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Abstract

Purpose: This paper evaluates user performance in telesurgical tasks with the
da Vinci Research Kit (dVRK), comparing unilateral teleoperation, bilateral
teleoperation with force sensors and sensorless force estimation.
Methods: A four channel teleoperation system with disturbance observers and
sensorless force estimation with learning based dynamic compensation was devel-
oped. Palpation experiments were conducted with 12 users who tried to locate
tumors hidden in tissue phantoms with their fingers or through handheld or tele-
operated laparoscopic instruments with visual, force sensor, or sensorless force
estimation feedback. In a peg transfer experiment with 10 users, the contribution
of sensorless haptic feedback with/without learning based dynamic compensation
was assessed using NASA TLX surveys, measured free motion speeds and forces,
environment interaction forces as well as experiment completion times.
Results: The first study showed a 30% increase in accuracy in detecting tumors
with sensorless haptic feedback over visual feedback with only a 5-10% drop
in accuracy when compared with sensor feedback or direct instrument contact.
The second study showed that sensorless feedback can help reduce interaction
forces due to incidental contacts by about 3 times compared with unilateral
teleoperation. The cost is an increase in free motion forces and physical effort.
We show that it is possible to improve this with dynamic compensation.
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Conclusion: We demonstrate the benefits of sensorless haptic feedback in tele-
operated surgery systems, especially with dynamic compensation, and that it can
improve surgical performance without hardware modifications.

Keywords: Teleoperation, force sensing, haptics, deep learning

1 Introduction

The da Vinci Surgical System (Intuitive Surgical, Sunnyvale, USA) is widely used
for minimally-invasive surgical procedures. It follows a telesurgery approach, where
the surgeon sits at a console, viewing images from a stereo endoscope and remotely
controlling dexterous instruments, where the endoscope and instruments are inserted
into the patient body through small incisions. While the system provides excellent
stereo visualization, one frequent criticism is the lack of force (haptic) feedback to
the surgeon. Haptic feedback plays a crucial role in surgical procedures as it helps
surgeons assess the properties of different types of tissue and avoid application of
excessive force that could damage tissue or surgical tools. It is, however, challenging
to integrate a force sensor into the instruments, given constraints on the size, cost
and electrical connectivity, as well as the requirement for sterility. Researchers have
used external force sensors in the lab environment to assess the contribution of haptic
feedback in robotic surgery systems [1–3], however, these methods cannot be directly
implemented in the surgical theater.

In our prior work [4–8], we investigated methods for estimating the external force
based on existing sensor feedback, which includes motor positions, velocities and
torques. This was implemented on the da Vinci Research Kit (dVRK) [9, 10], an
open research platform based on the first-generation da Vinci Surgical System. Other
investigators have demonstrated this capability for the dVRK, also using the existing
motor feedback signals [11–13] or in combination with video feedback [14, 15]. How-
ever, although these methods can provide an estimated force/torque (wrench), they
are not as accurate as an actual force sensor or do not convey the force to the user in
all the available degrees-of-freedom.

The purpose of this work is to experimentally evaluate whether our most recent
force estimation method [8] can provide sufficient accuracy for a representative surgical
task, specifically tissue palpation. However, this also requires a method to convey
the estimated force to the surgeon. Haptic feedback is the most obvious choice, but
has been challenging to implement on the dVRK due to lack of a low-level bilateral
teleoperation framework, and the difficulty in implementing bilateral teleoperation at
higher levels of control, especially due to lower control frequencies and higher latencies.
As a result, some researchers have adopted commercial haptic devices, such as the
Sigma.7 haptic interface (Force Dimension, Nyon, Switzerland) [16], to replace the
dVRK Master Tool Manipulators (MTMs). In this work, we take advantage of a
recently-developed four-channel bilateral teleoperation architecture for the dVRK [17],
summarized in Section 2.1, to convey these forces via haptic feedback in all available
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Fig. 1: Control Architecture. q: position, q̇: velocity, X,F : Cartesian position and
force, τ : actuator force/torque, α, β: motion and force scale factors, IK: position/force
inverse kinematics, Cp/f : position/force controllers, DOBS: disturbance observer

degrees of freedom. Other methods employ sensory substitution by conveying the forces
via visual overlays [1, 18, 19], auditory [1, 20], tactile [21] or vibrotactile [20] feedback.

