Formal Analysis of Access Control Mechanism of 5G Core
Network

Mujtahid Akon
The Pennsylvania State University
mba5773@psu.edu

Yilu Dong
The Pennsylvania State University
yiludong@psu.edu

ABSTRACT

We present 5GCVerif, a model-based testing framework designed
to formally analyze the access control framework of the 5G Core.
With its modular design, 5GCVerif employs various abstraction
techniques to craft an abstract model that captures the intricate
details of the 5G Core’s access control mechanism. This approach
offers customizability and extensibility in constructing the abstract
model and addresses the state explosion problem in model checking.
5GCVerif also sidesteps the challenge of exhaustively generating
models for all possible core network configurations by restricting
the model checker to explore policy violations only within the valid
network configurations. Using 5GCVerif, we evaluated 55 security
properties, leading to the discovery of five new vulnerabilities in 5G
Core’s access control mechanism. The uncovered vulnerabilities can
result in multiple attacks including unauthorized entry to sensitive
information, illegitimate access to services, and denial-of-services.

CCS CONCEPTS

«Security and privacy — Mobile and wireless security; Formal
security models; Access control.

KEYWORDS
5G Core Network, Access Control, Formal Analysis, Vulnerabilities

ACM Reference Format:

Mujtahid Akon, Tianchang Yang, Yilu Dong, and Syed Rafiul Hussain. 2023.
Formal Analysis of Access Control Mechanism of 5G Core Network. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Commu-
nications Security (CCS °23), November 26-30, 2023, Copenhagen, Denmark.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3576915.3623113

1 INTRODUCTION

The core network is a crucial component of a cellular network.
It orchestrates communications between cellular devices and the
network while offering a wide array of services like voice, mes-
saging, and multimedia. To accommodate the increasing demands

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0050-7/23/11...$15.00
https://doi.org/10.1145/3576915.3623113

Tianchang Yang
The Pennsylvania State University
tzy5088@psu.edu

Syed Rafiul Hussain
The Pennsylvania State University
hussain1@psu.edu

for large-scale communication, faster data transfer rates, ultra-low
latency, and diverse applications, the Third Generation Partnership
Project (3GPP), the standardization body for cellular networks, has
replaced the monolithic core network of earlier generations with a
disaggregated and cloud-driven service-based architecture (SBA)
for the 5G Core (5GC). The introduction of SBA has decomposed the
5GC into multiple Network Functions (NFs), with each accountable
for serving a specific set of related services. Moreover, the cloud-
based micro-architecture solution for SBA design of 5G enables
third-party partners (also known as tenants or non-telco organiza-
tions) to deliver a wide variety of third-party services to end-users.
Since NFs contain sensitive information about users and 5G system,
resource isolation and authorization of NFs are essential for secure
interactions among them. To achieve this, 3GPP [1] adopted the
industry-standard authorization framework OAuth 2.0 [22, 46] in its
SBA as the basis for the access control mechanisms for NFs in 5GC.
However, OAuth 2.0 is a generic authorization framework, and its
adoption and integration into 5GC design have not been formally
verified. Particularly, flaws in 5GC’s access control mechanism can
be exploited by malicious or compromised NFs and can lead to crit-
ical security and privacy issues, including the unauthorized access
to sensitive user information, unwanted modifications of crucial
data, and denial-of-services [28, 29, 50]. Given this, we pose the
following research question: Is it possible to formally analyze the
design of OAuth-based access control mechanism of a 5G Core?
While prior efforts [37, 45, 54, 55] have formally analyzed the
security of 4G and 5G cellular network protocols, they primarily
focus on verifying the authenticity, secrecy, or observational equiv-
alence properties [47]. None of these efforts are directly suitable
for analyzing the access control mechanism in 5GC. The primary
reason for his is twofold. First, some approaches [54, 55] have mod-
eled only a single NF (i.e., MME/AMF) as the interface of 5GC by
combining all NFs’ functionalities into one. This prevents reasoning
about the interactions between NFs. Second, other methods [37, 45]
only model and analyze a subset of the protocol interactions, and
quickly run into intractability and scalability issues when faced
with more intricate protocol interactions. Additionally, these analy-
ses [37, 45] require manual interventions from human experts to
guide the provers, making them less automated and unmanageable
for large systems. Moreover, all preceding approaches treat the 5G
core network configurations as static, not accounting for changes
during network operations. However, 5GC permits dynamic con-
figuration updates. Therefore, prior studies fall short in assessing
such key features inherent in the 5GC access control framework.

https://doi.org/10.1145/3576915.3623113
https://doi.org/10.1145/3576915.3623113

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Challenges. The formal analysis of the OAuth-based 5GC access
control mechanism presents several challenges. (A) Incomplete and
non-compliant open-source core: Available open-source implementa-
tions are often incomplete and non-compliant with specifications.
As our goal is to formally analyze the access control design, we
cannot rely on any existing implementations. Therefore, we base
our analysis solely on the technical specifications provided by 3GPP.
(B) Intractability: A typical 5GC configuration incorporates a vast
array of NFs, services, and operations, coupled with dynamic up-
dates and complex authorization logic. This drastically amplifies
the complexity and state space of the system. Each component
can be defined with hundreds of configuration attributes. When
configurations from all NFs are combined, they form a singular
5G Core configuration. Given this structure, the 5GC can poten-
tially have millions of semantically valid network configurations.
Modeling 5GC systems for all potential network configurations
and then analyzing each of them present an intractable task. (C)
Ambiguity and underspecification: The technical specifications often
lack clarity and are underspecified, potentially leading to multiple
interpretations and incorrect implementations.
Approach. We reformulate the problem of analyzing the access
control mechanisms of the 5G Core into a model-checking prob-
lem. However, the highly configurable and customizable nature of
the 5G Core turns the problem to an undecidable parameterized
model checking problem. We, therefore, draw inspirations from
parameterized model checking paradigm and design 5GCVerif with
an emphasis on soundness rather than completeness. In essence,
5GCVerif employs the cutoff principle [33] by leveraging small
model theorem[34]. This principle stipulates that if a certain prop-
erty is verified for a system up to a certain size, i.e., for a certain
number of NFs in the 5G Core, then the property is verified for
a system of any size. Empirically, we observe that a 5GC system
with five NFs effectively represents most access control commu-
nications in larger 5GC systems. Therefore, we choose to model a
5GC system with five NFs to capture the complex details of 5GC’s
access control mechanism. However, exhaustively generating and
analyzing models for all possible network configurations is infeasi-
ble. We address this challenge by employing our model to initialize
the network configurations randomly while ensuring the validity
of configurations by imposing specification-compliant constraints
on the generated attributes. This approach allows us to reason
about different configurations of the 5GC using a single model,
and ensures that the model checker focuses on discovering policy
violations only within semantically valid network configurations.
5GCVerif adopts a modular design for modeling messages, re-
sources, and NFs of a 5G Core. This enhances customizability and
extensibility, allowing the inclusion of arbitrary numbers of NFs
in our model. 5GCVerif addresses scalability issues by designing
several domain-specific data, behavior, and predicate abstraction
techniques. Such abstractions effectively capture the essential char-
acteristics of the access control mechanism while reducing com-
plexity. In our model, we assume that an adversary gains control
over a single compromised NF. This allows the adversary to inherit
the NF’s original capabilities, and it actively attempts to initiate
requests with possibly forged parameters, aiming to ultimately ele-
vate its privileges to access resources or perform operations that the
compromised NF was not initially authorized to. We incorporate the

Mujtahid Akon, Tianchang Yang, Yilu Dong, & Syed Rafiul Hussain

adversary’s capabilities into our abstract model and obtain a threat
instrumented model. 5GCVerif analyzes if the threat instrumented
model satisfies the access control properties. Counterexamples un-
veiled by 5GCVerif represent violations of 5GC’s access control
policies. We manually inspect the trace of each counterexample
and record the reported attacks. Inspired by the Counterexample-
Guided Abstraction Refinement (CEGAR) technique, we adopt an
iterative workflow. However, instead of refining the model, we
modify each access control property to ignore already observed
vulnerabilities and test the updated property against the model
until violations are no longer encountered.
Findings. We have tested 55 properties against our 5G Core model
and identified 5 new vulnerability types, each resulting in multiple
attack scenarios. These vulnerabilities can allow attackers to obtain
unauthorized entry to sensitive user information, illegitimate access
to restricted services, and denial-of-service against benign NFs.
Contributions. This paper makes the following contributions:

e We present the first scalable formal model of the 5G core net-
work’s access control mechanism.
Based on the formal model, we introduce 5GCVerif, an adversary-
controlled framework to conduct systematic formal analysis of
the access control mechanism of 5G core network. To the best of
our knowledge, no prior work has formally specified or verified
core components of 5G systems.

o We tested 55 security properties with 5GCVerif and found 5
new classes of exploitable privilege escalation vulnerabilities in
the technical specifications. We confirmed that the identified at-
tacks are possible in open-source 5G Core implementations. The
model, properties, and findings are all available on GitHub [4].

Responsible disclosure. We shared our findings with GSMA [9].
They acknowledged with CVD-2023-0069 [10] for all our findings.

2 BACKGROUND

In this section, we provide a primer of 5GC network architecture,
its communication model, and the enforced access control schemes.

NEF NRF PCF UDR

Control
Plane

User
Plane

Figure 1: Core network architecture of 5G

2.1 Service Based Architecture

The 5G Core adopts a microservice-like design, where it divides its
operations into functional blocks called Network Functions (NFs).
NFs are designed to be hosted in virtual machines or containers on
the cloud. Figure 1 demonstrates the core network architecture of
5G systems. NFs interact with each other to provide functionalities
like authentication, security, and session management of cellular
devices (also known as User Equipment or UE) traffic. A Network
Repository Function (NRF) allows other NFs to register and dis-
cover each other, and is the main focus of this study. The Access and
Mobility Management Function (AMF) provides UE registration,
connection, and reachability management. The Unified Data Repos-
itory (UDR) provides storage for subscriber and policy-related data.
The Unified Data Management (UDM) accesses UDR and manages
user identity and generates authentication credentials.

Formal Analysis of Access Control Mechanism of 5G Core Network

NF communication model. NFs communicate with each other
through Application Programming Interface (API) over HTTP. The
interactions are request/response and subscribe/notify messages
between NFs. In a typical API interaction between two NFs, the
requester NF is referred to as the NF service consumer, and the
target NF is referred to as the NF service producer. For ease of
exposition, we refer NF service consumer as consumer NF or only
consumer (NFc) and NF service producer as producer NF or only
producer (NFp) unless otherwise stated. In general, an NF can act
as a consumer, a producer, or both.

Services and operations. To perform its functionalities, each NF
provides a set of services. For example, UDM provides different
services for subscriber data management, UE context management,
and UE authentication. Each NFService performs multiple opera-
tions designed to work on related data or achieve similar objectives.
These operations include retrieval, modification, or removal of spe-
cific data and creation, modification, or deletion for subscriptions
of data changes. Specifically, UDM’s subscriber data management
service provides operations for retrieval of UE context data and
subscription for notifications of change in subscriber data.

2.2 Network Slicing

5G architecture also enables the ability to differentiate the levels
of service offered to different applications and customers through
the logical slicing of networks. At a high level, network slicing is
a resource isolation mechanism where the physical network re-
sources are broken down into isolated virtual blocks. To achieve
such isolation, slicing in the core network is essential to allow the
managing of data flow. Based on the network requirements, each
slice can selectively implement different combinations of NFs, and
customize or scale multiple instances of the same NFType. 3GPP
uses the term sNssai, or single network slice selection assistance in-
formation, to uniquely identify a network slice. It can be considered
as an identifier for a network slice for the scope of this paper.

2.3 Access Control in 5G Core

The SBA design of the 5G Core requires a careful specification of
how communications between NFs are limited and how operations
provided by each NF are protected. 3GPP specifies to use OAuth
2.0 framework [46] to authorize API interactions between NFs. The
use of OAuth framework in the 5GC is optional but recommended
as the access control mechanism between NFs. OAuth 2.0 is a well-
established framework to govern authorization in a virtualized
system. It is based on a central authorization server that issues
accessTokens to clients to grant access for invoking API calls. In a
5G Core, the NRF plays the role of the authorization server.

