
Userspace Networking in gem5
Johnson Umeike Siddharth Agarwal§ Nikita Lazarev† Mohammad Alian

§University of Illinois Urbana Champagin †MIT, CSAIL University of Kansas

Abstract—Full-system simulation of computer systems is crit-
ical for capturing the complex interplay between various hard-
ware and software components in future systems. Modeling the
network subsystem is indispensable for the fidelity of full-system
simulations due to the increasing importance of scale-out systems.
Over the last decade, the network software stack has undergone
major changes, with userspace networking stacks and data-
plane networks rapidly replacing the conventional kernel network
stack. Nevertheless, the current state-of-the-art architectural
simulator, gem5, still employs kernel networking, which precludes
realistic network application scenarios.

In this work, we first demonstrate the limitations of gem5’s
current network stack in achieving high network bandwidth.
Then, we enable a userspace networking stack on gem5. We
extend gem5’s NIC hardware model and device driver to sup-
port userspace device drivers running the DPDK framework.
Additionally, we implement a network load generator hardware
model in gem5 to generate various traffic patterns and per-
form per-packet timestamp and latency measurements without
introducing packet loss. We develop a suite of six network-
intensive benchmarks for stress testing the host network stack.
These applications, based on DPDK, can run on both gem5
and real systems. Our experimental results show that enabling
userspace networking improves gem5’s network bandwidth by
6.3× compared with the current Linux kernel software stack.
We characterize the performance of DPDK benchmarks running
on both a real system and gem5, and evaluate the sensitivity of the
applications to various system and microarchitecture parameters.
This work marks the first step in refactoring the networking
subsystem in gem5.

I. INTRODUCTION

The evolution of networking technology enabled hundreds
of gigabits per second inter-server data transmission rates
in datacenters, and terabit per second network interfaces
are on the horizon [1]–[3]. Such advances in the network
hardware performance ignited the research and development
effort to re-architect the software stack to deliver genuine
hardware performance to the applications. Over the past
decade, userspace and data-plane networking technologies
have emerged as replacements for the kernel network stack to
minimize its associated overhead on network bandwidth and
latency [4]–[9]. The Data Plane Development Kit (DPDK) [10]
is an open-source software project that provides a set of data-
plane libraries to move packet processing from the kernel
to processes running in userspace. Applications developed
using DPDK enjoy higher network performance as the library
removes userspace/kernel context switches, uses huge pages
for network buffer allocation, implements run-to-completion
application processing, and utilizes a polling mode driver for
interacting with the NIC.

As the network bandwidth approaches the local memory
bandwidth of end hosts, proper handling of network rates

in the processor microarchitecture and memory hierarchy
is essential to deliver high-quality end-to-end performance
for emerging exascale applications. Architectural simulation
has long been the primary tool for the early evaluation
of future computer systems. However, current architectural
simulators fall short when it comes to modeling the state-
of-the-art network hardware and software stack. For example,
gem5 [11], [12] only supports kernel networking and only
delivers ∼10Gbps network bandwidth running the iPerf TCP
throughput test. FireSim is an FPGA-based cycle-accurate
simulator, which also only supports kernel networking and
delivers ∼1Gbps iPerf TCP bandwidth [13]. With such low
network bandwidth, architectural simulation cannot be used
to study the implications of future terabit-per-second NICs on
core micro-architecture and memory hierarchy.

We identify three shortcomings in current architectural sim-
ulators with respect to evaluating future networked systems:

• Existing simulators have outdated models for the net-
working subsystem and can deliver at most tens of
gigabits per second network data rates to the processor
and memory hierarchy.

• Existing simulators use load-generator applications to
stress the node-under-test. However, when dealing with
high network rates, the load-generator applications, anno-
tated with performance sampling functions, may emerge
as the end-to-end bottleneck. This bottleneck can lead
to measurement errors and hinder users from effectively
saturating the node-under-test. Additionally, the load-
generator node has the potential to impede the overall
simulation speed.

• There is no networking benchmark suite tailored for run-
ning on simulators with standard metrics and evaluation
methodology.

In this work, we fill these gaps by enabling DPDK on
the gem5 simulator, extending gem5 with a load-generator
hardware model, and implementing a suite of five network-
intensive applications for stress testing end-host networking
subsystem. DPDK on gem5 bypasses the Linux kernel and de-
livers the maximum network bandwidth that a given processor
architecture and memory hierarchy can sustain. In other words,
we enable full-system gem5 to simulate networked systems in
which the network stack is no longer the bottleneck; instead,
in our setup, the processor, interconnect, or the memory are
the bottlenecks in network packet processing [14]. We enable
gem5 to run unmodified DPDK applications.

We introduce a network load generator hardware model that
can be used to inject packets to the simulated network with

1



configurable rate, packet size, and traffic pattern. The load
generator can generate synthetic traffic or replay pcap traces
captured on a real system using a packet capture tool like
tcpdump [15] or dpdk-pdump [16]. Hardware load generators
are widely used in the industry to stress test the network
subsystem without introducing any packet loss.

We execute DPDK applications on both gem5 and an
ARM Neoverse N1 server platform, aiming to characterize
the variations in network performance between gem5 and the
real system. Then, we show that at large packet sizes, gem5’s
DMA engine is the bottleneck. Furthermore, we leverage gem5
to analyze the sensitivity of network-intensive applications to
microarchitectural configurations. Lastly, we utilize the load
generator hardware model to load a Memcached server, using
kernel network stack as well as DPDK.

II. BACKGROUND AND MOTIVATION

A. Network Software Stacks

Write/Read

Socket

Driver

NIC

Source

10Gbps

Load-Gen
Application

Write/Read

Socket

Driver

NIC

Target

Load-Gen
Application

interrupt

syscall and memcpy

interrupt

syscall and memcpy

Drive Node Test Node

(a) Current gem5

NIC

Load-Gen
Application

polling

Hardware
Load-Gen
SimObject

Send/Receive

Source

56Gbps

Target

Write/Read

Kernel Bypass Layer

load-gen interface

Load Generator

Test Node

(b) This work

Fig. 1. (a) Baseline dual-mode gem5 with Linux kernel software
stack for evaluating networked systems, (b) userspace networking
in gem5 with hardware load generator simulation model.

Network packet processing in the Linux kernel is hindered
by frequent system calls and context switches. Additionally,
there are frequent buffer copies within the kernel software
stack and between kernel and userspace buffers. These over-
heads are compounded by the extended latency associated
with interrupt processing and notification [2], [14]. Userspace
software stacks address these overhead by offloading packet
processing to userspace processes. They utilize large buffer
allocations or huge pages, implement zero-copy data trans-
fer [17], apply thread-to-core pinning, adopt run-to-completion
application implementations, and incorporate polling for re-
ceive (RX) and transmit (TX) completion notifications.

DPDK [10], first released by Intel in 2010, comprises a set
of data-plane libraries that enable direct control and access
to the NIC hardware from a userspace application. DPDK
reserves pinned huge pages and allows the NIC to DMA
packet data directly into the application’s buffers. Further-
more, DPDK employs a polling mode driver to eliminate
the overheads of interrupt processing, which most often arise
from frequent context switches. DPDK application can be
implemented in two modes:
Run to completion mode: where the packet processing loop
is: (1) retrieve RX packets through Polling Mode Driver

(PMD) RX API, (2) process packets on the same logical core,
(3) send pending packets through the PMD TX API.
Pipeline mode: where the cores pass packets between each
other via a user-level ring buffer for efficient packet process-
ing.

B. Current gem5 Network Stack

The current NIC simulation object in gem5 loosely models
the Intel 8254x NIC series [18]. Fig.1a illustrates how gem5
currently simulates a two-node system connected to each other
using a direct Ethernet link. The goal is to have a Test Node
that runs a network application (e.g., forwarding, key-value
store, etc.) receiving network requests from a Drive Node.
These nodes can be simulated using a single gem5 process,
also referred to as dual-mode gem5 (as shown in Fig.1a), or
using dist-gem5 [19], which runs two separate gem5 processes.
Each process simulates either Test or Drive nodes in parallel,
synchronizing them at every minimum simulated network
latency. The Drive Node runs a load generator application that
establishes a connection with the application running on the
Test Node and sends requests at various load levels, sizes,
and inter-arrival time distributions. Because optimizing the
performance of load generator applications is often not the
focus, the Drive Node does not need to be simulated with
high fidelity, and a functionally correct simulation is usually
sufficient.

Default gem5 uses a Kernel network stack that can only
sustain ∼10Gbps network bandwidth using beefy O3 (Out-of-
Order) ARM cores running at 3GHz frequency. See Sec.VI
for detailed experimental methodology. Such low network
bandwidth does not sufficiently exercise the hardware and
software stacks. Hence, the current gem5 network subsystem
is not useful for studying systems that support hundreds of
gigabits per second network throughput.

