing 

for future pandemics. 
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S1) Model specification 

Our model (SEIRb) is an extension of the classic compartmental SEIR 

model 1, which incorporates behavioural responses that endogenously 

change contact rates as a continuous function of perceived risk. SEIRb 

is previously reported and validated in peer-reviewed venues and shows 

strong predictive power for future deaths despite its simplicity 2. 

Figure S1 provides an overview of the model structure. 

 

Figure S1: SEIR with a behavioural/policy reaction feedback 

In this model, populations are divided into four groups: susceptible 

(S), pre-infectious (E), infectious (I), and removed from circulation 

due to recovery or death (R): 

𝑑𝑆

𝑑𝑡
= −

𝛽𝑆𝐼

𝑁
                                                                                                           (1) 

𝑑𝐸

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
−

𝐸

𝜏1
                                                                                                      (2) 

𝑑𝐼

𝑑𝑡
=

𝐸

𝜏1
−

𝐼

𝜏2
                                                                                                          (3) 
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𝑑𝑅

𝑑𝑡
=

𝐼

𝜏2
                                                                                                                   (4) 

𝑓 = 𝜇
𝐼

𝜏2
                                                                                                                   (5) 

The three main parameters are the daily infectious contacts per case 

(𝛽), the average latent period (𝜏1), and the average infectious 

duration (𝜏2). Total population 𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝑅. The basic reproduction 
number (R0), i.e. the expected secondary cases from an index case in a 

fully susceptible population, is thus: 

𝑅0 = 𝛽𝜏2           (6) 

With a constant 𝛽 and R0 >> 1 3, 4, the basic SEIR model predicts a 
rapid COVID-19 outbreak that infects most of a population in a few 

months, reaching herd immunity when a large fraction of the population 

has been infected 5. However, behavioural and policy responses to risk 

change infectious contact rates (𝛽) and may curtail the epidemic well 
before herd immunity. We thus allow 𝛽 to go below 𝛽0 in response to 

perceived risk of death (𝑓′):  

𝛽 = 𝑘𝑊𝛽0          (7) 

where k represents response to change in perceived risks of 𝑓′, and 
reflects the strength of responses affecting contact rates. k(f’)=1 

indicates pre-pandemic behaviour, whereas full societal lockdown may 

push k to smaller values, bringing 𝛽 to ~0. 𝑊 is the seasonal effect 

of weather on COVID-19 transmission, estimated elsewhere 6, 7. 𝑘 should 
be decreasing in f’, with 𝑘(𝑓′ = 0) = 1, but its exact functional form is 
not critical, so for simplicity we choose a following form: 

𝑘(𝑓′) =
1

1+ 𝛼𝑓′
          (8) 

This leads to  

𝛽 = (
1

1+ 𝛼𝑓′
)𝑊𝛽0         (7’) 

α represents the collective government and society responsiveness to 

risk in a community. α=0 recovers the basic SIR model, and higher α 

values indicate a community more sensitive to the perceived risk of 

death from the disease. 𝑓′ is modelled as an exponential average of 
reported per-capita daily death rate (𝑓; Equation 9) resulting from an 
infection fatality rate of 𝜇, with a time constant of 𝜏 reflecting the 
time it takes to perceive and respond to changing risks: 

𝑑𝑓′/𝑑𝑡 = (𝑓 − 𝑓′)/𝜏         (9) 
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Recognizing that responding to growing risks and relaxing responses 

based on declining risks may occur on different timescales, we allow 

for an asymmetric adjustment time 𝜏 for increasing vs. decreasing 
perceived risk: 

𝜏 = 𝜏𝑢 𝑖𝑓 𝑓′(𝑡) < 𝑓(𝑡)    &    𝜏𝑑  𝑖𝑓 𝑓′(𝑡) ≥ 𝑓(𝑡)       (10) 

In addition, for each country, we estimate the epidemic seeding time 

(𝑡𝑍). 

This model includes 8 parameters (𝜏1, 𝜏2, 𝛽0, 𝛼, 𝜇, 𝜏𝑢, 𝜏𝑑 , 𝑡𝑍) as well as one 

time-varying input 𝑊. Based on prior literature, we specify 𝜏1 = 4 and 
𝜏2 = 10 days 8, 9. We calculate base IFR (𝜇) for each country based on 

age distribution 9 (see S3.a)), and use prior estimates for 𝑊 6, 7. The 

remaining five parameters (𝛽0, 𝛼, 𝜏𝑢, 𝜏𝑑 , 𝑡𝑍) are estimated.  

S1.a) Accounting for under-ascertainment 

Under-ascertainment is a substantial challenge for models of COVID-19 

transmission. The estimation of our model is not sensitive to under 

reporting of cases. To illustrate, consider true infection rates (𝑟𝐸) 

for each country and how it compared to reported cases: 

𝑟𝐸𝑀 = 𝛾𝐼𝑟𝐸 =  𝛾𝐼
𝛽𝐼𝑆

𝑁
          (11) 

The subscript M denotes reported (rather than true) values, and 𝛾𝐼 is 

the ratio of reported to true infections. To keep the model simple, we 

bypass the need to estimate ascertainment by approximating reported 

infection rates 𝑟𝐸𝑀 based on recent reported infections 𝐼𝑀, assuming 

that current infections are under-reported to the same degree as 

infections over the last few weeks: 

𝑟𝐸𝑀 = 𝛾𝐼
𝛽𝐼𝑆

𝑁
≈

𝛽𝐼𝑀𝑆

𝑁
         (12) 

𝐼𝑀 = ∫ (𝑟𝐸𝑀 −
𝐼𝑀

𝜏𝑅
)𝑑𝑡         (13) 

This approximation holds as long as 𝛾𝐼 is relatively stable on the 

timescale of the disease duration (~two weeks), even if it changes 

over longer time horizons.  

