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ABSTRACT

Structural inversion of rifted basins is generally associated with surface uplift and denu-
dation of the sedimentary infill, reflecting the active contractional deformation in the crust.
However, worldwide examples of inverted rifts show contrasting basin-scale subsidence and
widespread sedimentation patterns during basin inversion. By conducting a series of three-
dimensional coupled geodynamic and surface processes models, we investigated the dynamic
controls on these subsidence anomalies during the successive stages of rifting and basin inver-
sion, and we propose a new evolutionary model for this process. Our models show that the
inherited thermo-rheological properties of the lithosphere influence the initial strain local-
ization and subsequent migration of crustal deformation during inversion. The sense of the
vertical movements (i.e., uplift or subsidence), however, is not directly linked to the underly-
ing crustal stress patterns; rather, it reflects the balance among contraction-induced tectonic
uplift, postrift thermal subsidence of the inherited lithosphere, and sediment redistribution.
Based on the interplay among the competing differential vertical movements with different
amplitudes and wavelengths, inversion of rifted basins may lead to the growth of intraplate
orogens, or the contraction-driven localized uplift may be hindered by the thermal sag ef-
fects of the inherited shallow lithosphere-asthenosphere boundary, resulting in basin-scale
subsidence. In such basins, dating the first erosional surfaces and other unconformities may
not provide accurate timing for the onset of inversion.

INTRODUCTION

Structural inversion of rifted basins is a
result of the governing plate motion change
from divergence to convergence, which cor-
responds to the end of rifting and initiation of
contractional deformation in the inherited rift
system (Cooper et al., 1989; Turner and Wil-
liams, 2004). On a crustal scale, the resulting
basin inversion in fossil continental rifts is
characterized by the diachronous reactivation
of the existing extensional structures and/or for-
mation of new contractional structures, which
is generally associated with surface uplift and
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sediment redistribution from the exhuming dep-
ocenters toward the margins (Stiiwe and Barr,
1998; Zwaan et al., 2022), ultimately lead-
ing to the development of intraplate orogens.
However, instead of uplift and erosion, many
inverted rift basins worldwide show counterin-
tuitive basin-scale subsidence during inversion.
Examples include the Permian Basin in west
Texas (Fairhurst et al., 2021), Gulf of Mexico
(Roure et al., 2009), South China Sea (Xie et al.,
2017), Aquitaine Basin (Angrand et al., 2018;
Dielforder et al., 2019), Tyrrhenian Sea (Zitel-
lini et al., 2020), and Pannonian Basin (Fig. 1A;
Horvith and Cloetingh, 1996). In the latter, the
change from back-arc rifting to basin inversion
occurred within a short (~2 m.y.) interval, when
slab rollback along the Carpathian subduction

zone ceased (Horvath et al., 2015), and the
slow-rate (1-2 mm/yr) northward convergence
of the Adriatic plate became dominant (Fodor
etal., 2005; Bada et al., 2007). While traditional
tectonic models discretely separate the synrift,
postrift, and inversion phases and correlate the
onset of inversion with the onset of uplift and
formation of erosional unconformities, seismic
profiles from the SW Pannonian Basin show that
even the earliest postrift deposition was coeval
with the structural inversion of the underlying
synrift structures, implying significant tempo-
ral overlap between the postrift sag and inver-
sion phases (Figs. 1B—1D; Tari et al., 2020).
Compared to the ~600 m depositional paleo-
bathymetry (Baldzs et al., 2018), the subsequent
burial of these early postrift sediments implies
continuous subsidence despite the coeval struc-
tural inversion.

These anomalous subsidence patterns in
inverted rifts indicate an important coupling
among the changing stress field, thermal evo-
lution of the lithosphere, differential vertical
movements, and sedimentation, which is yet to
be understood. While the uplift rates are pre-
dominantly controlled by variable convergence
rates, the tectonic evolution of the forming
orogens is also influenced by inherited rheo-
logical properties of the lithosphere (Jammes
and Huismans, 2012), preexisting structural
heterogeneities (Ruh and Vergés, 2018; Gra-
nado and Ruh, 2019), and syntectonic surface
processes (Willett, 1999; Whipple and Meade,
2004; Erdss et al., 2014). The thermal state of
the lithosphere, in particular, has been recog-
nized to control strain localization via thermal
weakening (Jourdon et al., 2019) and affect the
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style of inversion by controlling lithospheric
strength (Buiter et al., 2009); however, its role
in the surface evolution during inversion has
remained unexplored.

