
Electric Power Systems Research 236 (2024) 110940

A
0

f
e

d
f
r
t

(

h
R

Contents lists available at ScienceDirect

Electric Power Systems Research

journal homepage: www.elsevier.com/locate/epsr

Grid-aware learning of characterized waveformmeasurements for power
quality and transient events situational awareness
Mohammad MansourLakouraj a,∗, Hadis Hosseinpour b, Hanif Livani a, Mohammed Benidris b
a Department of Electrical and Biomedical Engineering, University of Nevada, Reno, Reno, NV 89557, USA
b Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA

A R T I C L E I N F O

Keywords:
Event characterization and classification
Grid-aware learning
Waveform measurement units
Power distribution grids
Power quality and transient events
Time-frequency decomposition

A B S T R A C T

The emerging class of waveform measurement units (WMUs) can enhance event situational awareness in
distribution grids by better characterizing the signatures of events and reporting higher sampling rates
compared to traditional measurement units. This study aims to improve the classification and localization
of power quality events and transient disturbances in active distribution grids by integrating time–frequency
characterization of WMU data and a grid-aware learning algorithm. A time–frequency decomposition technique
with a moving window is proposed to extract complex frequencies and residues from a limited set of available
WMU data. This endeavor seeks to characterize the unique signatures of events occurring in various locations.
Extracted features are then used as nodal graph signals in a grid-aware autoregressive moving average (ARMA)
graph convolution to classify event type and location. Despite the scarcity of waveform measurements, the
proposed grid-aware model captures the spatial relationship between derived signatures of measured signals
at different nodes. Through our numerical studies, the proposed strategy improves the classification and
localization of events such as capacitor bank switching, abrupt load changes, generation outages, and various
types of faults (e.g., arcing high impedance faults), when compared to state-of-the-art models. The proposed
method is validated under various scenarios, including noisy data, different measurement configurations and
reporting rates, diverse operational conditions, and unbalanced feeders.
1. Introduction

1.1. Motivations and challenges

Power distribution grids are susceptible to disturbances and events,
such as sudden load changes, faults, sudden variability and outages
of distributed generations, and malfunctioning of utility equipment
and assets, including transformer tap changers and capacitor banks
(CBs) [1,2]. Waveform measurement units (WMUs), as a class of high-
fidelity sensors, are being adapted into power grids to improve monitor-
ing capabilities for various applications such as power quality and event
monitoring and analytics [3]. Analyzing the captured waveform data
rom these new sensors leads to a better understanding of the roots of
vents as well as enhanced grid asset health situational awareness [4].
In recent years, phasor measurement units (PMUs) have been intro-

uced at the distribution level, typically with a sampling rate ranging
rom 30 to 120 samples-per-second (SPS) [5]. PMUs with high sampling
ates (120 SPS) can receive at most two phasor samples-per-cycle,
herefore making them suitable for analyzing grid conditions during
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steady-state as well as events with slow dynamics. However, they
may not be able to capture fast grid response during non-nominal
frequencies and fast transient events. Therefore, there has been rising
interest in the deployment of WMUs with higher sampling rates for
fast transient events detection, classification, and localization [6,7].
Sampling rates of WMUs can exceed 256 samples-per-cycle, enabling
us to better monitor fluctuations and transients in voltage and current
waveforms caused by particular events and incipient faults [4]. Fur-
thermore, some power quality events can be observed better at the
waveform level with efficient waveform analytics tools [8]. In fact,
waveform analysis is the key step to successfully deploying WMUs
and achieving a higher level of event situational awareness in electric
networks. In this regard, several studies have focused on analyzing the
features of measured signals using signal processing techniques, such
as wavelets, for power system studies [9,10].

Although the deployment of WMUs in different areas of distribution
grids is currently limited, their use enhances event analysis by enabling
the collection of more data, which assists in identifying both the
vailable online 9 August 2024
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type and location of events. Learning the spatial relationships among
voltage and current captured by WMUs, which are physically related
to each other based on electric circuit laws, can also advance the event
situational awareness [6]. In this regard, three main challenges exist:
(1) The widely used data-driven models often do not leverage the
valuable physical relationships among the measurements. In addition,
implementing model-based techniques is also challenging due to the
complexity of grid conditions and occurring events; (2) The high sam-
pling rate of WMUs makes the post-processing of the captured signals
more challenging for event classification. Therefore, waveform analyt-
ics is required to derive the most important and informative features
from waveform data. (3) Some event-related distortions on AC wave-
form signals are small and/or transient. Therefore, the characterization
of events’ signatures using the less frequently examined time–frequency
features in the moving small steps could lead to enhanced event iden-
tification. To address these challenges, our contributions are discussed
in the following section.

1.2. Summary of technical contributions

This paper leverages the topological characteristics of distribution
grids and time-frequency signatures of events for enhanced event situ-
ational awareness. The contributions are listed as follows:

• The proposed method enhances situational awareness by char-
acterizing, classifying, and locating a wide variety of events,
particularly those causing minor and/or transient distortion in
recorded waveform measurements. These events include capaci-
tor bank (CB) switching, sudden load changes, regular and arcing
faults, as well as distributed energy resource (DER) outages. The
method enables system operators to respond quickly to identified
disturbances, preventing consequences and ensuring operational
reliability.

• A time-frequency waveform analytics algorithm is employed to
characterize event signatures from waveform measurement units
(WMUs), representing a new class of sensors deployed within
distribution networks. This method decomposes the waveform
measurement samples with the matrix pencil concept in a sliding
window into a less explored set of three dominant distinctive
features, including complex frequencies (damping factor and an-
gular frequency) and residues. These features are presented as
distinctive time-varying series using a moving window to better
characterize the event signatures.

• A grid-aware learning model equipped with Auto-Regressive Mov-
ing Average (ARMA) graph convolution is proposed to seamlessly
integrate the topological properties of distribution grids as struc-
tured graph data consisting of characterized nodal waveform
data. The proposed method aggregates and learns the spatially
correlated nodal features from characterized voltage and current
at a few locations equipped with WMUs for enhanced event
classification and localization. This contrasts sharply with most
learning-based approaches, which ignore the informative topo-
logical context of the problem. Incorporating such context into
graph representation learning can enhance the learning of rele-
vant features across the distribution system, thereby enhancing
the performance.

• The practicality of the approach is validated on an unbalanced
distribution grid and a three-phase microgrid with different dis-
tributed generators. The model is extensively examined under
different conditions, such as different waveform features, config-
urations of WMUs, signal-to-noise ratios, and reporting sampling
rates of WMUs.

