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Abstract—This study proposes a new method for event sit-
uational awareness in distribution grids using Synchro Wave-
form Measurement Units (SWMUs). An efficient feature-
extracting technique named the Short-Time Matrix Pencil
method (STMPM) is used to capture the oscillation modes and
distortion of voltage and current measurements under common
events such as transient switching events and challenging high
impedance faults. The extracted features from the waveform data
are then used as the input to Graph Neural Network (GNN)
as the event classifier. GNN captures the spatial relationship
between SWMUs and physical features of the network to enhance
event classification accuracy. The proposed grid-aware waveform
analytics is tested for classifying different events, and the superior
performance of the proposed method with respect to other
approaches is verified using the classification merits, such as
accuracy, F1-score, precision, and recall.

Index Terms—Distribution Grids, Event Classification, Graph
Neural Network, Waveform Measurement, Matrix Pencil
Method.

I. INTRODUCTION

Different types of disturbances and outages can occur in
distribution systems, which require better situational aware-
ness to improve system recovery and enhance grid reliability
and resilience [1], [2]. Switching transient events and high
impedance faults (HIF) are among the most widespread events
in distribution systems. Transient events cause instantaneous
distortion in voltage or current signals, which can be cap-
tured using sensors with high sampling rates. Moreover, HIFs
usually create small and insignificant variations in current or
voltage signals, making them much harder to detect using
conventional protection devices, such as overcurrent protec-
tion with predetermined sensitivity thresholds [3]. HIFs may
cause stochastic arcing behavior that can initiate wildfires and
become safety hazards. Thus, developing an efficient event
classification method and having access to high-sampling-rate
measurement can assist system operators and protection engi-
neers in performing suitable corrective, remedial, preventive,
or maintenance actions corresponding to the detected event.

The evolution of advanced sensors and measurement devices
has begun with the vast deployment of phasor measurement
units (PMUs) for grid situational awareness. The sampling
rate of PMUs usually varies between 30 to 120 samples-per-
second (SPS) [4]. However, PMUs may not capture enough
information for transient event analysis. For transient events,
such as HIFs and switching events, current or voltage dis-

tortions can be better captured using higher sampling rate
waveform sensors. Therefore, there have been recent interests
in exploring the use of high sampling rate measurements,
named synchro waveform measurement units (SWMUs) for
different applications, including events analysis [5]. The re-
porting rate of SWMUs can go up to 256 sample-per-cycle,
which help to detect and identify transient event with minor
signal distortions.

Event classification methods are broadly categorized into
data-driven-based, model-based, and grid-informed data-
driven models. Under the data-driven-based category, in [4],
a PMU-based classification method is proposed using an
autoencoder to classify different events. In a recent study, a
CNN-based classifier and short-time Fourier transform (STFT)
are proposed to identify the cause of faults using wave-
form data [6]. In [7], the Hierarchical Bayesian Program
Learning (HBPL) is adopted to classify the incipient faults
versus capacitor bank (CB) switching and load changes using
the human-level concept for extracting features of waveform
measurements. In [8], the Prony modal analysis of synchro
waveform data is conducted, and the circuit model is built
using the obtained modes to locate transient events and faults.
However, model-based techniques require accurate model-
ing of the circuit with various components which adds to
the complexity of the proposed method. In this paper, we
overcome the existing gaps between data-drive and purely
circuit-based approaches by using a grid-aware data-driven
classifier, named Graph Neural Network (GNN) combined
with short-time modal analysis, named Short-Time Matrix
Pencil Method (STMPM) for signals feature extraction [9].
In [10], GNN is adopted for locating faults using phasor
measurement data in active distribution systems. Authors of
[11] uses GNN for event classification in active distribution
networks. In [12], GNN is implemented for event classification
and region identification in active distribution grids with multi-
sampling rate PMUs and GNN’s edge features. Authors of
[13] propose GNN-based event clustering with fundamental
and harmonic PMU data in conventional distribution feeders
without considering edge features in GNN. The GNN is used
with waveform signals and short-time modal analysis under
regular faults, while challenging events such as arc-based
HIF and transient switching events are not studied [14]. With
respect to the stated research gaps, the contributions of this
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paper are as follows:

o This paper investigates the challenging problem of event
classification in distribution systems with a new emerg-
ing class of high-sampling rate measurements, called
SWMUs, to enhance network situational awareness.

o Short-time matrix pencil method (STMPM) is proposed
to extract waveforms’ features and signatures for transient
and permanent events classification.

o The spatial relationship of the locationally-scarce
SWMUs and the grid topological features are incorpo-
rated in the GNN model as a grid-aware event classifier.

The rest of the paper is organized as follows. The GNN and
STMPM are explained in Sections II and III. Moreover, Sec-
tion IV discusses different case studies and data preparation.
Section V presents the numerical studies, and VI concludes
the studies.