In short, even though reported cases are significant undercounts (by 

an order of magnitude or more), the fractional change in reported 

cases is an unbiased estimator of fractional change in actual cases, 

as long as ascertainment rate is not changing over a period of a 

couple of weeks. As such, we can use that fractional change in cases 

to estimate transmission intensity directly. 
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S2) Estimation method 

Our model yields an expected number of new reported infections (𝑟𝐸𝑀) 

and per-capita death rate (𝑑𝑁) for each day for each country. Those 

expected numbers are specified in Equations 12 and 8 in S1), as a 

function of several known and unknown parameters and the state of the 

model prior to the current date. We simulate the system of 

differential equations captured in the model to calculate those 

outcomes over time. We estimate the vector 𝜃 of unknown parameters for 

each country by maximum likelihood, identifying the vector 𝜃 that 
maximises the likelihood of observing the true reported infections and 

deaths 𝑦𝜈𝑡 (where 𝑡 is time (day) and 𝑣 ∈ [𝑖, 𝑑] denotes the series of 

infections or deaths) given 𝜃. 

We use a negative binomial [log-]likelihood function for both cases 

and deaths: 

𝐿𝐿(𝜃, 𝜆𝜈) = ∑

𝑣

∑

𝑡

−
 𝑙𝑛 (1 + 𝜆𝜈𝑥𝜈𝑡)  

𝜆𝑣
+ 𝛤 (𝑥𝜈𝑡 +

1

𝜆𝑣
) − 𝛤 (

1

𝜆𝑣
)

− (𝑥𝜈𝑡 +
1

𝜆𝑣
)  𝑙𝑛 (1 + 𝜆𝑣𝑦𝜈𝑡(𝜃))  + 𝑥𝜈𝑡(𝑙𝑛 (𝑦𝜈𝑡(𝜃)) +𝑙𝑛 (𝜆𝑣) ) 

Where 𝑥𝜈𝑡 is predicted infections or deaths (analogous to 𝑦𝜈𝑡), 𝜆𝜈 are 

the scaling factors for the likelihood function, and 𝛤(𝑧) represents 
the natural logarithm of the generalized factorial function for 𝑧 − 1 
(i.e. 𝛤(𝑧 + 1) = 𝑙𝑛 (𝑧!) for integer 𝑧). 

The 5 unknown parameters are listed in Table S1. We also estimate the 

negative binomial scaling factors (𝜆𝑖, 𝜆𝑑), leading to a total of 7 

estimated parameters for each country.  

Table S1. Estimated parameters with allowed ranges. 

Parameter Symbol Range Units 

Initial infectious contact 

rate 
𝛽

0
 0.1-4.0 1/day 

Responsiveness 𝛼 0.001-1000 Dimensionless 

Time to increase perceived 

risk 

𝜏𝑢 1-100 Days 

Time to reduce perceived risk 𝜏𝑑 10-400 Days 

Patient Zero arrival time* 𝑡𝑍 1-140 Day 

Likelihood scaling factor 

(infections) 
𝜆𝑖 1E-06-1 Dimensionless 

Likelihood scaling factor 

(deaths) 
𝜆𝑑 1E-12-0.6** Dimensionless 
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* Patient Zero arrival time (i.e. epidemic seeding time) is expressed in days from 

the start of 2020 

** To avoid a potential computational problem in which the estimation algorithm 

ignores deaths relative to infections in the likelihood function, the scaling factor 

for deaths 𝝀𝒅 is defined relative to 𝝀𝒊 as 1E-06-0.6 x 𝝀𝒊 

We estimate the model separately for each country. Separating 

countries significantly speeds up estimation and makes it feasible to 

conduct the full analysis with limited computing resources. For each 

country, we estimate the parameters using the Powell direction search 

method implemented in Vensim™ DSS simulation software, restarting the 

optimization at 20 random points in the feasible parameter space. 

Overall, estimation for all 130 countries takes approximately 12 hours 

when compiled and parallelized on a 48-core Windows 10 server. 

Model and calibration files are available at 

https://github.com/tseyanglim/CovidRiskResponse. 

S3) Data sources & preparation 

Data used in Figure S2: Government response index is directly adopted 

from Oxford government response tracker database, and is aggregated on 

a weekly level. It is a previously published aggregated index that 

covers 16 policies in the domains of containment and closure, 

economic, and health system12(https://github.com/OxCGRT/covid-policy-

dataset/blob/main/documentation_and_codebook.md#calculation-of-policy-

indices). Death rates for each country and region are collected from 

Oxford government response tracker database, sourced from Johns 

Hopkins University CSSE Covid-19 data repository 

(https://github.com/CSSEGISandData/COVID-19). 