Section 2.2 describes the experimental setup for the user study, where subjects
palpated a phantom, under four different teleoperation conditions, to identify an
embedded object with higher stiffness: unilateral teleoperation, bilateral teleoperation
using estimated forces without/with compensation of dynamic forces, and bilateral
teleoperation using a force sensor embedded in the phantom. In addition, the subjects
palpated under two non-teleoperated conditions: with a bare hand, and while holding
the dVRK instrument. We then performed a second user study, using a peg transfer
task, to evaluate the “feel” of the different conditions for a task that also requires a
significant amount of free space motion. Results for both user studies are presented
in Section 3. The results indicate that the best teleoperated performance is achieved
with the force sensor, but the two conditions using estimated force perform nearly as
well. The palpation result did not show a significant difference whether or not dynamic
forces were compensated, but the peg transfer task indicates that compensation of
dynamic forces leads to a lighter “feel” of the MTM, as expected, though it is not as
light as the unilateral teleoperation condition. This study also shows that sensorless
haptic feedback can help to significantly reduce interaction forces with the surgical
environment, which can be dangerously high in unilateral teleoperation.

2 Method

2.1 Control System

Figure 1 provides a block diagram of the proposed teleoperation system [17]. The
robot dynamics is based on the Euler-Lagrange model, which can be written as:

M(q)q̈+C(q, q̇) +G(q) + F(q̇) = τ (1)

where q, q̇ are the joint position/velocity vectors, τ is the joint torque vector, M(q)
is the inertia matrix, C(q, q̇) is the Coriolis and centrifugal torque vector, G(q) is the
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gravity vector, and F(q̇) is the friction vector. Disturbance observer based acceleration
control can be used for feedback linearization and has equivalent stability properties
to passivity based controllers without the need for exact models [17]. For disturbance
observer based acceleration control [22], the dynamics in actuator space can be written
as the sum of the nominal actuator dynamics and disturbances acting on the actuators:

Mnq̈+ τfrc + τint + τext⏞ ⏟⏟ ⏞
τdis

= τ (2)

where Mn is the nominal model motor inertia, τdis is the lumped disturbance acting
on the actuator, τint is the sum of internal robot forces/torques: τint = (M(q) −
Mn)q̈ + C(q, q̇) + G(q), τfrc is the friction force/torque and τext is the sum of all
the external forces/torques acting on the actuator. A disturbance observer (DOBS in
Fig. 1) estimates the disturbances acting on each actuator with the following equation:

τ̂dis =
gdis

s+ gdis
(τ + gdisMnq̇)− gdisMnq̇ (3)

where gdis is the cut-off frequency of a low pass filter. An acceleration control system
with an acceleration reference q̈ref and reference (desired) torque τref can be written
with a disturbance observer as:

τref = Mnq̈ref (4)

τ = τref + τ̂dis (5)

It can be shown that this controller compensates the disturbances within the
observer bandwidth gdis and forces the robot dynamics to the nominal actuator
dynamics [22].

The disturbance observer (DOBS) can also estimate external forces [4, 8]. Both
the dVRK Master Tool Manipulator (MTM) and Patient Side Manipulator (PSM)
have complex mechanisms, including elastic transmissions and spring loading which is
challenging to model accurately with parametric identification, so we consider them
as a part of τint in (2). To estimate τext from disturbance estimates in (3), we iden-
tify robot dynamics (i.e., the “inverse dynamics” blocks in Fig. 1) using deep learning.
Deep learning was selected due to difficulties in modeling surgical robots and the ease
of transfer learning for different surgical scenarios. Two neural networks are used for
each robot, with each network responsible for identifying three degrees of freedom cor-
responding to the positioning and wrist axes in actuator space. Each network has an
input layer with 6 inputs that are the actuator positions and velocities. To extract
important information from time-series data, we use an LSTM layer. The output of the
LSTM layer, which consists of 256 hidden units, is then fed into 3 fully connected (FC)
layers with ReLU activation functions. The FC layers have 256, 128 and 64 hidden
neurons. The output regression layer produces 3 joint disturbance torque estimates.
The network architecture was developed in our previous works on force estimation and
its selection and hyperparameter tuning was explained in more detail in [8]. Training
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data was collected for identification purposes by having each robot bilaterally teleop-
erate the other in free space. The data collection lasted for about 5 minutes at around
1 kHz sampling rate and 20% of the data was set aside for validation with the rest
designated for training. We utilized an NVIDIA Quadro P1000 GPU and the Adam
optimizer to train our models in 25 epochs.

