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Abstract—Impact localization plays a vital role in continuous
monitoring of damage and fatigue testing in various healthcare
applications. It is particularly important for assessing potential
risk factors in spinal cord and orthopedic injuries, and in
monitoring the health of athletes. Flexible sensor technology,
especially the inkjet printing process on flexible substrates,
is gaining significant interest due to its cost efficiency,
mass production, simplicity, and environmental sustainability
advantages. However, the efficiency of inkjet printed sensors
is limited due to the constraints of their low-maintenance
fabrication process. The integration of artificial intelligence
with inkjet-printed sensors can address the limitations in their
operational efficiency. In the field of artificial intelligence, Echo
State Network is increasingly being implemented in a wide range
of applications due to its computational simplicity. This work
presents an Echo state network integrated with a tactile sensor
within the network reservoir, inkjet-printed on a polyethylene
terephthalate film substrate. The readout layer of the Echo State
Network is constructed with multi-layer perceptrons followed
by a majority voting layer. The tactile sensitivity is tested with
a pencil impact experiment on different sensor surface areas.
Our designed Echo State Network with an integrated tactile
sensor accurately predicts the location of the pencil drop with a
precision of 92.31%.

Index Terms—Echo state network (ESN), reservoir computing,
inkjet printing, tactile sensor.

I. INTRODUCTION

Tactile sensors are showing great promise for a variety
of applications, especially in smart and IoT-enabled biomed-
ical sensors, advanced healthcare, and industrial automation
[1] [2]. In athletics or recreation-related activities, collisions
or contact sports create significant risks of concussions or
impact injuries, making it essential for real-time monitoring
and exposure to risk assessment [3]. The widespread use of
IoT devices allows for continuous, real-time monitoring and
control of systems, improving automation and reliability while
reducing the need for human intervention. Furthermore, the
integration of artificial intelligence with these technologies
is advancing, making systems more capable of real-time
monitoring, classification, and prediction. Using inkjet printing
to implement these technologies on flexible electronics offers
additional benefits such as compactness, cost-effectiveness,
and environmental sustainability, making the entire sensor
ecosystem more appealing for mass production [4].

The phenomenon of miniaturization is manifest across var-
ious technological domains. As devices shrink, there is a
growing need for sensors that are accurate, energy-efficient,
cost-effective, and environmental friendly while still capable
of mass production. Inkjet printing and flexible electronics
are emerging as prevalent solutions to fulfill these requisites.
Inkjet printing facilitates the fabrication of sensors on flexible
substrates, yielding advantages such as reduced power con-
sumption, lower costs, and environmental sustainability [5] [6].
Nonetheless, inkjet printing typically does not attain the same
level of precision as other silicon-based technologies due to
its minimal fabrication process. Fusion of inkjet printing with
artificial intelligence could enhance these sensors’ precision
and overall functionality. This integration offers dual benefits:
(1) amelioration of the accuracy limitation inherent in the
inkjet printing process and (2) production of power efficient
artificially intelligent sensor ecosystem.

Over the past few decades, in the realm of artificial intelli-
gence, Reservoir Computing (RC) has demonstrated superior
performance compared to other machine learning models in
analyzing time series data for IoT devices. RC is a recurrent
neural networks based framework which is well-suited for
processing temporal or sequential signals. Among different
RC methods, Echo State Network (ESN) has emerged as a
prominent alternative to gradient descent-based neural net-
works due to its better convergence and simpler computational
requirements, making it suitable for hardware implementation.
Previously, through inkjet printing, neurons for a RC [6] are
designed, as well as vibration and proximity sensor [7] [8],
tactile sensor [9] are designed. In our work, we have designed
the reservoir of ESN in the inkjet printing technology and
developed a low-cost inkjet printed (IJP) tactile sensor, which
is embedded in the reservoir of an ESN network to make the
sensor more efficient than conventional IJP sensors.

The contents of this work are as follows. First, for pre-
liminaries, inkjet-printing technology and ESN are introduced
and explained in Section II, followed by the details of the
proposed architecture in Section III. The sensor testing and
data collection process is explained in Section IV, and the
results are shown and discussed in Section V. Lastly, the future
research plan is elaborated in Section VI and followed by a
conclusion in Section VII.



II. PRELIMINARIES

A. Inkjet Printing Technology

The basic inkjet printing process typically involves three
main steps: (1) designing the pattern using a digital editing
tool, (2) printing the pattern in layers, and (3) thermally
curing the printed material. Additional fabrication steps, such
as plasma treatment and spin coating, may be incorporated
depending on the specific research requirements. Along with
additional fabrication processes, sometimes novel materials,
such as graphene, hexagonal boron nitride (hBN), etc., are
used in sensor printing [10].

Most inkjet printing systems utilize the Dimatix Mate-
rials Printer (DMP), which can be considerably expensive.
In our research, we employed a standard drop-on-demand,
piezoelectric printer (Epson XP-960) to print on polyethylene
terephthalate (PET) film with a thickness of 135µm. The silver
nanoparticle ink used in this study was sourced from Mit-
subishi Paper Mills Inc. (model NBSIJ-MU01). After printing,
the sensor was thermally cured at a range of temperatures on
a hotplate for a specified duration.