II. GRAPH NEURAL NETWORK

A distribution network is defined as an undirected graph
G =(V, E, A), where V, E, and A show the set of nodes,
set of edges, and adjacency matrix of the graph, respectively.
The matrix A implies the topological feature, where its greater
elements are showing a stronger correlation between particular
nodes. Considering the nodal correlations of power grids, a
distance-based metric is defined as I;; = 1/m;;, indicating an
element of A. Here, m;; shows the physical distance between
two nodes [12]. Moreover, matrix D represents the number of
nodes connected to that particular node. The spectral convo-
lution in the Fourier domain is given as the multiplication
of signal z, including nodal voltages and currents, with a
parameterized filter 1)9. A re-normalization technique is used
[15], resulting in modified convolution as (1), where A=T +A,
and D;;= > ; Aij are defined.

Yo x 2 =0(DOPADTO5) 1)

Equation (1) is extended to (2), where matrix ZeRN*M

considered instead of z which has a scalar for each node. The
data stream has M features recorded by SWMUs before and
after occurring the event. The matrix B € RM*@ represents
the parameter of filters with () feature maps. Finally, graph
convoluted signals are given in matrix H. This definition is
used to design the GNN framework with multi Graph Convo-
lution layers followed by the linear transformer and softmax
classifier. An activation function (ReLu) is used between graph
convolution layers [12].

H= (D% AD%%zB )
III. FEATURE ENGINEERING WITH STMPM

A band-limited signal defined in a period of 7" is represented
by an extended form of Fourier series, as (3). In (3), damping
factor is indicated as —a; in sec™!, and the angular speed is
specified with w; in rad.sec™?, giving the complex frequency.
Moreover, r; is the residual of the signal. Note that if «; is
equated with 0, Equation (3) will be represented as Fourier

series. However, «; contains very informative details of the
system, motivating us to use this generic formulation [16].

N
Z(t) = Zri et cos (wit + 0;) 3)
i=1

Considering this definition, we can reconstruct the observed
signal in a specified length of the window using STMPM
and use its driven signal components («;, w; and r; ) as
selected features from raw signal for event cause analysis. In
our analysis, Z(t) is defined as alpha elements of Clark trans-
formation for three-phase voltages monitored by an SWMU.
This indicates the real part of space vectors, shrinking the data
dimension and capturing distortion in all three-phase voltage
signals. The mathematical definition of STMPM is elaborated
on in this section. The matrix W shown in (4) is made by
captured samples in an [N-sample sliding window.

Z(1) Z(2) Z(P+1)
Z(2) Z(3) Z(P+2)
W= : : : : “)
ZIN-P) Z(N—P+1) ... Z(N)

where Z(.) and N imply the original sample and sample
numbers in the sliding window, respectively. Moreover, P is
a matrix pencil parameter defined between N/3 to N/2 [17],
adjusted for filtering the noise. The dimension of matrix W is
(N — P)x(P + 1). The singular-value decomposition (SVD)
of W is done as follows:

y=wwt, v=wiw 5)

W=0Uy > U (6)

where ()7 and U indicate complex conjugate and uni-
tary matrix with eigenvectors, respectively. > constructed by
singular values of W indicates a diagonal matrix. Also, a
threshold is confined as (7) to choose the singular dominant
values. In (7), f is the filtering factor, and the dominant and
maximum singular value are as 1y and 7,,, respectively [17].

TIm 10~/ < g (7

The columns of the matrix > that correspond to the domi-
nant singular values are retained, and the remaining columns
are discarded. Consequently, Z/ defines the reduced matrix.
Additionally, the matrix Uy is modified as U{, by preserving
only its columns that are associated with the dominant singular
values, while discarding the remaining columns. Wy;,.,; and
Wiast are defined in (8).

Weirst = Uy > Ui s Wiast = Uy Y Uiflag (8)

where Uy, ;. is obtained by excluding the last row of Uy,
and Uy, is obtained by omitting the first row in Uy, . Finally,
the following formulas are presented:

W Wiast — M| =0 ©)
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Fig. 1. Schematic of the grid-aware waveform analytics for event classification

In (9), X\ denotes eigen root of (9) and Moore—Penrose pseu-
doinverse is shown (.)*. The relationship between eigenvalues
and complex frequencies is as (10) [17].

Ap =eTonEion)Tw - yp =12 .m  (10)

where T, and A, are the sampling period and eigenvalues.
By driving the eigenvalues, complex frequencies are obtained
in each snapshot, shown in (11).

—ay, £ jw, =)/ Tsp, Yn=12...,m (11)

The process proposed in (4)—(11) for each snapshot is repeated
until the sliding window arrives to the end of the signal,
guaranteeing a short-time modal analysis.