C. Hardware Traffic Generators

One of the main concerns when evaluating networked
systems is loading the Test Node with real traffic to measure
network bandwidth and per-packet, round-trip network latency
without introducing extra latency or packet drop at the load
generator node (i.e., Drive Node). The industry standard
practice involves using hardware traffic generators equipped
with FPGA line cards [20], [21] to generate packets with
configurable traffic patterns, sizes, and protocols, while also
providing detailed network statistics for each transmitted and
received packet [22]. In this work, we enhance gem5 with
a hardware load generator that replaces the Drive Node (as
shown in Fig.1b).

III. LINUX KERNEL BYPASS IN GEM5

This section discusses the changes we made to gem5 and
the DPDK framework to enable userspace networking and
implement the hardware load generator model in gem5. We
do not make any changes in the Linux kernel.

2



offset bits[31:24] bits[23:16] bits[15:8] bits[7:0]

0x00

0x04

Device ID Vendor ID

Status Command

Fig. 2. First 8 bytes of the PCI configuration space that includes
PCI Command Register.

A. Changes to gem5

The changes in gem5 are limited to the PCI model to enable
userspace I/O (UIO) driver and the NIC model to allow byte
granular PCI configuration space accesses.

1) Enable userspace I/O Driver: uio_pci_generic
driver in Linux enables a userspace application to directly ac-
cess the address space of a PCI device. DPDK uses this driver
to enable the userspace application to access the PCI configu-
ration space and implement a Polling Mode Driver (PMD).
Mainline gem5 does not enable the uio_pci_generic
driver during boot as the PCI Command Register is not fully
implemented in gem5. Fig.2 shows the first 8 bytes of the PCI
configuration space that includes the 16-bit Command Register
at offset 0x04. The baseline gem5 implements bits 0-9 of the
Command Register but does not implement bit-10, which is
the interrupt disable bit. We implement interrupt disable bit in
gem5 PCI model, so the Linux kernel can disable the interrupts
for the PCI devices on gem5, which is necessary to support
uio_pci_generic driver.

2) Enable Byte-Granular Access to PCI Configuration
Space: gem5 only supports 16-bit accesses to the Command
Register shown in Fig.2. In fact, this is rational since the size of
the Command register is 16 bits. However, we observed that
DPDK accesses the Command register using 8-bit memory
accesses. Such byte-granular accesses are being ignored in
gem5, and therefore DPDK cannot properly read and write
the upper half of the Command Register (offset 0x05 of
the PCI config space). We extended the readConfig and
writeConfig functions in the gem5 PCI model to enable
byte-granular accesses to the Command Register.

3) Enable the NIC Model to Correctly Operate with a
PMD: NIC devices keep a handful of available descriptors
(usually 32 to 64 descriptors) that can be populated upon
receiving a packet on an on-chip cache which is called descrip-
tor cache. The descriptor cache improves the performance as
the NIC does not need to fetch available descriptors from the
CPU memory on demand. The NIC gradually writes back the
descriptor cache to the CPU memory (using DMA), and then
the CPU is notified of received packets.

gem5’s NIC model writes back the received descriptors
based on a threshold set by the Linux kernel. Once the number
of used descriptors exceeds a threshold, the NIC initiates a
writeback. When using a Polling Mode Driver (PMD), the
threshold registers in the NIC model are not properly set,
and thus the NIC starts writing back the descriptors when
all of them are used. This means that packets are DMAed to
the CPU memory in large batches (32 to 64 packets), which
causes unrealistic pressure on the CPU memory subsystem and

increases the possibility of packet drops at high receive rates.
We implemented a parameter for the NIC where the user can
control the threshold of descriptor writebacks in gem5.

4) Direct Cache Access: We noticed that DPDK perfor-
mance of baseline gem5 that models a conventional system
without Direct Cache Access support is substantially lower
than that of real hardware (§VII). We leverage prior work
implementation to enable Direct Cache Access (DCA) in
gem5 [23]. ARM refers to the DCA implementation as Cache
Stashing technology.

gem5 connects the I/O bus 1 directly to the memory con-
troller. Enabling DCA in gem5 requires connecting the I/O
bus to the Last Level Cache (LLC), partitioning LLC ways
between DCA ways and core ways, and flagging I/O memory
requests to distinguish them from core memory requests. We
follow the implementation of prior work [23].

5) Implement Interrupt Mask Register in the NIC model:
The last modification to gem5 is to implement Interrupt Mask
Register in the i8254xGBe device model. Interestingly, this
register is included in the i8254xGBe model, but the read and
write methods for accessing the register are not implemented
in the current gem5 release. We implemented the read and
write methods to enable DPDK to launch its PMD.

B. Changes to DPDK

The DPDK Environment Abstraction Layer (EAL) relies on
vendor ID checks to match a device and a PMD. We modify
the DPDK source to skip these checks and force the matching
of the gem5 device to NIC model PMD. Unmodified DPDK
cannot fetch the correct vendor ID when running on gem5
and therefore fails to call the proper PMD. We suspect this
is because some manufacturer-specific information is missing
in the gem5 NIC model. Note that skipping the vendor ID
test does not adversely impact the gem5 simulations, as the
current gem5 release has only an e1000 NIC model. If new
NIC models are added to gem5, the DPDK framework should
be recompiled after hard-coding the PMD to use a different
NIC model.

IV. HARDWARE LOAD GENERATOR MODEL

The hardware load generator model can generate packets
at arbitrary rates, sizes, and traffic patterns. We implement a
simulation object called EtherLoadGen that has a single
Ethernet port and can directly connect to the NIC port of
a simulated node, as shown in Fig.1b. Therefore, for simple
network benchmarking, there is no need to run distributed or
dual-mode gem5 simulations. Instead, one can simulate only
a test node that is directly connected to the EtherLoadGen.
This approach enhances both simulation speed and the accu-
racy of simulations, as EtherLoadGen does not introduce
client-side queuing. Also, EtherLoadGen can be used to
easily model open or closed loop clients [24].
EtherLoadGen can operate in two modes: synthetic mode

and trace mode. In synthetic mode, EtherLoadGen sends

1I/O bus models PCIe bus in a real system

3



packets based on a set of configurable parameters such as
packet rate, packet inter-arrival time distribution, packet size,
and protocol. In trace mode, EtherLoadGen replays a trace
that is collected from a real system, e.g., using tcpdump [15].
EtherLoadGen can either use timestamps in the trace to
send packets or override it by the packet inter-arrival time
distribution.

The EtherLoadGen trace mode is based on the standard
Packet CAPture (PCAP) files which can be generated and
analyzed by, for example, tcpdump/wireshark from real traffic.
The load generator parses PCAP files via the Linux PCAP
library [25] and reads the networking trace for each packet. It
then modifies the destination physical address in the packet’s
Ethernet header to match the one in the simulated system.
The modified packet is dispatched to the simulated NIC at
either a statically configured rate or based on the timestamp
information from the original trace if the real-traffic throughput
needs to be reproduced. Note that userspace networking traffic
generally cannot be captured with tcpdump or any other OS-
based utility. We use the dpdk-pdump application [16] to
record .pcap traces for the DPDK applications. This ap-
proach is generalizable to any DPDK system and is compatible
with our EtherLoadGen. In order to replay DPDK traces,
we integrate PCAP file generator into our DPDK-based KVS
client directly by using dpdk-pdump library [26].

In the synthetic mode, EtherLoadGen creates Ethernet
packets with the specified size and sends them at a fixed rate
to the Ethernet port. The synthetic protocol that we support for
now is plain Ethernet packets. Connection-less protocols such
as UDP can be supported with minimal effort. Trace mode
is a very convenient way to generate load for more complex
protocols such as key-value stores or HTTP. In synthetic mode,
EtherLoadGen adds a timestamp to each outgoing packet
at a configurable offset and compares the timestamp with
the current tick on incoming packets to compute per-packet
round-trip latency. EtherLoadGen reports mean, median,
standard deviation, and tail latency of network packets in the
statistics file. It also produces a packet drop percentage and
a histogram of packet forwarding latency. The load generator
model enables simple network benchmarking in gem5 without
the need to simulate multiple system nodes. This is similar to
the practice in the industry for using hardware load generators
to evaluate the performance of the network [20].
EtherLoadGen also supports a bandwidth test mode

where it gradually increases the bandwidth to find the max-
imum sustainable bandwidth of a server, which is the band-
width at the knee of the bandwidth vs. packet drop graph
(or bandwidth vs. latency graph). Unlike the Garnet load
generator that is used in gem5 to inject traffic to the network
on chip [27], EtherLoadGen connects to NIC ports and is
used to generate Ethernet network traffic.

V. BENCHMARK SUITE

We introduce six networking applications, four of which are
network-intensive microbenchmarks and two real in-memory

key-value stores. These are used to benchmark the end-
host performance in processing network packets. We enable
EtherLoadGen to load these applications when they are run
on the Test Node.