Data on daily confirmed cases and deaths come from the OurWorldInData 

(OWID) global COVID-19 database 10, which draws on the Johns Hopkins 

University CSSE COVID dashboard 11. The CSSE dashboard in turn 

aggregates its data primarily from official sources such as the US 

Centres for Disease Control and Prevention (CDC), the European CDC, 

the World Health Organization, and national health ministries, 

updating at least daily. 

We use OWID’s 7-day rolling averages for new cases 

(‘new_cases_smoothed’) and deaths per million population 

(‘new_deaths_smoothed_per_million’). COVID-19 case and death reporting 

data show strong weekly cycles in many countries, as well as 

occasional anomalous spikes due to e.g. irregularities in test 

reporting or redefinitions by government statistical agencies; using 

the rolling average data smooths out these cycles, which we are not 

attempting to model here, to better reflect underlying trends. 

Our analysis includes all countries in the dataset with at least 10000 

cumulative cases reported, and at least 20 days of data, by 31 Mar 

https://github.com/tseyanglim/CovidRiskResponse
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2021. We exclude countries with fewer than 10000 cumulative cases to 

avoid skewing the results with outliers and ensure robust estimation. 

In total, 130 countries meet these criteria by 31 Mar 2021. As 

discussed in the main text, we restrict the estimation period to 31 

Dec 2019 to 31 Mar 2021 to avoid the confounding impacts of 

vaccination and new variants, which are beyond the scope of this 

model. In the main analysis, we exclude countries with more than 100% 

excess mortality. The data are obtained from the Economist 

(https://raw.githubusercontent.com/TheEconomist/covid-19-the-

economist-global-excess-deaths-model/main/output-

data/export_country_cumulative.csv). In the Supplementary analysis we 

test three other conditions of excluding countries with 50% and 25% 

excess death, as well as including all countries.  

For countries included, we utilise data starting from the date when 

they exceed 100 cumulative cases reported. Excluding early data 

entails a trade-off. Excluding it makes estimating the true basic 

reproduction number (R0) more difficult –after forceful outbreaks in 

the first-affected countries, most others adopted various responses 

that brought Re down below its pre-pandemic level (R0). Furthermore, 

excluding the early data may cut out the initial dynamics of 

transmission. As a result, our estimated values for the initial 

reproduction number are likely underestimates of the basic 

reproduction number. On the other hand, many of the early cases 

reported in most countries were due to travellers, so this earliest 

importation-dominated stage therefore may not accurately reflect the 

community transmission dynamics we are modelling. Moreover, early on 

rapid changes in testing coverage impact our ability to assume 

ascertainment rates are stable in the 𝜏 time horizon as needed in our 
derivations (see Equation 12). We selected the 100 case cut-off to 

balance these competing considerations. 

For prediction of deaths (but not model estimation), we use several 

other country statistics such as GDP, hospital beds per thousand 

people, median age, and so on, with data as compiled by OWID1 10. We 

also use government response stringency data 12 and independent 

estimates of Re 
13 compiled by OWID and available through their COVID-

19 data hub. The full list of additional variables used and 

corresponding OWID data codes is in Table S2 below. 

For mobility data we use Google's COVID-19 Community Mobility Reports2, 

accessed via OWID3 to provide consistent mapping for country names to 

other data we use. These data reflect changes in numbers of visitors 

relative to pre-pandemic levels, controlling for weekly (but not 

longer seasonal) cycles. We use the averaged value of percentage 

changes in visits to two categories of locations – workplaces, and 

                                                           
1 https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv 
2 https://www.google.com/covid19/mobility 
3 https://ourworldindata.org/covid-mobility-trends 

https://raw.githubusercontent.com/owid/covid-19-data/master/public/data/owid-covid-data.csv
https://www.google.com/covid19/mobility/
https://ourworldindata.org/covid-mobility-trends
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retail & recreation venues – which best reflect normal everyday 

economic activity. 

Data are downloaded and processed with Python 3 code, using Pandas and 

NumPy packages. For the full data processing code, see 

https://github.com/tseyanglim/CovidRiskResponse. 

Table S2. Additional variables drawn from OWID dataset and variable codes. 

Variable Data code 

Effective reproduction number Re reproduction_rate 

Govt. response stringency index stringency_index 

Hospital beds per thousand population hospital_beds_per_thousand 

Median age median_age 

Per-capita gross domestic product (PPP) gdp_per_capita 

In addition, we use Hofstede’s cultural dimensions 14, 15 to examine 

associations between collective responsiveness and cultural 

constructs. Hofstede’s measures are obtained from Geert Hofstede’s 

website and via this link: https://geerthofstede.com/research-and-

vsm/dimension-data-matrix/. The dataset includes all six measures of 

power distance, uncertainty avoidance, individualism (vs. 

collectivism), masculinity (vs. femininity), long-term orientation, 

and indulgence for 111 countries or regions. While the dataset 

includes regional categories (e.g., Africa East, Africa West, Arab 

countries), we only use data on countries that are explicitly listed.   

S3.a) Age multiplier of mortality calculation 

Age strongly influences mortality rates, with older patients far more 

likely to die of COVID-19 16. To account for the impact of demographic 

differences on fatality rates and improve model estimation, we 

therefore calculate country-specific age multipliers of mortality 

based on each country’s age structure. 