AccessToken scope. A scope field in the accessToken defines the
range of operations an NF¢ with the token is allowed to access.
Scopes are predefined by 3GPP and are included as part of OpenAPI
specifications [3, 21]. Two types of scopes are defined, service-level
and operation-level scopes. Service-level scopes are coarse-grained
and shared across all operations of a service. For instance, scope
namf-comm is shared across all the communication services pro-
vided by AMF. Operation-level scopes, on the other hand, are more
fine-grained, and specific to a set of related operations, e.g., nudm-
uecm:amf-registration:write is only used for operations in UDM that
update amf-registration information. Operation-level scopes can

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

still be shared between a few related operations accessing the same
group of resources. Accessing an operation controlled by operation-
level scopes requires the accessToken to contain both the operation-
and service-level scopes. 3GPP defines operation-level scopes only
for a few services, while for others, it specifies only service-level
scopes. In fact, 3GPP considers the use of operation-level scopes
or even service-level scopes optional when network operators opt
out of enforcing access control mechanisms. For our analysis in
this paper, we consider the most conservative/strictest scenarios,
i.e, operation-level scopes are enforced whenever they are defined,
and if not, service-level scopes are imposed.

Table 1: Attributes in NFProfile of an NF instance.

Attribute Name Description

nfInstancelD Unique identifier of the NF Instance

nfType Type of NF (AMF, SMF, ...)

sNssais Identifiers of network slices this NF serves
allowedNfTypes Types of NFs allowed to access this NF
allowedNssais Identifiers of slices that are allowed to access the NF
nfServices Services produced by this NF instance

NFProfile. Each NF manages a list of properties/attributes called
Network Function Profile (NFProfile). Table 1 outlines essential
fields present in an NF profile. The nfServices attribute within an
NFProfile contains a list of service-specific attributes, including
lists of allowed NFTypes (allowedNfTypes) and allowed slices (al-
lowedNssais) that are permitted to access the corresponding service.
If there is a conflict between the attributes specified in NFService
and those in NFProfile, the attributes in NFService take precedence.

NFProfile is managed by network vendors who have the freedom
to modify most fields. For example, a vendor can modify allowedNs-
sais of a producer to restrict the slices this NF serves. Values of
certain fields are, however, guided by 3GPP. Unfortunately, these
instructions are sometimes vague and scattered across multiple
Technical Specifications (TS).

Consumer

" [e] {

iregisterRequest {nfInstanceID} (NFProfile)
201 Created (NFProfile)

Producer]
NF

Register'

NF . updateRequest {nflnstancelD} (NFProfile)
Update !

NF :NFDiscovcHch {nf-instances?} <query paramsg
i

Discovery, ¢ 200 OK (SearchResult) :
1

200 OK (NFProfile) \

'
. AccessTokenReq H
1 (Expected NF Service name(s) and NF type, |

Access f Consumer NF type, ...) >
1

Token ! Check whether the

Request Consumer is authorized|
< 200 OK (AccessTokenRsp T
h

. |
. NF service request (access token) >
Service i — -
Request | ' Ver}fy 1ptegrlty and
1 . ' claims in the token
\ NF service response .

€ d
—— — ——

Figure 2: Sample interactions between NFs

NF interactions. Figure 2 shows key interactions between a pair
of generic consumer and producer NFs, as well as the NRF, which

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

authorizes the communications. Before requesting or providing a
service to others, each NF goes through a registration process in
which it issues its NFProfile to the NRF. Any NF can also update
its profile at any time with an NFUpdateRequest to the NRF. An
NF¢ can query for information on available producers, including a
list of services and operations each producer provides through an
NFDiscoveryRequest. An NF¢ can also specify the NFType and sNs-
sai information (i.e., slice ID) of the producers it hopes to discover
in the query parameters, and NRF responds with the NFProfiles
and endpoints of the producers the NF¢ has access to.

Before an operation provided by some service is granted by
the NFp, the NFc needs to first obtain a valid accessToken with
appropriate scopes from the NRF by invoking the accessTokenRe-
quest operation. A valid accessTokenRequest includes the consumer’s
NFInstancelD, the target service and the corresponding scopes it
wishes to access, the NFInstanceID or NFType of the NFp, etc. Upon
receiving such a request, the NRF checks whether the NF¢ is autho-
rized to access the requested services by comparing the request pa-
rameters against the authorization attributes (e.g., allowedNfTypes,
allowedNssais, etc.) of the NFp’s NFProfile, and issues an accessTo-
ken if the check succeeds [22]. The accessToken is a digitally signed
JSON Web Token (JWT) [57, 58] which carries various essential
information, including the NFInstanceID of the issuer (NRF), the
subject (NF¢), the NFInstanceID or NFType of the audience (NFp),
scopes, and the expiration time. However, 3GPP does not detail ex-
actly how the NRF performs the whole authorization checks [22, 23].
In this work, we consider a conservative approach by assuming
that the NRF performs all possible checks within its capabilities
properly. More discussion can be found in Section 4.

Finally, the NF¢ initiates NFServiceRequest, which is the API call
to NFp and includes accessToken. The NFp verifies the accessToken
attributes, e.g., scope, expiration time, etc., and grants access to the
resource or service to the NF¢ only if the verification is successful.

3 DESIGN OVERVIEW

In this section, we present our threat model and provide a mo-
tivating example that highlights the need for formal analysis of
5G access control. We then discuss the high-level workflow and
insights underpinning the design of 5GCVerif.

3.1 Threat Model

As opposed to previous generations, the significant shift in the
openness of the 5G core network, coupled with the potential inclu-
sion of third-party NFs, e.g., by Mobile Virtual Network Operators
or MVNOs [5, 20], greatly amplifies the risk of malicious entities
gaining control over an NF within the 5G systems. As shown by
prior research [2, 16], a variety of vulnerabilities can lead to an
NF being compromised and controlled by an attacker, including
flaws in cloud-based microservices, configuration mishaps [11, 17],
malicious or vulnerable dependencies [12, 13], or software vul-
nerabilities [7]. Additionally, the 5G Core allows the inclusion of
third-party NFs, some of which could have malevolent intentions.
This paper considers that the attacker’s ultimate goal would be to
elevate its privilege to access resources or perform operations the
compromised NF was originally not allowed.

For our analysis, we consider an adversary with the following
capabilities: (A-1) The adversary gains full control of an already

Mujtahid Akon, Tianchang Yang, Yilu Dong, & Syed Rafiul Hussain

registered consumer NF while other NFs remain benign. As a re-
sult, the adversary can create and send any network packets on
behalf of the compromised NF. (A-2) All communications between
the compromised NF and other NFs are properly authenticated
and encrypted and thus honest NFs cannot directly identify the
malicious NF. Contrary to the Dolev-Yao [48] adversary model
generally utilized for analyzing the authenticity of communication
protocols [6, 36], the adversary in our threat model does not need
to intercept, drop or alter messages in transit. (A-3) Provided that
the Operations, Administration, and Management (OAM) system
permits, an NF including the attacker’s controlled one can alter the
NFProfile by modifying certain attributes of the compromised NF.
Our model governs the permissions of the adversary, providing the
flexibility to switch between conditions under which no NFProfile
update is allowed, only specific fields can be updated, or all fields
are allowed to be updated. Further discussion on OAM can be found
in Section 4.3. (A-4) We assume that NRF cannot be compromised
by the adversary because (i) it has higher trust requirements than
others; and (ii) since the NRF is tasked with performing all access
control checks in the OAuth 2.0 framework [46], a compromised
NRF negates the entire access control mechanism. Our threat model
only considers a single malicious NF and does not account for the
possibility of multiple malicious NFs colluding. This threat model
aligns with 3GPP’s Technical Report (TR) on SBA security [25].

3.2 A Motivating Example

We present a simplified core network scenario (Figure 3) to demon-
strate the necessity of our model checking approach. It includes a
consumer NF instance (C1), two candidate producer NF instances
(Py and P»), and the NRF. The relevant NFProfiles for Cy, P;, and
P, are detailed in Table 2.

Table 2: Simplified NFProfiles for Ci, P; and P,

NFProfile of C; NFProfile of P; NFProfile of P,
nfType: AMF nfType: UDM nfType: UDM

sNssai: 1 sNssai: 1 sNssai: 2

NFStatus: Registered NFStatus: Registered NFStatus: Registered
NFService: NFService: Nudm_UECM NFService: Nudm_UECM

scope: Nudm_UECM scope: Nudm_UECM

sNssai: 1 sNssai: 2

allowedNFTypes: AMF allowedNFTypes: AMF
allowedNssais: 1 allowedNssais: 2

operation: Nudm_UECM_Get operation: Nudm_UECM_Get

Namf_comm

In this setup, both P; and P, of NFType UDM offer the same
NFService Nudm Context Management (Nudm_UECM), and al-
low consumers of NFType AMF to access the service through al-
lowedNFType attribute. However, P; serves only sNssai 1 (i.e., slice
#1), so only AMF instances from sNssai 1 can access P;’s resources
(indicated by allowedNssais). Similarly, P; is associated with sNssai 2
and only allows access of AMF instances from sNssai 2.

In this simplified setup, the consumer AMF instance Cy, being a
participant of only sNssai 1, is authorized to discover P;, and to re-
ceive an accessToken to access Nudm_UECM services provided by
P;. On the other hand, C; should neither be authorized to discover
nor be able to acquire an accessToken for P, as P2 serves only the
consumers of sNssai 2. The accessToken that C; received from NRF
to access Nudm_UECM service provided by P; contains the follow-
ing information: (issuer: NRF, subject: C;, audience: P;, scope:
Nudm_UECM). Upon discovering P;’s NFProfile and acquiring the

Formal Analysis of Access Control Mechanism of 5G Core Network

— 00 — 00 — —
G @NRF = P, (=0 P,
=] — —
sNssais: 1 —

NFType: nfy (UDM)
NFService: servicey
sNssais: 2
allowedNssais: 2

(AMF) (DaccessTokenReq
targetNfType: nfy
targetNfInstanceld: none
validates C; has
access to nfy Py

@accessTokenRs

access | scope: servicey

token | audience: nfy
@NFDisooveryReq (NFType: nfy)
@NFDiscoveryRsp (nfy,: P)

access | scope: servicey
(®NFServiceReq token | audience: nf;
>

successful access token
verification for NFType nfy
T

NFType: nfy (UDM)
NFService: servicey
sNssais: 1
allowedNssais: 1

< (ONF ServiceRsp
1 1 -

Figure 3: Demonstration of the motivating example.

accessToken, Cy can invoke Nudm_UECM_Get operation and thus
obtain the access to desired information, e.g., UE Context from P;.

At first glance, the above setup looks typical for an access control
interaction in the 5GC and appears to be not vulnerable. However,
if C1 discovers P,’s endpoint information (e.g., IP address or domain
name of Py) using techniques like network scanning [32, 49], it may
exploit a flaw in the current authorization logic enforced in the 5GC
to gain unauthorized service from P;. In the accessTokenRequest
packet, instead of setting the targetNFInstance attribute to P, which
would result in NRF denying the request, C; can choose to pass
in only the targetNFType attribute, and set it to be UDM. In this
case, while verifying the accessTokenRequest, NRF will examine all
registered NFs of the specified NFType in the targetNFType attribute
(in this scenario, P; and P»). If at least one of them (here P;) allows
access to the consumer, NRF will approve the accessTokenRequest,
and respond with an accessToken with the producer’s NFType set
as the audience (i.e., (audience: UDM)), instead of the specific
authorized producer’s NFInstancelD (i.e., (audience: P;)). As a
result, the generated accessToken will authorize C;’s access to all
UDM producers in the network, irrespective of consumer’s sNssais.
Later in an NFServiceRequest, if C1 passes this accessToken to Py, Py
will verify the audience attribute of the accessToken and learn that
C; is allowed to access any UDM instances. Hence, Py will approve
the NFServiceRequest, providing unauthorized access to Cj.

