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The sensitivity of the simulated intensification of Typhoon Mangkhut (2018) to boundary layer turbulent
diffusivity (Ky,) is investigated through a series of numerical simulations using the modified Ky, from the Yonsei-
University (YSU) planetary boundary layer (PBL) scheme in the Weather Research and Forecasting (WRF) model.
Two intensity metrics, namely grid-point and area-averaged metrics, were employed to evaluate the simulations.
The results indicate that a smaller K, tends to result in a smaller grid-point minimum central sea level pressure
(MSLP), while producing a larger area-averaged MSLP and smaller area-averaged maximum 10 m wind speed
(VMAX), which is consistent with a weaker radial inflow averaged over the area of a 500 km radius. Furthermore,
the surface latent heat flux exhibits a nearly linear relationship with K, throughout the simulation. Overall, a
larger K, tends to produce a greater diabatic heating rate, although this relationship is not as clear as that be-
tween K, and latent heat flux due to the presence of spontaneous asymmetric convective eddy features. More-
over, since a larger Ky, tends to result in a larger 10 m tangential wind, the size of a tropical cyclone (TC) defined
by the radius at which 10 m tangential wind speed becomes 10 m s~* shows a positive linear relationship with
K.

1. Introduction processes (Lee and Wu, 2018). The PBL turbulence plays a dual-role in

TC energetics. The turbulent enthalpy fluxes from the underlying ocean

Tropical cyclone (TC) is one of the most destructive natural disasters
causing severe loss of life and property damage (Sun and Barros, 2014;
Nystrom et al., 2020). Over the past decades, with the development of
numerical weather prediction models, TC forecast has improved
significantly (Ma et al., 2018; Sun et al., 2019). However, accurate
prediction of TC intensification remains challenging (Wang and Wang,
2014; Fox and Judt, 2018; Chang et al., 2020).

In general, large-scale environmental conditions such as vertical
wind shear, upper-tropospheric divergence, sea surface temperature,
ocean heat content, and moisture supply are the key external factors of
TC intensification (Kaplan et al., 2015). Under favorable large-scale
environmental conditions, TCs intensify through internal interactions
among microphysical, cumulus, and planetary boundary layer (PBL)
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are major energy source for the storms, but on the other hand, the
dissipation of turbulence kinetic energy (TKE) by the turbulence-
induced friction serves as a primary sink of TC energy. The ratio be-
tween these two processes strongly influences the storm intensification
rate (Kepert, 2012; Emanuel, 2018; Ming and Zhang, 2018), making the
PBL a crucial component in TC dynamics (Emanuel, 2018). The theories
for TC intensification, including the conditional instability of the second
kind (CISK, Charney and Eliassen, 1964), the cooperative-intensification
mechanism (Ooyama, 1964, 1982), the wind-induced surface heat ex-
change (WISHE, Emanuel, 2003), and the 3D rotating convective up-
draft paradigm (Montgomery and Smith, 2014), all recognize the role of
the PBL in the TC intensification. Numerical studies have also demon-
strated that turbulent processes in PBL play an essential role in the
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Fig. 1. Model domains and the best track of Mangkhut (2018) from Joint Typhoon Warning Center (JTWC) during the simulation period from 0000 UTC 7 to 0000
UTC 13 September 2018. Colored dots indicate the TC track and intensity (DB: disturbance; TD: tropical depression; TS: tropical storm; TY: typhoon; ST:

super typhoon).

Table 1
The summary of modified K, in YSU scheme from numerical
experiments.

Experiment name Turbulent diffusivity K,

YSU K
YSU_4K,, 4K,
YSU_2Ky, 2K,
YSU_0.5K,, 0.5K,
YSU_0.25K,, 0.25K,,

intensification of TCs (e.g., Zhang and Rogers, 2019; Zhu et al., 2019;
Zhu et al., 2021; Li and Wang, 2021a, 2021b).