We use data from the World Bank’s World Development Indicators 17 on 

the age distribution of each country’s population in 10-year age 

strata to calculate an age-weighted average IFR multiplier for COVID 

patients by 10-year age group estimated.16 This multiplier is applied 

to a baseline IFR of 0.50%. The resulting demography-adjusted country-

specific IFR multipliers range from 0.28 (Uganda) to 3.02 (Japan), 

with a mean of 1.08 and median of 0.88 (Lebanon). For the handful of 

countries for which up-to-date demographic data are unavailable, we 

use a multiplier of 1, leading to a baseline IFR of 0.50%. 

 

https://github.com/tseyanglim/CovidRiskResponse
https://geerthofstede.com/research-and-vsm/dimension-data-matrix/
https://geerthofstede.com/research-and-vsm/dimension-data-matrix/
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S4) Supplementary analysis 

S4.a) Correlations of Policy Stringency with Lagged 

Death 

Figure S2a plots death rates (average weekly deaths per million) 

against policy stringency (average weekly level of Government Response 

Index from OxCGRT),across 231 countries and regions(USA States) using 

data from 03 May 2020 to 01 Jan 2022. It shows that: 1) average (long-

term) government responses are comparable across most regions (around 

50); 2) average death rates vary by two orders of magnitude (note the 

logarithmic scale); and 3) the two are not strongly associated with 

each other. These three features summarize the puzzle of policy 

outcome variation. 

Figure S2b plots recent COVID-19 deaths (previous three-weeks, per 

million population), as a measure of perceived pandemic risk, against 

policy stringency (measured using weekly level data of government 

response index from Oxford COVID-19 Government Response Tracker),10 

across a sample of 12 countries (Panel b). A common relationship 

emerges where an increase in recent deaths corresponds with increased 

stringency of policies.  

 

(a) 
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(b) 

 

(c) 

Figure S2: Variation in government policy responses. Panel a: Average 

reported death rates (logarithmic scale) against average Government 

Response Index in a global sample of 231 countries and regions. Each 

point represents average-over-time for a country or region. Data spans 

03 May 2020 to 01 Jan 2022. Panel b: A sample of 12 countries. Each 

point represents data for a specific country in a specific week. Panel 

c: Government responses at median death rate. Main figure plots 

government response index at median (past 3-weeks) death rates in a 
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global sample of 231 countries and regions. Each point represents a 

country or region. Inset figure plots changes over time in government 

response index vs death rates (in past 3 weeks) for two countries 

(France: Green Triangles; Australia: Red Circles; each point 

represents data in a specific week) as examples and shows how each 

point in the main figure is calculated.  

Figure S2c plots stringency of government response at median death 

rates for each country and region. It shows that while the resulting 

stringency levels are fairly similar across nations (levelling off 

around 60), the mortality levels at which the stringent policies are 

triggered (i.e., responsiveness) vary widely. Specifically, the 

government response stringency at median mortality rates is stable 

across most regions, despite the median mortality rates varying by two 

orders of magnitude (e.g., Australia reaches a high level of 

government response stringency at a much lower mortality rate than 

France). This points to the importance of analyzing the feedback loop 

that includes societal response and the state of the disease.20, 21  

S4.b) Correlations with additional potential 

explanatory variables 

Figure S3 shows additional correlations (or lack thereof) between 

reported per-capita death rates (averaged from 01 Apr-30 Sep 2021) and 

various country characteristics. Panel A shows the correlation between 

our estimated collective responsiveness and death per million per day, 

which is the strongest correlation among depicted variables in the 

Figure.  

Panels B-F show a modest (or lack of) correlation between various 

variables and death rate. Particularly in Panel B age multiplier of 

mortality (which drives infection fatality rates) only modestly 

correlates with death rate. As depicted in Panel C, across countries, 

death rate is actually positively correlated with per-capita GDP. 

Hospital capacity and initial reproduction number do not show a strong 

association with death rate. Finally, as discussed in the paper the 

correlation between policy stringency and death is small, and 

interestingly positive, indicating the reciprocal relation between the 

two concepts.   
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Figure S3. Reported death rates per million people (average over 6-months from 01 Apr-30 Sep 2021) 

correlated with various factors: A) collective responsiveness, B) age multiplier of mortality (informing 

infection fatality rate), C) GDP per capita (PPP), D) hospital beds per thousand people, E) initial 

reproduction number (R0), and F) policy stringency index.
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Figure S4 shows estimated death rates per million against change in 

visits to retail & recreation venues and workplaces respectively, 

relative to pre-pandemic levels. The two categories separately show 

similar negative correlation to the combined mobility index, as 

shown in the main text. 

 
Figure S4. Estimated death rates per million (average over 6-months ending 

in Mar 31, 2021) correlated with change in mobility (during same period) 

relative to pre-pandemic levels for A) retail & recreation venues and B) 

workplaces. 

S4.c) Parameter estimates 

Table S3 shows summary statistics across all countries for estimated 

model parameters. For the full table of parameter estimates by 

country, see https://github.com/tseyanglim/CovidRiskResponse. 

Table S3. Summary statistics of estimated parameter values. 