.3. Relevant studies and research gaps

Event analysis in distribution grids is mainly performed using three
pproaches such as data-driven, model-based, and grid-informed data-
2

riven models. As for data-driven analysis, a PMU-based data-driven
model with autoencoders is proposed in [5] to classify disruptive and
normal events from each other. A multi-class support vector machine
(SVM) classifies the CB switching, oscillations, and other events in
distribution grids using PMU data, as discussed in [11]. However,
waveform analytics and incorporating the grid information have not
been studied in [5,11]. In [12], authors propose a human-level learning
approach to extract general shapes and residuals of waveform mea-
surements in distribution grids. Then, the hierarchical Bayesian method
uses the extracted features to classify the incipient faults versus other
events without locating them. However, the topological correlation
of measured data cannot be incorporated into the proposed learning
model [12]. In [13], voltage sags are categorized using the Clarke
components ellipse within distribution grids; however, the scope of
their research is only focused on faults.

Data-driven methods usually do not incorporate the topological
features of the grid, but the model-based approach uses circuit theo-
ries for event detection and location. The study in [14] leverages an
impedance-based technique using the fundamental phasor components
of signals to find faulty nodes. In [15], an efficient fault location
technique is proposed using the voltage sag in distribution systems,
but the localization of various events is not considered. In [4], the
use of the Prony technique to find the modes of waveform data is
proposed. The circuit model is then created to locate transient faults
and events. However, the model-based technique focuses on circuit
modeling, which can be challenging work for unbalanced distribution
feeders with mutual impedances and varying generations and loads.
Moreover, the randomness of the events adds more complexity to the
model-based studies.

The stated challenges and advantages of both model-based and
purely data-driven techniques have motivated us to close the gap
between these methods by using the grid-aware data-driven model.
This method is developed using the concept of graph neural network
(GNN) [16]. In [17], GNN is used for event classification and local-
ization with PMU data and distance-based physical features of the
distribution systems. Ref. [18] implements GNN for event clustering
with fundamental and harmonic PMUs, while the lines’ physical fea-
tures and event localization are not considered. Importantly, neither
of the studies in [17] nor in [18] investigates the use of waveform
measurements with grid-aware learning. In [19], we present our pre-
liminary and brief analysis focusing on waveform analytics for event
type classification using GNN with polynomial filters. However, we did
not explore more recent graph filters and the task of locating the events.

In this paper, a time–frequency decomposition technique is used
to extract the embedded poles and residues from the signal at each
sliding snapshot of time. The obtained complex poles and residues have
a time-varying behavior, allowing them to be processed as informative
signal features. The concept, called the short-time matrix pencil method
(STMPM) with a moving window, has been originally introduced for
radio-frequency identification applications [20]. This technique was
applied in our fault location study by extracting the complex fre-
quencies from voltage signals [6], while other challenging events and
signal features are not explored. In the current work, we expand the
use of time–frequency decomposition to extract more time-varying
features under a wide range of power quality events and transient
disturbances from voltage and current measurements. In the current
study, the waveform measurements are thoroughly generated using
electromagnetic transient simulation techniques, including automated
real-time digital simulation (RTDS), which is highly practical for indus-
trial and real-world applications. Additionally, this paper advances the
proposed grid-aware learning algorithm using the recently introduced
robust ARMA graph convolutional layers [21], leading to more accurate
results in different experiments. The proposed ARMA-based method
classifies different types and locations of events, such as arcing faults,
switching, and outages of circuit breakers (CB), loads, and distributed
energy resources (DER), while [6] uses graph convolution network

(GCN) model to locate regular faults.
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The rest of the paper is organized as follows. Section 2 discusses
he waveform analytics for the characterization of events. Section 3
xplains the grid-aware learning method. The case studies and numer-
cal analysis are given in Section 5. Finally, Section 6 presents the
onclusions.

. Characterization of events with waveform analytics

In a distribution grid, WMUs might be located at a few nodes,
easuring voltage and current waveforms. Once an event occurs along
istribution feeders, the sinusoidal waveform measurements are dis-
orted, creating signatures for that particular event. These changes may
ot be significant, making them hard to detect. Therefore, an efficient
aveform analytics method based on the short-time sliding window
s used to extract features of abrupt and/or small changes, enhancing
vent situational awareness.

.1. Background in modal analysis

The Matrix Pencil method, originally developed by Hua and Sarkar
22], has been applied to pole estimation and used for extracting
oles from the electromagnetic transient responses of antennas. Unlike
olynomial methods such as Prony Analysis, which requires a two-step
rocess, the Matrix Pencil approach identifies signal poles directly from
he eigenvalues of a single matrix. This method is tailored to estimate
he parameters of exponential terms directly by fitting a function to the
bserved measurements. The authors of [23] comprehensively discuss
he advantages of the Matrix Pencil method over the Prony method
n terms of accurately extracting modes under noise and reducing
omputation time.

.2. Extracting complex frequencies and residues

A measured signal 𝑦(𝑡) with a period 𝑇 can be expressed through 𝑀
ummation of damped sinusoidal terms as follows,

(𝑡) =
𝑀
∑

𝑖=1
𝑟𝑖 𝑒

−𝛼𝑖 𝑡 𝑐𝑜𝑠 (𝜔𝑖 𝑡 + 𝜃𝑖) (1)

here the residue denotes as 𝜁𝑖 = 𝑟𝑖∠𝜃𝑖, and the frequency and angular
requency are represented by 𝑓 = 1

𝑇 and 𝜔𝑖 = 2𝑖𝜋𝑓 , respectively.
oreover, the parameter 𝛼𝑖 shows the damping factor (sec−1). Finally,
represents the time variable for the signal. Note that parameters 𝛼𝑖
nd 𝜔𝑖 create the complex frequency.
Using the samples in an 𝑁-sample sliding window, the matrix 𝑋 is

uilt as

=

⎡

⎢

⎢

⎢

⎣

𝑦(1) 𝑦(2) … 𝑦(𝑃 + 1)
𝑦(2) 𝑦(3) … 𝑦(𝑃 + 2)
⋮ ⋮ ⋮ ⋮

𝑦(𝑁 − 𝑃 ) 𝑦(𝑁 − 𝑃 + 1) … 𝑦(𝑁)

⎤

⎥

⎥

⎥

⎦

(2)