B. Echo State Network

In RC, input data are transformed into spatiotemporal pat-
terns within a high-dimensional space using a recurrent neural
network, a process known as the reservoir. The transformed
data is then analyzed for patterns in the readout layer. A key
feature of RC is that the input weights and the weights of
the recurrent connections within the reservoir are not trained,
whereas the weights of the connections in the readout layer
are trained using simple learning algorithms such as linear
regression [11]. Echo State Network is a type of RC introduced
by Jaeger in 2007 [12]. It has gained significant popularity
within the field of RC. Fig. 1 represents the basic architecture
of an ESN. It contains three layers as RC: an input layer,
a reservoir layer, and an output layer, popularly known as
the readout layer. Weights and biases of input and reservoir
layers are denoted as Win and Wres, respectively, and are
initialized randomly and kept fixed during training. Only the
reservoir to output layer connection is trainable and weights of
reservoir to output connection Wo change during training. In

Fig. 1. Generic Structure of an Echo State Network.

the ESN, backward connection to the reservoir layer and direct
connection from input to output from readout is optional,
which is shown by the dotted line in Fig. 1. The reservoir state
of the ESN and output update laws are defined by equations
(1) and (2).

x(n+ 1) = f(Winu(n+ 1) +Wresx(n)) (1)

y(n+ 1) = Wox(n+ 1) (2)

Where u(n) indicates the input fed into the ESN, x(n)
is the reservoir state, and y(n) is the output state at time
n. Win, Wres, and Wo are the input, reservoir, and output
layer weights, respectively, and f(.) is the non-linear activation
function. To achieve the echo state property of the reservoir
weight, it needs to be scaled by spectral radius λmax.

In a sparsely connected reservoir, 5-10% weights are
nonzero, and the readout layer is trained by a simple regression
method. As there is only one simple trainable layer, ESN is a
low computation-intensive network. Therefore, ESN is broadly
used in different areas, such as pattern recognition, time series
data analysis, anomaly detection system modeling and control,
etc. In the conventional ESN, the readout layer typically
employs a regression method, making it a continuous-valued
computation model. However, our research aims to localize the
pencil-dropping area of the grid. Therefore, we have opted to
use a multi-layer perceptron (MLP) in the readout layer instead
of a regression method to facilitate this classification task.

III. PROPOSED ARCHITECTURE

In our work, we have developed an ESN network where
the reservoir is embedded with a tactile sensor. Our work is
explained in Fig. 2. Here, an IJP tactile sensor embedded
reservoir is biased with a source meter, and the sensor’s
sensitivity is tested with a pencil impact experiment. Multiple
MLPs are used for the readout layer of the ESN network,
followed by a majority voting layer.

Fig. 2. Experimental setup of pencil impact experiment on a tactile sensor
embedded ESN network.

A. Reservoir Design

The reservoir of the ESN is designed by an 8X10 crossbar
grid IJP on a PET film substrate with dimensions of 180 mm
in length and 215 mm in width using inkjet printing. Silver



Fig. 3. Cross grid reservoir of ESN is shown with all relevant dimensions.
Here, the x-mark sign indicates a randomly chosen area for pencil impact.
The dotted line from the reservoir to the readout layer indicates the randomly
chosen connection from the reservoir to the readout layer.

Fig. 4. Pencil drop experiment in the tactile sensor.

(Ag) ink is employed to create the reservoir pattern on the
PET film. Reservoir architecture with all relevant dimensions
is shown in Fig. 3. The reservoir grid is 240 mm long and
190 mm in width, with a gap of 0.5 mm at the crossing point
of the grid. This gap functions as a capacitive tactile sensor
and shows nonlinear voltage-current behavior. The nonlinear
behavior is utilized as an activation function for each node
to perform the nonlinear higher dimensional mapping of the
sensor response. Two opposite sides of the grid with 10 lines
are connected and used for current biasing, while the other
two opposite sides with 8 lines are utilized for data collection.
Among the eight lines of the grid, we randomly chose four
lines to connect with the readout layer, indicating the presence
of a certain number of zero values in reservoir weight.

B. Readout Layer Design

In a generic ESN, linear regression is typically used in
the readout layer to predict continuous data points. However,
since we aim to predict discrete data points associated with
pencil drop events, we have opted for an MLP instead of linear

Fig. 5. Current signal for multiple pencil drops in a random point of reservoir.
Each disturbance in the graph represents a pencil drop.

regression. Each connection from the reservoir to the readout
layer is processed through an individual MLP. Our experiment
was performed by selecting 12 random areas, dropping a pencil
in each area, and recording the resulting impacts. Four random
connection lines are chosen from the reservoir to readout layer
connection, and each feeds to identical MLP models.