Parameter Symbol Mean Median StDev 

Initial infectious contact rate 𝛽
0

 1.86 1.36 1.55 

Collective Responsiveness 𝛼  72 11 187 

Time to increase perceived risk 

(days) 

𝜏𝑢 28.2 12.2 35.8 

Time to reduce perceived risk (days) 𝜏𝑑 106 50.3 132 

Patient Zero arrival time* 𝑡𝑍 86.3 101 29.6 

Likelihood scaling factor 

(infections) 
𝜆𝑖 0.578 0.805 0.433 

Likelihood scaling factor (deaths) 𝜆𝑑 0.235 0.117 0.25 

* Patient Zero arrival time is expressed in days from the start of 2020 

 

S4.d) Estimated collective responsiveness values 

Table S4 shows responsiveness values for different countries, 

expressed in terms of the death rate per million population that 

would be required to trigger responses sufficient to lower 

https://github.com/tseyanglim/CovidRiskResponse
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infectious contact rates by 50%. Lower values therefore indicate 

greater responsiveness or sensitivity to death rates. Note the wide 

range of values estimated, with some countries (e.g. China, 

Thailand) far more responsive than others (e.g. Argentina, France). 

Consistent with various regressions and other analyses, the table 

excludes countries for which excess deaths exceed twice the reported 

COVID-19 deaths for the duration of analysis, or those whose 

estimated responsiveness could not be distinguished from zero (and 

thus 1/responsiveness is undefined). 

Table S4. Estimated responsiveness values for different countries. 

Country 

code 

Population 

(millions) 

Death rate per million resulting in 50% contact 

rate reduction (1/collective responsiveness) 

AFG 41.1 0.07 

AGO 35.6 0.015 

ALB 2.8 1.392 

ARE 9.4 0.052 

ARG 45.5 2.084 

ARM 2.8 0.401 

AUS 26.2 0.091 

AUT 8.9 28.458 

AZE 10.4 0.204 

BEL 11.7 0.828 

BFA 22.7 0.001 

BGD 171.2 0.059 

BIH 3.2 0.352 

BLR 9.5 0.081 

BOL 12.2 0.425 

BRA 215.3 0.146 

BWA 2.6 0.188 

CAN 38.5 0.07 

CHE 8.7 0.414 

CHL 19.6 0.382 

CHN 1425.9 0.001 

CIV 28.2 0.005 

COD 99 0.002 

COL 51.9 2.18 

CPV 0.6 0.078 

CRI 5.2 3.945 

CUB 11.2 0.005 

DEU 83.4 0.112 

DNK 5.9 0.207 

DOM 11.2 0.034 

DZA 44.9 0.009 

ECU 18 0.047 

EGY 111 0.204 

ESP 47.6 0.414 
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EST 1.3 1.992 

ETH 123.4 0.015 

FIN 5.5 0.045 

FRA 67.8 0.404 

GAB 2.4 0.054 

GBR 67.5 0.136 

GHA 33.5 0.012 

GIN 13.9 0.001 

GTM 17.8 1.161 

GUY 0.8 2.975 

HND 10.4 0.96 

HTI 11.6 0.022 

IDN 275.5 0.023 

IND 1417.2 0.018 

IRL 5 0.066 

IRN 88.6 0.097 

IRQ 44.5 0.645 

ITA 59 0.262 

JAM 2.8 0.029 

JPN 124 0.023 

KAZ 19.4 0.279 

KEN 54 0.025 

KGZ 6.6 0.426 

KOR 51.8 0.072 

KWT 4.3 0.136 

LBY 6.8 0.691 

LKA 21.8 0.008 

LSO 2.3 0.053 

LUX 0.6 0.517 

MAR 37.5 0.045 

MDA 3.3 0.207 

MDG 29.6 0.011 

MDV 0.5 0.052 

MEX 127.5 0.088 

MKD 2.1 1 

MLI 22.6 0.004 

MMR 54.2 1.058 

MNE 0.6 3.491 

MOZ 33 0.016 

MRT 4.7 0.044 

MWI 20.4 0.007 

MYS 33.9 0.009 

NAM 2.6 0.081 

NGA 218.5 0.003 

NLD 17.6 0.242 
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NOR 5.4 0.045 

NPL 30.5 0.122 

OMN 4.6 0.924 

PAK 235.8 0.025 

PAN 4.4 0.232 

PER 34 3.337 

PHL 115.6 0.014 

POL 39.9 0.242 

PRT 10.3 0.401 

PRY 6.8 3.322 

PSE 5.3 1.268 

QAT 2.7 0.276 

ROU 19.7 0.414 

RUS 144.7 0.057 

RWA 13.8 0.017 

SAU 36.4 0.619 

SDN 46.9 0.014 

SEN 17.3 0.031 

SGP 5.6 0.43 

SLV 6.3 0.694 

SOM 17.6 0.003 

SSD 10.9 0.005 

SWE 10.5 0.401 

SWZ 1.2 0.389 

SYR 22.1 0.119 

TGO 8.8 0.002 

THA 71.7 0.001 

TJK 10 0.02 

TUN 12.4 2.635 

TUR 85.3 0.026 

UGA 47.2 0.027 

UKR 39.7 0.155 

URY 3.4 0.019 

USA 338.3 0.32 

UZB 34.6 0.01 

VEN 28.3 0.184 

XKX 1.8 1.425 

ZAF 59.9 1.182 

ZMB 20 0.024 

ZWE 16.3 0.017 

Note: Variation in reciprocal of responsiveness across countries. Reported 

values are daily death rates triggering a response that brings infectious 

contacts to half the baseline value (i.e. 1/alpha). 
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S4.e) Predictor variable correlations & variance 

inflation factors 

Table S5 shows correlations between all predictor variables used in 

the full death rate regression (Exhibit 2 of main manuscript), as 

well as variance inflation factors (VIFs); all VIF values are < 3, 

indicating acceptably low multicollinearity between predictors. 

