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Optimal wall shapes and flows for steady planar
convection
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We compute steady planar incompressible flows and wall shapes that maximize the rate
of heat transfer (Nu) between hot and cold walls, for a given rate of viscous dissipation by
the flow (Pe2), with no-slip boundary conditions at the walls. In the case of no flow, we
show theoretically that the optimal walls are flat and horizontal, at the minimum separation
distance. We use a decoupled approximation to show that flat walls remain optimal up to
a critical non-zero flow magnitude. Beyond this value, our computed optimal flows and
wall shapes converge to a set of forms that are invariant except for a Pe−1/3 scaling of
horizontal lengths. The corresponding rate of heat transfer Nu ∼ Pe2/3. We show that
these scalings result from flows at the interface between the diffusion-dominated and
convection-dominated regimes. We also show that the separation distance of the walls
remains at its minimum value at large Pe.

Key words: Bénard convection

1. Introduction

The transfer of heat from solid boundaries to adjacent fluid flows is fundamental to
many natural and technological processes. Important examples include the formation
and evolution of stars and planets, and energy consumption in buildings, computer heat
sinks and organisms (Blundell & Blundell 2010; Bergman et al. 2011). For flows with
large spatial scales and/or large flow speeds, the heat transfer is often controlled by thin
viscous and thermal layers at the solid boundaries. Consequently, the rate of heat transfer is
sensitive to the features of the solid boundaries, and in particular to their shape or geometry
(Webb &Kim 2005; Lienhard 2013; Tobasco 2022;Wen, Goluskin &Doering 2022b; Wen
et al. 2022a; Song, Fantuzzi & Tobasco 2023).
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The effect of wall shape modulations or roughness on thermal transport has been studied
many times for both natural and forced convection. Toppaladoddi, Succi & Wettlaufer
(2017) considered natural convection in a fluid layer between hot and cold sinusoidal
surfaces. They fixed the roughness amplitude at one-tenth the fluid layer height, and found
that heat transfer was maximized when the roughness amplitude and wavelength were
similar. This is one example of a large body of numerical and experimental work on
the effect of wall roughness on the rate of heat transfer in turbulent natural convection
with various roughness geometries – sinusoidal (Toppaladoddi, Succi & Wettlaufer 2015;
Toppaladoddi et al. 2017; Zhu et al. 2017), triangular (Zhang et al. 2018), cubic (Rusaouën
et al. 2018), ratchet-shaped (Jiang et al. 2018), ring-shaped (Emran & Shishkina 2020)
and fractal (Toppaladoddi et al. 2021) and other multiscale roughness profiles (Zhu et al.
2019; Sharma, Chand & De 2022). A main focus of these works is the asymptotic
scaling of the rate of heat transfer with the Rayleigh number and its dependence on
the geometric form of the roughness and its length scales including wavelengths and
heights of the roughness profiles (Yang et al. 2021). An experimental work that considered
pyramid-shaped roughness elements of varying aspect ratio related the heat transfer
enhancement to the dynamics of thermal plumes near the roughness elements (Xie &
Xia 2017).
Variations of these problems include the effect of tilting the rough walls, for triangular

(Chand, Sharma & De 2022) and ratchet-shaped (Jiang et al. 2023) surfaces, and the heat
transfer enhancement that can be obtained by moving the rough plates (Jin et al. 2022).
Zhang et al. (2018) showed computationally that in some cases with small roughness
heights, roughness can actually decrease the rate of heat transfer. On the theoretical side,
Goluskin & Doering (2016) used the ‘background method’ to obtain upper bounds on the
rate of heat transfer in fluid layers between upper and lower rough walls whose profiles
correspond to single-valued functions of the horizontal coordinate. Bleitner & Nobili
(2022) used a similar approach to derive upper bounds on heat transfer for Navier-slip
rough boundaries.
A related body of work has relaxed the requirement that the flow solve the Boussinesq