A. Short-time feature selection for event classification

STMPM is applied on waveform data to characterize oscil-
latory modes included in distribution system responses against
an event. Characteristics of modes are different in each event,
enabling us to identify events type. A set of features including
damping factors, angular frequencies, and residual magnitude
related to the dominant mode are obtained from each sliding
window. To capture these informative features (event signa-
tures), several steps are defined to make a new set for voltage
and current signals as follows: (1) Extracting the dominant
modes and corresponding residues of the waveform data in
each sliding window. This is possible by creating matrix X and
applying SVD on it as explained in Section III. (2) Choosing
the mode that has the highest corresponding residual value in
each snapshot compared to the obtained modes. Depending
on the event type, the number of modes is more or less. For
example, CB switching makes significant oscillation, creating
new modes. HIF does not create observable distortion, and
it usually has two fundamental modes with small variations.
(3) Saving the damping factor, angular frequency, and resid-
ual obtained from voltage and current signals, recorded in

each snapshot. Vectors are created for voltage and current
features separately. (4) Keep storing three distinctive pieces
of information until the sliding window passes the event
monitoring interval. (5) Combining the captured features of
voltage and current vectors as the signature of events driven
from a particular sensor. This process is performed for each
sensor, and their relevant information is transferred to the
measurement matrix (Z). Fig. 1 shows the process of feature
extraction and the GNN-based classification in the grid-aware
waveform analytics.

IV. CASE STUDY AND DATA PREPARATION

The proposed model is tested on the modified IEEE 13-bus
system, as illustrated in Fig. 2. The node numbers defined in
the IEEE system are changed to contain 0-12 node numbers
for the GNN adjacency matrix. A non-dispatchable Distributed
energy resource (DER) with a base capacity of 1 MW is
added to node 6. The base consumption of three-phase and
single-phase loads are 1 MW per phase and 0.12 MW on
nodes 3 and 12, respectively. The permanent outage of DER
and the transient disconnection of loads with the duration
of 1 and 2 cycles are considered as individual events in
this study. Additionally, a three-phase capacitor bank (CB)
installed on node 8 can provide 75 kVar power per phase, and
a single-phase CB installed on node 11 provides 45.98 kVar
reactive power. These CBs can experience transient switching
and permanent disconnection from the system. Arc-based HIF
faults occur on nodes 2, 4, or 8, and their stochastic behavior
is modeled by the diode-based circuit and the parameters
adopted from [18]. The impedance of these faults changes
between 100-150 ohms during the simulation period, ensuring
the uncertainty in the type of contacted surface and the arc
variations. It is considered that a single-phase HIF can occur
since this is the most common type of HIF event. Regular
symmetric and asymmetric low-impedance faults occur on
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Fig. 2. The schematic of the modified IEEE 13-bus grid

nodes 1 and 9 with a transient duration of 1 and 2 cycles. The
resistance of such faults is between 0.01 and 1 ohm. Moreover,
three SWMUs with a sampling rate of 256 samples per cycle
are assumed to be installed on nodes 1, 6, and 8. The PSCAD
software automated through its Python API is used to generate
a database of these realistic events under probable real-world
conditions, such as system loading and DER generations. The
grid conditions are considered by changing DER output be-
tween 100 kW to 1300 kW and modifying loads between 80%
to 130% of the base consumption of nodes. The waveform data
are modified by adding Gaussian noise with different signal-
to-noise rates (SNR) of 45, 50, 55, 60 dBs to the raw data.
Also, 9 equally divided inception points are considered on a
cycle to consider different events’ inception angles. Finally, six
different labels corresponding to different event types and the
normal condition are considered, as indicated in Table I. It is to
be noted that we assumed that voltage and current waveforms
with high sampling rates are available on only three nodes
because of the locationally scarcity of SWMUs. Note that the
main cost is related to storing the data, which is reducing by
the improvement of storage technologies [5]. To train the GNN
model, more than 6000 sample events are prepared.

A. Parameters of GNN and STMPM

The GNN architecture is set with two GCN layers, each with
128 channels, followed by a linear transformation including
256 hidden nodes. ReLu is the activation function between
GCN layers, and the dropout rate is set at 0.5. Adam optimizer
is considered with a learning rate of 0.0001, and the batch size
is 8. Softmax classifier is also located as the last layer for event
classification with the cross entropy as the loss function of the
classifier. As for the STMPM, the length of the sliding window
is equal to 9.1 ms, and the step size of the moving window is
2.6 ms. The parameter f is 3 [14], [16]. These parameters are
optimally adjusted based on several rounds of experiments.

TABLE I
EVENTS AND LABELS

’ Labels ‘ Event Type (Duration of the event)

0 CB’s switching malfunction (Transient and permanent)
DER outage (Permanent)

Load disconnection (Transient)

1

2

3 Arc-based HIFs (Transient and permanent)
4 Regular faults (Transient)

5

Normal condition

V. NUMERICAL ANALYSIS

In this section, the captured features from waveform data
and the event classification performance are studied. Several
metrics such as macro-average F1 score, recall, and precision
are used for evaluating the classification performance [12].