It is evident from the example that in order to allow a resource
access from a consumer, both the NRF and the producer need to
collaboratively perform intricate authorization checks. Note, for the
illustration purpose, we only present and discuss the key informa-
tion of an attack on the above. Real-world 5G system deployments
involve numerous core network settings and NF configurations
with diverse attributes. Furthermore, the NFProfiles and core net-
work setup within a 5G Core are dynamic, subject to updates by
the network operator or the NF itself. This leads to numerous at-
tribute combinations and network behaviors, making it challenging
to identify subtle vulnerabilities, such as the one illustrated. Manual
inspection of network setups, NF configurations, and potential com-
plex NF interactions is extremely time-consuming and error-prone.
Hence, a formal and systematic analysis of the 5G Core’s access
control is vital for its correctness and security.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

o ° ° =]
Qs MW*CED
) =

Abstract Threat-Instrumented | Model Counter-
Model (M") Model (M) Checker example
Technical p
Specifications roperty
. . . . Refinement
Specification-Compliant Security Access Control
Network Constraints ~ Property Violation

Figure 4: 5GCVerif architecture

3.3 Overview of 5GCVerif

Model reduction. A 5G Core may comprise an arbitrary number of
producer and consumer NFs, each containing an arbitrary number
of services and operations. This makes the analysis of 5GC access
control policies an instance of the parameterized system verification
problem: an undecidable problem [60] that is parameterized by the
numbers of producers, consumers, services per NF, and operations
per service. We tackle this problem with the notion of cutoff [33],
that is, if a particular property is verified (or violated) for a system
up to a certain size - specifically, up to a certain number of producer
and consumer NFs, then it can be considered as verified (or violated)
for a system of any size. The precise cutoff is determined by system
resources and the required level of accuracy in the abstract model.
According to small model theorem [34], a sufficiently large system
with N producers and M consumers can be considered symmetric
if we can project its set of reachable states S(N, M) onto a smaller
system with K (where K < M) producers and L (where L < N)
consumers. This implies that if we can capture all possible interac-
tions between M producers and N consumers in the large system
within K producers and L consumers in the smaller system, then
any property that holds true for the smaller system will equally
hold true for the larger system.

As per 3GPP’s TS 33.501 [22], all NFs use the same sets of au-
thorization parameters and authorization checks. For instance, al-
though API requests Nausf UEAuthentication_authenticate (from
AMF to AUSF) and Nudm_UEAuthentication_Get (from AUSF to
UDM) differ in functionalities, similar authorization checks are re-
quired before granting access. Hence, by abstracting specific API
functionalities and applying the above insight, we can map each API
request to an abstract API request (i.e., NFServiceRequest), and the
participating NF pair to a consumer and a producer NF instances.

However, using just one pair of consumer/producer, we cannot
distinguish resources owned by distinct consumers/producers in
multi-consumer/producer scenarios. Thus, we need to account for
an additional consumer/producer NF pair in our model. Leveraging
this observation and the small model theorem, we analyze the
design of 5G access control mechanisms with five NFs: the NRF,
two consumer NFs and two producer NFs. This strategy also aligns
with the general notion of security analysis, where the focus is
on soundness rather than completeness. In other words, if our
methodology reports a violation, it is indeed a violation. However,
we do not claim to detect all possible violations.

A detailed discussion on 5GCVerif components is provided in
the following sections, while an overview can be found in Figure 4.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

NRF (My)

NRF
Deregistered,

Qi register/

_register_reques

O nf_nrf request'A NRF
nrf_req_verification?/ C Registered
nrf_response

Comumr L. Consumer (Mc)

Consumer-NRF
PPEPPPPPEDPED
esponses

—nrf_deregist
nrf_deregister_request

a v
4 v Consumer
Producer-NRF 4 3 Producer-NRF q
Requests 4 T Responses \ fegistered R
oquests 4] >Sponses A f_disc_req(sence, target_nftype
3 X v —
Producer (Mp) [prodregister/ Consumer-Service

_register_req(prod_pl

service_request/A
accessToken_verification/
service_response

Producer
Registered

Producer
Deregistered,

A3 3ddd
esponses

nf_deregister_req(prod._id)

@producer_deregistered
prod_id_known = false

NF
Discovery
Initialized

?_;‘misc ic,/., @validatn
prodidknsivn —true > CET

(@at_req A token_for = nf_type/

Mujtahid Akon, Tianchang Yang, Yilu Dong, & Syed Rafiul Hussain

@at_expired/valid_at = false

perform_service_req/

alid at/—
) Duali service_req(token, aud, producer_id)
sproducer_id_known/
nf_disc_req(service, targetftype) Dsomred iidat — false m

Consumer
Ready for
ServiceReq

@Mw /

prod_id_known = false

AccessToken
Acquired

NF ®-valid_atA
Discovered | toke_for =xf_instance/
at_req(scope, target_nf_id)

® atReq_sug¢/
AccessToken valid.at ="true
Request

at_req(scope, target_nf
Initiated

(@)producer_id_known/

at_req(scope, target_nf_type

Figure 5: Simplified FSM of the 5G Core access control model. A detailed list of all request types (nf_nrf_request') to NRF and
the verification performed at NRF (nrf_req_verification?) can be found in Table 3.

Model construction (M). The initial step of 5GCVerif involves
constructing an abstract model M*, comprising a set of communi-
cating finite state machines (FSMs) as illustrated in Figure 5. M*
abstracts the access control mechanism of the 5G Core specified by
3GPP Release 17 [27] in four Technical Specifications [22-24, 26].
This abstract model operates at a propositional logic level that en-
capsulates the generic NF interaction logic (Figure 2). Each NF is
abstracted as an FSM, represented by a tuple (7,0, V, Init, A),
where I represents a finite set of input variables; O: a finite set of
output variables; V': a finite set of state variables; Init: a set of initial
states, and A: a finite set of variable assignments in V defining the
transition relation of the system.

We represent five NFs as five FSMs in M™: two consumers (Mc,
and Mg,), two producers (Mp, and Mp,), and an NRF (M). FSMs
interact with each other by transmitting messages through au-
thenticated communication channels. For simplicity, we model the
communication channel between any two FSMs, such as M¢, and
Mp,, with two unidirectional channels: one from Mc, to Mp, and
another in the reverse direction.

Our threat model considers a single registered consumer NF that
has been compromised by a malicious actor. This entity actively
seeks unauthorized access to the resources/services provided by be-
nign producer NFs. The malicious NF may send arbitrary requests
(e.g., NFUpdateRequest, NFDiscoveryRequest, accessTokenRequest,
and NFServiceRequest) to any NFs in the 5GC, and can manipulate
the input parameters of these messages on behalf of the victim
NF. We incorporate such adversary capabilities into a consumer
FSM (Mc, or Mc,) in M* to derive the threat-instrumented model
M. Additionally, M supports parallel execution of multiple NFSer-
viceRequests for the tuple (C, P, R), where Ce {Cy,C2}, P {P1, P2},
and R denotes an instance of NFServiceRequest from C to P.
Security properties (®). We aim to verify the following high-level
access control property (also referred to as security property in this
paper): An NF¢ can access resources only if it is authorized. For an
NF¢ to access sensitive services/resources (denoted as Rf,) from
an NFp, it must first discover the producer’s NFProfile (denoted
as R{i]), and then obtain an accessToken (denoted as Rf]) from
the NRF. Hence, in addition to RISJ, we consider both R]{’] and Rﬁ
as sensitive resources. To guarantee the security of 5GC’s access
control mechanism, both the NRF and NFp must collaboratively
verify a request. As such, we model security properties to verify

the access request of each of such sensitive resources. A detailed
discussion is provided in Section 5.

Model checking process (M |= ®). 5GCVerif’s model checking
process is inspired by the CEGAR principle [44]. CEGAR-based
approaches verify if a concrete system S satisfies a property ® by
creating an abstract system M, from S, and testing if ® complies
with S. If compliance is concluded, S is deemed to satisfy ®. Oth-
erwise a counterexample 7 is generated. If 7 is realizable in S, a
failure in verification is found. Conversely, if it cannot be realized,
Mg is refined to exclude the spurious 7, and the process is repeated
until either S satisfies ® or a realizable counterexample is found.

In our approach, we opt to refine the verification property instead
of further refining the threat instrumented model M. For an access
control property ®, 5GCVerif reformulates it into the form ¢ —
®, where o denotes a refinement expression, and — represents
logical entailment. This specific refinement of the property enables
the verification process to focus solely on execution traces/paths
in M that satisfy o. This approach also allows 5GCVerif to filter
out previously identified counterexamples from the succeeding
iterations of the model checking process.

Manually creating models for every unique core network config-
uration and then testing them against properties is a combinatorial
explosion problem. Additionally, analyzing the counterexamples
and refining the properties for each configuration would require
significant time and effort. Furthermore, not all configurations are
semantically valid. In other words, numerous network configura-
tion parameters, when generated randomly, may not correspond to
any logically correct real-world 5GC systems as some parameters
are interdependent. To address this challenge, during model check-
ing, we incorporate additional constraints (represented with logical
formula, e.g., ¥ = {1 A /2 A ...) into the refinement expression o,
ie., (6 A'¥) — ®. The additional constraints represent the classes
of specification-compliant core network configurations. This ap-
proach allows us to reason about different configurations of the
5GC system using a single model and guide the model checker to
focus on exploring specific types of execution paths in which core
network configurations are semantically valid. Additionally, we
introduce other constraints to further control (i.e., add/remove) ad-
versary capabilities to pinpoint the minimal adversary capabilities
leading to violations. More discussions about such refinements can
be found in Section 6.

Formal Analysis of Access Control Mechanism of 5G Core Network

4 MODEL CONSTRUCTION DETAILS

In this section, we delve into various aspects detailing the design
choices and decisions made to address major modeling and imple-
mentation challenges.

4.1 Modeling Transitions, States, and Resources

FSMs. The authorization process of 5GC can be represented as
communicating FSMs between an NFc (Mc), and an NFp (Mp)
or the NRF (My), each featuring multiple states and transitions
(Figure 5). Interactions among M¢c, Mp, and Mp constitute the
abstract model M*. The NF¢ begins at ConsumerRegistered state,
and if an nf_disc_req (D) is successfully verified by the NRF (@),
NF¢ transitions to NFDiscovered state. In the NFDiscovered state,
NFc obtains from NRF the NFProfiles ((3)) of candidate NFps and
can request for an accessToken with at_req (&) or (®). If the autho-
rization checks by NRF pass (@), the NF¢ receives the accessToken
(®) and proceeds to ConsumerReadyForServiceReq state. The NF¢
can then request access to NFp’s services (). The service_req will
be granted if NFp verifies the accessToken ((2]) provided by NFc.

Table 3: Summary of request verification policies by NRF

nf_nrf_request nrf_req_verification by NRF

to NRF

Primarily OAM mandates which NF is authorized to register
NFRegister on the network. In our model, as we aim to test all NFProfile

combinations, we do not enforce any checks for this request.

OAM determines whether the NF can update its profile suc-
NFUpdate cessfully. In our model, the attributes allowed to be updated is

controlled by a set of control parameters. A detailed discussion

can be found in Section 4.3.

An NF¢ should only be allowed to discover NFp it is permitted
NFDiscovery to access. NRF cross checks the authorization parameters of the

NFp with the attributes in the NF¢’s NFProfile.

An NFc should only be allowed to acquire accessToken to
accessToken services provided by an NFp it is permitted to access. A similar
Request check is performed to that of the NF Discovery.

NFDeregister ~ NFs are allowed to deregister under all circumstances.