Studies have shown that simulated TC intensity is very sensitive to
the choice of PBL schemes. For instance, Li and Pu (2008) performed
simulations using Weather Research and Forecasting (WRF) model and
showed that the use of various PBL schemes resulted in differences in the
simulated MSLP up to 19 hPa during the early rapid intensification of
Hurricane Emily (2005). Kepert (2012) reviewed and assessed the per-
formance of PBL schemes and suggested that the parameterization of
vertical mixing in the PBL has a key impact on hurricane intensity and
structure. Zhu et al. (2014) conducted a series of numerical experiments
with different subgrid-scale vertical turbulent mixing parametrizations
using the WRF model and demonstrated that the vertical turbulent
mixing scheme played a significant role in asymmetric structures and
eyewall mesovortices of TCs. Smith et al. (2014) examined the sensi-
tivity of TC models to the surface drag coefficient in different PBL
schemes and underscored the importance of PBL dynamics in TC in-
tensity forecasting. Tang et al. (2018) investigated the sensitivity of
simulated hurricane intensity and structure to two PBL schemes in
idealized experiments using the operational Hurricane WRF (HWRF)
model.

Recently, Chen and Bryan (2021) performed a set of idealized nu-
merical simulations with the MYNN PBL scheme, and demonstrate that,
by adding the advection of TKE, the simulated TC was slightly stronger,
and the inner-core size was slightly smaller. Chen et al. (2021b) inves-
tigated the effect of the scale-aware Shin-Hong (SH) scheme and non-
scale-aware Yonsei University (YSU) scheme on the TC intensification
and structural changes and found that the SH scheme tends to produce a
stronger TC with a more compact inner core than the YSU scheme. By
utilizing a recently developed TC boundary layer modeling framework
based on large-eddy simulation (LES, Chen et al., 2021a), Chen (2022)
evaluated K-profile parameterization (KPP) schemes as well as high-

order PBL schemes in hurricane conditions. Their results show that
different KPP schemes, such as the Global Forecast System (GFS) scheme
and the YSU scheme, can result in quite different eddy viscosity K, and
inflow layer, but the performance of both schemes can be improved by
adjusting the “shape parameter” of K;,,. Wang and Tan (2023) evaluated
the uncertainty of the combined effects of cumulus, microphysics, and
PBL schemes on TC simulations, and found that the KF cumulus scheme,
the Lin microphysics scheme, and the BouLac PBL scheme are the best
combination among the evaluated schemes for the TC intensity
forecasts.

A key component of a PBL scheme is the parameterization of the
vertical turbulent diffusivity of momentum (K;;) and heat (Kp). Based on
the HWRF numerical simulations, researchers have investigated how the
turbulent diffusivity of different magnitudes affects the simulated TC
intensity and structure (Gopalakrishnan et al., 2013, 2021; Zhang et al.,
2015, 2017a, 2017b, 2020). Using idealized HWRF simulations, Gopa-
lakrishnan et al. (2013) show that the magnitudes of K, and Kp, greatly
affect the size and intensity changes of simulated TC over the ocean, and
reducing Kp, to a quarter of its original value produces the best match to
the observed MSLP, Zhang et al. (2015, 2017b, 2019) found that the
reduction of K, produced stronger storms with shallower boundary
layer, stronger inflow/outflow, and stronger warm core but smaller in
storm size. For landfalling TCs, Zhang et al. (2017a) found that vertical
turbulent mixing exerted a strong impact on the simulated TC intensity
with weaker vertical mixing leading to stronger TC intensity over land.
Recently, Zhang et al. (2020) summarized that K;;, was an important
parameter affecting TC intensity and intensification rate, in particular, a
smaller K;, tended to produce a faster storm intensification rate. Using
the Hurricane Analysis and Forecast System (HAFS) model, Gopa-
lakrishnan et al. (2021) studied the influence of K;;, used in two PBL
schemes, a nonlocal K-profile parameterization (KPP) and a TKE
scheme, on the TC intensity and structure and found that smaller
diffusion leads to larger friction, more vigorous inflow acceleration, and
stronger TCs. The above HWRF-based and HAFS-based studies have led
to similar conclusions. Besides, based on the nonhydrostatic atmo-
spheric model (NHM) simulation experiments, Kanada et al. (2012)
concluded that different values of vertical turbulent diffusivity co-
efficients result in different TC intensities, inner core structures, and the
relationships between maximum wind speed and central pressure. Large
vertical eddy diffusivities in lower layers (height < 300 m) lead to large
heat and water vapor transfers, resulting in extremely intense TCs
accompanied by an upright, contracted eyewall structure. Recently, Xu
and Zhao (2021) used the WRF model examined the sensitivity of TC
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Fig. 2. Height-radius distribution of azimuthally averaged turbulent diffusivity for momentum (unit: m?s1) from (al-a4) YSU_4K,,, (b1-b4) YSU_2K,,, (c1-c4) YSU,
(d1-d4) YSU_0.5K;,, and (el-e4) YSU_0.25K,,, at (al-e1) 0600 UTC 7, (a2-e2) 0000 UTC 9, (a3-e3) 0000 UTC 11, and (a4-e4) 1200 UTC 12, September 2018.