Table S5. Correlation matrix and variance inflation factors for predictor 

variables in full regression.  

 
Log 

alpha 
Log IFR 

Log gdp 

per 

capita 

Hosp 

beds 
R0 est 

Hist 

str 180 

Variance 

Inflation 

Factor 

log_alpha (Log10 of 

Responsiveness) 

1 0.02 -0.018 0.11 0.064 0.268 1.12 

log_IFR (Log10 of Age 

Multiplier of Mortality ) 

0.02 1 0.371 0.542 0.461 -0.432 1.94 

log_gdp_per_capita (Log10 

of GDP per Capita) 

-0.018 0.371 1 0.151 0.339 -0.278 1.28 

hosp_beds (Hospital Beds 

per Thousand Population) 

0.11 0.542 0.151 1 0.429 -0.246 1.56 

R0_est (Max Reproduction 

Number) 

0.064 0.461 0.339 0.429 1 -0.056 1.5 

hist_str_180 (Stringency 

Index) 

0.268 -0.432 -0.278 -0.246 -0.056 1 1.46 

 

S4.f) Inclusion of data from early pandemic 

Figure S5 shows reported death rates per million people (averaged 

over prediction period, 01 Apr-30 Sep 2021) against collective 

responsiveness α estimated from 31 Dec 2019-31 Mar 2021, i.e. 

including the ‘first wave’ dynamics from early in the pandemic, with 

selected larger countries labelled. Similar to the main analysis 

(Exhibit 1 of the main manuscript), there is a strong negative 

correlation between responsiveness and subsequent death rate. 
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Figure S5. Reported daily deaths per million people (averaged over 

prediction period, 01 Apr-30 Sep 2021) against estimated collective 

responsiveness α (estimated from 31 Dec 2019-31 Mar 2021), with selected 

larger countries labelled. Source: Authors’ analysis of data on daily 

confirmed cases and deaths come from the OWID global COVID-19 database. 

 

S4.g) Use of estimated true infection & death data 

Figure S6 shows estimated true death rates per million people (from 

IHME estimates, averaged over prediction period, 01 Apr-30 Sep 2021) 

against collective responsiveness α estimated from 01 May 2020-31 

Mar 2021, with selected larger countries labelled. As in the main 

analysis (Exhibit 1 of the main manuscript), responsiveness 

negatively correlates with subsequent death rates, albeit more 

weakly (as expected due to dynamically changing under-reporting 

introducing additional variation in death rates). 
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Figure S6. IHME’s estimated daily deaths per million people (averaged over 

prediction period, 01 Apr-30 Sep 2021) against estimated responsiveness α 

(estimated from 01 May 2020-31 Mar 2021), with selected larger countries 

labelled. Source: Authors’ analysis of data on daily confirmed cases and 

deaths come from the IHME COVID-19 database. 

 

S4.h) Additional robustness checks for main 

regression 

The following results are additional robustness checks for the main 

death rate regression (Exhibit 2 of main manuscript) using different 

sources or subsets of data. Each shows predictors of cross-country 

variation in per capita mortality rates per million (reported 

mortality in all cases except Table S7, which uses estimated true 

mortality from IHME), averaged over the 180 days after April 1, 

2021. In all cases, collective responsiveness remains the primary 

driver of variation in death rates and the main contributor to model 

fit. In short, all tables show the same qualitative result: no 

matter the inclusion criteria or data source, responsiveness is the 

most important (and often only) predictor of death rates in the 

prediction period. 

Table S6 uses responsiveness α estimated from 31 Dec 2019-31 Mar 

2021, including data from early in the pandemic, corresponding to 

Figure S5 above. 
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Table S6. Predictors of cross-country variation in mortality rates per 

capita. Dependent variable: per capita mortality (reported deaths per 

million), averaged over the 180 days from 01 Apr 2021 onward. 

  Coefficient (± 

std. err.) 

Student’s t 

(p-value) 

Marginal 

adj. R2 a 

Effect Size 

(95% CI) b 

Collective Responsiveness 

(log10) 

-0.816±0.243 -6.9 (0.000) 0.416 0.29 (0.14-

0.60) 

Age Multiplier of 

Mortality (log10) 

-0.945±0.313 -2.7 (0.009) 0.058 0.66 (0.51-

0.87) 

GDP per capita (log10) -0.429±0.123 -2.6 (0.013) 0.05 0.75 (0.64-

0.88) 

Hospital beds per 

thousand 

0.020±0.020 0.6 (0.523) -0.005 1.12 (0.89-

1.42) 

Initial reproduction 

number 

-0.146±0.082 -1.5 (0.131) 0.012 0.74 (0.54-

1.03) 

Policy stringency (6 mo. 

avg.) 

0.009±0.006 1.1 (0.285) 0.002 1.23 (0.91-

1.65) 
a Marginal adj. R2 = adj. R2 for full model - adj. R2 for model excluding this 

predictor 
b Effect size = multiplicative change in 6 mo. avg. daily deaths per million per 1 

std. dev. change in predictor 

Countries (n) 56 Adj. R2 0.542 F (p-value) 12.1 (0.000) 

Source: Authors’ analysis of data from the OWID global COVID-19 database. 