equations for natural convection, and instead optimized the rate of heat transfer over the
larger class of all incompressible flows between hot and cold boundaries (Hassanzadeh,
Chini & Doering 2014; Souza 2016; Tobasco & Doering 2017; Marcotte et al. 2018;
Motoki, Kawahara & Shimizu 2018a,b; Doering & Tobasco 2019; Souza, Tobasco &
Doering 2020; Kumar 2022; Alben 2023). These works consider a simple geometry –
inspired by Rayleigh–Bénard convection – consisting of a layer of fluid between flat
horizontal walls at different fixed temperatures. Optimal flows have also been calculated
for domains obtained by conformal mappings (Alben 2017b) and in flows through channels
(Alben 2017a). All incompressible flows are solutions to the incompressible Navier–Stokes
equations with a certain distribution of force per unit volume applied over the flow
domain (Alben 2017a). Although the forcing distribution may be difficult to create exactly
in an experiment, simple approximate distributions may be sufficient to obtain large
improvements from previous flows (Alben 2017a). The flows can be used to identify typical
features of efficient flows, such as branching structures (Zimparov, Da Silva & Bejan 2006;
Tobasco & Doering 2017; Motoki et al. 2018a; Kumar 2022; Alben 2023).
A large body of engineering work has studied the effect of wall roughness in simple

forced convection scenarios. The geometry of walls separating two fluids in a heat
exchanger is often manipulated to increase the rate of heat transfer for a given amount of
power needed to drive the flow (Webb & Kim 2005; Bergles & Manglik 2013). A typical
strategy is the insertion of helical coils in tubes with axial flow (Gee & Webb 1980). Also
well studied is the enhancement of heat transfer due to sinusoidal wall modulations in
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Optimal wall shapes and flows for steady planar convection

channel flow, and the fluid-dynamical mechanisms underlying the enhancement (Stone,
Stroock & Ajdari 2004; Kanaris, Mouza & Paras 2006; Guzman et al. 2009; Castelloes,
Quaresma & Cotta 2010; Muthuraj & Srinivas 2010; Sui et al. 2010; Gong et al. 2011;
Ramgadia & Saha 2013; Grant Mills et al. 2014).
In this work we again consider optimal incompressible flows for heat transfer between

hot and cold walls (Hassanzadeh et al. 2014; Souza 2016; Tobasco &Doering 2017; Motoki
et al. 2018a; Souza et al. 2020; Kumar 2022; Alben 2023), but now in the presence of wall
roughness. In particular, we extend the computational approach of Alben (2023) to search
for optimal flows together with optimal boundary wall shapes, in order to maximize the rate
of heat transfer (Nu) given a certain rate of power consumption by the flow (Pe2). At zero
power consumption, flat walls are shown to be optimal theoretically in § 3. Below a certain
power consumption rate, the computed optimal flows are rectangular convection rolls with
flat walls, as in previous studies (Souza et al. 2020; Alben 2023). In § 4 this is shown
theoretically by showing that the leading-order effects of the flows and the roughness are
decoupled when both are small.
In § 5 we describe the numerical methods for computing temperature fields and optimal

flows. Using these methods, in § 5.1 we show the solution features – sharp temperature
gradients – that limit the accuracy of the computations, and how the accuracy depends
on key wall shape parameters. We also use the computations to test the accuracy of the
decoupled approximation at small Pe and wall deflection amplitudes, in § 5.2.
We present computed optima at moderate and large Pe in § 6. Above a critical Pe,