In this work, we investigated the physical
controls on contrasting subsidence anomalies
during rift inversion by using three-dimensional
(3-D) lithospheric-scale geomorphologic-geo-
dynamic numerical models. The applied two-
way coupling between the thermo-mechani-
cal and surface processes models allowed for
dynamic feedback mechanisms among crustal
tectonics, thermal evolution, melting, erosion/
sedimentation, and topographic evolution. Our
simulations, in agreement with inferences from
the Pannonian Basin, also involved the preced-
ing rifting stage to account for structural and
thermal inheritance. The models documented
strain patterns and differential vertical move-
ments that varied in space and time during
basin inversion, reflecting the dynamic interplay
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among the convergence rates, inherited thermo-
rheological structure of the lithosphere, and the
rate of diffusion-driven surface processes.

NUMERICAL SETUP

We used the I3ELVIS magmatic-thermo-
mechanical code coupled to the FDSPM surface
processes code to simulate rifting and subsequent
basin inversion (Gerya, 2013; Munch et al.,
2022). The code employs visco-plastic rheolo-
gies and includes grain-size evolution, plastic
weakening, and simplified magma-related pro-
cesses, such as partial melting and melt extrac-
tion (see the Supplemental Material).! Our initial

!Supplemental Material. Details of the applied
numerical methods, model configurations, and addi-
tional model results. Please visit https://doi.org/10
.1130/GEOL.S.25308742 to access the supplemental
material; contact editing@geosociety.org with any
questions.

model setup included a layered lithosphere with
a thick orogenic-type crust and mantle above the
asthenosphere (Fig. S1). A hydrated weak zone
was defined in the mantle lithosphere that repre-
sents a suture zone inherited from a previous sub-
duction and collision stage of the Wilson cycle.
This zone was oriented oblique to the imposed
velocity field in order to better approximate
natural observations of oblique rifts worldwide
(Brune et al., 2018), including the Pannonian
Basin (Csontos and Nagymarosy, 1998; Fodor
et al., 2021). Two end-member models were
compared in detail to show the contrasting
effects of different convergence velocities dur-
ing inversion. In both cases, rifting was simu-
lated for 8 m.y. by imposing a constant 2 cm/
yr divergent velocity, equally divided between
the two model sides. Subsequent basin inver-
sion was simulated by switching the boundary
condition to a constant 2 cm/yr or 2 mm/yr con-
vergent velocity. Further model results show-
ing the effects of other divergence/convergence
velocities and the rates of surface processes, as
well as discussion of the model limitations, are
shown in the Supplemental Material.

NUMERICAL MODEL EVOLUTION
Continental Rifting

Rift initiation corresponds to the reactiva-
tion of the inherited suture zone and develop-
ment of the first depocenter in the upper crust
(Fig. 2A; Dep. 1 in Fig. 3). The crustal defor-
mation migrates in space, successively forming
new depocenters, first at the future margins of
the rift (Dep. 2) and then toward the basin center
(Dep. 3) as active faulting gradually ceases at
the margins. The active synrift depocenters show
~4 m.y. of fast-rate (1-6 mm/yr) hanging-wall
subsidence and footwall uplift, followed by tec-
tonic quiescence or even slow-rate (~0.2 mm/
yr) uplift as deformation relocalizes in the sub-
sequent younger synrift subbasin. Lithospheric
thinning governs the gradually increasing tem-
perature values, which result in lower-crustal
partial melting from 6.4 m.y. on, followed by
decompressional mantle melting from 8.1 m.y.
on. By the end of the synrift phase, a continental
rift system has developed, floored by ~20 km of
crust and 30 km of mantle lithosphere.

Structural Inversion of Rifted Basins

The reversal from divergent to convergent
velocities marks the onset of basin inversion.
Initial contractional strain localization occurs
in the basin center, which is rheologically
the weakest part of the lithosphere due to the
inherited shallow lithosphere-asthenosphere
boundary (LAB) and related thermal and melt-
induced weakening (Figs. 2B and 2C). The first
surface response to the onset of inversion is the
slow-rate (0.1-0.4 mm/yr) uplift of the basin
center and the subsidence of the rift margins
in both models (Dep. 3 in Figs. 3A and 3B).
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Figure 2. Numerical model evolution of continental rifting and subsequent basin inversion. (A)
Rift initiation and late-stage synrift structure, with thermally weakened and thinned lithosphere.
(B) Fast-rate (2 cm/yr) basin inversion. Underthrusting of lower crust below upper crust initiates
at rheologically weakest part of inherited lithosphere and leads to uplift of basin center and
subsidence of foreland margins. (C) Slow-rate (2 mm/yr) basin inversion. Thermal subsidence
rate of inherited lithosphere-asthenosphere boundary exceeds contraction-driven uplift rate,

leading to subsidence and basin-scale sedimentation.