Page 4 of 6

TABLE 11
THE RESULTS COMPARISON
Different Average Best Macro | Macro | Macro
Approaches | Accuracy % | Accuracy % | Pre % | F1 % | Rec %
GNN 98.53 99.08 98.34 | 9792 | 97.55
DT 95.04 95.79 9422 | 94.01 | 93.84
kNN 90.29 90.90 90.48 90.49 | 94.69

A. Extracted features

Mlustrative examples given in Fig. 3 show the extracted
features using STMPM from the voltage signals for CB
switching and HIF events. The voltage is obtained from the
alpha component of three-phase voltages transformed through
a Clark transformation. Fig. 3.a indicates that a transient CB
switching on node 8 causes oscillations on the voltage and
makes new transient oscillatory modes in the system, which
are captured by the SWMU at the same location, with SNR of
45 dB. Three informative features named dominant damping
factor, angular frequency, and residual magnitude detect the
instantaneous changes caused by the event, as illustrated on
the right-hand side of the raw waveform signal. For a 60-Hz
system, the base angular frequency is 377 ~ 27 60 rad/sec,
and it raises to 419.54 rad/sec during the switching event.
The stream of the captured features is obtained by moving
the sliding window along the waveform data and mapping
the dominant mode features in each snapshot to the shown
streamed features. Each stream of features is now represented
by 32 points, leading to 96 samples overall for the three
selected features, representing the dynamic response of the
grid under a particular event. As another example, a HIF
occurs on node 2, and the SWMU located on node 1 records
the three-phase voltages which are then transformed using
the Clark transformation shown in Fig. 3.b. Since the signal
distortion caused by this HIF with a variable resistor is hard
to detect, the zoomed version of the alpha mode voltage is
also shown. As can be seen, the amount of changes in the
waveform signal is very small and hard to detect. However,
the three extracted features by the STMPM can capture some
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Fig. 3. Event signatures by STMPM-based feature extraction for a) CB switching and b) arcing HIF
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Fig. 4. The performance of base-line models, a) DT and b) kNN

sudden fluctuations, although the variations are not significant,
and the measurement noise SNR is as high as 55. This
analysis indicates the prominent performance of STMPM for
capturing oscillatory modes of signals and its application to
event classification. The proposed process is performed on all
data sets and events as a pre-processing step.

B. Classification performance

In order to show the effectiveness of the proposed GNN-
based model, two baseline models, such as decision tree
(DT) and K-nearest neighbors (kNN), are considered for
comparison. The data set is divided as 80-20% train-test. The
performance of these methods is optimized by adjusting their
parameters. In this regard, Fig. 4 illustrates that DT reaches
the best accuracy under 5 different experiments by adjusting
the tree depth to 50. As for the kNN, the nearest neighbor is
selected to be 1. The figures in 4 show the average accuracy of
5 independent experiments. The results of the proposed grid-
aware GNN method are compared with these methods which
are shown in Table II. The event classification accuracy of the
proposed GNN is 3.49 % and 8.24 % higher than DT and kNN.
Also, GNN performs better in terms of other classification
metrics. More specifically, the GNN performance is shown as
a confusion matrix, indicating the classification performance

for each class, shown in Fig. 5. All classes are predicated with
100 % accuracy, but the normal operation is misclassified for
11.32 % of the time confused as a HIF event. This is because
the noises on the waveform and small distortion caused by
HIFs are hardly distinguishable, resulting in this confusion.

100%

80%

= 60%

= 40%

Fig. 5. The obtained confusion matrix for one of the experiments in GNN
(A: Actual label, P: Predicted label)

VI. CONCLUSIONS

In this paper, a grid-aware graph neural network (GNN)
combined with short-time matrix pencil method (STMPM)
analysis has been proposed, named grid-aware waveform
analytics, to classify events in distribution systems. Transient
load or capacitor bank switching, permanent distributed en-
ergy resource outages, low impedance, and high-impedance
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faults were considered as potential events. The synchronized
waveform measurement units (SWMUs) were used to cap-
ture voltage and current waveform on limited nodes, and
the features were extracted using the STMPM method. The
extracted features on the limited nodes along with the physical
connectivity of the system were used as the input of the GNN
with two layers of graph convolution to capture the spatial
characteristics of events on a grid. The effectiveness of the
proposed event classification was verified using the modified
IEEE 13-bus system, and the results were compared with other
baseline methods.

Regarding future work, this study can be extended to include
phase identification of HIFs in distribution feeders. Another
interesting aspect that we will be exploring is the localization
of the event. Additionally, a real-time digital simulator will be
adopted for event analysis and to test events in real-time.
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