Table S7 uses estimated true (rather than reported) per capita 

mortality from IHME estimates as the dependent variable, 

corresponding to Figure S6 above. The responsiveness estimates also 

use IHME data, and are for the estimation period of May 2020-March 

2021. 

Table S7. Predictors of cross-country variation in mortality rates per 

capita. Dependent variable: IHME’s estimated per capita mortality (deaths 

per million), averaged over the 180 days from 01 Apr 2021 onward. 

  Coefficient (± 

std. err.) 

Student’s t 

(p-value) 

Marginal 

adj. R2 a 

Effect Size 

(95% CI) b 

Collective 

Responsiveness (log10) 

-0.532±0.256 -5.3 

(0.000) 

0.162 0.44 (0.20-0.96) 

Age Multiplier of 

Mortality (log10) 

-0.287±0.123 -2.2 

(0.033) 

0.022 0.83 (0.70-0.97) 

GDP per capita (log10) -0.206±0.129 -1.9 

(0.066) 

0.014 0.77 (0.55-1.06) 

Hospital beds per 

thousand 

0.024±0.027 0.8 (0.450) -0.002 1.15 (0.85-1.56) 

Initial reproduction 

number 

-0.096±0.075 -1.2 

(0.229) 

0.003 0.82 (0.60-1.11) 

Policy stringency (6 mo. 

avg.) 

0.015±0.004 3.0 (0.003) 0.049 1.62 (1.28-2.05) 

a Marginal adj. R2 = adj. R2 for full model - adj. R2 for model excluding this 

predictor 
b Effect size = multiplicative change in 6 mo. avg. daily deaths per million per 1 

std. dev. change in predictor 

Countries (n) 95 Adj. R2 0.47 F (p-value) 15.0 (0.000) 

Source: Authors’ analysis of data from the OWID global COVID-19 database 

and IHME database. 
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Table S8 and S9 show regression results excluding countries with 

different thresholds for excess deaths compared to reported deaths, 

indicating different levels of reliability in reporting (excess 

mortality exceeding official deaths by no more than 50% or 25% 

respectively). Table S10 instead shows regression results including 

all countries with available data, i.e. including those with excess 

mortality over 100% more than official deaths. 

 

Table S8. Predictors of cross-country variation in mortality rates per 

capita, excluding countries with more than 50% excess death. Dependent 

variable: per capita mortality (reported deaths per million), averaged over 

the 180 days from 01 Apr 2021 onward. 

  Coefficient (± 

std. err.) 

Student’s t 

(p-value) 

Marginal 

adj. R2 a 

Effect Size 

(95% CI) b 

Collective 

Responsiveness (log10) 

-0.549±0.220 -4.0 (0.000) 0.294 0.33 (0.14-0.79) 

Age Multiplier of 

Mortality (log10) 

-0.416±0.361 -0.7 (0.463) -0.009 0.83 (0.60-1.14) 

GDP per capita (log10) -0.216±0.236 -0.9 (0.366) -0.003 0.86 (0.63-1.18) 

Hospital beds per 

thousand 

-0.010±0.028 -0.2 (0.845) -0.019 0.94 (0.67-1.31) 

Initial reproduction 

number 

-0.146±0.155 -1.0 (0.312) 0.001 0.73 (0.37-1.41) 

Policy stringency (6 mo. 

avg.) 

0.014±0.009 1.0 (0.301) 0.002 1.39 (0.93-2.08) 

a Marginal adj. R2 = adj. R2 for full model - adj. R2 for model excluding this 

predictor 
b Effect size = multiplicative change in 6 mo. avg. daily deaths per million per 1 

std. dev. change in predictor 

Countries (n) 41 Adj. R2 0.294 F (p-value) 3.9 (0.005) 

Source: Authors’ analysis of data from the OWID global COVID-19 database. 
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Table S9. Predictors of cross-country variation in mortality rates per 

capita, excluding countries with more than 25% excess death. Dependent 

variable: per capita mortality (reported deaths per million), averaged over 

the 180 days from 01 Apr 2021 onward. 

  Coefficient (± 

std. err.) 

Student’s t 

(p-value) 

Marginal 

adj. R2 a 

Effect Size 

(95% CI) b 

Collective 

Responsiveness (log10) 

-0.546±0.232 -3.8 (0.001) 0.299 0.33 (0.13-0.83) 

Age Multiplier of 

Mortality (log10) 

-0.292±0.305 -0.4 (0.665) -0.018 0.88 (0.67-1.15) 

GDP per capita (log10) -0.221±0.222 -0.9 (0.388) -0.005 0.86 (0.64-1.16) 

Hospital beds per 

thousand 

-0.010±0.029 -0.2 (0.856) -0.022 0.94 (0.66-1.34) 

Initial reproduction 

number 

-0.149±0.172 -1.0 (0.336) -0.001 0.72 (0.35-1.51) 

Policy stringency (6 mo. 

avg.) 

0.018±0.011 1.2 (0.258) 0.007 1.49 (0.93-2.37) 

a Marginal adj. R2 = adj. R2 for full model - adj. R2 for model excluding this 

predictor 
b Effect size = multiplicative change in 6 mo. avg. daily deaths per million per 1 

std. dev. change in predictor 

Countries (n) 37 Adj. R2 0.277 F (p-value) 3.4 (0.011) 

Source: Authors’ analysis of data from the OWID global COVID-19 database. 