TestPMD is the unmodified testpmd DPDK application [28]
that implements packet RX and TX functionality with con-
figurable forwarding modes. For example, TestPMD can
receive packets from NIC in configurable batch sizes, swap
their source and destination MAC addresses (if macswap
forwarding mode is enabled), and then enqueue them in the TX
ring buffer for transmission. TestPMD is a shallow network
function, meaning that it only uses the L2 header (14 bytes
– 12 bytes for source and destination MAC addresses and 2
bytes for the frame length) to make the forwarding decision.

TouchFwd is a DPDK application that forwards received
packets at L2 layer while touching the entire payload. In
other words, TouchFwd extends TestPMD with an extra loop
that brings the payload to the core (subsequently to L2 and
L1 caches). TouchFwd can be used to model deep network
functions such as Deep Packet Inspection [29].

TouchDrop is a DPDK application that receives packets
from NIC, touches the entire header and payload, and drops
it. TouchDrop is a variation of TouchFwd that does not
implement the transmission phase. TouchDrop can be used
to evaluate the performance of end-host packet reception.

RXpTX is a configurable micro benchmark that implements
three phases in a run-to-completion DPDK application. RXpTX
receives a burst of packets from NIC, waits for a processing
interval, and transmits them over the network. Changing
processing time can model network functions with different
DMA to core use distances. RXpTX can be used to evaluate
the performance of various policies for Direct Cache Access
(DCA) [30].

MemcachedDPDK is a simple in-memory key-value store
implemented on top of DPDK and thus achieves higher
throughput and lower latency per request. We implement
packet trace collection from a real system using dpdk-pdump,
enabling their subsequent replay by the EtherLoadGen
model in gem5.

MemcachedKernel is an in-memory key-value store imple-
mented using the memcached [31] library and Linux POSIX
APIs. We have enabled EtherLoadGen to send GET and
SET requests to the memcached server, with configurable
sizes for keys and values. Currently, EtherLoadGen only
supports replaying memcached traces for UDP connections
because adding support for TCP would require implement-
ing a TCP state machine inside EtherLoadGen (which
is a future work). We run the memcached client on a real
system and collect UDP traces for the warm-up and run
phases of the application using tcpdump. EtherLoadGen
replays the tcpdump trace to emulate the client process
and load the memcached server running on the Test Node.
MemcachedKernel is not a DPDK application, we provide
it for performance comparison of DPDK and kernel network

4



stacks.

VI. METHODOLOGY

A. Experimental Setup

Table I. Simulated and real system configurations.

Parameters gem5 Ampere Altra

Core freq: 3GHz 3GHz
Superscalar 4 ways 4 ways
ROB/IQ entries 128/120 128/120
LQ/SQ entries 68/72 68/72
Int & FP physical registers 256 & 256 unknown
Branch predictor BiModeBP unknown
BTB entries 8192 6000
L1I/L1D (size, assoc) 64KB,4/64KB,4 64KB,4/64KB,4
L2 (size, assoc) 1MB,8 ways 1MB,8 ways
L1I/L1D/L2 latency 1/2/12 unknown
L1I/L1D/L2 MSHRs 2/6/16 unknown
DRAM/mem size DDR4 2400/64GB DDR4 3200/255GB
DCA/DDIO [32] default enabled disabled [33]
Network latency 200µs 200µs (ping RTT)
Network Bandwidth 100Gbps 100Gbps
DPDK Version 20.11.3 21.11.0
Operating system Linux kernel 5.15.79 Linux kernel 5.15.0
gem5 version v21.1.0.2 N/A

We use an Ampere Altra Max server equipped with an
ARM Neoverse N1 CPU and an NVIDIA ConnectX-6 NIC
to compare the performance and microarchitectural statistics
of our simulated Test Node with a real system setup. For the
Drive Node, we use a Dell server equipped with an Intel Xeon
Scalable Gold 6242 CPUs and an NVIDIA connectX-6 NIC
running Pktgen [34]. Table I shows the gem5 configuration we
used for the experiments that loosely models Ampere altra.

To build a kernel and disk image for gem5, we use the Buil-
droot tool [35]. The kernel needs to be compiled with support
for huge pages, and the kernel module uio_pci_generic.
Listing 1 shows the kernel configuration option needed to be
enabled in buildroot tool for DPDK.

1 CONFIG_HUGETLBFS=y
2 CONFIG_HUGETLB_PAGE=y
3 CONFIG_UIO=y
4 CONFIG_PCI=y
5 CONFIG_UIO_PCI_GENERIC=m

Listing 1. DPDK Kernel CONFIG options.

1 modprobe uio_pci_generic
2 dpdk-devbind.py -b uio_pci_generic 00:02.0
3 echo 2048 > /sys/kernel/mm/hugepages/hugepages-2048

kB/nr_hugepages
4 dpdk-testpmd -l 0-3 -n 4 -- --nb-cores=1 --forward-

mode=rxptx --proc_times=10

Listing 2. Bash script for setting up the environment for running
DPDK applications on gem5.

Listing 2 shows the bash script for enabling the Userspace
IO (UIO) driver (line 1), binding it to a NIC port (line
2), allocating huge pages, and lastly, starting the RXpTX
application. As shown in the listing, the procedure for running
DPDK applications on gem5 is identical to running DPDK
apps on bare metal hardware.

For gem5 simulations, we sufficiently warm up the Test
Node’s microarchitectural states (e.g., caches, and BTB) prior

to collecting simulation statistics. We set the warm-up period
to 200 ms, as this experimentally shows a stable simulation
environment.

To demonstrate the effectiveness of the DPDK software
stack on gem5, we executed the applications listed in
Sec.V with varying packet sizes and configurations. For
MemcachedKernel and MemcachedDPDK, our Mem-
cached client implementation generates key and value sizes
using a Zipfian distribution with control parameters for key
length/value length, specifically: min = 10, max = 100, and
skew = 0.5. The payload is encapsulated in a Memcached
UDP header, a request header containing metadata, and an
Ethernet II frame header. Since our focus in this work is on
the performance of the network software stack, we do not
populate the Memcached server with a large number of key-
value pairs. We warm up the Memcached server with 5000
keys and configure EtherLoadGen to load the server with
10,000 SET and GET requests during the simulation phase.
We set the ratio of GET/SET to 80%. To keep track of per-
request latency, the hardware EtherLoadGen model tracks
a map of outstanding requests using the request ID field in the
Memcached request packet.

B. Collection of Real System Metrics

Considering the inherent noise in real system experiments,
ensuring result accuracy becomes crucial. In each experiment,
we conduct a minimum of seven samples for each metric.
This quantity was determined through initial experiments that
demonstrated its sufficiency in keeping the margin of error
within 5% of the average result. The reported result is the
average of these samples.

VII. RESULTS

In this section, we present the performance and microar-
chitectural statistics of running the applications discussed in
Sec.V on gem5 and the real system setup. We evaluated all the
benchmarks in the results section except for TouchDrop be-
cause we could not define the maximum sustainable bandwidth
(MSB) metric that we used for evaluating other benchmarks, as
the drop rate of TouchDrop is always 100%. Our primary
goal is to address the following questions: How accurately
does gem5 model the network performance of a state-of-the-art
ARM server? What are the sources of errors in gem5 network
modeling? How does the sensitivity of a userspace network
stack differ from that of a kernel network stack in response to
micro-architectural configurations? Additionally, what are the
use cases for enabling userspace networking in gem5?

A. Analysis of Packet Drops

To understand and analyze the experimental results, it is
important to develop a good understanding of the life cycle
of a packet in a run-to-completion DPDK application. The
diagram in Fig.3 illustrates the life cycle of a packet in a
run-to-completion DPDK application. As soon as a packet is
received, the NIC enqueues it in an on-chip SRAM buffer
referred to as RX FIFO. The DMA engine in the NIC transfers

5



RX Ring
Buffer

TX Ring
Buffer

Packet
Processing

Core

DMA Write

DMA  Read

RX pkt

TX pkt

Tail
Pointer

Head
Pointer

Head
Pointer

Tail
Pointer

NIC TX FIFO

NIC RX FIFO

Fig. 3. Packet life cycle in a run-to-completion DPDK application.

RX packets from the RX FIFO to an RX Ring buffer. The
NIC caches several RX Ring descriptors and replenishes the
descriptor cache when the number of cached descriptors drops
below a configurable threshold. If the DMA engine cannot
replenish the descriptor cache and deplete NIC RX FIFO, then
the NIC RX FIFO becomes full, and we experience packet
drops. We identify such packet drops as DmaDrops.

Once packets are in the RX Ring Buffer, the DPDK’s polling
mode driver (PMD) detects them and reads them to the core for
processing. If the core is slow in processing the RX packets,
then the RX Ring Buffer becomes full, which halts the NIC
DMA engine, and soon the NIC RX FIFO becomes full,
and we experience packet drops. We identify such drops as
CoreDrops.