When the convergence is fast, deformation in
the weak lithosphere triggers underthrusting
of the lower crust beneath the basin center
(Fig. 2B). However, with low-rate conver-
gence, to reach the same amount of short-
ening, the LAB is affected by more thermal
cooling, which results in a colder and stron-
ger lithosphere and leads to the relocalization

of deformation along the inherited weak zone
(Fig. 2C). In both cases, crustal shortening is
first accommodated by contractional reactiva-
tion of the inherited extensional fault zones
overlying the weak mantle, followed by the
gradual migration of deformation toward the
older depocenters in the basin margins. Follow-
ing further shortening, in-sequence thrusting
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dominates the foreland during fast convergence
(Fig. 3A). In this case, the vertical motions fol-
low the ongoing crustal deformation patterns,
including 1-5 mm/yr uplift of the hanging wall
of active reverse faults and 1-2 mm/yr subsid-
ence in their footwalls (Fig. 3C). In contrast,
the slow convergence model shows more dis-
tributed crustal strain patterns with prolonged
reactivation of the inherited extensional struc-
tures. More importantly, the slowly inverting
depocenters undergo continuous basin-scale
subsidence (0.05-0.2 mm/yr), which is driven
by the thermal cooling of the lithosphere
(Figs. 3B and 3C). Upon reaching 100 km of
convergence, fast convergence results in the
development of an asymmetric, thick-skinned
intraplate orogenic wedge, characterized by
strong structural overprint on the former rift
structure, whereas thermal subsidence is more
dominant with slow (low-rate) convergence,
creating more accommodation space and
enhancing the role of postrift sedimentation.

GEOLOGICAL IMPLICATIONS

Our models explain two important aspects
of rift inversion. First, strain is localized at dif-
ferent depocenters at different times; therefore,
the onset of structural inversion is diachronous
across the rift system, and the different dep-
ocenters show strikingly different subsidence
histories (Fig. 3C). Because the transition from
rifting to inversion is short, initial strain local-
ization occurs in the basin center instead of the
margins, controlled by the inherited thermal and
melt-induced weakening, while the subsequent
spatial migration of deformation is linked to the
shortening rate and the thermo-rheological state
of the lithosphere (Figs. 3A and 3B).

Second, structural inversion of rifted basins
is associated with either uplift or subsidence,
controlled by the competing effects of several
superimposed processes with different wave-
lengths and amplitudes. While crustal shorten-
ing governs the short-wavelength (A ~10 km)
vertical motions that are linked to the stress field
in the crust, the postrift thermal cooling and the
spatial distribution of sediments impose a lon-
ger-wavelength (A ~100 km) sag subsidence on
the lithosphere (Fig. 4A). The contraction-driven
tectonic uplift rates are primarily governed by
the rate of convergence, whereas the postrift sag
is linked to the feedback mechanisms among
rift kinematics, thermal evolution, and surface
processes. The inherited 3-D thermal structure
is connected to the initial lithospheric structure
and the rate and duration of rifting (cf. Cacace
and Scheck-Wenderoth, 2016; Balézs et al.,
2021), and it strongly affects the postrift ther-
mal subsidence rates (Figs. S7, S8, and S10A).
Along with the intensity of surface processes,
this factor determines the spatial and temporal
distribution of sediments, which in turn influ-
ences strain localization, sediment loading, and

449



.Y Fast rate (2 cml/yr) basin inversion: Central

mm yl‘" H mmyr4 Upllft mmyr’1 -
8421 Central uplift 421, Foreland 421 Central uplift
3 6 ] “\flﬁure 0 —
-0.2 -2

Partial melting Wne®

19.1 Myr - 2 km convergence | 110.5 Myr - 20 km convergence| [12.5 Myr - 70 km convergence |-

=] Slow-rate (2 mml/yr) basin inversion: Contractional deformation with

< superimposed thermal subsidence ]
g.pmmyr SHPEIMP 0.2mmY" e Foreland
0.1 l 0.1 n - flexure
" 0 " 0 T \/\/\I T
4 L\~