Table S10. Predictors of cross-country variation in mortality rates per 

capita, including all. Dependent variable: per capita mortality (reported 

deaths per million), averaged over the 180 days from 01 Apr 2021 onward. 

  Coefficient 

(± std. err.) 

Student’s t 

(p-value) 

Marginal 

adj. R2 a 

Effect Size 

(95% CI) b 

Collective 

Responsiveness (log10) 

-0.460±0.122 -6.1 (0.000) 0.237 0.39 (0.24-0.64) 

Age Multiplier of 

Mortality (log10) 

0.171±0.206 1.0 (0.299) 0.001 1.12 (0.86-1.45) 

GDP per capita (log10) -0.015±0.119 -0.1 (0.895) -0.006 0.98 (0.75-1.29) 

Hospital beds per 

thousand 

0.001±0.024 0.0 (0.983) -0.007 1.00 (0.76-1.32) 

Initial reproduction 

number 

-0.057±0.089 -0.7 (0.463) -0.003 0.89 (0.62-1.28) 

Policy stringency (6 mo. 

avg.) 

0.016±0.005 3.2 (0.002) 0.061 1.57 (1.16-2.11) 

a Marginal adj. R2 = adj. R2 for full model - adj. R2 for model excluding this 

predictor 
b Effect size = multiplicative change in 6 mo. avg. daily deaths per million per 1 

std. dev. change in predictor 

Countries (n) 100 Adj. R2 0.38 F (p-value) 11.2 (0.000) 

Source: Authors’ analysis of data from the OWID global COVID-19 database. 

Tables S11 shows regression results excluding countries with 10% or 

more of the population having been fully vaccinated by the end of 

the estimation period (31 Mar 2021). Table S12 repeats the analysis 

excluding countries that are fully or partially vaccinated by 10% at 

the same time period. 
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Table S11. Predictors of cross-country variation in mortality rates per 

capita, excluding countries with 10% or more of the population having been 

fully vaccinated by the end of the estimation period (31 Mar 2021). 

Dependent variable: per capita mortality (reported deaths per million), 

averaged over the 180 days from 01 Apr 2021 onward. 

  Coefficient 

(± std. err.) 

Student’s t 

(p-value) 

Marginal 

adj. R2 a 

Effect Size 

(95% CI) b 

Collective 

Responsiveness (log10) 
-0.538±0.220 -4.0 (0.000) 0.274 0.35 (0.15-0.81) 

Age Multiplier of 

Mortality (log10) 
-0.392±0.355 -0.8 (0.439) -0.007 0.82 (0.57-1.17) 

GDP per capita (log10) -0.242±0.225 -1.1 (0.268) 0.005 0.83 (0.59-1.17) 

Hospital beds per 

thousand 
0.031±0.024 0.7 (0.511) -0.01 1.21 (0.91-1.62) 

Initial reproduction 

number 
-0.190±0.158 -1.3 (0.190) 0.014 0.67 (0.35-1.29) 

Policy stringency (6 mo. 

avg.) 
0.015±0.009 1.2 (0.249) 0.007 1.41 (0.95-2.10) 

a Marginal adj. R2 = adj. R2 for full model - adj. R2 for model excluding this 

predictor 
b Effect size = multiplicative change in 6 mo. avg. daily deaths per million per 1 

std. dev. change in predictor 

Countries (n) 44 Adj. R2 0.284 F (p-value) 3.9 (0.004) 

Source: Authors’ analysis of data from the OWID global COVID-19 database. 

Table S12. Predictors of cross-country variation in mortality rates per 

capita, excluding countries with 10% or more of the population having been 

partially or fully vaccinated by the end of the estimation period (31 Mar 

2021). Dependent variable: per capita mortality (reported deaths per 

million), averaged over the 180 days from 01 Apr 2021 onward. 

  Coefficient (± 

std. err.) 

Student’s t 

(p-value) 

Marginal 

adj. R2 a 

Effect Size 

(95% CI) b 

Collective 

Responsiveness (log10) 
-0.582±0.212 -3.8 (0.001) 0.355 0.26 (0.10-0.68) 

Age Multiplier of 

Mortality (log10) 
-0.803±0.387 -1.2 (0.225) 0.014 0.65 (0.43-0.98) 

GDP per capita (log10) -0.283±0.185 -0.9 (0.383) -0.005 0.80 (0.61-1.06) 

Hospital beds per 

thousand 
0.048±0.033 0.8 (0.411) -0.008 1.42 (0.88-2.28) 

Initial reproduction 

number 
-0.324±0.146 -1.9 (0.076) 0.064 0.48 (0.25-0.92) 

Policy stringency (6 mo. 

avg.) 
0.005±0.014 0.3 (0.762) -0.023 1.12 (0.62-2.05) 

a Marginal adj. R2 = adj. R2 for full model - adj. R2 for model excluding this 

predictor 
b Effect size = multiplicative change in 6 mo. avg. daily deaths per million per 1 

std. dev. change in predictor 

Countries (n) 28 Adj. R2 0.405 F (p-value) 4.2 (0.006) 

Source: Authors’ analysis of data from the OWID global COVID-19 database. 
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