We train our networks with disturbance estimates τ̂dis in free motion by col-
lecting joint position, velocity and disturbances. The output of the neural networks
(NN) predicts the disturbances acting on the joints when the robot is in free motion
NN(q, q̇) = τ̂dyn ≈ τint + τfrc.

During contact and in the presence of an external torque on the actuators, the
identified torque/disturbance can be subtracted from the disturbance estimate τ̂dis
[23] to obtain the external torque estimate:

τ̂ext = τ̂dis −NN(q, q̇) (6)

The external forces in Cartesian space can then be obtained by applying the pseudo-
inverse Jacobian transpose J−T:

F̂ext = J−Tτ̂ext (7)

It was shown in [24] that to achieve ideal bilateral teleoperator transparency and
perfect kinesthetic coupling between the operator and the environment it is required
to exchange both position and force measurements between the robots. Since we can
estimate the forces on both the MTM and the PSM, it has become possible to imple-
ment the four channel teleoperation architecture on the dVRK. The controller goals
in Cartesian space with motion scaling, which is required in robotic surgery, can be

written as Xmtm = αXpsm and F̂
mtm

ext = −βF̂
psm

ext , where X represents the Carte-
sian position vector, F̂ext are the Cartesian external force estimates, and α, β are the
scaling factors between MTM and PSM positions and forces.

To realize the four channel control architecture, acceleration references for accel-
eration controllers in actuator space can be written as (and shown in Fig. 1):

Mnq̈
mtm
ref =Cmtm

p IKmtm
pos

(︁
αXpsm −Xmtm

)︁
−Cmtm

f IKmtm
for

(︂
F̂

mtm

ext + βF̂
psm

ext

)︂
Mnq̈

psm
ref =Cpsm

p IKpsm
pos

(︁
Xmtm − αXpsm

)︁
−Cpsm

f IKpsm
for

(︂
F̂

mtm

ext + βF̂
psm

ext

)︂
(8)

where Cp = kp + kds is a PD position controller and Cf is a proportional force con-
troller, and IKpos, IKfor are position and force inverse kinematics functions for the
MTM and PSM robots. Kinematics include the registration between the robots and the
coupling matrices between the actuators and the robot joints. The controller is written
in the form (8) for the sake of presentation, whereas in practice the actuator position
measurements qmtm,qpsm and actuator external torque estimates τ̂mtm

ext , τ̂psmext are

used instead of IKmtm
pos (Xmtm), IKpsm

pos (X
psm) and IKmtm

force(F̂
mtm

ext ), IKpsm
for (F̂

psm

ext ).
With the disturbance observer, the controller torque for each joint of the robots

can then be computed as τmtm = Mnq̈
mtm
ref + τ̂mtm

dis and τpsm = αMnq̈
psm
ref + τ̂psmdis .

5



Fig. 2: (a) PSM and MTM robots, (b) Palpation and (c) Peg transfer setups

While the four channel teleoperation system can in theory provide ideal transparency,
in practice there is always operationality [25] which can be described as the added
force feedback to the operator especially in free motion, due to robot dynamics and
control system latency.

2.2 Experiment Design

For the experiments, we used unmodified first-generation dVRK MTM and PSM
robots, as shown in Fig. 2. The control system was developed using C++ and has
been integrated into the dVRK software stack and made accessible to the dVRK
community. The controller parameters used in the experiments are given in Table 1.

The digital controller without neural networks can run at a sampling rate of
1.5 kHz. However, due to limitations in the processing capabilities of the computer
hardware, the use of neural networks necessitated a reduction in the sampling rate
to 1 kHz. The control system latency between the dVRK robots was observed to vary
between 1.27 and 3.48 milliseconds.

Although the dVRK PSM and MTM robots have 7 and 8 degrees of freedom
respectively, the proposed bilateral teleoperation system is implemented in 6 degrees
of freedom. The MTM gripper, by design, has an encoder and no actuator and can only
be used to control the PSM gripper unilaterally. Additionally, the redundant fourth
joint of the MTM was locked to simplify the kinematics for force estimation.