States. States are defined by a combination of their names and as-
sociated variables. For instance, Boolean variables prod_id_known
and valid_at in M are used to denote whether the NF¢c has ob-
tained an NFProfile of its target NFp, and a valid accessToken to
access NFp, respectively. As a participant transitions from a state
to another, both the state name and the variables are updated ac-
cordingly to reflect the semantics of its current state.
Transitions. Transition labels shown in Figure 5 follow the form of
“conditions/actions”. Conditions are propositional logic formulas
specifying the prerequisites to trigger a transition, while actions
denote the sequence of operations that the FSM executes (in the
order they appear) once the transition is taken. While actions can
be empty (denoted by ‘-’), conditions can not. Conditions are mod-
eled using state variables, environment variables (random Boolean
variables set non-deterministically by the model checker), and input
messages. Actions are modeled using assignment operations on
state variables, environment variables, and output messages.
Resources. We model NF resources, including NFProfiles, accessTo-
kens, and NFServices, as distinct modules using the MODULE con-
struct in the SMV language [40]. These modules resemble struct
or class constructs in C/C++ in that they can store and group data
fields, define transitions based on those fields, and be instantiated

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

with different parameters as required. This modular design en-
hances extensibility and customizability, as it allows creating mul-
tiple instances of a particular module type. To populate attribute
fields within these modules, we limit the domain of possible values
of each attribute to a predefined set of ENUM values of reasonable
size. For instance, a real-life network may have numerous slices;
however, our model restricts sNssais-related attributes to only four
values: slice 1-4. Similarly, NFService names provided by NFps
are defined as arbitrary string values; however, our model chooses
their values only from a predetermined pool of strings. As we aim
for soundness, these design choices aids in modeling complex de-
tails while maintaining scalability. These modeling disciplines also
enable us to model a multi-consumer and multi-producer architec-
ture (e.g., used by property @4 in Section 5) while preserving the
essential characteristics of a real 5GC.

Messages and communication channels. For tractability, we opt
to model only the critical message data/fields related to the access
control mechanism (e.g., attributes listed in Table 1). We model
the communication channel, the conduit for sending and receiving
messages, using a shared resource architecture. In this setup, an
instance of the message module is allocated to each sender-receiver
pair. Once a message is transmitted by the sender via the designated
channel, it becomes immediately available to the receiver.

4.2 Threat Instrumentation

5GCVerif takes the abstract model M™* and instruments it to incor-
porate an adversary to obtain the threat instrumented model M.
Based on our threat model (Section 3.1), 5GCVerif models adver-
sary capability (A-1) by randomly selecting one of the consumers
Mc in M* as the adversarial party and introduces the following
instrumentation to Mc: first, M¢c may break the FSM’s stateful
nature by sending any request message to NRF or producers at
any time; while sending a request message, malicious consumer
may set any arbitrary values to the request parameters, and it may
change the message data or parameter values. To model adversary
capability A-3, 5GCVerif allows M to update its NFProfile at any
time via NFUpdateRequest given OAM approves the update, per the
discussion in the following Section 4.3.

4.3 Tackling Underspecifications in Modeling

Due to high complexities of NFs and their services, 3GPP frequently
falls short in conveying policies consistently in natural language.
This results in ambiguous, conflicting, or underspecified instruc-
tions. We broadly categorize these as underspecifications.

For instance, (U1) although the specification mandates that
NREF is responsible for validating all authorization requests, it is
not clearly instructed how NRF should validate the authorization
parameters. For instance, on accessTokenRequest verification, TS
29.510 [23] states the following.

"An access token request should be rejected if the requester NF is not
allowed to access the target NF based on the authorization parameters
in the NF profile of the target NF. The authorization parameters in
NF Profile are those used by NRF to determine whether a given NF
Instance/NF Service Instance can be discovered by an NF Service Con-
sumer in order to consume its offered services (e.g. "allowedNfTypes",
"allowedNfDomains", etc.)."

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Here, the definition of authorization parameters is not precise and
the specification fails to provide a complete list of such parameters.
The specification continues as follows.

"Based on operator’s policies, an access token request not including
the requester’s information necessary to validate the authorization
parameters in the target NF Profile may be rejected.”

The specification advises verifying the requester’s information,
but it is unclear whether the consumer’s NFProfile should be cross-
referenced with the producer’s NFProfile authorization parameters.

(U2) While modeling NFDiscoveryRequest, we come across con-
flicting information about the required parameters in two different
specification documents. TS 23.502 [24] asserts that, “For network
slicing the NF service, consumer ID is a required input.” However,
TS 29.510 [23] defines consumer ID as an optional parameter.

(U3) The Operations, Administration, and Maintenance (OAM)
system is responsible for configuring and managing network ele-
ments in the 5GC, including NFProfiles [24]. However, the precise
roles and functionalities of the OAM system remain underdefined.
As per 3GPP, the NFRegister and NFUpdate APIs are accessible to
any authenticated NFs. This implies that a compromised NF may
also modify its NFProfile without OAM system involvement.

Table 4: NF Update Schemes and their usecase in our findings

NFUpdate Attributes Allowed to Update U.sec.a se n

Scheme Finding
Only parameters that are non-critical for authoriza- . .

1 . . - Findings 1,
tion decisions, such as load, balance, priority, and 945

NFStatus, may be updated.
Besides Scheme 1, the compromised consumer’s

2 own authorization attributes (e.g., allowedNssais, No attack

allowedNFtypes, etc.) may also be updated.
Besides Scheme 2, other essential attributes Iike Finding 3

sNssais and nfDomain, which determine the con- depends

3 sumer’s core capabilities, can be added, modified, only on the
or deleted. More granular control can be achieved removal of
using additional constraints in the property. sNssais.

4 All attributes (unrealistic). Not tested

Address underspecifications. To address U1 and U2, we choose
to model the most conservative policy in M so that we ensure
the strongest authorization guarantees. This is because we aim
to find vulnerabilities in 5GC system even when the most con-
servative/strictest policies are chosen by network operators. For
instance, to address (U1), we model the NRF to perform not only
a cross-profile validation check of every parameters related to au-
thorization in the request message against the NFp’s NFProfile, but
also a cross-check between the request message and the NF¢’s NF-
Profile. This is done to prevent the spoofing of request parameters
to match the NFp’s NFProfile, which would otherwise render the
access control scheme ineffective. This issue has been identified as a
vulnerability by others [28], but we do not consider exploits result-
ing from specification ambiguity. Similarly, for (U2), we consider
the consumer’s NFInstanceID mandatory.

As the behavior of OAM is not explicitly defined by the spec-
ification (U3), we aim to infer and model all possible behaviors
of OAM. It enables 5GCVerif to analyze every potential scenario
involving NFProfile updates. To achieve this, we introduce two envi-
ronment variables in M — isOAMPresent and doesOAMApprove.
These variables represent if OAM exists, and if OAM approves an

Mujtahid Akon, Tianchang Yang, Yilu Dong, & Syed Rafiul Hussain

NFProfile update request, respectively. If both are True, depending
on the importance of each NFProfile attribute, we, further, reg-
ulate the update of attributes by another environment variable,
NFUpdateScheme. We categorize attributes into four groups based
on their significance in NFProfile updates. This constitutes four
update schemes as summarized in Table 4. Considering that OAM
can employ any of these schemes, we model all four possible NF
update schemes in M.

Similarly, for any access control policies for which alternative
policies are explicitly or implicitly defined (e.g., optional policies
suggested by 3GPP specifications using keywords may or should),
we model all candidate policies in M, as long as none are evidently
weak or insecure. Using environment variable, we ensure that the
model checker randomly explores and analyzes all possible behav-
iors of 5GC system until a counterexample is found. During our
experiments, the model checker can non-deterministically set the
values of these variables at runtime, or we can also control the
variables’ values via security properties to focus on investigating
specific execution paths.

4.4 Modeling Authorization Logic

When the NRF receives an NFDiscoveryRequest or accessTokenRe-
quest, it checks the input parameters and the NFProfile of the re-
questing NF¢ against those of candidate producers. The verification
process for these operations are defined in TS 29.510 [23]. Similarly,
when an NFp receives an NFServiceRequest, it validates the input pa-
rameters and accessToken attributes using verification conditions
from TS 33.501 [22]. These conditions are scattered throughout the
specifications and can be difficult to compile coherently.

Conceptually, the implementation of a verification logic is not
complicated as it is just a collection of conditional statements. How-
ever, implementing the logic in SMV language is not trivial. This is
because symbolic model checkers typically do not support loops,
reference variables, or array of modules. To address this challenge,
we unroll the loops in authorization logic and use implication op-
erator (—) of propositional logical formula to implement if — else
constructs. To illustrate, consider a set of potential producer NF
instances, denoted as P = [p1, p2, p3]. Each producer possesses
various attributes, like NFInstancelID (id) and NFType (nfType).
Should the NRF, during the NFDiscovery phase for a NFc, need to
determine if any NFp in # has the NFType of AMEF, the specific
check it performs is presented in the following.

output = (i=pl1.id & i=p2.id & i=p3.id) & (i=pl1.id -> pl.nfType=AMF)
& (i=p2.id -> p2.nfType=AMF) & (i=p3.id -> p3.nfType=AMF)

4.5 Further Tackling Scalability

To prevent our model from running into state explosion problems,
we leverage the following abstraction techniques.

Data abstraction. We employ data abstraction techniques to sim-
plify complex structures of resources and attributes while retaining
essential functional properties of the system. This approach dis-
regards properties that are irrelevant to the verification task at
hand. For example, the 3GPP specification defines NFInstancelD, a
unique ID for each NFInstance, as a string composed of four uni-
versally unique identifiers (UUID) [23, 64]. However, we abstract
this attribute as a simple integer value within a finite range.

Formal Analysis of Access Control Mechanism of 5G Core Network

Table 5: Different classes of security properties tested with 5GCVerif.

Property Authorization Sensitive Authorizing Property

Class Request Resource Agent Target
(31 NFDiscoveryRequest R% NRF Access
D, accessTokenRequest ~ R4 NRF Access
D3 NEServiceRequest R]‘g Producer Access
Dy NFServiceRequest R§ Producer Exclusivity

Behavioral abstraction. To streamline the verification process
and to create a manageable model, we abstract away unrelated
implementation details, focusing solely on the important behav-
iors. For example, all cryptographically protected messages (e.g.,
Access Token JWT [58]) are abstracted to their plain text format.
Such abstractions do not affect the faithful representation of 5GC
access control mechanisms because our threat model assumes all
communications are cryptographically secure.

Predicate abstraction. To further reduce the state space, we apply
several predicate abstractions. Intuitively, the idea is to model a
predicate over a component instead of capturing all its details di-
rectly, thereby simplifying the model. Our representation of OAM
(Section 4.3) is an example of this technique. We use only three
variables to model the complex supervising behavior of an OAM
while preserving all possible allowed update schemes. Besides, the
expiration of access tokens, a crucial attribute for authorization, is
modeled as a simple random Boolean variable expired.

5 SECURITY PROPERTIES

The high level security property we aim to verify is: an NF¢ can ac-
cess resources: (i) NFp’s NFProfile (Ri), (ii) NFp’s accessToken
(Rf]), (iii) NFp’s service (Rf,) only if the NF¢ is authorized to.
Authorization for Rf] and R’]é] is performed by NRF during NFDiscov-
eryRequest and accessTokenRequest, respectively. NRF cross-checks
the authorization parameters in the target producers NFProfiles with
that in the NFDiscoveryRequest and accessTokenRequest messages
sent by NFc. On the other hand, authorization for Rf, is performed
by the producer by validating the accessToken provided during
NFServiceRequest. Therefore, we choose to test security properties
on both authorizing agents, NRF and the producer, to verify if any
resource grant violates the access control property.

For each property, we generally target to validate that if a re-
source is granted to an NFc, then the NF¢c ’s NFProfile must match
the authorization parameters set in the corresponding NFp’s NFPro-
file. This results in three classes (&1 — ®3) of security properties as
shown in the first three rows of Table 5. For instance, ®; states that
NRF’s grant ofRJf\)] to the NF¢ does not violate access control policy
only if the NFProfile of the NFp allows the NF¢ to discover it.