Lastly, once the core completes the packet processing, the
application often requires sending a response back to the
sending node. That includes setting the TX descriptor pointer
in the TX Ring Buffer to point to the transmitting data. We
consider memory copies from application buffers to DMA
buffers to be part of the packet processing on the core. After
the TX descriptors are set, DPDK configures the DMA engine
of the NIC to read the enqueued packets from the TX Ring
Buffer and transmit them over the Ethernet wire. If DMA
read phase from TX Ring Buffer cannot keep up with the
rate at which the core pushes packets in, then TX Ring Buffer
becomes full, which in turn stalls the core from processing
incoming packets. Soon after, the RX Ring Buffer becomes
full, which eventually results in packet drops at the NIC. We
identify such packet drops as TxDrops.

Figure 4 shows the finite-state machine (FSM) we designed
to classify different types of network packet drops in gem5.
A three-bit number represents each state. If the leftmost bit is
1, NIC RX FIFO is full, and we drop packets. If the middle
bit is 1, the RX Ring Buffer is full; if the right-most bit is 1,
the TX Ring Buffer is full. We transition between states on
packet reception and make transition decisions based on the
state of RX FIFO, RX Ring Buffer, and TX Ring buffers. The
initial state is 0, 0, 0, indicating a balanced system where none
of the buffers are full. The FSM tracks the previous state of
buffers and increments the DmaDrop, CoreDrop, and TxDrop
counters.

In Fig.5, we present a breakdown of packet drops during
the execution of MemcachedKernel, MemcachedDPDK,
RXpTX, TouchFwd, and TestPMD in gem5. We set the

Proper Intermediate
State

0,1,0

0,0,1

0,1,1

RxRing 0,0,01,1,0

1,1,1

1,0,x
TxRing

TxRing

RxFifo

RxFifo

Rx
Fi
fo

RxFifo

RxFifo

RxFifo

RxFifo

R
x
R
i
n
g

RxFiFo 0,0,1

Proper Intermediate
State

Proper Intermediate
State

T
x
R
i
n
g

CoreDrop++

DmaDrop++

TxDrop++

RxFiFo

RxFiFo

Fig. 4. FSM for identifying the cause of a network packet drop.
Each state is identified by a three-bit binary number that encodes
the following events: {NIC RX FIFO Full, RX Ring Buffer Full, TX
Ring Buffer Full}. The blue-colored states are the intermediate
states that one or both of the Ring buffers are full but there is no
packet drop. The gray-colored states are the states in which we
experience packet drops. The transitions between states take place
at each packet RX. When at a gray-colored state and RxFifo is no
longer full, then on the next RX packet, we transition to a proper
intermediate state. “x” is “don’t care.”

network bandwidth to the knee of the bandwidth vs. packet
drop rate curve, where we start seeing packet drops.

-40% -20% 0% 20% 40% 60% 80% 100%

TestPMD-64B
TestPMD-256B

TestPMD-1518B
TouchFwd-64B

TouchFwd-256B
TouchFwd-1518B
TouchDrop-64B

TouchDrop-256B
TouchDrop-1518B

RXpTX-10𝜇s(2Gbps)
RXpTX-100ns(28Gbps)
RXpTX-10ns(33Gbps)

MemcachedDPDK
MemcachedKernel

CoreDrop DmaDrop TxDrop

Fig. 5. The breakdown of packet drops when running TestPMD,
TouchFwd, RXpTX, MemcachedDPDK, and MemcachedKernel at a
high packet rate.

For TestPMD, when increasing the packet size, the drops
shift from 85.7% CoreDrops with 64B packets to 100%
DmaDrops with 1518B packets as the core is not the bot-
tleneck for large packets. This shows that the DMA engine
is the bottleneck when running TestPMD with large packets
in gem5. For TouchFwd, increasing the packet size actually
increases CPU utilization as the CPU should load the received
packets from the memory into the register file before the
packet can be forwarded. Therefore, most of the TouchFwd
drops are CoreDrops. We run TouchDrop at the same rate
at which we run TouchFwd. As shown in Fig.5, we see a

6



similar trend to TouchFwd with CoreDrops dominating at
93%, 97.9%, and 99.5% for 64B, 256B, and 1518B packets,
respectively. Regarding RXpTX, we expect that increasing
the processing time per packet on the CPU leads to more
CoreDrops. This is confirmed in Fig.5; when we increase the
processing time of RXpTX, the drops shift from DmaDrops to
CoreDrops. The majority of drops in Memcached applications
are CoreDrops.

0.0%

3.0%

6.0%

9.0%

12.0%

15.0%

0 10 20 30 40 50 60 70 80

Dr
op

ra
te

Network Throughput (Gbps)

64-altra 128-altra 256-altra 512-altra 1024-altra 1518-altra
64-gem5 128-gem5 256-gem5 512-gem5 1024-gem5 1518-gem5

Fig. 6. Comparing the bandwidth vs. drop rate for TestPMD on gem5
and real system (altra configuration). The number in the legend
show the packet size in bytes. The load generator software client
cannot send enough load to altra with small packets.

B. Real-System vs. gem5

Figure 6 plots the bandwidth versus drop rate when running
TestPMD with various packet sizes on both the real system
(altra configuration) and gem5. We measure drop rates at
the Pktgen application in altra and use EtherLoadGen in
gem5. In gem5 simulations, the increase in packet drops can
be solely attributed to TestPMD not being able to forward
the packets quickly enough, as we employ a hardware load
generator model. However, in real-system scenarios, drops can
also occur due to the client load generator potentially acting
as a bottleneck.

The first thing that stands out in Fig.6 is that the soft-
ware load generator for altra becomes a bottleneck before
TestPMD starts dropping packets. The load generator client
is unable to load the DPDK server beyond 8Gbps and 16Gbps
for 64B and 128B packets, respectively. gem5 also achieves
slightly higher throughput and lower drop rate for packet
sizes up to 512B. This clearly demonstrates the advantage of
using a hardware load generator to properly load the server
under test and eliminate any inaccuracies introduced into the
measurements by the load generator application.

As shown in Fig.6, gem5 follows a very similar trend
compared to altra for packet sizes up to 256B. Observing
the graph, gem5’s bandwidth saturates at around 53Gbps
with 512B packet sizes, and increasing the packet size does
not significantly reduce packet drops after reaching 56Gbps
network bandwidth for 1518B packet sizes. This behavior is
expected and suggests that TestPMD is core-bound for small
packets. For packets larger than 512B, gem5 encounters a
data movement bottleneck, either in the I/O bus (that loosely
models a PCIe bus between the NIC and CPU) or in the
memory subsystem. It is worth noting that by default, DCA is

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

0 2 4 6 8 10 12 14

Dr
op

ra
te

Network Throughput (Gbps)

64-altra 128-altra 256-altra 512-altra 1024-altra 1518-altra
64-gem5 128-gem5 256-gem5 512-gem5 1024-gem5 1518-gem5

Fig. 7. Comparing the bandwidth vs. drop rate for TouchFwd on
gem5 and real system (altra configuration). The number in the
legend show the packet size in bytes.

0.0%

3.0%

6.0%

9.0%

12.0%

0 10 20 30 40 50 60 70 80

Dr
op

ra
te

Network Throughput (Gbps)

64-altra 128-altra 256-altra 512-altra 1024-altra 1518-altra
64-gem5 128-gem5 256-gem5 512-gem5 1024-gem5 1518-gem5

Fig. 8. Comparing the bandwidth vs. drop rate for RXpTX with
processing time set to 10ns on gem5 and real system (altra
configuration). The number in the legend shows the packet size
in bytes.

enabled for gem5 (See Table I). If we disable DCA in gem5,
the curve for gem5 in Fig.6 would shift to the left.

Figure 7 shows the bandwidth versus drop rate for
TouchFwd. As expected, a server running TouchFwd ex-
periences high drop rates at even lower bandwidth levels. One
key takeaway from Fig.7 is the importance of minimizing
data movement in the network software stack, which nega-
tively affects network throughput. Additionally, we observe
slightly lower throughput for gem5 across all packet sizes
compared to altra. This difference is attributed to the core-
bound nature of TouchFwd, which demonstrates the superior
performance of a real Neoverse N1 core compared to its
simulated counterpart in gem5. This observation underscores
the impact of the underlying processor architecture on the per-
formance of network-bound applications. Nevertheless, similar
to TestPMD, we observe a strong correlation between altra
and gem5 when running TouchFwd.

Figure 8 and Figure 9 illustrate the bandwidth versus drop
rate for two RXpTX configurations, detailing the trends for
both short CPU packet processing times (10ns) and long
processing times (1µs), respectively. As expected, with 10ns
processing time, RXpTX mirrors TestPMD’s behavior in both
altra and gem5 across all packet sizes. With 1µs processing
time, RXpTX’s performance aligns with that of TouchFwd for
small packets. As depicted in Fig.9, the maximum sustainable
bandwidth (MSB) drops to 2Gbps, 5Gbps, and 10Gbps for
64B, 128B, and 256B packets in gem5, whereas in altra,
MSB drops to 3Gbps, 8Gbps, and 11Gbps for similar packet

7



0.0%

3.0%

6.0%

9.0%

12.0%

15.0%

18.0%

0 10 20 30 40 50 60 70 80

Dr
op

ra
te

Network Throughput (Gbps)

64-altra 128-altra 256-altra 512-altra 1024-altra 1518-altra
64-gem5 128-gem5 256-gem5 512-gem5 1024-gem5 1518-gem5

Fig. 9. Comparing the bandwidth vs. drop rate for RXpTX with
processing time set to 1µs on gem5 and real system (altra
configuration). The number in the legend show the packet size in
bytes.