In (2), 𝑦(.) and 𝑁 indicate the original sample and number of
amples in the particular window, respectively. Additionally, the matrix
encil parameter 𝑃 is defined between N/3 to N/2 [24]. The matrix 𝑋
as dimension of (𝑁 − 𝑃 ) × (𝑃 + 1). The singular-value decomposition
SVD) of 𝑋 gives

= 𝐔𝑍 𝐒 𝐔𝐻
𝑉 (3)

here 𝐔𝑍 and 𝐔𝑉 denote unitary matrix including eigenvectors of
= 𝐗𝐗𝐻 and 𝐕 = 𝐗𝐻𝐗, respectively. Also, (.)𝐻 represents complex
onjugate. The diagonal matrix 𝑺 is formed through the singular values
f 𝐗, and a criterion is set as 10−𝑘 ≤ 𝜂𝑑∕𝜂𝑚𝑎𝑥 to separate the dominant
ingular values, reducing the noise impact [25].
In the proposed criterion, 𝑘 defines the filtering factor. Moreover,

𝑑 and 𝜂𝑚𝑎𝑥 represent the dominant and maximum singular amounts,
espectively. The columns of 𝐒 associated with the dominant singular
3

alues are stored, and the remaining columns are removed. Then, the
educed matrix is obtained as 𝐒′. Matrix 𝐔𝑉 is diminished to 𝐔′
𝑉 by

aving its columns associated with the dominant singular values and
eleting the remained columns [24]. Then, we can define two new
atrices 𝐗1 and 𝐗2 as

1 = 𝐔𝑍 𝐒′ 𝐔′𝐻
𝑉 ,1 , 𝐗2 = 𝐔𝑍 𝐒′ 𝐔′𝐻

𝑉 ,2 (4)

where 𝐔𝑉 ,1 and 𝐔𝑉 ,2 are calculated by omitting the last row and first
row of 𝐔′

𝑉 , respectively. Moreover, 𝑧𝑖 = 𝑒 𝑠𝑖 𝑇𝑠 denotes the generalized
igenvalues of the matrix pair {𝐗1, 𝐗2} with the sampling period of
𝑠. The problem of solving for 𝑧𝑖 can be determined by the ordinary
igenvalue problem [26] as

𝐗+
1𝐗2 − 𝜆 𝐈| = 0 (5)

here 𝜆 shows the non-zero eigenvalue and (.)+ denotes Moore–Penrose
seudoinverse.
Through the calculation of eigenvalues and reformulations, the

omplex frequencies 𝑠𝑖 in each moving window are obtained as

𝑖 ∓ 𝑗𝜔𝑖 = − 𝑙𝑛(𝜆𝑖)∕ 𝑇𝑠 , ∀𝑖 = 1, 2,… ,𝑀 (6)

ince the eigenvalues are obtained by this step, the residues 𝜁𝑖 are
alculated from Eq. (7). These residues represent the magnitude and
hase information of each pole in the measurement.

𝑦(1)
𝑦(2)
⋮

𝑦(𝑁)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

1 1 … 1
𝑧1 𝑧2 … 𝑧𝑀
⋮ ⋮ ⋮ ⋮

𝑧𝑁−1
1 𝑧𝑁−1

2 … 𝑧𝑁−1
𝑀

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

𝜁1
𝜁2
⋮
𝜁𝑀

⎤

⎥

⎥

⎥

⎦

(7)

The procedure described in (2)–(7) is executed repeatedly within
ach moving window, introducing the STMPM concept by giving time-
arying event signatures.

.3. Proposed moving short-time waveform analytics for feature selection

The algorithmic feature selection is developed to detect signal dis-
ortions during events. Three unique features, such as damping factor,
requency, and residue’s magnitude, are obtained from pre-processed
aveform data using the following algorithm:

Algorithm 1 Waveform Analytics Algorithm
Data: Step size, length of the sliding window, pre-processed waveform voltage

and current data, event monitoring period.
Result: Time-varying event signatures as inputs for grid-aware learning
Initialization;
while sliding window is within the event monitoring period do

− Move the sliding STMPM window along the waveform signal with an
adjusted step size;

− Construct a sample matrix as (2) in each moving window;
− Apply singular value decomposition (SVD) to the matrix (2) to compute
matrices U𝑍 , S and U𝑉 ;

− Choose dominant singular values from S using the selected filtering
factor 𝑘;

− Create matrices S′ and U′
𝑉
by selecting the dominant singular values;

− Construct matrices X1 and X2 by formulas in (4);
− Calculate the eigenvalues from (5) for matrix X+

1
X2;

− Calculate the dominant complex frequencies by eigenvalues and
sampling period as (6);

− Obtain the residues associated with dominant complex frequencies 𝑠𝑖 by
(7);

− Rank the residues based on their magnitude;
− Store the largest amplitude and its corresponding complex frequency in
each sliding window;

end

These derived event signatures are then given to the grid-aware
learning model to locate and classify the events, which is discussed in
the next section.
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3. Grid-aware event type and location classification

A grid-aware learning model is designed for classifying event type
and location. To apply this method, the electric grid and its mea-
surements are represented as graph-structured data. A distribution
grid is represented by a graph Gr = (𝐵, 𝐸), where 𝐵 is the set of
𝑁 nodes, and 𝐸 shows the set of 𝐼 edges. The graph signal is the
nodal information, defined as 𝐙 ∈ R𝑁×𝑀 . 𝑀 is the length of the
nodal feature. The adjacency matrix of this graph is defined as 𝐀 ∈
R𝑁×𝑁 . The matrix 𝐀 contains the grid’s topological information such
as the lines’ connectivity status between nodes. By including the edges’
features with the distance-based metric [17], 𝐀 becomes a weighted
adjacency matrix incorporating more physical features of the grid. The
diagonal matrix 𝐃 shows the nodal degree of the graph, indicating the
number of neighboring nodes to each particular node. According to the
given fundamental definitions, the 𝐋 = 𝐈 − 𝐃−0.5𝐀𝐃−0.5 calculates the
normalized graph Laplacian matrix, and its spectral decomposition is
represented as (8) based on the Fourier basis U.

𝐋 =
𝑁
∑

𝑛=1
𝜆𝑛 𝐮𝑛 𝐮𝑇𝑛 = 𝐔 𝑑𝑖𝑎𝑔{𝜆1,… , 𝜆𝑁} 𝐔𝑇 (8)

Graph filter works as an operator to modify input 𝐙 with the
frequency response ℎ for each eigenvalue 𝜆𝑛. The outcome of this
filtering is

𝐙 =
𝑁
∑

𝑛=1
ℎ(𝜆𝑛) 𝐮𝑛 𝐮𝑇𝑛 𝐙 (9)

where the filter response ℎ(𝜆𝑛) has an important impact on the perfor-
ance of the model [16].