simulations to turbulence exchange coefficients for water vapor K, and
momentum Ky, and their results showed nonlinear effects of K; on the
simulated TC intensity.

However, previous studies and analyses were basically made based
on the grid-point intensity measuring metrics, i.e., examining the min-
imum central sea level pressure (MSLP) and the maximum 10 m wind
speed (VMAX) at model grid points. However, high-resolution numeri-
cal studies (e.g., Green and Zhang, 2015; Li et al., 2022) show that the
grid-point metrics may not provide a comprehensive evaluation of TC
intensity and reveal the underlying dynamics of intensification. There-
fore, in this study, using the high-resolution numerical simulations of
Typhoon Mangkhut (2018) by the WRF model, we perform a compre-
hensive evaluation of the sensitivity of TC intensification to the

magnitude of K, and K}, using two different intensity measuring metrics
(i.e., grid-point and area-averaged metrics). For the main purpose of the
manuscript, it is to use two intensity metrics (grid-point and area-
averaged intensity metrics) to examine the sensitivity of TC intensity
simulation to the boundary layer turbulent diffusivity of different
magnitude, and to explain the reasons for the different behaviors be-
tween K, to grid-point intensity metrics and K, to area-averaged in-
tensity metrics from the perspective of TC energy and size. The grid-
point intensity metrics are widely used to examine the simulated TC
intensity compared to observations, and it is to directly compare with
observations. In comparison, the purpose of using the area-averaged
intensity metrics is to remove the influence of small-scale processes
with randomness and complexities.
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Fig. 3. Comparison of (a) TC track and (b) track error (unit: km) from experiments and JTWC best track data from 0000 UTC 7 to 0000 UTC 13 September 2018.

The rest of the paper is organized as follows. Section 2 introduces
Typhoon Mangkhut, the model setup, and the experimental design.
Section 3 shows the modification and verification of K,. Section 4 pre-
sents the simulation results and analyses of the underlying. Summary
and conclusions are provided in Section 5.

2. Numerical simulations of Typhoon Mangkhut (2018)
2.1. Overview of Typhoon Mangkhut

Mangkhut (2018) formed over the northeastern Pacific and was the
22nd named TC of the 2018 typhoon season (Yang et al., 2019; He et al.,
2020Db). Its track started from about 2330 km east of Guam on September
7th, then moved westwards and made landfall over Luzon on September
14th (He et al., 2020a; He et al., 2020b). At this time, it reached an
estimated maximum sustained wind speed of 250 km h™!. To examine
how the turbulent diffusivity K;,, and K}, affect the intensification of the

TC, we focus on the intensification period of Mangkhut (2018) from
0000 Universal Time Coordinated (UTC) on September 7th to 0000 UTC
on September 13th, 2018. The track and intensity of Mangkhut (2018)
during this period can be found in Figs. 1 and 3, respectively.