Property classes ®; — @3 can effectively capture Vertical Privi-
lege Escalations (VPE) [18, 63]. VPE occurs when an attacker with
lower-level privileges tries to access higher-level privileges within
a system or application. Finding 2 in Section 7.1.2 presents an ex-
ample of VPE. On the other hand, Horizontal Privilege Escalation
(HPE) [18, 63] occurs when a user accesses resources of other users
at the same privilege level. Finding 5 in Section 7.1.5 provides an in-
stance of HPE. While ®; — ®3 may capture some HPE instances, we
introduce a distinct property class @4 specifically to detect HPEs.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

@4 validates the exclusivity of resources: if r is a sensitive resource
meant to be exclusive to a specific group g, then r should not be
authorized to access by an NFc ¢ g. To illustrate, if consumer C;
created a resource r in a producer P; that is exclusive to itself, then
all other consumers, e.g., C2 should not be able to access r; or if r’
is a resource exclusive for consumers in slice 1, then C3 who only
serves slice 2 should not obtain access to r’.

An authorizing agent (NRF or NFp) must reject an authorization
request even when a single attribute of the authorization parame-
ters fails to be validated. Building on this insight, we decompose a
property (®) into multiple simple properties (denoted as ¢;, where
i is a natural number), each focusing only on a single authorization
parameter associated with the corresponding sensitive resource.
E.g., ®; is broken down into 21 simplified properties. Two examples
of the simplified properties of ®; are: (¢1) NRF must reject NFDis-
coveryRequest if allowedNssais fails to match; and (¢2) NRF must
reject NFDiscoveryRequest if allowedNfTypes fails to match. Given
the complexity of the generated counterexamples, testing these
simplified properties focusing on a single authorization parameter
simplifies the identification of vulnerabilities and their root causes.

6 MODEL CHECKING PROCESS

In this section, we demonstrate how model checking is performed
during our workflow with an illustrated example.

6.1 Property Refinement Strategies

Adding constraints to ® for generating specification-compliant
network configurations. While verifying a security property, i.e,
testing if M = ®, 5GCVerif needs to not only find the counterex-
ample that violates the access control policies, but also generate a
correct core network configurations for which the violation may
happen. However, if the model checker generates network configu-
rations completely at random without any guidance, the majority of
generated configurations are unlikely to expose any access control
vulnerabilities, and many of which are even semantically invalid
with respect to the Technical Specifications. For example, if NFSer-
vice 1 is a service of AMF, but the network configuration associates
NFService 1 to an NFp of type UDM, then the configuration is
invalid as NFs of different NFTypes can not share the same NF-
Service. Testing security properties against this invalid network
configuration is therefore meaningless.

To address this challenge, we restrict the model checker to ex-
plore counterexamples to only within the specification-compliant
NF configurations. We manually analyzed 3GPP specifications and
5G OpenAPIs to identify 6 major categories of constraints on NF
configurations (shown in Table 6). For example, category #1 ensures
that no NFServices with the same name can be assigned to produc-
ers of different NFType. This prevents the inconsistency presented
in the example above. We instantiate each constraint type with
the values of attributes in NFProfiles and craft 230 constraints in
total. To apply a constraint o; to the model checker, we refine ® as
o; — O to prevent the model from generating an invalid network
configuration. We check each constraint-enforced property against
the model by testing if M [(o; —).

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Table 6: Constraints implemented in 5GCVerif

Constraint Constraint Description # Constraint
Category Instances
(1) NFType For any two NF services that have the same

Consistency name, they should belong to the same NFType. 6

(2) NF Service For any operations that have the same name,

Consistency they should belong to the same NF Service. 24

(3) Resource- For any two operations that have the same

level Scope name, they should be assigned resource-level 24
Consistency scopes of the same name.

(4) Operation ~ For any two operations that have the same

Parameters name, they should have the same set of op- 24
Consistency eration parameters.

(5) Authoriza- For any operations that have the same resource-

tion level scopes, their operation-level authoriza- 24
Parameters tion parameters, i.e., allowedNFTypes and al-

Consistency lowedNFInstances, should also be the same.

6: Parameter For any two operation parameters that have

Sensitivity the same names, their sensitivity should also 128
Consistency be the same.

Finding minimal adversary capabilities for a violation. During
threat instrumentation, we introduce different adversary capabili-
ties, such as, updating a profile or spoofing access token request and
service request messages. In this adversary setting, a counterexam-
ple found during model checking may exploit multiple adversary
capabilities although not all those adversary capabilities are nec-
essary to realize the attack. Hence, to find out the minimal and
sufficient set of adversarial capabilities required to fulfill an attack,
we introduce additional controls as refinements into ® and test M
against each of the refined properties.

Refining @ to suppress previously discovered counterexam-
ples. Apart from the above controls and constraints, it is necessary
to impose additional restrictions in the property to refine the model
as part of the CEGAR framework (Section 3.3), and to suppress al-
ready discovered counterexamples. We discuss in detail this process
with the illustrative example in the following section.

Encoding the refined property. The security property is an im-
plication statement written in Linear Temporal Logic (LTL) [66]
formula where the premise consists of all the control variables, con-
straints and refinement conditions, and the conclusion represents
the high level security property we aim to validate.

6.2 Illustration of Model Checking Process

We demonstrate the strength of 5GCVerif in detecting over-privilege
in the 5G Core through a running example.

Desired example property. The first property ¢; we want to
verify falls in the property category ®3 (discussed in Section 5) and
describes: During an NFServiceRequest, NFc can access Ri] only if it
is allowed by NFp’s allowedNssais attribute in its NFProfile.
Verification of ¢;. Checking M [¢; yields a counterexample
71 encompassing a trace of length 6. Each state in the trace is
defined by 598 variables. A careful evaluation of 7; reveals a novel
attack exactly describing the exploit presented in Section 3.2. We
name it Confused Producer Attack. Counterexample 7 gives a 5G
Core configuration illustrating an interesting scenario where the
compromised consumer NF C; serving a specific network slice gets
unauthorized access to a producer NF P, that is not supposed to
authorize NFServiceRequest from that slice.

Mujtahid Akon, Tianchang Yang, Yilu Dong, & Syed Rafiul Hussain

Refinement of ¢;. M contains a nondeterministic environment
variable, reqForSpecificProducer, which if set to True, guarantees
that the NF¢ invokes accessTokenRequest for a specific NFInstance
instead of for a general NFType. M generates counterexample
71 by disabling the control variable. In the refinement process,
we manually forced the enabling of reqForSpecificProducer while
leaving other parameters unchanged and test if M can find other
counterexamples. We denote the refined property ¢,.
Verification of ¢;. Does not produce counterexample.
Refinement of ¢;. Verifying M against ¢, leads to no counterex-
ample, suggesting that the constraints are overly strict and too
static. We refine @ to permit a single benign update of producers
while keeping other conditions unchanged, resulting in ¢s.
Verification of ¢3. Upon verifying model M against ¢3, a coun-
terexample 7y emerges. Careful inspection reveals another previ-
ously unidentified attack, which we denote as Token Reuse Attack.
This counterexample illustrates a network configuration where an
NFc C; gains unauthorized access to NFp P;. This occurs when
C; is initially authorized to access P, and despite an update to
Py’s authorization parameter revoking C;’s access, C; can exploit
the vulnerability to continuously gain the access to P;’s services.
Further details of this attack are discussed in Section 7.1.2.
Further refinements of ¢3. Similar to the above refinement ex-
amples, we further refine @3 by modifying different environment
variables, adversary capabilities, malicious and benign update re-
strictions, etc. We also test other access control properties based on
the verification of accessTokenRequest and the NFDiscoveryRequest
messages. Detailed description of all vulnerabilities and exploits
we uncovered is presented in Section 7.1.

7 IMPLEMENTATION AND EVALUATION

Implementation. 5GCVerif primarily uses nuXmv [40] symbolic
model checker to construct M and verify if M | ®. 5GCVerif
consists of 9 modules. Each instantiated NFc or NFp consists of 15
states and 48 transitions. With two NFp and two NF¢c, 5GCVerif
consists of 4,767 lines of code. We have tested 55 security properties
consisting of 3406 lines of code in total. The model and security
properties used in our experiments are available on GitHub [4].
Evaluation setup. We use a laptop with Intel i7-9750H CPU and
16GB DDR4 RAM. We demonstrate the effectiveness of 5GCVerif by
illustrations of the vulnerabilities and attacks 5GCVerif uncovered
in Section 7.1, followed by a briefly introduction of the time and
resource consumption of 5GCVerif in Section 7.2.

7.1 Effectiveness of 5GCVerif
Following the workflow described in Section 6, we aim to demon-
strate the effectiveness of 5GCVerif by answering the question: how
effective is 5GCVerif in finding access control violations in 5GC?
Using 5GCVerif, we have identified five classes of previously
undiscovered access control vulnerabilities within the 5G Core. The
uncovered vulnerabilities (summarized in Table 7) can potentially
lead to a range of attacks, such as illegitimate acquisition of sen-
sitive information, unauthorized access to services, and Denial of
Service (DoS). For each counterexample produced by 5GCVerif, we
manually validate the vulnerability and analyze its root causes.
We also attempt to confirm that the demonstrated attacks are
present in open-source implementations of the 5G Core. However,

Formal Analysis of Access Control Mechanism of 5G Core Network

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Table 7: Summary of 5GCVerif’s findings

Attack Vulnerability Description Adversary Assumption Notable Implications Validation
Confused A compromised NF¢ obtains an accessToken for an authorized Attacker has knowledge of the vic- Overprivileged access, sensitive infor-
Producer NF but misuses it to access a different NF of the same NFTypeina tim’s endpoint address. mation leakage O
Attack different slice, where access should not be granted.
Token Reuse A compromised NF¢ can reuse a previously saved and unexpired Attacker needs previous permission Policy change bypass,
Attack accessToken to a victim NFp which it should no longer be allowed to the victim NFp. overprivileged access,
to access due to a policy change. sensitive information leakage.
Default By emptying the sNssais attribute in its NFProfile, a compromised In the presence of OAM, it needs Overprivileged access,
Overprivilge ~ NFc can exploit 3GPP’s flawed "allow by default” policy, accessing to approve attacker’s removal of its sensitive information leakage
Attack NFs in slices it should not be permitted to. sNssais.

Authorization A compromised NF¢ discovers NFs it should not be able to by

NRF does not implement the cross-

Sensitive metadata and

D
D
o
o

Bypass misusing the sNssais attribute and set it as any slice it wishes. This ~ check between NFDiscoveryRequest authorization logic leakage,
Attack attack exploits the lack of cross-check for this field in NRF. and the NFProfile of the consumer. denial-of-Service

Parameter Once the compromised NF¢ acquires an accessToken to a producer - Overprivileged access,

Misuse NF in a legitimate slice, it is also implicitly granted access to the sensitive information leakage,
Attack same operations in other slices within the same NF. The attacker DoS

can retrieve, create, or alter information from slices they should not
access, simply by supplying the corresponding query parameters.

O: Attack is possible in freeSGC. However, free5GC did not implement some features described in the attack scenario yet.

.: Attack is fully verified in free5GC.

none of the open-source 5GC projects [14, 15], except free5GC [8],
implement the access control system. Free5GC incorporates OAuth
2.0 access control framework and provides the accessToken valida-
tion ability for producers, but it is primarily based on 3GPP Release
15, whereas our work adheres to the latest Release 17. As a result,
we do not use free5GC as a baseline for validating our findings;
instead, we use it to solely demonstrate that the issues identified
in specifications exist in real implementations, thereby confirming
their real-world implications.

The threat model for each attack scenario aligns with the one
discussed in Section 3.1. It’s important to note that, in all attack
scenarios, the malicious NF¢ is assumed not to update any autho-
rization attributes ((i.e., NFUpdateScheme = 3 in Table 4)) unless
explicitly stated otherwise.

7.1.1 Confused Producer Attack. The model-checking details are
already presented in Section 6.2, along with a concrete case illus-
trating the exploitation of the vulnerability in Section 3.2. Hence,
we refrain from discussing the same details here.