.1. Convolutional ARMA filtering on graph

The robust ARMA filter is able to approximate a large variety of
ilter responses [21]. Mathematically, the ARMA filter’s response with
rder G reads as follows,

𝐴,𝐺(𝜆) =

(

1 +
𝐺
∑

𝑔=1
𝑞𝑔𝜆

𝑔

)−1 (𝐺−1
∑

𝑔=0
𝑝𝑔𝜆

𝑔

)

(10)

Consequently, the filtering representation on node space using the
RMA filter is

𝐙 =

(

𝐈 +
𝐺
∑

𝑔=1
𝑞𝑔𝐋𝑔

)−1 (𝐺−1
∑

𝑔=0
𝑝𝑔𝐋𝑔

)

𝐙 (11)

If one equates 𝑞𝑔 to zero in (11), the polynomial filter is ob-
ained, which has been used in previous works [17,27]. This is one
f the advantages of the ARMA filter that can generalize different
ilters’ functions. Also, the added auto-regressive expression makes the
odel robust against the noises and captures the more global graph
tructure [21].
Since Eq. (11) requires the slow inversion calculation of the matrix,

n iterative-based method is proposed [21] through which the effect of
he first-order ARMA filter is approximated as

𝐙
(𝑡+1)

= 𝑎𝐋̄ 𝐙
(𝑡)

+ 𝑏𝐙 (12)

where 𝐋̄ = 0.5
(

𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛
)

𝐈 − 𝐋, showing a linear transformation of
. The eigenvectors of 𝐋̄ is the same as 𝐋, but its 𝑛th eigenvalue is
derived by 𝜆𝑛 = 0.5

(

𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛
)

− 𝜆𝑛, where 𝜆𝑛 is the 𝑛th eigenvalue
of 𝐋. Moreover, 𝐙(𝑡) is the output of filter in 𝑡th iteration, 𝐙 contains
the inputs, and 𝑎 and 𝑏 denote arbitrary coefficients. According to [28],
the response of the ARMA filter with the first order can be analyzed by
the convergence in

𝐙 = lim
𝑡→∞

[

(𝑎𝐋̄)(𝑡)𝐙
(0)

+ 𝑏
𝑡

∑

(𝑎𝐋̄)𝑖𝐙
]

= 𝑏(𝐈 − 𝑎𝐋̄)−1 (13)
4

𝑖=0
Consequently, the response of the 1-order ARMA filter is

ℎ𝐴,1(𝜆𝑛) = 𝑏 (1 − 𝑎𝜆𝑛)−1 (14)

The summation of 𝐺 ARMA filters obtains the analytical form of the
ARMA filter with order 𝐺, resulting in the following filtering operation
on the inputs:

𝐙 =
𝐺
∑

𝑔=1

𝑁
∑

𝑛=1
𝑏𝑔(1 − 𝑎𝑔𝜆𝑛)−1 𝐮𝑛 𝐮𝑇𝑛 𝐙 (15)

where the frequency response of ARMA with order 𝐺 is

ℎ𝐴,𝐺(𝜆𝑛) =
𝐺
∑

𝑔=1
𝑏𝑔(1 − 𝑎𝑔𝜆𝑛)−1 (16)

The neural network implementation for 1-order ARMA filter uses recur-
sive update in Eq. (12) in a specified 𝑇 iterations using the following
graph convolution skip (GCS) layer,

𝐙
(𝑡+1)

= 𝜎
(

𝐋̄ 𝐙
(𝑡)
𝛩 + 𝐙 𝛺

)

(17)

where the 𝛩 and 𝛺 represent the trainable weights, and 𝐙 contains
the initial feature of nodes. The filter is generalized to 𝐺-order with
𝐙 = 1

𝐺
∑𝐺

𝑔=1 𝐙
(𝑇 )
𝑔 , where 𝐙

(𝑇 )
𝑔 indicates the output of the 𝑔th stack in

the last GCS layer. The schematic of the ARMA graph convolutional is
given in the next section.

4. The proposed multi-stage framework for enhanced situational
awareness

The WMUs are assumed to be located on a few critical three-phase
nodes of the grid, and the Clarke transformation is employed to convert
three-phase waveform data to decoupled modal waveform signals.

The WMUs are assumed to be located at a few critical three-
phase nodes of the grid, and the Clarke transformation is employed
to convert three-phase waveform data into decoupled modal waveform
signals. This transformation yields the space phasor mode of three-
phase measurements, which is informative for event analysis and has
been used in various studies, such as voltage dip classification [29],
fault detection and classification [30], and fault localization [6]. This
three-phase transformation is referred to as our pre-processing step,
which also facilitates post-processing of the signal in the waveform an-
alytics algorithm, preserving the information from all three phases and
reducing the feature dimensions with aerial mode [6]. The waveform
analytics Algorithm 1 is depicted in Fig. 1 and represents the feature
selection stage, characterizing events’ signatures.

The computed features from voltage and current measurements at
different locations are stored as a measurement matrix (𝐙) under a
particular labeled event with its location. Specifically, each row of 𝐙
contains the stream of features from one specific measurement location
in the network. As an example, 𝐙 has 13 rows when representing
the structured graph data of a 13-node system. Moreover, if we label
the nodes of the 13-node distribution system (graph) from 0 to 12,
and WMUs are located at nodes 1, 6, and 8, 𝐙 contains features
for the rows associated with these nodes. Thus, the remaining rows
representing nodes without WMUs inevitably have zero values [31].
The length of the features (column dimension of 𝐙) is equal to the
total number of STMPM-based features, i.e., damping factor, angular
frequency magnitude, and residue’s absolute values. Thus, each feature
matrix (𝐙) is a sample associated with a particular label of event and
its location, used for training the grid-aware model. Theoretically, the
rows of 𝐙 containing characterized voltage and current data in each
sample (scenario) are related to each other through the topology of the
distribution grid, although they are monitored by different independent
WMUs.