The MLP is constructed with three fully connected layers
containing 500, 600, and 600 neurons, respectively. It adheres
to two design principles: (1) incorporating dropout after each
layer to enhance the model’s generalization capabilities, and
(2) using the rectified linear unit (ReLU) as the activation
function to prevent gradient saturation. The network concludes
with a softmax layer. The dropout rates for the input, hidden,
and output layers are set at 0.1, 0.2, and 0.3, respectively.
Following the MLP layers, a majority voting mechanism [13]
is employed to offset the lower efficiency of the IJP reservoir
since IJP sensors are lower in accuracy because of their
manufacturing process.

IV. SENSOR TESTING AND DATA COLLECTION

Testing was conducted using a Keithley 2604B Dual channel
Source Meter Unit with a Python interface. The sensor was
evaluated with a current bias of 0.5 nA.

After fabrication, the sensor’s effectiveness was gauged
through a pencil drop test. Fig. 4 shows a pencil drop experi-
ment in the tactile sensor. During the test, a pencil was let fall
from a uniform height onto 12 spots chosen at random across
the sensor grid. Out of the total lines available for gathering
the test data, four were randomly selected for each pencil



Fig. 6. Accuracy (Training, Validation, and Testing) for 4 MLPs in the readout
layer.

drop to record time series data. This strategy of randomizing
the selection of the drop locations and data collection lines
serves multiple purposes: it helps prevent overfitting in the
subsequent machine learning analysis, reduces the computa-
tional load, and cuts down on processing time. Fig. 5 depicts
the current and voltage response of the sensor to each pencil
impact, with the disturbances in the graph corresponding to
individual drops. Post-impact, the sensor typically registers
about 60 readings as it returns to equilibrium. A window-
slicing technique was employed to distinguish each pencil drop
incident in the current waveform. On average, each grid area
was subjected to six pencil drops, resulting in a collection of
63 time series instances. This time series dataset created by
current signal originated from pencil impact was then used to
train and validate the machine-learning model.

V. RESULT ANALYSIS

The time series dataset derived from the pencil impact
experiment has been divided into training and testing sets
at a ratio of 8:2. To compensate for the limited amount
of experimental data, we employed data augmentation tech-
niques [14] such as jittering, scaling, slicing, and wrapping
on the training set. Specifically for the wrapping method,
our approach included magnitude wrapping, time-invariant
wrapping, window wrapping, sub-optimal wrapping, as well
as guided wrapping techniques that are both random and
discriminative guided wrapping. We enhanced our training
dataset to include 672 samples through data augmentation.
The model was trained using the Adam optimizer and the
categorical cross-entropy loss function, with a learning rate
set to 0.001. During training, the dataset was fitted with a
20% validation split. In Fig. 6, training, validation, and testing
accuracy for all readout layer MLPs are shown, and accuracy
for all MLPs is in the range of 70-85%. However, after using
the majority voting layer, the overall accuracy of the model
reached 92.31%. Without the use of data augmentation, there’s
a risk of overfitting, while the complexity of MLP models must
be increased to enhance accuracy.

VI. DISCUSSION AND FUTURE WORK

The construction of the IJP tactile sensor, integrated with
the ESN, demonstrates some inconsistencies primarily due
to human error, which may result in minor variations in
the sensor’s biasing. However, the sensor’s response behavior
remains consistent across all tests. During data collection, we
encountered limitations in collecting data simultaneously from
four lines due to restrictions in our data collection instruments.
As a result, we manually simulated the same pencil drop event
for each line, which may introduce slight variations in the
timing and pressure applied by the pencil on the sensor.

Our future objectives include the capacity for concurrent
data acquisition from all lines. Additionally, we plan to refine
the design to accommodate variations in node spacing and
patterns that correspond to critical pressure points. We also
intend to advance the algorithm to transmit its output to
devices such as phones, PCs, or other diagnostic tools for real-
time impact monitoring and medical diagnosis.

VII. CONCLUSION

In this study, a tactile sensor embedded in ESN was devel-
oped using inkjet printing technology. Using silver nanopar-
ticle ink, a simple crossbar grid design was printed using a
standard office inkjet printer onto a PET film. The IJP reservoir
of the network also functioned as a tactile sensor. Data on the
current flow were collected over time through a pencil impact
experiment, where a pencil was dropped onto randomly chosen
reservoir areas. The data from the tactile sensor-integrated
reservoir was randomly delivered to the readout layer. For the
readout layer, instead of using regression methods, a MLP
was employed for each output neuron, followed by a majority
voting layer. This random selection of data collection lines
and pencil impact areas helped reduce the overfitting of the
network. The results demonstrated that the majority voting
layer increased the overall accuracy of the system. Integrating
an IJP sensor with artificial intelligence mitigates the efficiency
limitations of conventional IJP sensors. This affordable and
flexible sensor is suitable for a wide range of applications,
including environmental research, military surveillance, safety
systems, and smart home technology. Its adaptability also
makes it ideal for personalized wearable health monitors and
tracking sports injuries. Flexibility allows for application in
irregular surface like inside helmet depending on the relative
impact force and exposures.
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