Additional adversary assumption. For the malicious or compro-
mised NF¢ Cy, in addition to the threat model outlined in Section 3.1,
it is also assumed that C; possesses knowledge of the victim NFp’s
(P2 in Figure 3) host/IP address. This information is required to
establish a connection to the targeted NF, but the attacker is unable
to acquire the endpoint of the targeted producer through a standard
NFDiscovery process. Methods such as network scanning [32, 49]
can be utilized to obtain this information, and we show that it could
also be easily attained using the attack described in Section 7.1.4.
Attack verification. In free5GC, the NRF accepts accessTokenRe-
quests that provide only the desired NFType. A malicious consumer
with the generated accessToken by the NRF is capable of passing
all validation checks enforced by producers in free5GC.

7.1.2 Token Reuse Attack. A counterexample (discovered during
the running example in Section 6.2) shows that a malicious NF¢ can
continuously access an NFp even after its permission is revoked.
The interesting components in the counterexample found by the
model checker includes a consumer NF C; and a producer NF P;.

C1 serves only sNssai 2 (i.e., slice #2) whereas P; serves all sNssais
and also authorizes consumers from any slices.

C; first invokes accessTokenRequest (for NFInstance P1) to the

NRF. NRF verifies authorization parameters and concludes that Cy
has permission for P;, and grants the consumer an accessToken
T containing audience NFInstanceID as P;. However, in the mean
time, producer NF P; invokes NFUpdateReq to the NRF to set al-
lowedNssais to 1 meaning that only the consumer serving sNssai 1
can access P;’s resource from now on. Effectively, it revokes C;’s
access to the service of P; as C; does not participate in sNssai 1.
However, given the obsolete accessToken T is not yet expired, when
the malicious C; uses the previously acquired accessToken T to
invoke NFServiceRequest to Py, Py verifies the attributes in T and
finds that it still authorizes access to services provided by P, so the
NFServiceRequest is successful. The accessToken has been granted
to the consumer C; before its access has been revoked, and NRF
cannot stop the old (but unexpired) token T from being used. As the
producer can only verify attributes presented in the accessToken,
it cannot determine that the token is no longer valid due to a lack
of information, e.g., an issue time attribute in the token.
Attack verification. We verify that in free5GC, an NF¢ can con-
tinue to access the producer using an outdated but unexpired ac-
cessToken even after NF¢’s permission is revoked. Here, we update
allowedNFTypes instead of allowedNssais to revoke NF¢’s permis-
sion since the later is not yet implemented in free5GC.

7.1.3 Default Overprivilge Attack. The property ¢ we want to ver-

ify is in category @, (Section 5) and states, an NF¢ can access R‘;\‘,
only if it is allowed upon cross-checking allowedNssais attribute of
NFp against NFc’s NFProfile during accessTokenRequest. We en-
counter this attack when verifying M |= ¢ while keeping the
adversary update enabled.

5GCVerif provides a counterexample that demonstrates how a
malicious NF¢ Ci, despite being restricted from accessing a be-
nign NFp P2 due to sNssais restrictions, can acquire service from
P, without the need to add sNssai 3 to C1’s sNssais attribute. The
critical components in the counterexample includes a compromised
consumer C; residing in sNssai 1, and a benign producer P; serving
only sNssai 3, as shown in Figure 6. This attack is a result of a

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

=00 =00 (==X
C, NRF = g! P,

sNssais: |
1) NFUpdateRequest -
(sNssais: empty, ...)

@ 200 OK

sNssais: none
3 accessTokenReq

(targetNfInstanceld: P,) i

sNssais: 3
allowedNssais: 3

verifies that Cy's sNssais is
empty, so it has permission to
request service from any slices|

4 accessTokenRsp

[accessToken]

@ NFServiceReq &CM

@ NFServiceRsp successful verification

—_ R — R

Figure 6: Demonstration of Default Overprivilge Attack

problematic specification in 3GPP’s technical documents. In partic-
ular, 3GPP employs an "allow by default” principle (TS 29.510 [23]),
where the absence of a specific attribute for an NF is interpreted
as including all possible values for that attribute. As an example, if
the sNssais field in the NFProfile of an NF¢ is left empty, according
to the specification, the NF¢ has access to all network slices.

The specification, however, does not produce direct counterex-
amples. For example, an NF¢ with an empty sNssais attribute can
access NFps in all slices, which may be unintended for network
operators but is explicitly allowed in technical documents. The
issue arises when a compromised NF¢, such as C; in this scenario,
has a non-empty sNssais attribute at the outset.

The counterexample shows that C; initiates an NFUpdateRequest
to remove sNssai 1 from sNssais attribute in its NFProfile (steps
(D-@ in Figure 6). Even if an OAM component is present in 5GC,
this action is likely to be approved as it merely involves remov-
ing attribute values rather than adding new ones. However, now
that C1’s sNssais is empty, the default rule comes into play, and
C1 suddenly becomes eligible to acquire permission to access NF
resources from all slices, provided other checks by NRF, such as
allowedNfTypes, are successful (3)—(©)).

This attack highlights one of the ramifications of the perplexing

default strategy endorsed by 3GPP. While 3GPP specifies the "al-
low by default” behavior, they may not adequately underscore its
implications. The attack targeting accessTokenRequest is just one
example, as NFDiscoveryRequest is also vulnerable to analogous
attacks. Moreover, aside from sNssais, other authorization parame-
ters are also susceptible to similar exploitations. Depending on the
implementation detailed in Section 4.3, if the OAM system prohibits
even attribute removal during NFUpdateRequest verification, the
aforementioned attack may become infeasible.
Attack verification. In free5GC, we successfully perform the at-
tack where a malicious NF¢ removes its sNssais through UpdateN-
FInstanceRequest API. However, since free5GC does not enforce slice
checks, we cannot validate “allow-by-default” behavior. Nonethe-
less, such a rule is clearly stated in the Technical Specification, and
we expect all implementations to follow it, in which case Default
Overprivilge Attack is feasible.

Mujtahid Akon, Tianchang Yang, Yilu Dong, & Syed Rafiul Hussain

7.1.4 Authorization Bypass Attack. The property ¢ we want to

verify falls in category ®; and describes, NF¢c can access Rﬁl only
if it is allowed upon cross-checking allowedNssais attribute of NFp
against NF¢ ’s NFProfile during NFDiscoveryRequest. As part of the
property refinement process, we disabled all adversarial NF up-
dates. This restriction suppresses Default Overprivilge Attack, and
reveals this new vulnerability. The counterexample generated by
5GCVerif reveals that a malicious NFc C; can discover a benign
NFp P, without making any modifications to its NFProfile, even
though P,’s allowedNssais field explicitly prohibits C;’s access. The
crucial components in the counterexample are similar to the ones in
previous Section 7.1.3, consists of a compromised NF¢ Cj residing
in sNssai 1, with a benign NFp P, serving only sNssai 3.

In NFDiscoveryRequest, the consumer may set two crucial at-
tributes, sNssais,fp;s., which denotes sNssais the NFc wishes to
discover, and requestersNssais, p;,., which refers to sNssais served
by the NFc. NRF follows the following steps to verify an NFDis-
coveryRequest. First, it finds all target NFs that serve sNssais as
appeared in requestersNssais, p;;.. then validates if NF¢ has access
to the those NFs by cross-checking requestersNssais, ;. against
allowedNssais in the NFp’s NFProfile, and finally, it filters poten-
tial producers based on sNssaisyp;sc [23]. However, as both of the
mentioned parameters can be spoofed by the malicious NFc, it
may set these parameters to any values to discover any NF in the
5GC. While the allowedNssais of the target NF is checked against
requestersNssais, m;;. by NRF, requestersNssais, m;,. is not cross-
checked against sNssais in NF¢’s NFProfile. In this setup, C; can
set requestersNssais, ;. to sNssai 3, and obtains the NFProfile of
P, that includes sensitive metadata of the victim NF. Similar attack
can be found for accessTokenRequest as well upon verifying similar
properties of type @, focusing on Rﬁ.

Attack verification. In free5GC, NRF performs no cross-checks be-
tween the sNssais in consumer’s NFProfile and requestersNssais, ;g
field in NFDiscoveryRequest, and thus the vulnerability exists.

7.1.5 Parameter Misuse Attack. This attack is uncovered by the
following property in category @y, ¢: If access to a sensitive resource
r which should only be exposed to sNssais s is granted for NFc, then
the NFc must serve sNssais s. The crucial NFs in the counterexample
produced by 5GCVerif contains a compromised consumer Cy, that
serves only sNssai 1; and a benign producer P2, which resides in
both sNssais 1 and 2, that accepts NFServiceRequests from sNssais 1
and 2. The counterexample shows that C; is able to access resources
stored in P; not only for sNssai 1 (we denote such resource as ry),
but also for sNssai 2 (we denote such resource as ry). C; initiates
an accessTokenRequest to obtain an accessToken for P, and NRF
grants the token since sNssai 1 is in P;’s allowedNssais. However,
C1 uses the token to request ry by providing the query parameter
related to ry in its NFServiceRequest. P, will only validate that the
accessToken contains the correct scopes and returns the requested
data, as it has no way to learn that the consumer should only acquire
services related to sNssai 1 (i.e., r1) using the token it received. As a
result, the consumer obtains sensitive information ry that it should
not have access to as the consumer and ry are in separate network
slices. In this scenario, the query parameter acts as a fragile autho-
rization parameter that is implicitly used to restrict access of the
consumer in addition to the accessToken, yet 3GPP underspecifies

Formal Analysis of Access Control Mechanism of 5G Core Network

the importance of the parameter and does not mention any of its
implications. Using this method, malicious consumers can query
for or even modify sensitive subscription information or contextual
UE information, including user location and other privacy data,
for UEs residing in slices the consumer should not have access to,
simply by providing the corresponding UE ID.

Attack verification. In free5GC, we confirm the vulnerability
in UDR. A malicious NF¢ can extract UE authentication and sub-
scription information of any sNssais using operations like Policy-
DataUesUeldAmDataGet by providing the corresponding UE ID as
a parameter, despite the imposed sNssais restrictions.

7.2 Resource Consumption of 5GCVerif

We evaluate the resource consumption of 5GCVerif by answer-
ing the following research question: how does the trace length (i.e.,
number of states in a trace) explored by the model checker affect
the performance of 5GCVerif ? To address this, we tested a simple
reachability property against our model under varying state transi-
tion lengths, recording both time and memory consumption. For
each state transition length, we repeated the experiment 5 times
and calculated the average result. The findings are illustrated in
Figure 7, and it shows that both time and memory consumption
exhibit exponential growth with increasing trace length (i.e., num-
ber of state transitions in a trace). During our iterative workflow,
we noted that the majority of counterexamples appear within the
first 10 state transitions. As a result, the exponential growth in
resource consumption has minimal impact while verifying 5GC’s
access control mechanism.

Resource Type

+ Memory
Time

KIOWDA XN

3 15 25 35 45 55 65
Trace Lengths (# of states in a trace)

Figure 7: 5GCVerif’s resource consumption w.r.t. trace lengths

8 RELATED WORK

Access control in 5G. Existing work explore different aspects re-
lated to access control issues in 5G systems (5GS). These include
formalizing 5G access control mathematically [70], characterizing
access control challenges and speculating new access control frame-
works [28, 29, 50] for specific 5G use cases (e.g., IoT, healthcare,
etc.) [38, 39, 41, 52, 61, 72]. None of the aforementioned works, how-
ever, formally analyzes access control mechanism of 5G systems.

Analysis of cellular networks using formal verification. Mul-
tiple attempts were made in the past to formally verify the cellular
network protocols [36, 45, 54, 55, 59, 65]. For example, Cremers &
Dehnel-Wild [45], and Basin et al. [36] model the Authentication
and Key Agreement Protocols (5G-AKA) of 5GS using Tamarin [19]
prover, while Hussain et al. [54, 55] analyze several NAS and RRC
Layer protocols of 4G and 5G networks. However, all previous
works only focus on modeling small parts of the 5G core network in-
teractions, while assuming the rest to be well-protected and secure.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

In contrast, 5GCVerif models all major authorization interactions
in 5GC faithfully while also allowing for multiple consumer NFs to
interact parallelly with producers.