The proposed grid-aware learning approach takes into account the
spatial relationships by transforming the grid’s topology and measure-
ments into structured graph data, which is processed through graph
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Fig. 1. The proposed framework for event characterization, classification, and localization.
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convolution filters. The outputs of graph convolution layers are given
to a linear layer, transferring the features into the Softmax classifier as
illustrated in Fig. 1. Adam optimizer is used, and the cross-entropy is
chosen as the loss function [16]. The loss is minimized by updating the
odel parameters in the learning process and comparing the predicted
nd actual classes. After training the model, test samples are provided
or model evaluation during the event identification and localization
eriod. In real-world applications, the event identification or monitor-
ng period is updated every few cycles. The grid-aware model consisting
f ARMA graph convolution, transformation layers, and softmax is
esigned by Pytorch Geometric [32].

. Case studies and simulation setup

In this section, several events are studied on the modified active
nbalanced IEEE 13-bus system using PSCAD automated by its Python
PI [33]. Different events in various locations, in addition to nor-
al operation scenarios, are simulated under different loading, DER
eneration, event inception angles, and noises [6]. The schematic of
he distribution system is also shown in Fig. 2. Table 1 indicates the
vent labels, types, locations, and occurrence duration. 𝑃 stands for
ermanent events in the table. We also generate numerous transient
isturbances by simulating events within 1–2 cycles.
The events are broadly categorized as CB switching, sudden load

hanges, different faults (types 1 and 2), and DER outages in different
ocations. Fault identified with type 1 refers to faults that are often
ccompanied by arcing with high impedance contact to the earth. This
ault requires accurate circuit modeling, consisting of voltage sources,
iodes, and variable resistors, which are simulated in our work as
escribed in [34]. The accuracy of the circuit model is experimentally
alidated in [35]. Since asymmetrical single-phase high impedance
aults (HIFs) are frequent, they are studied as type 1 on different phases
nd locations of the grid. Furthermore, this study also examines other
revalent asymmetric and symmetric regular faults that have lower
ontact impedance with the Earth. These fault types are categorized
s type 2 faults, specified by low impedance faults (LIFs). It is worth
oting that faults may occur in any location, as studied in our previous
ork [36].
It is assumed that there are three synchronized WMUs (SWMUs) lo-

ated at buses 1, 6, and 8, recording the voltage and current waveform
ata with a reporting rate of 256 samples-per-cycle. Lower sampling
ates, such as 32, will also be studied in another case study (Section 5.5)
o test the robustness of the approach. Gaussian noise with different
ignal-to-noise ratios (SNR) of 45 dB, 50 dB, 55 dB, and 60 dB is
dded to the waveform signals to make them more representative of
eal-world scenarios [18].
In order to train and test the model, 6540 scenarios representing

normal conditions and different possible events occurring in various
locations are prepared. The datasets are divided into 20% for testing
and 80% for validation and training. Two ARMA graph convolution
5

layers are set with the same sizes of 128 as input channels. The ARMA a
Fig. 2. The schematic of the unbalanced three-phase test system.

Table 1
Events’ information.
Labels Type Duration Location

0 3-phase CB switching 1 cycle, 𝑃 8
1 1-phase CB switching 1 cycle, 𝑃 11
2 3-phase DER outage 𝑃 6
3 3-phase Load switching 1, 2 cycles 3
4 1-phase Load switching 1, 2 cycles 12
5 Fault (type 1) 1 cycle, 𝑃 2
6 Fault (type 1) 1 cycle, 𝑃 4
7 Fault (type 1) 1 cycle, 𝑃 8
8 Fault (type 2) 1, 2 cycles 1
9 Fault (type 2) 1, 2 cycles 9
10 Normal operation N/A N/A

layers are configured with 𝐺 = 2 and 𝑇 = 3. The batch size is
8. These values are adjusted with search-based tuning experiments
in 100 epochs [6]. The ARMA layers are followed by a linear layer
with 256 channels. The learning rate and dropout value are 0.0001
and 0.5, respectively [17]. To better assess the performance of the
proposed grid-aware learning method, additional metrics are defined in
addition to the accuracy metric, such as macro-average 𝐹1 (𝑀 − 𝐹1),
macro-average recall (𝑀−𝑅𝑒𝑐), and macro-average precision (𝑀−𝑃𝑟𝑒).

.1. Time-varying characterization of event signatures

In this section, two transient events, such as CB switching and
ault, recorded by 256 samples-per-cycle sensors, are tested using the
TMPM method. The length of the sliding window is adjusted to cover
40 samples of the signal, and the step size of the moving window
s equal to 40 samples. These parameters are tuned with search-based
xperiments and optimized for analyzing the simulated events. Another
lternative length is 256 samples (equal to one cycle), which gives
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Fig. 3. The waveform signal and extracted time-based features under (a) CB switching, (b) HIF.
distinctive features. The filtering factor 𝑘 and the pencil parameter
𝑃 = 𝑁∕2 are set as 3 and 70, respectively [20].

Fig. 3.a demonstrates a transient distortion of alpha Clarke mode
voltage on bus 1 when the CB switching occurs at bus 8. The switching
of CB creates new oscillation modes in the system, which are char-
acterized by three time-varying parameters: damping factor, angular
frequency, and residue magnitude. The dominant parameters associated
with the largest residues are obtained by sliding the STMPM window
over the waveform signal, shown on the right-hand side of the si-
nusoidal measurement for 32 consecutive steps. This sliding process
covers the entire 5-cycle monitoring period, which is then used for
event classification and localization. This duration can be adjusted
without loss of generality, but we found it effective in immediate and
accurate identification. For instance, the angular frequency drops to
348.29 rad/sec and then to the minimum of 316.95 rad/sec when the
signal distortion is observed in the sliding window in the 21st and
22nd steps, respectively. However, the angular frequency is around
the fundamental frequency of 377 ≈ 2𝜋 60 rad/sec before the event
ccurrence. Other obtained parameters also show abrupt changes once
he event is detected in the moving window. Note that different events
ay either create new dominant modes, like in the CB switching, or
hange the existing fundamental modes. Usually, new modes are not
reated during HIFs, but the existing fundamental modes are changed
lightly.
Now, we consider a second scenario where an HIF occurs at bus

, and the WMU records the noisy current at bus 1. The transformed
urrent is shown in Fig. 3.b. Since the impact of HIF is hard to observe
n the recorded waveform data, the zoomed version of the current is
hown on the top of the raw waveform signal. As shown in Fig. 3.b,
he current magnitude increases slightly under the occurrence of this
ault, making it hard to detect by the protection devices in real-world
ituations. However, the STMPM helps capture sudden insignificant
ariations, although considerable noise is added to the signal. Three
omputed parameters pinpoint the instantaneous changes caused by
his transient event. Interestingly, the damping factor shows more
ensitivity against the hard-to-detect HIF compared to other computed
eatures. This informative feature is obtained thanks to the proposed
TMPM algorithm.
In this study, the distinctive time-varying features are collected

or both current and voltage at different locations, which includes 96
eatures for each alpha mode voltage and current signal. Features are
ormalized with a z-score for use in the grid-aware event type and
ocation classification algorithm.