2.2. Experimental design

The Advanced Research WRF model Version 4.0, developed by the
US National Center for Atmospheric Research (NCAR), was utilized in
this study. The model was configured with two-way interactive and
three-level vortex-following moving nests, as shown in Fig. 1. The
outermost to innermost domains consisted of 342 x 153, 856 x 292, and
433 x 424 grid points, with horizontal resolutions of 27, 9, and 3 km,
respectively. A total of 49 vertical levels were used, with the model top
set at 50 hPa. For the initial and lateral boundary conditions, the fifth
generation European Center for Medium-Range Weather Forecasts
(ECMWF) atmospheric reanalysis of the global climate (ERA5) was
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Fig. 4. Time series of point (a) minimum central sea level pressure (MSLP) (unit: hPa) and (b) maximum 10 m wind speed (VMAX) (unit: m s~1).

employed. This dataset has a resolution of 0.25° x 0.25° and can be
accessed at https://cds.climate.copernicus.eu/#!/home. The simula-
tions began at 0000 UTC on September 7th and concluded at 0000 UTC
on September 13, 2018, encompassing the intensification period of
Typhoon Mangkhut (2018).

The same model physics options were employed for all three do-
mains, with the exception of deactivating the cumulus parameterization
in the 9-km and 3-km resolution domains. The physical parameteriza-
tions used in this study included the Kain-Fritsch cumulus parameteri-
zation scheme (Kain, 2004), the Eta (Ferrier) microphysics scheme
(Rogers et al., 2001), the Rapid Radiative Transfer longwave radiation
scheme (RRTM) (Mlawer et al., 1997), the Dudhia shortwave radiation
scheme (Dudhia, 1989), the Unified Noah land surface model (Tewari
et al., 2004), and the Revised MMS5 surface layer scheme (Jimenez et al.,
2012).

Based on the results from the WRF Physics Use Survey (August 2015)
regarding PBL choices (https://www2.mmm.ucar.edu/wrf/users/phys

ics/wrf physics_survey.pdf), we selected the YSU (Hong et al., 2006)
as the PBL scheme for the control experiment in this study. The YSU
scheme is widely used and was chosen based on its popularity and
established performance in previous research.

3. Modification and verification of K,

The purpose of a PBL scheme is to parameterize the sub-grid-scale
exchanges of moisture, heat, and momentum through mixing, which
are associated with turbulent eddies (Cohen et al., 2015). The YSU
scheme is a nonlocal and first-order closure scheme that incorporates the
explicit entrainment process at the top of the PBL (Hong et al., 2006). In
the YSU scheme, for the mixed-layer diffusion, the momentum diffu-
sivity Kp, is formulated as

Z

K, :kw.;z(l —%)p, <))
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Fig. 5. Time series of maximum azimuthally averaged radial wind speed (unit: m s~!) within 500 km radius and below 1 km height.

where p is the profile shape exponent, taken to be 2, k is the von Karmén
constant (= 0.4), w; is the mixed-layer velocity scale, z is the height from
the surface, and h is the boundary layer height (or mixed layer height).
The diffusivity for heat is parameterized as K, = Kp/P,;, where P, is
Prandtl number.

Chen (2022) concluded that, when compared to the results from LES,
the KPP PBL schemes (e.g. YSU and GFS) generally yield less accurate Ky,
and boundary layer wind profiles compared to the high-order PBL
schemes. Additionally, Chen et al. (2021b) pointed out the uncertainty
associated with YSU’s vertical viscosity and nonlocal transport param-
eterizations in TC simulations, as they were formulated and validated for
the typical continental convective boundary layer. In this study, we
conducted a series of sensitivity experiments by modifying the magni-
tude of Ky, in the YSU scheme to investigate the effect of boundary layer
turbulent diffusivity on TC simulations.