For our first user study, we produced plastisol tissue phantoms (TiP) with different
stiffnesses by adding plastisol softener, hardener and dyes. TiPs had the same volume
with the following composition, TiP1: 100mL plastisol + 50mL softener, TiP2: 125mL
plastisol + 25mL softener, TiP3: 150mL plastisol, TiP4: 100mL plastisol + 50mL
hardener. The Tumor Phantoms (TuP) were cut in cubes and embedded in the TiPs.
The TuP composition was 100mL plastisol + 100mL hardener. A 3D printed plastic
instrument cover was used to prevent piercing of the phantoms. For the second user
study we used a peg board and rubber pegs. In both experiments, the users did not
use the dVRK stereovision system and had a direct side view of the operation area.
In addition, a force sensor (Gamma F/T Sensor, ATI Industrial Automation, Apex,
NC, USA) was placed under the phantoms and peg board.
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Table 1: Controller parameters used in the control system

PSM MTM Units
i 1 2 3 4 5 6 1 2 3 5 6 7 -
kp 20 20 800 1.5 1.5 1.5 40 40 40 0.7 0.06 0.05 -
kd 4 4 56.6 0.05 0.05 0.05 5 5 5 0.05 0.03 0.0016 -
Cf 1 1 1 0.4 0.4 0.4 1 1 1 0.4 0.4 0.4 -
gf 10 10 10 3 3 3 10 10 10 3 3 3 rad/s

Mn 1e-3 1e-3 1e-3 5e-6 5e-6 5e-6 1e-3 1e-3 1e-3 5e-6 5e-6 5e-6 kg.m2, kg

3 Results

3.1 User Study 1: Palpation for Tumor Detection

Palpation experiments were conducted with 12 individuals to test various teleoperation
systems. Participants were selected from Johns Hopkins faculty and students with no
vision or hand related disabilities. Gender or age was not a selection criterion, and
there were 11 male participants and 1 female participant between 20 and 62 years old
with a mean age of 32. In terms of experience with the da Vinci Research Kit (dVRK),
the study achieved an even distribution of participants, with half experienced and
half inexperienced. In the experiments, 4 TiPs were used. Four points were marked
on each TiP and one point included the TuP. These points were covered with tape to
prevent visual detection. Users were requested to palpate these points 4-5 times and
reported under which point they felt a stiff tumor. Two different motion scalings were
tested in the experiments: 1:1 scaling with α = 1 and 1:5 scaling with α = 5 which
corresponds to 5× smaller PSM motions. With each scaling, unilateral teleoperation
(Uni), sensorless bilateral teleoperation with (Dyn) and without (nDyn) a dynamic
model, and bilateral teleoperation with sensor feedback (FS) was implemented. Users
received verbal instructions for the experiments and inexperienced users were given
a brief training to operate the system. Users were also asked to palpate with their
hand (Hand) and holding the instrument in their hand (Inst). The order with which
the users tested different TiPs and controllers was randomized to remove the learning
effect. They tested the phantoms with their hand and the hand-held instrument at
the end of their sets. Tumor detection accuracy for the different cases is provided
in Table 2 and Table 3 provides results from pairwise statistical significance analysis
between different test groups using the Wilcoxon rank-sum test. Hand palpation was
significantly better than all methods except the instrument. The users were able to
detect tumors with their hands 100% of the time. With the instrument in hand, some
users were not able to accurately detect the tumors, especially in the stiffest TiP, and
the accuracy rate dropped to 95.83%; however, the difference was not statistically
significant. Across both scaling factors, sensorless force estimation with or without the
dynamic model performed similarly with force sensor feedback, with no statistically
significant difference between them. With sensorless haptic feedback (both Dyn and
nDyn), accuracy was above 85% and this result was within 5% of the results with force
sensor feedback and 10% of direct instrument contact. With unilateral teleoperation,
the detection accuracy showed a strongly significant drop (with p-values ≈0.01 or less)
to 54.17%, although the users were able to see how far the instrument travelled in
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the TiP. Scaling did not contribute significantly to tumor detection performance. No
significant difference was observed between experienced and inexperienced users.

Table 2: Average and standard deviations of correct answers in the palpation
experiment (%).