the computed optima with wavy walls outperform those with flat walls. At large power
consumption rates, the optimal flow streamlines and wall shapes fall within a large but
well-defined set of typical configurations. The configurations are invariant at large Pe,
except for a power-law scaling of their horizontal period together with an O(1) vertical
roughness of the walls. Thus the convection rolls are very elongated vertically in the limit
of large Pe. The scaling of the horizontal period, Lx ∼ Pe−1/3, is close to that seen for
the flat-wall optima in previous work, and is shown here to result in flows at the interface
between diffusion-dominated and convection-dominated regimes. The corresponding heat
transfer rate Nu scales as Pe2/3, which was shown to be an upper bound in the flat-wall case
(Souza 2016) in two-dimensional (2-D) and three-dimensional (3-D) flows. The scaling
was observed numerically (Motoki et al. 2018a) and shown analytically (Kumar 2022) for
3-D flows with flat walls but only up to logarithmic corrections in 2-D flows with flat
walls (Tobasco & Doering 2017). The Pe2/3 scaling corresponds to an upper bound for
flows with rough walls shown theoretically by Goluskin & Doering (2016).
In § 7 we explain why the optima have the minimum possible separation between the

hot and cold walls. In § 8 we present results from alternative optimization problems, and
§ 9 presents the conclusions and additional context for the results.

2. Model

A 2-D layer of fluid is contained in the region −∞ < x < ∞ and ybot(x) < y < ytop(x)
(see figure 1). The curvilinear walls at y = ybot(x) and y = ytop(x) have temperatures 1
and 0, respectively. The two walls are periodic in x with a common period Lx that is
determined during the optimization. The walls (black lines in figure 1) are constrained
so ybot ≤ 0 and ytop ≥ 1, respectively; i.e. the walls may not cross the blue dashed lines
in figure 1. Without this constraint, the distance between the walls could approach zero
and then the temperature gradient would diverge, generally along with the rate of heat
transfer, regardless of the fluid flow. The constraint allows us to ask which aspects of
the walls’ shapes other than their separation distance are useful for heat transfer by the
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0

0

y

Lx

ybot (x)

ytop (x)

Hmin H

1

Figure 1. Example of a domain that is periodic in x with period Lx. The bottom boundary is ybot(x) ≤ 0 and
the top boundary is ytop(x) ≥ 1. The boundaries do not cross the blue dashed lines. The distance between the
walls’ inward extrema is H ≥ Hmin. The grey region is indicated for the discussion in § 3.

intervening fluid. One can also interpret the constraint as choosing a characteristic length
scale for the problem, which is Hmin, the minimum allowed separation distance between
the walls. The separation distance H ≡ min ytop(x) − max ybot(x) is constrained to be
≥ Hmin, or 1 when we non-dimensionalize all distances by Hmin, going forward. Although
H > 1 is possible, we find that H = 1 for all computed optima. Intuitively, minimizing the
separation distance between the walls seems advantageous for heat transfer, and in § 7 we
use a scaling argument to explain why this choice might be optimal. Also, the choice of
wall temperatures (1 and 0) is equivalent to setting the characteristic temperature scale to
be the difference between the wall temperatures. In addition to the constraint H ≥ 1, the
walls’ vertical positions must be single-valued functions of x but are otherwise essentially
arbitrary.
Between the walls, the temperature field is determined by the steady advection–diffusion

equation

u · ∇T − ∇2T = 0, (2.1)

driven by an incompressible flow field (u, v) = u = (∂yψ, −∂xψ), with ψ(x, y) the stream
function. We have set the prefactor of∇2T (the thermal diffusivity) to unity, corresponding
to non-dimensionalizing velocities by κ/Hmin, with κ the dimensional thermal diffusivity.
The set-up is similar to Rayleigh–Bénard convection, but instead of solving the

Boussinesq equations for the flow field, we consider all incompressible flows and find
those that maximize the Nusselt number, the heat transfer from the hot lower boundary
(per unit horizontal distance):

Nu = 1
Lx

∫
C={(x,ybot(x))}

∂nT ds. (2.2)

Integrating ∇2T over the whole region and using periodicity at the side walls, we see that
Nu is also the heat transfer into the upper (cold) boundary.
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Optimal wall shapes and flows for steady planar convection

We maximize Nu over flows with a given spatially averaged rate of viscous dissipation
Pe2:

Pe2 ≡ 1
Lx

∫ Lx

0

∫ ytop(x)

ybot(x)
2E : E dy dx

= 1
Lx

∫ Lx

0

∫ ytop(x)

ybot(x)
(∇2ψ)2 dy dx, E ≡ 1

2
(∇u + ∇uT). (2.3)

Here, Pe2 is the average rate of viscous dissipation per unit horizontal width (Batchelor
1967), non-dimensionalized by μκ2/H3

min, with μ the viscosity. Tensor E is the
rate-of-strain tensor and E : E is the ‘matrix scalar product’, i.e. the sum of the squares of
the entries of E . The expression for Pe2 in terms of ψ in (2.3) holds for incompressible
flows given the no-slip boundary conditions at the top and bottom walls and periodicity in
x we have here (Lamb 1932; Milne-Thomson 1968).
An incompressible flow field that maximizes Nu for a given Pe can also be considered a

solution to the Boussinesq or Navier–Stokes equations with a suitable forcing function –
whatever forcing is needed to balance the remaining terms in the equations. The
optimization problem here is essentially the same as in Souza et al. (2020) and Alben
(2023) except that the walls are no longer flat and horizontal but must be determined
together with the flow field and the horizontal period.
Like the walls, the flow ψ is periodic in x with period Lx. In terms of ψ , the no-slip

boundary conditions are ψ = ∂nψ = 0 at y = ybot(x) and ψ = ψtop and ∂nψ = 0 at y =
ytop(x). The constant ψtop is the net horizontal fluid flux through the channel. In most of
our computed optima including those with the highest Nu at a given Pe, ψtop is very close
to 0.

3. No convection (Pe = 0)

First we consider the limiting case Pe = 0, the pure-conduction problem. We show that
the maximum Nu is achieved with flat walls with the minimum separation, ybot(x) ≡ 0
and ytop(x) ≡ 1. Using ∇2T = 0, we show that the net vertical conductive heat flux across
all horizontal cross-sections is constant over the portion of y values that the walls do not
cross, 0 ≤ y ≤ 1:

d
dy

∫ Lx

0
∂yT(x, y) dx =

∫ Lx

0
∂yyT(x, y) dx =

∫ Lx

0
−∂xxT(x, y) dx = 0, 0 ≤ y ≤ 1,

(3.1)
using the periodicity in x for the last equality. Thus∫ Lx

0
∂yTdx = {constant in y : 0 ≤ y ≤ 1} =

∫ 1

0

∫ Lx

0
∂yT dx dy (3.2)

=
∫ Lx

0

∫ 1

0
∂yT dy dx =

∫ Lx

0
T(x, 1) − T(x, 0) dx. (3.3)

If, at some point x0, ybot(x0) < 0 or ytop(x0) > 1, then for some open x interval containing
x0 we have T(x, 0) < 1 or T(x, 1) > 0, respectively, by the maximum principle for
harmonic functions – the maximum and minimum of T are taken on the boundary. In
that case T(x, 0) − T(x, 1), which is ≤1 for any wall shape by the maximum principle, is
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in fact strictly less than 1 on some x interval. Therefore its average (over x) is strictly less
than 1:

1 >
1
Lx

∫ Lx

0
T(x, 0) − T(x, 1) dx = 1

Lx

∫ Lx

0
−∂yT|y=0 dx. (3.4)

The last equality in (3.4) follows by (3.2)–(3.3). We can show that the last quantity in (3.4)
is in fact Nu, by again integrating ∇2T , this time over the grey region in figure 1. We have

0 = 1
Lx

∫∫
∇2T dA = 1

Lx

∮
∂nT ds, (3.5)

0 = 1
Lx

∫
C={(x,ybot(x))}

∂nT ds + 1
Lx

∫ Lx

0
∂yT|y=0 dx. (3.6)

The contributions to the closed contour integral in (3.5) from the vertical sides of the
grey region cancel by x periodicity. Combining (2.2), (3.4) and (3.6), we have Nu < 1
for non-flat walls, whereas Nu = 1 for flat walls (in which case −∂yT ≡ 1), the optimal
solution with no flow (Pe = 0).