.2. Classification performance under different waveform features

In this section, we evaluate the impact of the extracted features
rom synchronized measurements on the performance of event type
nd location classification. We intend to show that the waveform
6

easurements provide richer information and that relying solely on
Table 2
Grid-aware classification performance with different computed features.
Features A-Acc % M-F1% M-Pre % M-Rec %

𝜔 95.90 95.93 96.12 95.84
𝛼 96.36 96.45 96.71 96.39
𝑟 97.99 98.00 98.09 97.95
𝛼, 𝜔 97.64 97.67 97.76 97.63
𝛼, 𝑟 98.51 98.48 98.66 98.35
𝜔, 𝑟 98.73 98.74 98.86 98.66
𝛼, 𝜔, 𝑟 99.12 99.11 99.14 99.09

signal frequency or magnitude is inadequate for improved situational
awareness.

In Table 2, the performance of the proposed grid-aware approach is
shown considering different computed features. All scores are obtained
by taking the average of five independent experiments. In the case of
the individually selected feature, the residue’s magnitude contains a
wealth of distinct information about the event, resulting in an impres-
sive 97.99% average accuracy (A-Acc). Considering two sets of features,
the combination of angular frequency with residue enhances A-Acc
to 98.73%, while the other two features show slightly lower scores.
This indicates that the residue contains more distinct event-related fea-
tures, which is intuitive as it captures the features associated with the
magnitude of the measured signal. However, when all three extracted
features are included in the model, accuracy reaches the maximum
level of 99.12%, and there is also an enhancement in other classifica-
tion metrics. This indicates the fact that although a feature like residue’s
magnitude helps more in the identification of the event, including
other features (sensitive damping factors) enhances the performance
by creating more unique characteristics for events with minor and
transient signal distortions. Thus, using all three features is suggested
to classify and localize the events in the following analysis.

5.3. Configuration of WMUs

In practice, the captured measurements from various WMUs po-
sitioned along the feeders are becoming accessible, motivating us to
design the grid-informed method to take advantage of the spatial
correlation of waveform measurements at different locations to im-
prove event classification and localization performance. However, the
scarcity of buses equipped with WMUs along the feeders persists due to
factors such as installation and purchase costs. Thus, we are testing the
robustness of the proposed grid-aware method for as few as two WMUs
with different configurations, addressing the challenges associated with
locational scarcity in sensors’ information.

Three configurations are defined for two WMUs in two different
buses as 𝐴: [1, 6], 𝐵: [1, 8], and 𝐶: [6, 8]. The locations of the
WMUs are heuristically selected on three-phase nodes to improve the
observability region of the feeder. Optimal placement of sensors is not

among the scope of this work. The classification accuracy decreases
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Table 3
The impact of WMUs’ configuration on the model performance.
Configuration A-Acc % M-F1% M-Pre % M-Rec %

A 98.96 98.95 98.99 98.91
B 95.15 95.41 95.50 95.44
C 95.27 95.41 95.46 95.41

Fig. 4. Confusion matrix for 13-bus system (A: actual label P: predicted label).

slightly to 98.96% for configuration 𝐴 compared to the base case with
three WMUs. This accuracy is higher than the classification accuracy for
configurations 𝐵 and 𝐶. Other classification scores are also higher with
this configuration, as shown in Table 3. This is because the placement
of WMUs at nodes 1 and 6, as configured in 𝐴, enables the GNN layers
to learn the situational changes better in neighboring buses with this
configuration. This assessment indicates the robustness of the model for
as few as two WMUs in particular locations.

5.4. Comparison with state-of-the-art models

To highlight the superior performance of the grid-aware learn-
ing models (GCN and ARMA), a comprehensive comparison is made
with well-established classification models decision tree (DT), k-nearest
neighbors (kNN), random forest (RF), Gaussian Naive Bayes (GNB), and
Bernoulli Naive Bayes (BNB). These implemented state-of-the-art mod-
els have shown promising performance in recent power system studies.
kNN and DT are proposed as efficient classifiers for event and fault
identification in distribution feeders using real-world data and com-
prehensive simulations [11,37,38]. In the event classification problem
ith imperfect real-world data, the RF model outperforms all classi-
iers analyzed in [39]. RF shows effective performance in classifying
ower quality events in [40]. In [41], Naive Bayes (probabilistic-based)
lassifier improves the fault identification in power grids.

.4.1. Tuning parameters in baseline models
To ensure a reliable comparison, the parameters of the state-of-the-

rt models, such as RF, DT, and kNN, are optimized using a random
earch method to enhance their performance as much as possible [42].
andom search is an efficient method that can find the optimal model
n most cases while incurring a low computational burden [43]. The
yperparameters are optimized through a 4-fold cross-validation pro-
ess [44], with data split into 20% for testing and 80% for training and
alidation. The characterized waveform data are employed across all
olds. As for GCN, parameters and the optimizer are selected based on
he previous studies and experiments [16,17], leading to good perfor-
ance for the current problem. The same learning rate and dropout
alues are used, as discussed earlier, for the ARMA model.
7

able 4
he comparison between the proposed method and state-of-the-arts.
Approach A-Acc % M-F1% M-Pre % M-Rec %

𝐵𝑁𝐵 83.32 84.51 85.17 84.45
𝐺𝑁𝐵 83.79 84.78 85.76 84.60
𝑘𝑁𝑁 89.95 90.55 93.43 91.55
𝐷𝑇 93.32 93.61 93.68 93.63
𝑅𝐹 97.31 97.37 97.78 97.20
𝐺𝐶𝑁 98.28 98.31 98.40 98.25
𝐴𝑅𝑀𝐴 99.12 99.11 99.14 99.09

Table 5
The computation time comparison of different classifiers.
Classifiers BNB GNB kNN DT RF GCN ARMA

Computation time (s) 0.016 0.015 0.717 0.005 0.024 0.565 1.068

5.4.2. Performance comparisons
After adjusting the parameters for the baseline models, a detailed

comparison is conducted, and the results are tabulated in Table 4.
Table 4 reports that the grid-aware ARMA model outperforms GCN
and widely used machine learning (ML) models that do not incorporate
topological information. This implies that the inclusion of topological
features and the use of more robust graph filters, such as ARMA,
lead to improved classification accuracy. As shown in Table 4, after
the ARMA convolution, grid-aware GCN showcases better classifica-
tion capabilities compared to topology-agnostic ML algorithms due to
including topological features. It is important to highlight that the
superior performance of the ARMA model over the GCN is attributed
to ARMA’s more generalized filter, facilitating enhanced learning of
spatial features, as detailed in Section 3. Additionally, it should be
noted that both grid-aware methods surpass grid-agnostic machine
learning approaches in performance.