SCALING 1:1 SCALING 1:5
Hand Inst Uni nDyn Dyn FS Uni nDyn Dyn FS

AVG 100.00 95.83 54.17 85.42 85.42 89.58 58.33 85.42 87.50 87.50
STD 0.00 9.73 29.84 16.71 12.87 16.71 19.46 16.71 13.06 16.85

Table 3: Statistical significance between different groups as indicated by p-values
for user study 1. Upward arrows (↑) show that the corresponding row group has
a higher mean than the column group with a statistical significance of p<0.05,
whereas downward arrows (↓) indicate that the row group has a lower mean with
a statistical significance of p<0.05.

SCALING 1:1 SCALING 1:5
Inst Uni nDyn Dyn FS Inst Uni nDyn Dyn FS

Hand 0.166 0.000 ↑ 0.007 ↑ 0.002 ↑ 0.036 ↑ 0.166 8e-06 ↑ 0.007 ↑ 0.006 ↑ 0.016 ↑
Inst 0.001 ↑ 0.086 0.042 ↑ 0.339 6e-05 ↑ 0.086 0.097 0.178
Uni 0.011 ↓ 0.010 ↓ 0.004 ↓ 0.003 ↓ 0.001 ↓ 0.002 ↓

nDyn 0.896 0.488 0.870 0.745
Dyn 0.357 0.869

3.2 User Study 2: Peg Transfer

The peg transfer experiment was conducted with 10 users, who were not surgeons. The
users were selected from Johns Hopkins faculty and students with no vision and hand
related disabilities. Gender and age were not exclusion criteria, and there were 7 males
and 3 females. The ages were between 20-40 with a mean age of 27. Since we did not
see a significant difference in the first study, the second study had 8 experienced and 2
inexperienced users. Three different controllers were used: the unilateral teleoperation
system (Uni), the bilateral teleoperation system without a dynamic model (nDyn)
and with a dynamic model (Dyn). Users were asked to start the experiments from the
same point each time and to sequentially move 3 pegs to specified locations.

In this study, we utilized the NASA Task Load Index (TLX) survey [26] to compare
and analyze the perceived workload across the three tasks. The TLX survey assesses
various dimensions of workload, including mental demand, physical demand, tempo-
ral demand, performance, effort and frustration. By examining these dimensions, we
evaluated each task.

Fig. 3 shows the average TLX survey results. The users rated their perceptions
over a scale of 20 where lower ratings are closer to ideal. The results clearly highlight
the advantages of using dynamic models. Using Uni was mentally most demanding for
users, and both haptic feedback systems provided a similar level of improvement. nDyn
had the highest physical demand due to the increase in operationality whereas Uni and
Dyn had similar levels of physical demand. Uni and nDyn had the highest temporal
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Fig. 3: TLX results comparing the teleoperation systems

demand and the users felt under a similar time pressure whereas Dyn provided an
improvement. The controllers with haptic feedback had similar performance ratings
and were slightly better than unilateral control. Uni and nDyn required a similar
level of effort while Dyn required significantly less effort. All three controllers caused
similar levels of frustration, but nDyn had a slight edge over other controllers due
to the slower and more predictable behavior of the system. The results showed that
introducing haptic feedback can improve mental demand, frustration and performance
over unilateral teleoperation but can introduce increased physical demand if dynamic
models are not used. Sensorless haptic feedback with dynamic models also improves
total effort and temporal demand over unilateral teleoperation, with a similar physical
demand. This translates to a significant improvement in physical demand over haptic
feedback without dynamic models.

Table 4: Averages (standard deviations) of completion times (s), RMS force
sensor measurements (N), peak force sensor measurements (N), RMS free motion
MTM force (N) and velocity (mm/s) during Peg Transfer.

Task Time RMS(FS) Peak(FS) MTM Force MTM Velocity
Uni 39.20 (16.13) 1.50 (0.81) 9.71 (4.75) 0.37 (0.12) 1.77 (0.45)

nDyn 40.40 (13.99) 0.59 (0.23) 3.52 (1.05) 2.50 (0.29) 2.94 (0.82)
Dyn 38.80 (15.03) 0.57 (0.27) 3.28 (0.90) 1.92 (0.38) 2.91 (0.72)

Table 5: Statistical significance (p-values) for user study 2. Upward arrows (↑)
show that the corresponding row group has a higher mean than the column group
with a statistical significance of p<0.05, whereas downward arrows (↓) indicate
that the row group has a lower mean with a statistical significance of p<0.05.