4. Small convection (0 < Pe � 1)

Now we consider the case 0 < Pe � 1. We denote the deviations of the bottom and top
walls from their flat states by H1 and H2:

H1(x) ≡ −ybot ≥ 0, H2(x) ≡ ytop(x) − 1 ≥ 0. (4.1a,b)

For this asymptotic analysis and for the subsequent computations, we define ( p, q)
coordinates, in which the flow domain is fixed as a unit square, for all wall shapes and
all Lx:

p ≡ x
Lx

, q ≡ y − ybot(x)
ytop(x) − ybot(x)

= y + H1(x)
1 + H1(x) + H2(x)

. (4.2a,b)

In Appendix A we give further details on how the objective and constraint equations,
(2.1)–(2.3), are written in ( p, q) coordinates.
In the limit Pe → 0, the optimal combination of flow and wall shapes must have

H1,H2 = o(1), i.e. tend to case of flat walls, by the argument in the previous section.
Otherwise Nu would be strictly less than 1 in the limit, whereas the flat-wall case has
Nu ≥ 1 for any incompressible flow field (Tobasco & Doering 2017).
When we write the advection–diffusion equation (2.1) in ( p, q) coordinates, the small

perturbation to flat walls corresponds to adding small space-varying coefficients in front of
the differential operators. At small Pe the flow also takes the form of a small space-varying
coefficient in (2.1). We write

u = u1 + O(Pe2), ∇x,y = ∇p,q + ∇1 + · · · , ∇2
x,y = ∇2

p,q + ∇2
1 + · · · , (4.3a–c)

where u1 = O(Pe) and ∇1 and ∇2
1 are first- and second-order differential operators in p

and q with coefficients that are linear in H1 and H2, and therefore o(1) as Pe → 0. Terms
with quadratic and higher-order coefficients are subdominant and not written explicitly.
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Optimal wall shapes and flows for steady planar convection

Given the flow and wall shape, the optimal temperature field has an expansion

T = T0 + T1 + · · · , (4.4)

with T0 = 1 − q and T1 = o(1). We insert the expansions of u, T and the differential
operators into the advection–diffusion equation (2.1). At O(Pe0),

−∇2
p,qT0 = 0, (4.5)

so T0 = 1 − q, the flat-wall steady-conduction solution. We then take the next-order terms,
linear in Pe or the wall-perturbation amplitude:

−∇2
p,qT1 = ∇2

1T0 − u1 · ∇p,qT0. (4.6)

Thus T1 satisfies Poisson’s equation forced by a superposition of the wall perturbation and
the small flow. We decompose T1 as the sum of the perturbations from each forcing term
separately:

T1 = T1A + T1B, (4.7)

−∇2
1T1A = ∇2

1T0, (4.8)

−∇2
1T1B = −u1 · ∇p,qT0. (4.9)

Here T1A is the leading-order change in the temperature field with the wall perturbation
and zero flow, while T1B is the leading-order change in the temperature field with the
O(Pe) flow and flat walls.
The Nusselt number

Nu = 1
Lx

∫ Lx

0
n̂ · ∇T

ds
dx

∣∣∣∣
y=ybot(x)

dx =
∫ 1

0
n̂ · ∇T

ds
dx

∣∣∣∣
q=0

dp (4.10)

is expanded similarly, using the expansion for T . The wall perturbation results in an
expansion:

ds
dx

n̂ · ∇|q=0 = ∂q +
(
ds
dx

n̂ · ∇
)
1
+ · · · . (4.11)

The subscript 1 again denotes the leading-order perturbation from the flat-wall term, ∂q in
this case since ds/dx = 1 for the flat wall. The leading-order terms in the expansion of Nu
are