The performance of the grid-aware ARMA model is shown by the
confusion matrix in Fig. 4 for the discussed experiment in detail.
This matrix indicates the classification accuracy for each event and
their location. It displays the accurate classification percentages on the
diagonal elements, while the off-diagonal elements represent wrong
classification percentages. Small misclassifications exist between arcing
HIFs in three locations, indicated by labels 5, 6, and 7, and normal
operations, represented by label 10 in the confusion matrix, supporting
our discussion and numerical analysis. Other events are accurately clas-
sified and located in this experiment. This distinction enables accurate
crew dispatch and immediate, as well as appropriate, responses to
events. This is particularly more important for arcing HIFs, which could
be life-threatening and initiate wildfires [45].

Furthermore, we provide details on the computation time of each
method for the test dataset, which is 20% of our large dataset in
Table 5. It is shown that the decision tree has the minimum compu-
tation time of 0.005 s due to the simplicity of its algorithm. However,
the computation times of the graph-based solutions are 0.565 s and
1.068 s for GCN and ARMA, respectively, which are higher compared
to other conventional ML models. This is because graph learning-based
has a more sophisticated structure for learning the features, leading to
better results. Please note that their computation time still makes them
suitable for practical implementation, as it is only around one second
or less, depending on the type of graph filters used.

5.5. Evaluation in a microgrid with slower sampling rate of WMUs

In this section, we test our approach on another system using the
real-time simulation setup to classify and locate events. This setup is
illustrated in Fig. 5 and has five main components:

(1) The real-time digital simulation (RTDS) is used for electro-
magnetic transient (EMT) analysis of an existing 8-bus three-phase
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Fig. 5. The framework of the real-time simulator setup.
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Fig. 6. The schematic of the three-phase microgrid in RTDS.

microgrid with inverter-based PV, wind turbine, and diesel genera-
tor [46]. The compact schematic of this system with diverse sources
and the base transformer’s secondary voltage of 13.2 kV is shown in
Fig. 6.

(2) A computer is utilized as an intermediary to collect the measure-
ments under different types of events such as CB switching, sudden load
outage, and high and low impedance faults. The events’ locations are
indicated in Fig. 6.

(3) The RSCAD software is employed to run and control the simula-
tion of events in five distinct locations using our developed automation
script in the programming environment of RSCAD software.

(4) In this step, algorithms are developed for preparing the raw
waveform data and processing them using the STMPM-based feature
extraction model.

(5) Finally, the proposed ARMA graph convolution receives the
extracted features to classify the events with their associated locations.

The WMUs are assumed to be located at buses 1 and 4, with a
sampling rate of 32 samples per cycle. This lower sampling rate is
chosen to evaluate the effectiveness of the proposed method under such
conditions. Three measurement noise levels are taken into account:
80 dB (less noisy), 60 dB (noisy), and 40 dB (very noisy). The events
are identified by corresponding labels in parentheses, which include
CB switching at bus 4 (0), CB switching at bus 5 (1), HIF occurrence at
bus 2 (2), LIF occurrence at bus 6 (3), load switching at bus 3 (4), and
regular operation (5).

The proposed grid-aware model achieves an average accuracy of
96.97% with an F1 score of 96.06% in five separate experiments. Fig. 7
presents the confusion matrix for one of the experiments. Misclassi-
fication between regular operation and HIF also occurs in this case
due to minor signal distortion during HIF and significant noise added
during regular situations. However, as shown in Fig. 7, most scenarios
are accurately predicted across all events, aligning with the calculated
high accuracy. Thus, this case further validates the effectiveness of the
proposed method under various events, even with low sampling rate
WMUs and a more complex grid with diverse generation resources.
8
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5.6. Analysis and discussion about the impact of short-time moving window
in STMPM

In this section, we explore two scenarios to highlight the sig-
nificance of employing STMPM with short-time moving windows in
improving event classification in the microgrid. The baseline cases are
detailed as follows:

Case 1: Matrix pencil method (MPM) is employed, which was suc-
cessfully used in [47] for real-world event identification. MPM operates
without a sliding window, computing event signatures within a window
that spans the entire monitoring duration.

Case 2: The STMPM is used with a larger sliding window and step
size. We have doubled the length of the sliding window and increased
the step size to 32.

Table 6 displays the accuracy and F1 scores for both cases, as
well as the dropped scores, compared to the results obtained for the
microgrid test system in Section 5.5. In case 1, the performance declines
significantly when choosing to use MPM without a sliding window. This
is because MPM does not provide a detailed time-varying signature that
represents the evolving or changing modes’ features, such as damping
factor, angular frequency, and residues over time. In Case 1, MPM
cannot differentiate between normal operating conditions and HIF by
only analyzing the modes within a single, large window. This means
that the dominant modes usually do not change under HIF compared
to normal conditions, so differentiating them may not be possible. We
also observe partial misclassification between loads and CB switching
in different experiments using MPM. This method also deviates from
the localization of events of the same type as CB switching occurring in
buses 4 and 5 in different experiments. The maximum misclassification
error is 8.2% in the case of locating the CB switching in our various
experiments. In Case 2, the performance also declines when a wider
window is selected in STMPM, making the characterization of events
less specific. However, it still works much better than case 1 in which
MPM is used for the characterization of the waveform. The confusion
matrix associated with one of the experiments is shown in Fig. 8 for
ase 2. Misclassification occurs among other types of events, not just
IFs and normal operation, a scenario not observed in the framework
f Section 5.5 that employed an optimized smaller window and step
ength.
The results presented in this section underscore the effectiveness

f a precise methodology capable of extracting unique patterns from
hree time-varying features, thereby enhancing classification accuracy.
he significance of incorporating all three time-based elements —
amping factor, angular frequency, and residues — is elaborated in Sec-
ion 5.2. Moreover, this section further demonstrates that identifying
ime-varying patterns across a moving window yields superior results
ompared to analyzing these features within a solitary window. The
istinctive characterization of waveform measurements becomes more

mportant when studying the same events in different locations, which
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Table 6
The impact of moving window on the event classification performance.
Strategy of waveform analytics A-Acc (Dropped score) % M-F1 (Dropped score) %

Case 1 80.31 (−16.66) 69.40 (−26.66)
Case 2 91.33 (−5.64) 89.95 (−6.11)
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Fig. 7. Confusion matrix for Microgrid (A: actual label P: predicted label).