0

12

24

36

48

60

12
8B

25
6B

51
2B

10
24

B

15
18

B

16KiB-L1
128KiB-L1
256KiB-L1
1MiB-L1

MS
B 

(G
bp

s)

(a) TestPMD

0

2

4

6

8

10

12
8B

25
6B

51
2B

10
24
B

15
18
B

MS
B 

(G
bp

s)

(b) TouchFwd

0

2

4

6

8

10

12
8B

25
6B

51
2B

10
24
B

15
18
B

MS
B 

(G
bp

s)

(c) iperf

0

10

20

30

40

50

60

12
8B

25
6B

51
2B

10
24
B

15
18
B

MS
B 

(G
bp

s)

(d) RXpTX-10ns

0

10

20

30

40

50

60

12
8B

25
6B

51
2B

10
24
B

15
18
B

MS
B 

(G
bp

s)

(e) RXpTX-1µs

0

200

400

600

800

16
Ki

B

12
8K

iB

25
6K

iB

1M
iB

MemcachedDPDK
MemcachedKernel

Th
ou

sa
nd

 R
PS

(f) Memcached

Fig. 10. Sensitivity of maximum sustainable bandwidth (MSB) and
Request Per Second (RPS) to the L1 Cache sizes when running
TestPMD, TouchFwd, iperf, RXpTX (with 10ns and 1µs processing
times), MemcachedDPDK, and MemcachedKernel on gem5.

sizes. Larger packets do not suffer significant bandwidth
degradation due to the higher CPU processing times, as their
cost is amortized over many received packets. Once again, a
strong correlation between gem5 and altra is observed.

C. gem5 Bandwidth Sensitivity

In this section, we analyze the sensitivity of network
bandwidth to various microarchitectural configurations. Ad-
ditionally, we evaluate the performance of the DPDK im-
plementation in gem5 compared to the traditional Linux
kernel network stack. To achieve this, we run TestPMD,
TouchFwd, iperf, RXpTX (with 10ns and 1µs process-
ing time), MemcachedDPDK, and MemcachedKernel on
gem5 and plot the maximum sustainable bandwidth (MSB)
or requests per second versus packet sizes while varying
different microarchitectural configurations. We define MSB
as the network bandwidth at the point on the bandwidth
versus packet drop graph where the drop rate exceeds 1%.
We use iperf as a representative application for comparing

0

12

24

36

48

60

12
8B

25
6B

51
2B

10
24
B

15
18
B

256KiB-L2
1MiB-L2
4MiB-L2
8MiB-L2

MS
B 

(G
bp

s)

(a) TestPMD

0

2

4

6

8

10

12
8B

25
6B

51
2B

10
24
B

15
18
B

MS
B 

(G
bp

s)

(b) TouchFwd

0

2

4

6

8

12
8B

25
6B

51
2B

10
24

B

15
18

B

MS
B 

(G
bp

s)

(c) iperf

0

10

20

30

40

50

60

12
8B

25
6B

51
2B

10
24

B

15
18

B

MS
B 

(G
bp

s)

(d) RXpTX-10ns

0

10

20

30

40

50

60

12
8B

25
6B

51
2B

10
24

B

15
18

B

MS
B 

(G
bp

s)

(e) RXpTX-1µs

0

200

400

600

800

25
6K

iB

1M
iB

4M
iB

8M
iB

MemcachedDPDK
MemcachedKernel

Th
ou

sa
nd

 R
PS

(f) Memcached

Fig. 11. Sensitivity of maximum sustainable bandwidth (MSB) and
Request Per Second (RPS) to the L2 Cache sizes when running
TestPMD, TouchFwd, iperf, RXpTX (with 10ns and 1µs processing
times), MemcachedDPDK, and MemcachedKernel on gem5.

0

12

24

36

48

60

12
8B

25
6B

51
2B

10
24

B

15
18

B

4MiB-LLC
16MiB-LLC
32MiB-LLC
64MiB-LLC

MS
B 

(G
bp

s)

(a) TestPMD

0

2

4

6

8

10

12
8B

25
6B

51
2B

10
24

B

15
18

B

MS
B 

(G
bp

s)
(b) TouchFwd

0

2

4

6

8

12
8B

25
6B

51
2B

10
24

B

15
18

B

MS
B 

(G
bp

s)

(c) iperf

0

10

20

30

40

50

60

12
8B

25
6B

51
2B

10
24

B

15
18

B

MS
B 

(G
bp

s)

(d) RXpTX-10ns

0

10

20

30

40

50

60
12

8B

25
6B

51
2B

10
24

B

15
18

B

MS
B 

(G
bp

s)

(e) RXpTX-1µs

0

200

400

600

800

4M
iB

16
Mi

B

32
Mi

B

64
Mi

B

MemcachedDPDK
MemcachedKernel

Th
ou

sa
nd

 R
PS

(f) Memcached

Fig. 12. Sensitivity of maximum sustainable bandwidth (MSB) and
Request Per Second (RPS) to L3 Cache (LLC) sizes when running
TestPMD, TouchFwd, iperf, RXpTX (with 10ns and 1µs processing
times), MemcachedDPDK, and MemcachedKernel on gem5.

DPDK applications to an application that uses Linux kernel
networking.

Sensitivity to Cache Size. Figure 10 shows the impact of
the L1 cache sizes (both instruction and data) on the MSB.
We observe that DPDK applications (TestPMD, TouchFwd,
RXpTX-10ns, RXpTX-1µs) are not sensitive to L1 cache size
across different packet sizes. However, iperf’s throughput
is sensitive to L1 size for packets larger than 256B. iperf
throughput with 1518B packets increases by 15.8% when
increasing the L1 size from 16KiB to 128KiB. Because L2 is
inclusive, we increase L1 size until 1MiB, which is the default

8



L2 size. Both MemcachedDPDK and MemcachedKernel
show sensitivity to the L1 cache up to 1MiB.

As shown in Fig.11 decreasing L2 size to 256KiB results
in a performance degradation for TestPMD and RXpTX-
10ns. This suggests that DPDK working set size is larger
than 256KiB and smaller than 1MiB. On the other hand,
increasing L2 size from 1MiB to 4MiB still improves iperf
performance, suggesting that Kernel stack working set size is
larger than 1MiB. Also, we observe that MemcachedDPDK
and MemcachedKernel throughput do not increase beyond
4MiB and 1MiB L2 sizes, respectively. This demonstrates
the importance of the network stack on the sensitivity of
microarchitectural configuration to performance.

In Fig.12, we do not observe any sensitivity between LLC
size and the performance of the applications, even when
sweeping LLC size up to 64MiB. This suggests low LLC
contention when running a single network application. Larger
LLCs can be beneficial for systems that co-run multiple LLC-
intensive applications.

In summary, Fig.10, Fig.11 and Fig.12 illustrate that using a
kernel-based network stack versus a userspace network stack
exhibits different sensitivities to cache hierarchy configura-
tions. This discrepancy arises due to variations in the working
set sizes of DPDK and the Linux kernel software stack, cou-
pled with diverse optimizations such as zero-copy networking,
software prefetching, polling, the use of huge pages, and core
pinning in the userspace network stack. These optimizations
mask the anticipated performance gains associated with larger
caches.

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

10ns 100ns 300ns 500ns 700ns 1𝜇s 3𝜇s 5𝜇s 10𝜇s

LL
C 

Mi
ss

 R
at

e 
(%

)

Dr
op

Ra
te

 (
%)

Number of Processing Time

64B-droprate 256B-droprate 1518B-droprate
64B-missrate 256B-missrate 1518-missrate

Fig. 13. Effect of the performance of various policies for DCA
using 64B, 256B, and 1518B packets when running RXpTX with
processing time set to 10ns, 100ns, 300ns, 500ns, 700ns, 1µs, 3µs,
5µs 10µs with ring buffer size set to 4096.

Sensitivity to DCA and Core Frequency. Figure 13 shows
the effect of Direct Cache Access (DCA) using the RXpTX
benchmark. We set the number of ring buffer entries to 4096
and fix the LLC size at 1MiB, while steadily increasing the
number of CPU packet processing times in the application.
The packet rate for each packet size is set to the value at their
respective 10ns MSB. DCA uses 4 out of 16 ways of LLC for
network data. This means that a maximum of 256KiB of LLC
space is assigned to network data.