-0:2 v
,

g : . Weak zone
Partial melting reactivation
| 10.9 Myr - 2 km convergence | | 19.9 Myr - 20 km convergence | | 44.9 Myr - 70 km convergence
1e-18 1e-13
Strain rate (s”) 0 km 100 km
C | Structural evolution and subsidence history of different depocenters: _
Uplift rate plots:
Dep.1: oldest depocenter ~ Dep.2: second depocenter Dep.3: youngest depocenter — Uplift rates with
P P P P p-3y 9 P 2 cm/yr convergence
Time| Convergence Time| Convergence Time| Convergence —— Uplift rates with
(Myr) (km) (Myr) (km) (Myr) (km) 2 mm/yr convergence
> P OOmA} 8 20 40 60 80100 o 0 4 8 20 40 60 80100 o 0 4 81-2? 49 60 80100 Subsiding areas
I £ & IS ) IS ectanic St . . )
) i . i i ructural inversion with
< 21\3 Tectonic | < 27 \& < 2 2 SR V' Coeval subsidence
sERIAN Wit < < 49 V> s 4 ‘:\
§ § 6 § 6 § R
N 8 8 8 Structural evolution:
a 0 @D 0 @ 0 _~" Inactive inherited normal fault
o 29\3 2 27 Tectonic .
c Y 2 D uplift Reactivated normal fault
2 — 44 \F — 4 el — 47 Z\|/ .
S S | g .| 3 _~~ New compressional fault
< 6 =< 6 =< 6 =
ds & B | £ 8 se | MmN |
o §10 igree 10 10 Subsidence history plots:
> Slo,
£ Q 4o n| Qo4 Q o £ ) ) o
£ xtensional strain localization
14+ 141 14 , : o
o~ Contractional strain localization
|- S| 16 1B | SN 161 - m B
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the thermal blanketing (Figs. S9 and S10B; cf.,
Burov and Cloetingh, 1997; Olive et al., 2014;
Wolf et al., 2021).

These results show that the sense of verti-
cal movements is not directly linked to the
underlying crustal stress patterns. Instead,
the modeled surface motions reflect the rela-
tions among tectonic uplift, thermal subsid-
ence, and the rate of sedimentation. At low
convergence rates, the postrift sag may out-
pace the tectonic uplift, and the early phase
of inversion is governed by subsidence. The
threshold convergence rate, which determines
whether the inversion is linked to uplift or sub-
sidence, depends on the inherited temperature
field (Fig. 4B) and the duration of tectonic
quiescence between the synrift and inversion
phases. The initial synconvergence subsidence
is eventually switched to uplift-dominated evo-
lution when the contraction-driven vertical
motions finally outpace the effect of thermal
relaxation.

Our models demonstrate that since the early
surface response of basin inversion can be sub-
sidence, dating the first erosional surfaces and
unconformities in inverted rifts and orogens may
not provide accurate timing for the reversal from
divergence to convergence. This may be the
case when the inversion significantly overlaps
in time with the postrift sag phase, which is a
particularly viable scenario in tectonic settings
characterized by fast changes in the stress field,
for instance, in back-arc basins, including the
Pannonian Basin (Fig. 1).

CONCLUSIONS

Our 3-D coupled thermo-mechanical and
surface processes models explain new aspects
of inverted rift systems:

1. The crustal stress patterns do not directly
indicate whether surface uplift or subsidence
occurred during inversion. Instead, the observed
vertical motions reflect the relations among con-
vergence rate, postrift thermal subsidence, and
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sediment redistribution. Therefore, when the
inversion significantly overlaps in time with
the postrift sag phase, the sag subsidence result-
ing from the inherited mantle conditions may
outpace the tectonic uplift at low convergence
rates, leading to basin-scale subsidence and
increased sedimentary burial during inversion.
This has implications for interpreting regional
unconformities as the primary signs of inver-
sion initiation.

2. In inverting young rifts, localization of
the first inverted structures occurs in the basin
center instead of the margins, controlled by
the inherited thermo-rheological properties of
the lithosphere, while subsequent migration of
deformation is mainly linked to the shortening
rate, thermo-rheological state of the lithosphere,
and inherited extensional structures.
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