Fig. 8. Confusion matrix when using STMPM with larger moving window and steps
(A: actual label P: predicted label).

have closely related signatures, or events that can sometimes have
almost similar impacts on the system measurements, e.g., increasing
voltage under load reduction and CB connection. Consequently, we
propose STMPM-based feature extraction with appropriate adjustment
of the window, which moves over small steps and derives distinctive
shapes over time, associated with the type and location of the events.

5.7. Further discussion about characterizing power quality events

In this section, various scenarios are considered where common pat-
terns, such as swell, sag, and spike, occur, and the waveform analytics
algorithm is implemented to characterize these patterns. In Fig. 9.a,
a signal swell occurs, and the magnitude of the signal increases. This
is nicely characterized by the residue, which steps up, indicating the
increased magnitude of the signal. The sharp deterioration seen due
to the starting of signal swelling is featured by complex frequency
(damping and angular frequency) as spikes. In Fig. 9.b, a small notch
is observed and clearly characterized with three time-varying extracted
features of the waveform analytics algorithm. Before this distortion, all
three features represent fundamental values (𝛼 ≈ 0, 𝜔 ≈ 377) with a
constant magnitude of the signal, as shown in the residue. The damping
factor indicates more significant variations, supporting its high and
effective sensitivity to transient distortion. In Fig. 9.c, a spike occurs,
and this sharp distortion is represented and located by very sharp spikes
in the three computed features. In Fig. 9.d, a sag occurs in the signal
accompanied by flicker and small oscillations around the peaks. The
9

residue first indicates this event as a step-down drop, followed by a
slight increase in magnitude. The complex frequency terms represent
this event with fluctuations.

Please note that signals 𝑎 to 𝑑 were already created in our RTDS-
ased simulations and used for the identification and localization of
he events in Section 5.5. However, new signals 𝑒 and 𝑓 are created,
resented in Fig. 9 to further demonstrate the potential of our method.
n Fig. 9.e, two notches are created and distinctly characterized over
ime. The interval between these two distortions, where the sliding
indow does not observe any distortion, is characterized smoothly,
imilar to the computed values before the first notch. This indicates the
ime localization capability of our method. In Fig. 9.f, the frequency of
he signal changes from 60 Hz to 40 Hz. The angular frequency clearly
hows this reduction as a step change. The damping factor and residue
nly show sudden changes related to the point where this transition
rom 60 Hz to 40 Hz occurs in the signal, creating small changes in the
ata.

.8. Computation time of waveform analytics algorithm

In this section, we explore the impact of parameters on the compu-
ation time of the waveform analytics model. A batch of datasets with
120 streams of data, created by RTDS in Section 5.5, is selected for
his evaluation.
In the base case study with 𝑘 = 3, 𝑃 = 16 = 𝑁

2 , a step size
of 8, and a window length of 32, where 𝑁 indicates the number of
samples in the window, computation time for 1120 scenarios is 16.24 s.
In practice, we usually analyze one event (one scenario) at a time,
so the proposed method is applicable for real-time implementation.
However, some studies may not always be concerned with real-time
implementation and could focus on post-event analysis of massive,
recorded datasets. Therefore, designing computationally efficient and
technically solid methods is key for different power system studies, and
three cases are investigated by adjusting parameters such as 𝑘, step size,
and window size in this regard:

Case 1: We set 𝑘 to 8, which increases computation time to 17.37 s.
his parameter is intended to select the dominant eigenvalues using
he constraint 10−𝑘 ≤ 𝜂𝑑∕𝜂𝑚𝑎𝑥. Thus, increasing this value can lead to
choosing more modes and raising the computation time unnecessarily.

Case 2: We reduce the matrix pencil parameter 𝑃 to 5, which
changes the dimension of the matrices for the mathematical decompo-
sition and slightly reduces the computation time to 14.68 s. However,
it is recommended to set the parameter within the range of 𝑁∕2 and
𝑁∕3 to better eliminate the effect of noise [24].

Case 3: The step size is set to 16 samples (doubled compared to the
base case) to have the sliding window move faster over the recorded
data. As a result, the computation time drops to 8.32 s for the datasets;
however, this can reduce the event identification accuracy, as discussed
in Section 5.6.

6. Conclusion

This study focuses on enhancing situational awareness in active
distribution grids using a new class of waveform measurement units
(WMUs) for power quality and transient arcing events. The main goal
is to improve event characterization, classification, and localization
through a hybrid model based on signal processing and topology-
aware learning. The time–frequency signal decomposition method is
applied to the WMU data using the short-time matrix pencil concept
to extract a set of distinctive and less-explored signal features. The
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Fig. 9. Different power quality disturbances (a)–(f).
erived features consisting of dominant signal damping factors, an-
ular frequency, and residues’ magnitude are then used as distinctive
vent signatures for training a grid-aware learning model to classify
nd locate the events. The learning-based method is developed us-
ng the ARMA graph convolution filters, which incorporate physical
istance information of the lines and nodal measurement data. This
odel bridges the gap between topology-agnostic machine learning
10
models and hard-to-implement circuit-based models by creating an
efficient grid-aware data-driven classifier that utilizes structured data
from waveform measurements across the grid. Two test systems, the
unbalanced 13-bus IEEE model and three-phase microgrid model, are
considered to assess the performance of our model under a variety of
events, such as capacitor bank (CB) switching, abrupt load changes,
short circuit and unbalanced faults, arcing high impedance faults,
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and distributed generation unit outages. Based on our numerical as-
sessments, the proposed time-frequency waveform analytics, equipped
with a sliding moving window, demonstrate promising potential for
detecting small and transient distortions in high-fidelity waveform data,
thereby improving event classification and localization with a grid-
aware learning model. The proposed grid-aware model outperforms
state-of-the-art classification models under noisy conditions and oper-
ational changes. It also demonstrates robust performance even with a
limited number of synchronized WMUs and lower sampling rates.
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