Analysis of other access control systems using formal verifi-
cation. Several previous works attempted to formally verify the
access control policies of different systems [43, 53, 56]. For instance,
Jayaraman et al. [56] propose new approach to formally verify AR-
BAC based access control system. 5GC’s access control is, however,
not an ARBAC system. Chen et al. [43] formally analyze the access
control configurations from software traces in Windows OS to find
attack patterns. However, specific access control configurations of
5GC are private information and not accessible publicly. To address
this, 5GCVerif generates semantically valid 5GC network configu-
rations itself to find authorization flaws in the design irrespective
of network configurations.

Security analysis on OAuth 2.0 implementations. OAuth 2.0 [46]
framework is fundamentally designed for web-based applications.
As opposed to analyzing the design, majority of the prior research
in this area focuses on analyzing OAuth 2.0 implementations in
particular use cases [30, 31, 35, 42, 62, 68, 69, 71, 73, 74]. Even the
OAuth 2.0 framework is not flawless. Fett et al. [51] leverage for-
mal methods to analyze the OAuth 2.0 framework and discover 4
vulnerabilities. In contrast, our focus is on faithful modeling and
analyzing the design of OAuth 2.0-based access control mechanism
of 5GC outlined in the 3GPP specifications.

9 DISCUSSION

Scope of our analysis. Our current analysis covers the most
critical access control specifications, excluding the SCP and SEPP
Proxys, which are involved in indirect and inter-network-operator
communications, respectively. We prioritize security-critical at-
tributes in NFProfile to reduce 5GCVerif’s complexity, although
there might be other attributes that could lead to unidentified at-
tacks. Future work could explore these directions. Additionally, it
is essential to note that 5GCVerif might overlook vulnerabilities
stemming from misconfigurations or implementation-level flaws
as we only model and analyze the specifications.

Threat to validity. Our manually extracted FSMs from the standard
might not fully reflect the behavior of real operational networks.
Inaccuracies in the FSMs may induce false positives, although based
on our tested properties, we have not observed any. Furthermore,
we reported our findings to GSMA [9] and consulted with GSMA’s
panel of experts who acknowledged the vulnerabilities [10].
Countermeasures. We intentionally refrain from discussing coun-
termeasures for the observed attacks in the main body of the paper.
Adding security measures into an existing protocol without thor-
oughly considering factors like backward compatibility can result
in solutions that may lack long-term efficacy or fail under rigor-
ous scrutiny. Instead, we are collaborating closely with the GSMA
CVD panel to develop recommendations for updating the technical
specifications. However, we do offer some insights into potential
short-term patches in Appendix A.1.

10 CONCLUSION

We develop 5GCVerif to formally verify the access control mecha-
nism of 5G core network through model checking. Our framework

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

is inspired by the CEGAR approach and is capable of automati-
cally analyzing the access control mechanism for valid 5G core
network configurations. Our evaluation of 5GCVerif uncovers five
categories of previously uncovered vulnerabilities in 5GC. With its
modular and highly customizable design, we envision 5GCVerif as
a useful tool in continuously identifying and mitigating security
threats in 5GC, ultimately contributing to the deployment of more
secure and trustworthy 5G systems.

ACKNOWLEDGMENT

We appreciate the anonymous reviewers’ feedback and GSMA’s
support during the vulnerability disclosure process. This study was
supported by the NSF under grants 2145631, 2215017, and 2226447
and by the Defense Advanced Research Projects Agency (DARPA)
under contract number D22AP00148.

REFERENCES

(1]
(2]

[12]

[13]

[14]
[15]
[16]

[17]

3GPP Standard. www.3gpp.org.

5G Networks Are Worryingly Hackable. https://spectrum.ieee.org/5g-
virtualization-increased-hackability. [Online; accessed July 25, 2023].

5G OpenAPIs. https://forge.3gpp.org/rep/all/5G_APIs.

5GCVerif. https://github.com/SyNSec-den/5GCVerif.

5GRadar: Discover how MVNOs can make the most of 5G. https://www.
5gradar.com/features/discover-how-mvnos- can-make- the-most-of-5g. [Online;
accessed July 25, 2023].

Bluetooth Specification. https://www.bluetooth.com/specifications/bluetooth-
core-specification/.

CVE-2016-1906. https://www.cvedetails.com/cve/CVE-2016-1906. [Online; ac-
cessed July 25, 2023].

Free5GC. www.free5gc.org.

GSMA Coordinated Vulnerability Disclosure Programme). https://www.gsma.com/
security/gsma- coordinated-vulnerability- disclosure- programme/.

GSMA Mobile Security Research Acknowledgements (previously known as GSMA
Mobile Security Hall of Fame). https://www.gsma.com/security/gsma-mobile-
security-research-acknowledgements/.

Hildegard: New TeamTNT Cryptojacking Malware Targeting Kubernetes. https:
//unit42.paloaltonetworks.com/hildegard- malware-teamtnt/. [Online; accessed
July 25, 2023].

Kubernetes RBAC Used By Attackers To Deploy Persistent Backdoor.
https://phishingtackle.com/articles/kubernetes-rbac-used-by-attackers-to-
deploy-persistent-backdoor/. [Online; accessed July 25, 2023].

Malicious Kubernetes Helm charts can be used to steal sensitive information
from Argo CD deployments. https://apiiro.com/blog/malicious-kubernetes-
helm- charts-can-be-used- to- steal-sensitive-information- from-argo-cd-
deployments/. [Online; accessed July 25, 2023].

Open5GS. open5gs.org.

OpenAirinterface. https://www.openairinterface.org/.

OpenRAN - 5G hacking just got a lot more interesting. https://media.ccc.de/
v/mch2022-273-openran-5g-hacking- just-got-a-lot-more-interesting. [Online;
accessed July 25, 2023].

Over 900,000 Kubernetes instances found exposed online.
//www.bleepingcomputer.com/news/security/over-900-000-kubernetes-
instances-found-exposed-online/. [Online; accessed July 25, 2023].
OWASP: Testing for privilege escalation. https://owasp.org/www-project-
web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-
Authorization_Testing/03-Testing_for_Privilege_Escalation.

Tamarin Prover. https://tamarin-prover.github.io/.

Telecoms: How 5G will revolutionise the MVNO market. https://telecoms.com/
opinion/how-5g-will-revolutionise- the-mvno-market/. [Online; accessed July
25, 2023).

The OpenAPI Initiative. www.openapis.org.

3GPP. 5G; Security architecture and procedures for 5G System. TS 33.501. 17.5.0.
3GPP. 5G System; Network function repository services; Stage 3. TS 29.510.
17.7.0.

3GPP. Procedures for the 5G System (5GS). TS 23.502. Version 17.6.0.

3GPP. Study on security aspects of the 5G Service Based Architecture (SBA). TR
33.855. Version 16.1.0.

3GPP. System architecture for the 5G System (5GS). TS 23.501. Version 17.6.0.
3GPP. Release 17 Description; Summary of Rel-17 Work Items. TR 21.917, 2022.
1.0.0.

https:

[28

[29

[30

[31

@
&,

[33

(34]

[35

[37

[38

[39

[40

[42

[43]

[44

[45

[46

[47]
(48]

[49]

[52

[53

Mujtahid Akon, Tianchang Yang, Yilu Dong, & Syed Rafiul Hussain

AdaptiveMobile Security. White Paper: A slice in time: Slicing security in 5G
Core Networks. Technical report. [Online; accessed December 1, 2022].
Ahmad, Jjaz and Kumar, Tanesh and Liyanage, Madhusanka and Okwuibe, Jude
and Ylianttila, Mika and Gurtov, Andrei. Overview of 5G security challenges and
solutions. IEEE Communications Standards Magazine, 2(1):36-43, 2018.

Al Rahat, Tamjid and Feng, Yu and Tian, Yuan. Oauthlint: an empirical study
on oauth bugs in android applications. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 293-304. IEEE, 2019.
Al Rahat, Tamjid and Feng, Yu and Tian, Yuan. Cerberus: Query-driven Scalable
Security Checking for OAuth Service Provider Implementations. arXiv preprint
arXiv:2110.01005, 2021.

Allman, Mark and Paxson, Vern and Terrell, Jeff. A brief history of scanning. In
Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, pages
77-82, 2007.

Aminof, Benjamin and Kotek, Tomer and Rubin, Sasha and Spegni, Francesco and
Veith, Helmut. Parameterized model checking of rendezvous systems. Distributed
Computing, 31:187-222, 2018.

Arons, Tamarah and Pnueli, Amir and Ruah, Sitvanit and Xu, Ying and Zuck,
Lenore. Parameterized verification with automatically computed inductive asser-
tions? In Computer Aided Verification: 13th International Conference, CAV 2001
Paris, France, July 18-22, 2001 Proceedings 13, pages 221-234. Springer, 2001.
Bansal, Chetan and Bhargavan, Karthikeyan and Delignat-Lavaud, Antoine and
Maffeis, Sergio. Discovering concrete attacks on website authorization by formal
analysis. Journal of Computer Security, 22(4):601-657, 2014.

Basin, David and Dreier, Jannik and Hirschi, Lucca and Radomirovic, Sasa and
Sasse, Ralf and Stettler, Vincent. A Formal Analysis of 5G Authentication. In
CCS 18

Basin, David and Dreier, Jannik and Hirschi, Lucca and Radomirovic, Sasa and
Sasse, Ralf and Stettler, Vincent. A Formal Analysis of 5G Authentication. CCS
’18, 2018.

Behrad, Shanay and Bertin, Emmanuel and Tuffin, Séphane and Crespi, Noel.
5G-SSAAC: slice-specific authentication and access control in 5G. In 2019 IEEE
Conference on Network Softwarization (NetSoft), pages 281-285. IEEE, 2019.
Behrad, Shanay and Bertin, Emmanuel and Tuffin, Stéphane and Crespi, Noel.
A new scalable authentication and access control mechanism for 5G-based IoT.
Future Generation Computer Systems, 108:46-61, 2020.

Cavada, Roberto and Cimatti, Alessandro and Dorigatti, Michele and Griggio,
Alberto and Mariotti, Alessandro and Micheli, Andrea and Mover, Sergio and
Roveri, Marco and Tonetta, Stefano. The nuXmv symbolic model checker. In
International Conference on Computer Aided Verification, pages 334-342. Springer,
2014.

Chen, Baozhan and Qiao, Siyuan and Zhao, Jie and Liu, Dongqing and Shi,
Xiaobing and Lyu, Minzhao and Chen, Haotian and Lu, Huimin and Zhai, Yunkai.
A security awareness and protection system for 5G smart healthcare based on
zero-trust architecture. IEEE Internet of Things Journal, 8(13):10248-10263, 2020.
Chen, Eric Y and Pei, Yutong and Chen, Shuo and Tian, Yuan and Kotcher, Robert
and Tague, Patrick. Oauth demystified for mobile application developers. In
Proceedings of the 2014 ACM SIGSAC conference on computer and communications
security, pages 892-903, 2014.

Chen, Hong and Li, Ninghui and Gates, Christopher S and Mao, Ziging. Towards
analyzing complex operating system access control configurations. In Proceedings
of the 15th ACM symposium on Access control models and technologies, pages 13-22,
2010.

Clarke, Edmund and Grumberg, Orna and Jha, Somesh and Lu, Yuan and Veith,
Helmut. Counterexample-guided abstraction refinement. In International Con-
ference on Computer Aided Verification, pages 154-169. Springer, 2000.
Cremers, Cas and Dehnel-Wild, Martin. Component-Based Formal Analysis of
5G-AKA: Channel Assumptions and Session Confusion. 2019.

D. Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, RFC Publisher,
October 2012.

R. de Nicola and M. C. B. Hennessy. Testing equivalences for processes, pages
548-560. Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

Dolev, Danny and Yao, Andrew. On the security of public key protocols. IEEE
Transactions on information theory, 29(2):198-208, 1983.

Durumeric, Zakir and Wustrow, Eric and Halderman,] Alex. ZMap: Fast Internet-
wide Scanning and Its Security Applications. In USENIX Security Symposium,
volume 8, pages 47-53, 2013.