Following Zhang (2015, 2017), we applied multiplication factors of
4, 2, 0.5, and 0.25 to the turbulent diffusivity for momentum, K, in
different sensitivity simulation experiments. This approach allowed us
to modify the magnitude of K, and investigate its impact on the simu-
lations. It is worth noting that K, plays a crucial role as a key parameter
in the first-order K-closure PBL schemes. The modification of K;, directly
affects the parameterized turbulent fluxes, which in turn provides an
opportunity to examine how differently parameterized turbulent fluxes
affect the intensification and structural changes of TCs. Table 1 sum-
marizes the modified values of K, used in different simulation experi-
ments. It is important to note that all experiments share the same model
configuration, with the only difference being the magnitude of Kp,.

Fig. 2 shows the distribution of K, simulated by different experi-
ments. Each row represents a different sensitivity experiment, while
each column represents a different time point corresponding to different
stages of the simulation process. When compared with the original YSU
scheme, the sensitivity experiments demonstrate variations in K;;, within
the boundary layer (approximately below 1 km), with the magnitude
increasing or decreasing accordingly to the multiplied coefficient. The
results for Ky, (figure not shown) follow the same trend as K, since Ky, is
related to Ky, through the equation K;, = Kn/P;.

However, single-point metrics can be affected by small-scale pro-
cesses, such as turbulence and kilometer-scale circulations. These factors
can result in high-frequency fluctuations in the local intensity of TCs (e.

g., Rotunno et al., 2009; Xu and Wang, 2021; Li et al., 2022). To remove
the impact of these small-scale processes and provide an evaluation of
TC intensity at the TC-scale, area-averaged metrics are also introduced
in this study. The combination of single-point metrics and area-averaged
metrics may provide a more comprehensive evaluation of the effect of
K on TC intensity simulation.

4. Results
4.1. Point intensity metrics

The simulated tracks are validated using the observed tracks from the
Joint Typhoon Warning Center (JTWC) (https://www.metoc.navy.mil/
jtwe/jtwe.html). The simulated tracks reproduce the westward move-
ment characteristics of TCs, and their trends are generally consistent
with those of the best track data. However, there is still a noticeable
deviation between the simulations and observations, particularly during
the later hours of the simulation (Fig. 3). Furthermore, Fig. 4 illustrates
the point minimum sea level air pressure (MSLP_PT) and point
maximum 10 m wind speed (VMAX_PT).

The results indicate that during the TC intensification period, the
differences among the point MSLPs from the sensitivity experiments are
relatively small before 0000 UTC on September 8th and gradually in-
crease starting from about 0000 UTC on September 10th. During the
rapid intensification from 1200 UTC on September 10th to 0600 UTC on
September 12th, the point MSLPs from the simulations exhibit a
nonlinear relationship with the values of Kp. Around 1200 UTC on
September 12th, the point MSLP values for all experiments reach their
minima. From this time onwards, there is a positive correlation between
the point MSLPs and the magnitude of K, indicating that smaller K,
produces smaller point MSLP. These findings suggest that during the
later stage of intensification (from 0000 UTC on September 12th to 0000
UTC on September 13th), there is a strong correlation between the point
MSLPs and the magnitude of K. However, this observed agreement
between point MSLPs and the magnitude of K, was not consistently
observed before 0000 UTC on September 12th (as shown in Fig. 4) or
after 0000 UTC on September 13th (figure not included). This result is
consistent with the findings of Gopalakrishnan et al. (2013), who re-
ported that stronger vertical mixing in the PBL during the TC mature
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Fig. 6. Time series of area-averaged (a) MSLP (unit: hPa) and (b) VMAX (unit: m s~!) within the radius of 500 km.

stage of a TC leads to a weaker gradient wind imbalance in the eyewall
region and favors a larger point MSLP.