As we increase the number of processing time, beyond a

0

12

24

36

48

60

12
8B

25
6B

51
2B

10
24

B

15
18

B

MS
B 

(G
bp

s)

ddio-disabled
ddio-enabled

(a) TestPMD

0

2

4

6

8

10

12
8B

25
6B

51
2B

10
24
B

15
18
B

(b) TouchFwd

0

2

4

6

8

12
8B

25
6B

51
2B

10
24

B

15
18

B

(c) iperf

0

12

24

36

48

60

12
8B

25
6B

51
2B

10
24

B

15
18

B

(d) RXpTX-10ns

0

12

24

36

48

60

12
8B

25
6B

51
2B

10
24
B

15
18
B

(e) RXpTX-1µs

0

200

400

600

800

Kernel DPDK

Th
ou

sa
nd

 R
PS

(f) Memcached

Fig. 14. Effect of Direct Cache Access (DCA) on Maximum Sustain-
able Bandwidth (MSB) when running TestPMD TouchFwd, iperf,
RXpTX (with 10ns & 1µs processing time), MemcachedDPDK, &
MemcachedKernel on gem5.

certain threshold, the core’s packet processing rate begins to
lag behind the RX rate from the network, and the RX Ring
buffer starts to fill up until it becomes full, leading to packet
drops. As shown in Fig.13, the processing time thresholds at
which we start to experience packet drops for 64B, 256B,
and 1518B packets are 300ns, 100ns, and 700ns, respectively.
When the RX Ring begins to fill up, we also observe an
increase in the LLC miss rate. This occurs because the 256KiB
DCA space cannot accommodate the entire RX Ring buffer
data, leading to DMA leaks [36].

Figure 14 shows the sensitivity of network bandwidth to
DCA. As expected, regardless of the application running or
the packet sizes, DCA enables higher throughput due to the
NIC’s ability to DMA write/read packet data directly to/from
the core’s LLC. TestPMD achieves throughput increases of
54.5%, 88.9%, 96.3%, 57.1%, and 14.3% for 128B, 256B,
512B, 1024B, and 1518B packets, respectively, when DCA
is enabled. TouchFwd sees throughput increases of 33.3%,
66.7%, 20.0%, 16.7%, and 14.3% for the same packet sizes.
Similarly, RXpTX-10ns, RXpTX-1µs, and MemcachedDPDK
experience throughput gains of up to 92.6%, 25%, and
7.2%, respectively. Finally, iperf (1518B packets) and
MemcachedKernel observe a maximum throughput in-
crease of 13.3% and 8.6%, respectively, when DCA is en-
abled. These results show that DCA provides higher relative
performance improvement for DPDK applications compared to
kernel-based networking applications. This is because DPDK
implements zerocopy networking and minimizes memory copy
operations which is the dominant end-to-end networking over-
head in current kernel-based network stacks [37], [38].

Figure 15 depicts the sensitivity of network bandwidth to
core frequency. MSB improves with higher core frequency
when the application is core-bound. As the packet size for
shallow network functions (TestPMD and RXpTX) increases,
they transition from being core-bound to more IO-bound, and

9



0

12

24

36

48

60

12
8B

25
6B

51
2B

10
24
B

15
18
B

MS
B 

(G
bp

s)
1GHz
2GHz
4GHz

(a) TestPMD

0

2

4

6

8

10

12

12
8B

25
6B

51
2B

10
24
B

15
18
B

(b) TouchFwd

0

2

4

6

8

10

12
8B

25
6B

51
2B

10
24

B

15
18

B

(c) iperf

0

12

24

36

48

60

12
8B

25
6B

51
2B

10
24

B

15
18

B

(d) RXpTX-10ns

0

12

24

36

48

60

12
8B

25
6B

51
2B

10
24

B

15
18

B

(e) RXpTX-1µs

0

150

300

450

600

750

900

Kernel DPDK

Th
ou

sa
nd

 R
PS

(f) Memcached

Fig. 15. Effect of Core Frequency on Maximum Sustainable Bandwidth (MSB) when running TestPMD TouchFwd, iperf, RXpTX (with 10ns
& 1µs processing time), MemcachedDPDK, & MemcachedKernel on gem5.

0

12

24

36

48

60

128B 1518B

MS
B 

(G
bp

s)

OoO Core
In-Order Core

(a) TestPMD

0

2

4

6

8

10

128B 1518B

(b) TouchFwd

0

2

4

6

8

128B 1518B

(c) iperf

0

12

24

36

48

60

128B 1518B

(d) RXpTX-10ns

0

12

24

36

48

60

128B 1518B

(e) RXpTX-1µs

0

200

400

600

800

Kernel DPDK

Th
ou

sa
nd

 R
PS

(f) Memcached

Fig. 16. Sensitivity of Maximum Sustainable Bandwidth (MSB) to
CPU microarchitecture when running TestPMD TouchFwd, iperf,
RXpTX (with 10ns & 1µs processing times), MemcachedDPDK, &
MemcachedKernel on gem5.

thus the core’s frequency has less impact on their MSB as
their packet size increases. TouchFwd, being a deep network
function, benefits from higher core frequency even at large
packet sizes because the load on the core increases with the
packet size. Interestingly, iperf exhibits similar behavior to
a DPDK deep network function, and its performance, even for
larger packets, improves with higher frequency. The MSB of
both MemcachedDPDK and MemcachedKernel improves
with higher frequency, which is expected as the memcached
application is core-bound for the small dataset size that we
run.

Sensitivity of Core Microarchitecture. Next, we explore
the sensitivity of TestPMD, TouchFwd, iperf, RXpTX
(with 10ns and 1us processing times), MemcachedDPDK, and
MemcachedKernel to core microarchitecture parameters.
Fig.16 shows the difference in MSB when comparing out-of-
order and in-order cores . As demonstrated, since TestPMD
and RXpTX-10ns at 1518B packet size are not core-bound,
their MSB is insensitive to the core microarchitecture. We
observe up to an 8×, 93.2%, 66.7%, 91.8%, and 45.3% in-
crease in MSB or RPS for TouchFwd, iperf, RXpTX-10us,
MemcachedKernel, and MemcachedDPDK, respectively,

when using an out-of-order core.
Figure 17 shows the sensitivity of network applications to

the number of memory channels (CH) and ROB entries in the
out-of-order pipeline. We disable DCA for the memory chan-
nel sensitivity analysis (Fig.17a, Fig.17b, and Fig.17c) to en-
sure DRAM bandwidth utilization is apparent. As illustrated,
increasing the number of memory channels for TestPMD with
1518B packets initially improves the MSB, but a degradation
is observed after 8 channels. The decrease in MSB from 8 to
16 memory channels results from reduced row buffer locality.
MemcachedKernel sees an improvement of 8.6% moving
from 1 to 4 channels, with MemcachedDPDK showing no
sensitivity to the number of channels. TouchFwd’s MSB with
1518B packets increases by 33.3% when increasing the ROB
size from 32 to 128. Similarly, RXpTX-10ns demonstrates a
maximum MSB gain of 30.8% for 128B packets when moving
from 32 to 256 ROB entries. These improvements are due
to having a long chain of dependent load and store in the
pipeline and improvements in memory-level parallelism with
larger ROB sizes. We found that ROB sizes of 32 and 128
are sufficient to sustain the performance of MemcachedDPDK
and MemcachedKernel, respectively.

Benchmarking with Real Applications. Figure 18 plots
the throughput vs. packet drop rate for MemcachedDPDK
and MemcachedKernel. As shown, MemcachedDPDK and
MemcachedKernel achieve 709kRPS and 218kRPS before
their drop rate shoot up, respectively.

Figure 19 illustrates the sensitivity of Memcached response
latency to core clock frequency. EtherLoadGen timestamps
a request packet and measures round-trip latency without
affecting application’s performance. The latency values pre-
sented in Fig.19 are normalized to a core clocked at 3GHz.
As shown, we see that for both MemcachedKernel and
MemcachedDPDK the response time at high rates signifi-
cantly increases when reducing the frequency of the core.
Note that as soon as packet drops begin, the latency numbers
reported by EtherLoadGen often decrease because the
dropped packets no longer contribute to the latency sampling.

Simulation Speedup with EtherLoadGen. Here, we
evaluate the performance benefit of using our Hardware
EtherLoadGen model to replay packet traces for bench-
marks explained in Sec.V compared with using gem5 in

10



0

12

24

36

48

60

128B 1518B

MS
B 

(G
bp

s)
1
4
8
16

(a) TestPMD [CH]

0

2

4

6

8

128B 1518B

(b) TouchFwd [CH]

0

2

4

6

8

128B 1518B

(c) iperf [CH]

0

12

24

36

48

60

128B 1518B

MS
B 

(G
bp

s)

32
128
256
512

(d) TestPMD [ROB]

0

2

4

6

8

10

128B 1518B

(e) TouchFwd [ROB]

0

2

4

6

8

128B 1518B

(f) iperf [ROB]

Fig. 17. Sensitivity of packet Maximum Sustainable Bandwdith (MSB) to the number of DRAM memory channels (CH), and number of
reorder buffer entries (ROB) in the OoO CPU pipeline when running TestPMD, TouchFwd, and iperf on gem5.