Dutta, Ashutosh and Hammad, Eman. 5G security challenges and opportunities:
a system approach. In 2020 IEEE 3rd 5G World Forum (5GWF), pages 109-114.
IEEE, 2020.

Fett, Daniel and Kusters, Ralf and Schmitz, Guido. A comprehensive formal
security analysis of OAuth 2.0. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 1204-1215, 2016.

Guija, Daniel and Siddiqui, Muhammad Shuaib. Identity and access control for
micro-services based 5G NFV platforms. In Proceedings of the 13th International
Conference on Availability, Reliability and Security, pages 1-10, 2018.

Hughes, Graham and Bultan, Tevfik. Automated verification of access control
policies using a SAT solver. International journal on software tools for technology

www.3gpp.org
https://spectrum.ieee.org/5g-virtualization-increased-hackability
https://spectrum.ieee.org/5g-virtualization-increased-hackability
https://forge.3gpp.org/rep/all/5G_APIs
https://github.com/SyNSec-den/5GCVerif
https://www.5gradar.com/features/discover-how-mvnos-can-make-the-most-of-5g
https://www.5gradar.com/features/discover-how-mvnos-can-make-the-most-of-5g
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.bluetooth.com/specifications/bluetooth-core-specification/
https://www.cvedetails.com/cve/CVE-2016-1906
www.free5gc.org
https://www.gsma.com/security/gsma-coordinated-vulnerability-disclosure-programme/
https://www.gsma.com/security/gsma-coordinated-vulnerability-disclosure-programme/
https://www.gsma.com/security/gsma-mobile-security-research-acknowledgements/
https://www.gsma.com/security/gsma-mobile-security-research-acknowledgements/
https://unit42.paloaltonetworks.com/hildegard-malware-teamtnt/
https://unit42.paloaltonetworks.com/hildegard-malware-teamtnt/
https://phishingtackle.com/articles/kubernetes-rbac-used-by-attackers-to-deploy-persistent-backdoor/
https://phishingtackle.com/articles/kubernetes-rbac-used-by-attackers-to-deploy-persistent-backdoor/
https://apiiro.com/blog/malicious-kubernetes-helm-charts-can-be-used-to-steal-sensitive-information-from-argo-cd-deployments/
https://apiiro.com/blog/malicious-kubernetes-helm-charts-can-be-used-to-steal-sensitive-information-from-argo-cd-deployments/
https://apiiro.com/blog/malicious-kubernetes-helm-charts-can-be-used-to-steal-sensitive-information-from-argo-cd-deployments/
open5gs.org
https://www.openairinterface.org/
https://media.ccc.de/v/mch2022-273-openran-5g-hacking-just-got-a-lot-more-interesting
https://media.ccc.de/v/mch2022-273-openran-5g-hacking-just-got-a-lot-more-interesting
https://www.bleepingcomputer.com/news/security/over-900-000-kubernetes-instances-found-exposed-online/
https://www.bleepingcomputer.com/news/security/over-900-000-kubernetes-instances-found-exposed-online/
https://www.bleepingcomputer.com/news/security/over-900-000-kubernetes-instances-found-exposed-online/
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/03-Testing_for_Privilege_Escalation
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/03-Testing_for_Privilege_Escalation
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/05-Authorization_Testing/03-Testing_for_Privilege_Escalation
https://tamarin-prover.github.io/
https://telecoms.com/opinion/how-5g-will-revolutionise-the-mvno-market/
https://telecoms.com/opinion/how-5g-will-revolutionise-the-mvno-market/
www.openapis.org

Formal Analysis of Access Control Mechanism of 5G Core Network

[54]

i
&

[60

[61]

[62

[63

[64

[65

[66

[67
[68

[69

[70

[71

[72]

[73

[74

transfer, 10(6):503-520, 2008.

Hussain, Syed and Chowdhury, Omar and Mehnaz, Shagufta and Bertino, Elisa.
LTEInspector: A systematic approach for adversarial testing of 4G LTE. In
Network and Distributed Systems Security (NDSS) Symposium, 2018.

Hussain, Syed Rafiul and Echeverria, Mitziu and Karim, Imtiaz and Chowdhury,
Omar and Bertino, Elisa. 5GReasoner: A Property-Directed Security and Privacy
Analysis Framework for 5G Cellular Network Protocol. In CCS ’19.

Jayaraman, Karthick and Ganesh, Vijay and Tripunitara, Mahesh and Rinard,
Martin and Chapin, Steve. Automatic error finding in access-control policies.
ACM Press, 2011.

Jones, M. and Bradley, J. and Sakimura, N. JSON Web Signature (JWS). Technical
report, RFC Editor, May 2015.

Jones, M. and Bradley, J. and Sakimura, N. JSON Web Token (JWT). Technical
report, RFC Editor, May 2015.

Karim, Imtiaz and Hussain, Syed and Bertino, Elisa. ProChecker: An Automated
Security and Privacy Analysis Framework for 4G LTE Protocol Implementations .
In Proceedings of the 41st IEEE International Conference on Distributed Computing
Systems, ICDCS 2021.

Krzysztof R. Apt and Dexter C. Kozen. Limits for automatic verification of
finite-state concurrent systems. Information Processing Letters, 22(6):307-309,
1986.

Li, Qi and Xia, Bin and Huang, Haiping and Zhang, Yinghui and Zhang, Tao.
TRAC: traceable and revocable access control scheme for mHealth in 5G-enabled
WoT. IEEE Transactions on Industrial Informatics, 18(5):3437-3448, 2021.

Li, Wanpeng and Mitchell, Chris J. Security issues in OAuth 2.0 SSO imple-
mentations. In International Conference on Information Security, pages 529-541.
Springer, 2014.

Maliheh Monshizadeh, Prasad Naldurg, and VN Venkatakrishnan. Mace: Detect-
ing privilege escalation vulnerabilities in web applications. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, pages
690-701, 2014.

P. Leach and M. Mealling and R. Salz. A Universally Unique IDentifier (UUID)
URN Namespace. Technical report, July 2005.

Peltonen, Aleksi and Sasse, Ralf and Basin, David. A comprehensive formal
analysis of 5G handover. In Proceedings of the 14th ACM Conference on Security
and Privacy in Wireless and Mobile Networks. ACM, Jun 2021.

Pnueli, Amir. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), pages 46-57. IEEE, 1977.

Richer, J. OAuth 2.0 Token Introspection. Technical report, RFC Editor, oct 2015.
Shehab, Mohamed and Mohsen, Fadi. Towards enhancing the security of oauth
implementations in smart phones. In 2014 IEEE International Conference on Mobile
Services, pages 39-46. IEEE, 2014.

Shernan, Ethan and Carter, Henry and Tian, Dave and Traynor, Patrick and Butler,
Kevin. More guidelines than rules: CSRF vulnerabilities from noncompliant
OAuth 2.0 implementations. In International Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment, pages 239-260. Springer, 2015.
Suarez, Luis and Espes, David and Cuppens, Frédéric and Bertin, Philippe and
Phan, Cao-Thanh and Le Parc, Philippe. Formalization of a security access control
model for the 5G system. In 2020 11th International Conference on Network of the
Future (NoF), pages 150-158. IEEE, 2020.

Sun, San-Tsai and Beznosov, Konstantin. The devil is in the (implementation)
details: an empirical analysis of OAuth SSO systems. In Proceedings of the 2012
ACM conference on Computer and communications security, pages 378-390, 2012.
Wang, Qixu and Chen, Dajiang and Zhang, Ning and Qin, Zhen and Qin,
Zhiguang. LACS: A lightweight label-based access control scheme in IoT-based
5G caching context. IEEE Access, 5:4018-4027, 2017.

Yang, Ronghai and Lau, Wing Cheong and Chen, Jiongyi and Zhang, Kehuan.
Vetting Single {Sign-On}{SDK} Implementations via Symbolic Reasoning. In
27th USENIX Security Symposium (USENIX Security 18), pages 1459-1474, 2018.
Yang, Ronghai and Li, Guanchen and Lau, Wing Cheong and Zhang, Kehuan
and Hu, Pili. Model-based security testing: An empirical study on oauth 2.0
implementations. In Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, pages 651-662, 2016.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

A APPENDIX
A.1 Outlines of Potential Fixes

In what follows, we discuss potential temporary fixes to discovered
vulnerabilities. For long-term countermeasures, we are actively
collaborating with GSMA through GSMA CVD Programme.

A.1.1 Confused Producer Attack. An accessToken already con-
tains an attribute, producerSnssaiList, which specifies a list of sNssais
that the consumer is authorized to access. The NFp can use this list
to validate whether the consumer is allowed to access its services
to prevent Confused Producer Attack. However, the 3GPP specifies
producerSnssaiList to be optional and hence the NFp cannot rely on
this attribute to validate the consumer’s authorizations. We propose
to make producerSnssaiList mandatory in the accessToken.

A.1.2 Token Reuse Attack. Currently, no revocation mechanism is
described by 3GPP for OAuth 2.0 tokens. One plausible solution is to
enable an NFp to check if an NF¢ is using an obsolete accessToken.
For this, NFp can query NRF through a new API call, TokenVerifica-
tionRequest (accessToken), upon receiving NFServiceRequest from
NF¢. A similar solution is also discussed in RFC 7662 [67]. How-
ever, introducing an additional network interaction between NFp
and NRF for each NFServiceRequest can significantly impact the
performance of both NRF and NFp, and defeats the purpose of
caching accessToken. Another solution is to introduce a new at-
tribute, timestamp, which represents the time of issuance, to the
accessToken. Additionally, the NFp should maintain an attribute,
lastUpdateTime, to track the most recent critical NFProfile update.
NFp will deny NFServiceRequest if timestamp in the accessToken is
earlier than NFp’s lastUpdateTime.

A.1.3 Authorization Bypass Attack. Enforcing a cross-check be-
tween requestersNssais, m);, message and sNssais of NF¢’s NFPro-
file during the verification of NFDiscoveryRequest by NRF will ad-
dress this vulnerability.

A.1.4 Default Overprivilge Attack. To mitigate this attack, OAM
must verify an update to critical NFProfile attributes before the pro-
file update is granted. Additionally, during each accessTokenRequest,
NRF should verify the authorization parameters from NFp’s NFPro-
file against relevant attributes in the NF¢’s NFProfile, as discussed
in Appendix A.1.3. It is also essential to avoid the allow-by-default
policy for all critical attributes, including sNssais. Instead, deny-by-
default policy should be enforced. However, implementing this fix
may cause interoperability issues if not all parties adopt the fix.

A.1.5 Parameter Misuse Attack. Section 7.1.5 underscores the
necessity of strict verification for crucial input parameters in an
NFServiceRequest. However, implementing such measures poses
challenges. One approach involves NRF checking the input parame-
ters during accessTokenRequest verification, and appending only the
verified values to the accessToken. However, this approach requires
significant modifications to the existing accessToken design and
may result in increased system overhead. It also limits accessToken
caching and may create communication bottlenecks. Alternatively,
if the NFp undertakes the verification, the NFp would require addi-
tional information about the NF¢ (e.g., NFProfile) and might require
additional queries to the NRF, incurring substantial delays.

	Abstract
	1 Introduction
	2 Background
	2.1 Service Based Architecture
	2.2 Network Slicing
	2.3 Access Control in 5G Core

	3 Design Overview
	3.1 Threat Model
	3.2 A Motivating Example
	3.3 Overview of 5GCVerif

	4 Model Construction Details
	4.1 Modeling Transitions, States, and Resources
	4.2 Threat Instrumentation
	4.3 Tackling Underspecifications in Modeling
	4.4 Modeling Authorization Logic
	4.5 Further Tackling Scalability

	5 Security Properties
	6 Model Checking Process
	6.1 Property Refinement Strategies
	6.2 Illustration of Model Checking Process

	7 Implementation and Evaluation
	7.1 Effectiveness of 5GCVerif
	7.2 Resource Consumption of 5GCVerif

	8 Related Work
	9 Discussion
	10 Conclusion
	References
	A Appendix
	A.1 Outlines of Potential Fixes