Point VMAXs, on the other hand, exhibit significant fluctuations
caused by turbulence. Furthermore, the variations of point VMAXs
among the different sensitivity experiments do not show a clear corre-
lation with the magnitudes of K;,,, except for a weak correlation observed
during the intensification period. The point VMAXs from all the exper-
iments converge toward the end of the simulations.

Kepert (2012) demonstrated that large turbulent diffusivity leads to
strong mixing, which weaken the surface inflow and eyewall updraft,
ultimately reducing storm intensity. This aligns with the conclusion
drawn by Gopalakrishnan et al. (2013), Zhang et al. (2015, 2017b), and
Xu and Duan (2022) that a small K, reduces the dissipation of angular
momentum in the PBL. As a result, strong radial inflow is promoted,
leading to an increase in TC intensity. Our findings are consistent with
those of Chen (2022), who illustrated that the YSU scheme with a
smaller K;, tends to generate stronger radial inflow at lower levels of the

boundary layer (cf. his Fig. 1). However, the intensity of radial inflow
weakens as the “shape parameter” of K;, increases from 2 to 6 (cf. his
Fig. 4). Fig. 5 depicts the maximum azimuthally averaged radial inflow
simulated by the baseline and sensitivity experiments. Similar to the
point MSLP results, the values of the maximum azimuthally averaged
radial inflow do not initially appear to correlate with the K, values
during the early simulations. However, as the simulations progress, a
clear correlation emerges, whereby smaller K, values correspond to
larger maximum azimuthally averaged radial inflow, consistent with
previous studies. Furthermore, the calculated correlation coefficient R
between radial wind speed and the magnitude of K, reveals that in the
later stage of simulation, particularly after 0000 UTC on September
12th, the value of correlation coefficient R (—0.63) is significantly
smaller than that observed during the early stages of the simulation
(ranging from —0.21 to —0.52). This suggests a more pronounced
negative correlation between these variables during the later stage of the
simulation.
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4.2. Area averaged intensity metrics

As demonstrated in the previous section, the point intensity metrics
exhibit a weak relationship between K;,, and TC intensity. This suggests
that the point intensity metrics are influenced by small-scale processes,
such as turbulence eddies and rolls, which introduce randomness and
complexities to the variations of the point intensity metrics (Wu et al.,
2018; Liu et al., 2021). To remove the influence of these small-scale
processes, we adopt area-averaged metrics, following the approach of
Rotunno et al. (2009) and Green and Zhang (2015), to examine the
relationship among K, storm intensity, and radial inflow. Fig. 6 shows
the area-averaged MSLP (MSLP_AV) and VMAX (VMAX_AV) within a
500 km radius, while Fig. 7 depicts the 500 km radius area-averaged
radial inflow. A notable observation is that, compared to the point in-
tensity metrics (MSLP_PT and VMAX PT), the area-averaged metrics
(MSLP_AV and VMAX_AV) exhibit a much more consistent relationship
between K, and storm intensity. Specifically, larger values of K
generally correspond to smaller MSLP_AV and larger VMAX_AV. This
finding seems contradictory to the previous observation that larger K,
tends to produce larger MSLP PT values. Consistent with storm in-
tensity, smaller K, values result in weaker 500 km radius area-averaged
radial inflow. The selection of a 500 km radius is intended to cover areas
where wind speeds exceeding 10 m s~ ! are prevalent throughout the
simulation. By comparing results from an area with a larger radius to
those from smaller areas, smoother and more clear linear relationships
were observed in the larger radius area. To minimize the influence of
smaller areas, we specifically chose a 500 km radius for our analysis.
Furthermore, it is worth noting the presence of the semi-diurnal varia-
tion in the MSLP_AV field as depicted in Fig. 6(a), whereas it is absent in
the MSLP_PT field. To explore and gain a deeper understanding of this
phenomenon, further investigation will be necessary in future studies.