0%

3%

6%

9%

12%

0 100 200 300 400 500 600 700 800

Dr
op

Ra
te

 (
%)

Thousand Request Per Second

memcachedKernel memcachedDpdk

Fig. 18. Comparing throughput vs drop rate of MemcachedKernel
and MemcachedDPDK running in gem5.

0%

20%

40%

60%

80%

100%

0

1

2

3

4

5

10 80 120 200

Dr
op

Ra
te

 (
%)

No
rm

al
iz

ed
 L

at
en

cy

Thousand Request Per Second

1GHz-NL
2GHz-NL
3GHz-NL
4GHz-NL
1GHz-DR
2GHz-DR
3GHz-DR
4GHz-DR

29.66 28.77 8.986

(a) MemcachedKernel

0%

20%

40%

60%

80%

100%

0

1

2

3

4

5

200 400 600 700

Dr
op

Ra
te

 (
%)

No
rm

al
iz

ed
 L

at
en

cy

Thousand Request Per Second

13.97

(b) MemcachedDPDK

Fig. 19. Sensitivity of MemcachedKernel and MemcachedDPDK re-
sponse time and drop rate to core’s clock frequency.

dual mode and run a software load generator. Here, we run
memcached using a functional CPU during the warmup phase

0%

10%

20%

30%

40%

1GHz 2GHz 3GHz 4GHz

Lo
ad

Ge
n 

Sp
ee

du
p 

(K
er

ne
l) In-Order

Out-of-Order

(a) kernel speedup

0%

20%

40%

60%

80%

1GHz 2GHz 3GHz 4GHz

Lo
ad

Ge
n 

Sp
ee

du
p 

(D
PD

K)

(b) DPDK speedup

Fig. 20. Simulation Time speedup when using EtherLoadGen
compared to dual mode running MemcachedKernel and
MemcachedDPDK.

and more detailed in-order and out-of-order core in the request
phase. Fig.20 shows that EtherLoadGen achieves up to a
70% speedup in simulation over dual mode gem5.

VIII. CONCLUSION

Identifying the current gap in gem5’s capability to simulate
state-of-the-art userspace network software stacks, we en-
hanced gem5 to simulate DPDK-based network applications.
Additionally, we integrated a hardware load generator model to
simplify and accelerate network simulation. We further devel-
oped a suite of networking microbenchmarks to rigorously test
the networking stack. Utilizing our extensions, we thoroughly
characterized packet processing in the DPDK userspace net-
working stack, achieving speeds exceeding 50 Gbps per core.
We compared these results with those from a real ARM
server. Lastly, we contrasted the sensitivities of Linux kernel
networking and DPDK to various microarchitectural settings,
highlighting the importance of userspace network modeling in
gem5. Our extensions are open-source and available at https:
//github.com/architecture-research-group/gem5-dpdk-setup.

ACKNOWLEDGMENTS

This work was supported in part by grants from Na-
tional Science Foundation (CCF-2239020, OAC-2311891),
and ACE, one of the seven centers in JUMP 2.0, a Semi-
conductor Research Corporation (SRC) program sponsored
by DARPA. We thank NVIDIA Academic Hardware Grant
Program and Ampere Computing for their hardware donations.

11

https://github.com/architecture-research-group/gem5-dpdk-setup
https://github.com/architecture-research-group/gem5-dpdk-setup


REFERENCES

[1] M. Wade, E. Anderson, S. Ardalan, et al., “TeraPHY:
A chiplet technology for low-power, high-bandwidth
in-package optical I/O,” IEEE Micro, vol. 40, no. 2,
pp. 63–71, 2020.

[2] Q. Cai, M. Vuppalapati, J. Hwang, C. Kozyrakis,
and R. Agarwal, “Towards s tail latency and terabit
ethernet: Disaggregating the host network stack,” in
Proceedings of the ACM SIGCOMM 2022 Confer-
ence, ser. SIGCOMM ’22, Amsterdam, Netherlands:
Association for Computing Machinery, 2022, pp. 767–
779, ISBN: 9781450394208. DOI: 10 . 1145 / 3544216 .
3544230. [Online]. Available: https://doi.org/10.1145/
3544216.3544230.

[3] J. Cabal, P. Benáček, L. Kekely, M. Kekely, V. Puš,
and J. Kořenek, “Configurable fpga packet parser for
terabit networks with guaranteed wire-speed through-
put,” in Proceedings of the 2018 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Ar-
rays, ser. FPGA ’18, Monterey, CALIFORNIA, USA:
Association for Computing Machinery, 2018, pp. 249–
258, ISBN: 9781450356145. DOI: 10 . 1145 / 3174243 .
3174250. [Online]. Available: https://doi.org/10.1145/
3174243.3174250.

[4] E. Y. Jeong, S. Woo, M. Jamshed, et al., “Mtcp:
A highly scalable user-level tcp stack for multicore
systems,” ser. NSDI’14, Seattle, WA: USENIX Asso-
ciation, 2014, pp. 489–502, ISBN: 9781931971096.

[5] G. Prekas, M. Kogias, and E. Bugnion, “Zygos: Achiev-
ing low tail latency for microsecond-scale networked
tasks,” in Proceedings of the 26th Symposium on Op-
erating Systems Principles, ser. SOSP ’17, Shanghai,
China: Association for Computing Machinery, 2017,
pp. 325–341, ISBN: 9781450350853. DOI: 10 . 1145 /
3132747.3132780. [Online]. Available: https://doi.org/
10.1145/3132747.3132780.

[6] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C.
Kozyrakis, and E. Bugnion, “IX: A protected data-
plane operating system for high throughput and low
latency,” in Proceedings of the 11th USENIX Confer-
ence on Operating Systems Design and Implementation,
ser. OSDI’14, Broomfield, CO: USENIX Association,
2014, pp. 49–65, ISBN: 9781931971164.

[7] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and
H. Balakrishnan, “Shenango: Achieving high CPU ef-
ficiency for latency-sensitive datacenter workloads,” in
16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), Boston, MA: USENIX
Association, Feb. 2019, pp. 361–378, ISBN: 978-1-
931971-49-2. [Online]. Available: https://www.usenix.
org/conference/nsdi19/presentation/ousterhout.

[8] M. Marty, M. de Kruijf, J. Adriaens, et al., “Snap:
A microkernel approach to host networking,” in In
ACM SIGOPS 27th Symposium on Operating Systems
Principles, New York, NY, USA, 2019.

[9] L. Rizzo and M. Landi, “Netmap: Memory mapped
access to network devices,” SIGCOMM Comput. Com-
mun. Rev., vol. 41, no. 4, pp. 422–423, Aug. 2011, ISSN:
0146-4833. DOI: 10.1145/2043164.2018500. [Online].
Available: https://doi.org/10.1145/2043164.2018500.

[10] Intel®, DPDK Intel NIC Performance Report Release
17.08, http : / / fast . dpdk . org / doc / perf / DPDK 17 08
Intel NIC performance report.pdf.

[11] N. Binkert, B. Beckmann, G. Black, et al., “The
gem5 simulator,” ACM SIGARCH computer architec-
ture news, vol. 39, no. 2, pp. 1–7, 2011.

[12] J. Lowe-Power, A. M. Ahmad, A. Akram, et al.,
“The gem5 simulator: Version 20.0+,” arXiv preprint
arXiv:2007.03152, 2020.

[13] S. Karandikar, H. Mao, D. Kim, et al., “FireSim:
FPGA-accelerated cycle-exact scale-out system simu-
lation in the public cloud,” in 2018 ACM/IEEE 45th
Annual International Symposium on Computer Archi-
tecture (ISCA), 2018, pp. 29–42. DOI: 10.1109/ISCA.
2018.00014.

[14] S. Agarwal, R. Agarwal, B. Montazeri, et al., “Un-
derstanding host interconnect congestion,” in Proceed-
ings of the 21st ACM Workshop on Hot Topics in
Networks, ser. HotNets ’22, Austin, Texas: Association
for Computing Machinery, 2022, pp. 198–204, ISBN:
9781450398992. DOI: 10 . 1145 / 3563766 . 3564110.
[Online]. Available: https://doi.org/10.1145/3563766.
3564110.

[15] TCPDUMP LIBPCAP, https://www.tcpdump.org/.
[16] dpdk-pdump Application, https://doc.dpdk.org/guides/

tools/pdump.html.
[17] L. Tianhua, Z. Hongfeng, C. Guiran, and Z. Chuan-

sheng, “The design and implementation of zero-copy
for linux,” in 2008 Eighth International Conference
on Intelligent Systems Design and Applications, vol. 1,
2008, pp. 121–126. DOI: 10.1109/ISDA.2008.102.

[18] Intel 8254x, https://wiki.osdev.org/Intel 8254x.
[19] A. Mohammad, U. Darbaz, G. Dozsa, S. Diestelhorst,

D. Kim, and N. S. Kim, “Dist-gem5: Distributed simu-
lation of computer clusters,” in 2017 IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS), IEEE, 2017, pp. 153–162.

[20] S. AION, Driving innovation and accelerating next-
gen technology deployments with award-winning L2-
7 Network and Cloud testing solutions. https:/ /www.
spirent.com/products/aion.