Time rms(FS) peak(FS) mtm Force mtm Vel
nDyn Dyn nDyn Dyn nDyn Dyn nDyn Dyn nDyn Dyn

Uni 0.879 1.000 0.005 ↑ 0.003 ↑ 0.001 ↑ 0.001 ↑ 0.000 ↓ 0.000 ↓ 0.003 ↓ 0.003 ↓
nDyn 0.970 0.571 0.678 0.006 ↑ 0.850

Table 4 provides objective data from the peg transfer task. Time is the average task
completion time, rms(FS) is the average of root mean square force sensor forces from
each experiment run and peak(FS) is the average of peak force sensor measurements
from each run. MTM Force and Velocity are the average of the estimated RMS MTM
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Fig. 4: Sample cases from the peg transfer user studies. Resultant force provided by
the force sensor in (a) unilateral (b) bilateral teleoperation.

forces and velocities in Cartesian space. Table 5 provides p-values from the Wilcoxon
rank-sum test for statistical significance between the methods. The controllers had
very close completion times, with no statistically significant difference. As can be seen
from peak and RMS force sensor measurements, both bilateral teleoperation systems
displayed significantly smaller contact forces (p<0.01) with the peg board when com-
pared with the unilateral teleoperation system which displayed excessive forces. The
unilateral teleoperation system, on the other hand, had the best operationality in
free motion, with significantly smaller MTM forces. Using dynamic models with bilat-
eral teleoperation significantly improved operationality as can be seen from the MTM
forces, however it performed significantly worse than unilateral teleoperation.

Video snapshots and force response plots of two typical 10-second segments from
the experiments are presented in Fig. 4 to compare robot response to contact with
peg board pins. As can be seen from snapshot C, in unilateral teleoperation the robot
applies significant forces and deflects the pin, whereas with haptic feedback (Dyn)
there is no deflection visible. Also, the force response plot at B shows a five fold
reduction in the interaction forces.

4 Discussion and Conclusions

This study assessed user performance in telesurgical tasks with a sensorless
transparency-optimized haptic teleoperation system for the da Vinci Research Kit.
The results obtained from our experiments provide valuable insights into the potential
of haptic feedback in teleoperated surgery.

Our first set of experiments demonstrated a significant 30% increase in tumor detec-
tion accuracy using sensorless haptic feedback over visual feedback only. This increase
in accuracy was achieved with only a modest 5-10% drop in accuracy compared to
sensor feedback or direct instrument contact. The results suggest that sensorless hap-
tic feedback can significantly enhance a surgeon’s ability to assess tissue stiffness,
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which can be crucial in surgery. While haptic feedback makes the system feel heavier
to the user, we show that user effort can be reduced through dynamic compensation
techniques. Another key observation from this study is that in unilateral teleopera-
tion, incidental contacts with the peg board pins resulted in extremely high forces
(up to 14N) applied to the environment. Use of sensorless haptic feedback with or
without dynamic models remedied this situation and provided a three-fold reduction
in the interaction forces. This demonstrates that sensorless haptic feedback can also
be important for the safety of robotic surgery systems. This feature can also be use-
ful to prevent suture breakage or needle bending. Surgeons who prefer conventional
laparoscopy due to haptic feedback can also more easily switch to robotic surgery.

Despite these significant advantages, sensorless feedback introduces increased oper-
ationality and physical demand due to the feedback of dynamic forces in free motion.
The results we obtained suggest that an increased operationality is an acceptable
trade-off for recovering the sense of touch in surgery and the method is ready to be eval-
uated with further clinical studies. Operationality can also be improved with dynamic
models, however a method which can perform closer to unilateral teleoperation is still
required. Neural network performance across different users and experiments showed
variability as the training was performed in a limited portion of the workspace and
with a single user. Changing mechanical configurations, electrical biases and compu-
tational load in the dVRK system also contributed to this variability. Because of this,
sensorless force estimation without dynamic identification was more consistent and
perceived as slightly less frustrating according to the TLX study. To improve con-
sistency and robustness, continuous retraining for each user, with larger workspaces
would be required, however this would be impractical. Robust and more generalizable
learning approaches for dynamic identification, such as the transfer learning proposed
in [8], can be used for clinical implementations to improve reliability and performance.
While model based approaches also suffer from variability in the system, the advantage
of using neural networks is that performance can be improved with quick retraining
using transfer learning without analytical considerations of the surgical setup.
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