4.3. Heat fluxes and diabatic heating

With the variation of K, in the sensitivity experiments, the surface
fluxes, including momentum, sensible heat, and latent heat fluxes are
altered. These changes have an impact on convection, as indicated by
diabatic heating (Braun and Tao, 2000; Liu et al., 2017; Gopalakrishnan
etal., 2013; Ma et al., 2018; Xu and Zhao, 2021). Both the input of heat

fluxes and the release of diabatic heating are significant factors
contributing to TC intensification. Therefore, analyzing heat fluxes and
diabatic heating serves as a means to understand the connection be-
tween K, variation and TC intensification. This section aims to inves-
tigate these variables and provide insights into the reasons for TC
intensity variations under different K, settings.

Fig. 8(a) and (b) present the area-averaged surface sensible and
latent heat fluxes within a 500 km radius, respectively. In general, the
sensible heat flux accounts for approximately 10% of the latent heat
flux, and there are minimal differences among the five simulations.
During initial two days of the simulations (from 0000 UTC on September
7th to 0000 UTC on September 9th), when considering that K, = Ki,, /P:
as mentioned in Section 3, larger values of K;, generally typically result
in larger values of K and subsequently higher sensible heat fluxes. This
can be attributed to stronger vertical mixing. However, beyond this
period, the variations in sensible heat flux among the five simulations
become negligible (except for YSU_0.25K,,, which is considerably
smaller than the others toward the end of the simulation). Fig. 8 illus-
trates that the sensible heat fluxes of the simulations with larger K,
values, such as YSU_4K;,, YSU_2K;;, and YSU, are greater compared to
those with YSU_0.5K;, and YSU_0.25K;,. The stronger surface winds
associated with larger K, values would also contribute to increased
sensible heat fluxes. Nevertheless, due to greater fluctuations and
smaller magnitude orders of the sensible heat flux, Fig. 8(a) reveals no
apparent linear relationship between the sensible heat flux and K,
unlike the latent heat flux and Kp,. This is likely influenced by a negative
feedback mechanism between the sensible heat flux and K, since larger
K, values tend to generate a warmer PBL, thereby reducing the air-sea
thermal contrast. Conversely, the latent heat flux exhibits a nearly
linear relationship with the magnitude of K, throughout the simula-
tions. This can be attributed to the fact that larger K;,, values promote
stronger ventilation in the surface layer, leading to enhanced surface
evaporation.

Fig. 9 compares the sum of diabatic heating energy within a radius of
500 km from the TC center among different experiments. The results
show that a larger K, generates greater storm-scale diabatic heating.
However, the relationship between K;; and diabatic heating is not as
linear as the relationship between latent heat flux shown in Fig. 8(b).
This non-linearity is partly caused by spontaneous convection, and
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Fig. 9. Time series of area sum of diabatic heating energy (unit: J) within the radius of 500 km and below the height of 15 km.

partly caused by the complex dynamics of a TC. Our results are consis-
tent with the fact that larger diabatic heating can lead to an increase in
air temperature, hindering the air parcel from reaching saturation, and
therefore inhibiting the further release of diabatic heating. The findings
in Fig. 9 are consistent with previous studies by Zhu et al. (2014) and
Zhang et al., (Zhang et al., 2015; Zhang et al., 2017b), who concluded
that larger vertical mixing transports more heat from the ocean surface
upwards to foster atmospheric convection. However, we note that the
larger area-mean diabatic heating does not necessarily guarantee
stronger individual connective cells, as it is more affected by the size of a
TC, which will be discussed in the next section.

4.4. TC size

TC size is commonly defined using the radius of the 10 m tangential
wind (ut10) with a specified speed (Schenkel et al., 2017; Bian et al.,
2021). Following Schenkel et al. (2017) and Bian et al. (2021), we used
the radius of ut10 of 10 m s ! (R10) to define the size of TCs simulated in
this study.