[21] M. Primorac, E. Bugnion, and K. Argyraki, “How to
measure the killer microsecond,” in Proceedings of the
Workshop on Kernel-Bypass Networks, ser. KBNets ’17,
Los Angeles, CA, USA: Association for Computing
Machinery, 2017, pp. 37–42, ISBN: 9781450350532.
DOI: 10.1145/3098583.3098590. [Online]. Available:
https://doi.org/10.1145/3098583.3098590.

[22] K. Technologies, High-Volume Traffic Generator Prod-
ucts Catalog, https://www.keysight.com/us/en/assets/

12

https://doi.org/10.1145/3544216.3544230
https://doi.org/10.1145/3544216.3544230
https://doi.org/10.1145/3544216.3544230
https://doi.org/10.1145/3544216.3544230
https://doi.org/10.1145/3174243.3174250
https://doi.org/10.1145/3174243.3174250
https://doi.org/10.1145/3174243.3174250
https://doi.org/10.1145/3174243.3174250
https://doi.org/10.1145/3132747.3132780
https://doi.org/10.1145/3132747.3132780
https://doi.org/10.1145/3132747.3132780
https://doi.org/10.1145/3132747.3132780
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://doi.org/10.1145/2043164.2018500
https://doi.org/10.1145/2043164.2018500
http://fast.dpdk.org/doc/perf/DPDK_17_08_Intel_NIC_performance_report.pdf
http://fast.dpdk.org/doc/perf/DPDK_17_08_Intel_NIC_performance_report.pdf
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1145/3563766.3564110
https://doi.org/10.1145/3563766.3564110
https://doi.org/10.1145/3563766.3564110
https://www.tcpdump.org/
https://doc.dpdk.org/guides/tools/pdump.html
https://doc.dpdk.org/guides/tools/pdump.html
https://doi.org/10.1109/ISDA.2008.102
https://wiki.osdev.org/Intel_8254x
https://www.spirent.com/products/aion
https://www.spirent.com/products/aion
https://doi.org/10.1145/3098583.3098590
https://doi.org/10.1145/3098583.3098590
https://www.keysight.com/us/en/assets/7121-1065/catalogs/High-Volume-Traffic-Generator-Products-Catalog.pdf


7121- 1065/catalogs/High- Volume- Traffic- Generator-
Products-Catalog.pdf.

[23] M. Alian, Y. Yuan, J. Zhang, R. Wang, M. Jung, and
N. S. Kim, “Data direct I/O characterization for future
I/O system exploration,” in 2020 IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS), IEEE, 2020, pp. 160–169.

[24] B. Schroeder, A. Wierman, and M. Harchol-Balter,
“Open versus closed: A cautionary tale,” in 3rd Sympo-
sium on Networked Systems Design & Implementation
(NSDI 06), San Jose, CA: USENIX Association, May
2006. [Online]. Available: https : / / www. usenix . org /
conference/nsdi-06/open-versus-closed-cautionary-tale.

[25] pcap(3) - Linux man page, https://linux.die.net/man/3/
pcap.

[26] Packet Capture Library, https://doc.dpdk.org/guides/
prog guide/pdump lib.html.

[27] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “Gar-
net: A detailed on-chip network model inside a full-
system simulator,” in Performance Analysis of Systems
and Software, 2009. ISPASS 2009. IEEE International
Symposium on, IEEE, 2009, pp. 33–42.

[28] Testpmd Application User Guide, https://doc.dpdk.org/
guides/testpmd app ug/.

[29] A. Bremler-Barr, Y. Harchol, D. Hay, and Y. Koral,
“Deep packet inspection as a service,” in Proceed-
ings of the 10th ACM International on Conference
on Emerging Networking Experiments and Technolo-
gies, ser. CoNEXT ’14, Sydney, Australia: Association
for Computing Machinery, 2014, pp. 271–282, ISBN:
9781450332798. DOI: 10 . 1145 / 2674005 . 2674984.
[Online]. Available: https://doi.org/10.1145/2674005.
2674984.

[30] M. Alian, S. Agarwal, J. Shin, et al., “IDIO:
Network-driven, inbound network data orchestration on
server processors,” in 2022 55th IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2022,
pp. 480–493. DOI: 10.1109/MICRO56248.2022.00042.

[31] memcached - a distributed memory object caching sys-
tem, https://memcached.org.

[32] R. Huggahalli, R. Iyer, and S. Tetrick, “Direct cache ac-
cess for high bandwidth network i/o,” in 32nd Interna-
tional Symposium on Computer Architecture (ISCA’05),
2005, pp. 50–59. DOI: 10.1109/ISCA.2005.23.

[33] AmpereComputing®, DPDK setup and tuning guide for
Ampere Altra Processors, https : / / amperecomputing .
com/tuning-guides/DPDK-setup-and-tuning-guide.

[34] Intel®, The Pktgen Application, https : / /pktgen- dpdk.
readthedocs . io / en / latest / commands . html # runtime -
options-and-commands.

[35] Buildroot: Making embedded Linux easy, https : / /
buildroot.org/.

[36] M. Alian, S. Agarwal, J. Shin, et al., “Idio: Network-
driven, inbound network data orchestration on server
processors,” in 2022 55th IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2022,
pp. 480–493. DOI: 10.1109/MICRO56248.2022.00042.

[37] Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang, and
R. Agarwal, “Understanding host network stack over-
heads,” in Proceedings of the 2021 ACM SIGCOMM
2021 Conference, ser. SIGCOMM ’21, Virtual Event,
USA: Association for Computing Machinery, 2021,
pp. 65–77, ISBN: 9781450383837. DOI: 10 . 1145 /
3452296.3472888. [Online]. Available: https://doi.org/
10.1145/3452296.3472888.

[38] R. Chen and G. Sun, “A survey of kernel-bypass tech-
niques in network stack,” in Proceedings of the 2018
2nd International Conference on Computer Science
and Artificial Intelligence, ser. CSAI ’18, Shenzhen,
China: Association for Computing Machinery, 2018,
pp. 474–477, ISBN: 9781450366069. DOI: 10 . 1145 /
3297156.3297242. [Online]. Available: https://doi.org/
10.1145/3297156.3297242.

13

https://www.keysight.com/us/en/assets/7121-1065/catalogs/High-Volume-Traffic-Generator-Products-Catalog.pdf
https://www.keysight.com/us/en/assets/7121-1065/catalogs/High-Volume-Traffic-Generator-Products-Catalog.pdf
https://www.usenix.org/conference/nsdi-06/open-versus-closed-cautionary-tale
https://www.usenix.org/conference/nsdi-06/open-versus-closed-cautionary-tale
https://linux.die.net/man/3/pcap
https://linux.die.net/man/3/pcap
https://doc.dpdk.org/guides/prog_guide/pdump_lib.html
https://doc.dpdk.org/guides/prog_guide/pdump_lib.html
https://doc.dpdk.org/guides/testpmd_app_ug/
https://doc.dpdk.org/guides/testpmd_app_ug/
https://doi.org/10.1145/2674005.2674984
https://doi.org/10.1145/2674005.2674984
https://doi.org/10.1145/2674005.2674984
https://doi.org/10.1109/MICRO56248.2022.00042
https://memcached.org
https://doi.org/10.1109/ISCA.2005.23
https://amperecomputing.com/tuning-guides/DPDK-setup-and-tuning-guide
https://amperecomputing.com/tuning-guides/DPDK-setup-and-tuning-guide
https://pktgen-dpdk.readthedocs.io/en/latest/commands.html##runtime-options-and-commands
https://pktgen-dpdk.readthedocs.io/en/latest/commands.html##runtime-options-and-commands
https://pktgen-dpdk.readthedocs.io/en/latest/commands.html##runtime-options-and-commands
https://buildroot.org/
https://buildroot.org/
https://doi.org/10.1109/MICRO56248.2022.00042
https://doi.org/10.1145/3452296.3472888
https://doi.org/10.1145/3452296.3472888
https://doi.org/10.1145/3452296.3472888
https://doi.org/10.1145/3452296.3472888
https://doi.org/10.1145/3297156.3297242
https://doi.org/10.1145/3297156.3297242
https://doi.org/10.1145/3297156.3297242
https://doi.org/10.1145/3297156.3297242

	Introduction
	Background and Motivation
	Network Software Stacks
	Current gem5 Network Stack
	Hardware Traffic Generators

	Linux Kernel Bypass in gem5
	Changes to gem5
	Enable userspace I/O Driver
	Enable Byte-Granular Access to PCI Configuration Space
	Enable the NIC Model to Correctly Operate with a PMD
	Direct Cache Access
	Implement Interrupt Mask Register in the NIC model

	Changes to DPDK

	Hardware Load Generator Model
	Benchmark Suite
	Methodology
	Experimental Setup
	Collection of Real System Metrics

	Results
	Analysis of Packet Drops
	Real-System vs. gem5
	gem5 Bandwidth Sensitivity

	Conclusion