Fig. 10(a)-(e) show the time-radius variations of the azimuthally
averaged utl0 in the five simulations. The larger K, generally tends to
produce larger utl0, consistent with the findings in Section 4.2. Fig. 11
further compares the time variation of R10 among the experiments. It
again shows a nearly linear relationship between K;;, and R10, with a
larger K;, corresponding to a larger R10. Since a larger R10 means the
expansion of a TC, such an expansion should exert a negative impact on
the point MSLP (i.e., increases the point MSLP). If the pressure gradient
force for the 10 m wind remains constant, a larger R10 would result in a
greater distance from the TC center. Consequently, the pressure at the
TC center would be higher, given the same pressure gradient force. This
explains why the Kp-intensity relationship shows contradictory results
between the grid-point metrics and the area-averaged metrics. This
result is consistent with Zhang et al. (2020), although they used the
radius of maximum wind (RMW) as the TC size indicator.

Regarding the relationship of TC intensity and K, on the one hand, a
smaller K, produces a larger grid-point intensity. On the other hand, a
larger K, produces a larger area-averaged intensity. For this contra-
dictory relationship, compared with a single grid point, with the
expansion of the area and the increase of TC size, a larger K, produces
stronger latent heat flux and diabatic heat energy from the area, which
leads to the generation of stronger TC storms.
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5. Summary and conclusions

Motivated by previous studies on the effect of turbulent diffusivity
K, on TC simulations, this study revisits the problem using a set of
sensitivity experiments performed by the WRF model with modified Kp,
of the YSU scheme. Two different methods, namely, the grid-point and
area-averaged intensity metrics, are used to evaluate the simulations.
The main findings are summarized as follows.

In the evaluation using grid-point intensity metrics, it is found that
grid-point MSLPs are well correlated with the magnitudes of Kp,, with a
smaller K;;; producing a smaller point MSLP. However, due to fluctua-
tions caused by the asymmetric eddy features, grid-point VMAXs are
only weakly correlated to K;,. Zhu et al. (2019, 2021) pointed out that
the asymmetric eddy processes provide an important forcing for the
evolution of the primary circulation of a TC. Similar to grid-point MSLP,
the maximum azimuthally averaged radial inflow in these experiments
correlates well with the magnitude of K;,, with a smaller K, corre-
sponding to a larger maximum azimuthally averaged radial inflow.
These findings are consistent with previous studies (e.g., Gopa-
lakrishnan et al., 2013; Zhang et al., 2015, 2017b) that have shown the
reduction of K, enhances radial inflow, leading to stronger TC intensity
for a mature TC.

Unlike the grid-point intensity metrics, the area-averaged MSLP and
VMAX show a much more consistent relationship with K;,,. A larger K,
tends to produce a smaller MSLP_AV and a larger VMAX AV, which is
consistent with a stronger 500 km radius area-averaged radial inflow
throughout the simulations.

The comparison of surface heat fluxes reveals that the sensible heat
flux accounts for approximately 10% of the latent heat flux, and the
differences in sensible heat flux among the simulations are minimal. On
the other hand, the latent heat flux shows a nearly linear relationship
with K, throughout the simulations. Nevertheless, due to the sponta-
neous asymmetric convective eddy features, the relationship between
K, and diabatic heating is not as clean as that between K;, and latent
heat flux. Overall, a larger K;,, tends to generate greater diabatic heating,
leading to stronger TC intensity, which is consistent with the findings of
Zhang et al. (2017b).

Using R10 as the size indicator of a TC, the results indicate that a
larger K, tends to result in a larger ut10, which is consistent with pre-
vious findings. Additionally, R10 shows a clear linear relationship with
K, throughout the simulations, with a larger K, corresponding to a
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larger R10. Since a larger R10 represents the expansion of a TC, such
expansion would have a negative impact (i.e., increase) on the grid-
point MSLP. This explains why the grid-point K,-intensity metrics
exhibit a contradictory relationship compared to the area-averaged
metrics. The findings of this study highlight the need for research ef-
forts are aimed at providing physical constraints on turbulent diffusiv-
ities for TC simulations using observations.
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