Nu =
∫ 1

0
∂qT0|q=0 dp +

∫ 1

0

(
ds
dx

n̂ · ∇
)
1
T0

∣∣∣∣∣
q=0

dp

+
∫ 1

0
∂qT1A dp +

∫ 1

0
∂qT1B dp + · · · (4.12)

= Nu0 + Nu1A + Nu1B + · · · . (4.13)

The first integral in (4.12) is Nu0, the purely conductive heat transfer with flat walls,
and equals 1. The sum of the second and third integrals in (4.12) is Nu1A, the leading-
order correction due to non-flat walls, and the fourth integral in (4.12) is Nu1B, the
leading-order correction due to the flow. For small wall perturbations and small Pe, the
leading-order correction due to non-flat walls, Nu1A, is independent of the flow. It is the
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change in the pure conduction heat transfer due to non-flat walls. In the previous section
(Pe = 0) it was shown that this change can only decrease Nu, i.e. Nu1A < 0.
Furthermore, the leading-order correction due to the flow, Nu1B, is independent of the

wall perturbation. It is the leading-order change in Nu due to the optimal flow with flat
walls at small Pe, which is a periodic array of almost square convection rolls (Hassanzadeh
et al. 2014; Souza 2016; Alben 2023). It turns out that even though T1B = O(Pe), Nu1B is
smaller, O(Pe2) (Hassanzadeh et al. 2014; Souza et al. 2020; Alben 2023). However, any
o(1) form of Nu1B is consistent with the expansion (4.13), which gives the decoupled effect
of the walls and flow at leading order. The other main ingredient for (4.13) was that the
optimal wall perturbation amplitude is o(1) as Pe → 0, as shown previously.
The main consequence of (4.13) that we highlight is that non-flat walls can only be

optimal when Pe is large enough for the remainder terms in (4.13) to be comparable in
magnitude to Nu1B, so they outweigh its negative effect on Nu. Therefore, the transition
to optima with non-flat walls occurs only above some critical Pe > 0 and not at arbitrarily
small Pe. The same expansion can be used to show that a flat wall shape maximizes Nu
for sufficiently weak natural convection, i.e. at a Rayleigh number Ra sufficiently close
to Rac, the critical value for the Rayleigh–Bénard instability (Drazin & Reid 2004). The
argument requires that u = o(1) as Ra → Rac.
In the next section, we describe our computational methods for solving for temperature

fields, testing the accuracy of the decoupled approximation (4.13), and computing optimal
flows and wall shapes across the transition to non-flat walls.

5. Computational methods

In order to solve (2.1) with a variety of wall shapes and horizontal periods, we use ( p, q)
coordinates (4.2) so the computational domain is square. We write each of (2.1)–(2.3) in
( p, q) coordinates, and the differential operators and integrals in (x, y) are replaced with
differential operators and integrals in ( p, q) multiplied by functions of Lx, ybot( p), ytop( p)
and q and their first and second derivatives with respect to p and q.
We define the wall deformations to be single-signed and bounded using auxiliary

functions h1 and h2:

ybot( p) = −A
(
1 + sinA1

2

)
h1( p)2

‖h1( p)2‖6 ,

ytop( p) = A
(
1 + sinA2

2

)
h2( p)2

‖h2( p)2‖6 ,

⎫⎪⎪⎬
⎪⎪⎭ (5.1)

where A is approximately the maximum amplitude of ybot and ytop, approximate because
‖ · ‖6 instead of ‖ · ‖∞ appears in the denominators. This is done to allow for a smooth
dependence of ybot and ytop on h1 and h2, which is needed to calculate first derivatives in
our quasi-Newton optimization method. An approximate maximum amplitude is sufficient
because the optima become insensitive to A above a certain threshold, and we run the
simulations for a range of large A. With ‖ · ‖2 and ‖ · ‖10 in place of ‖ · ‖6 in (5.1), we
obtain optimal flow and wall configurations and Nu values that are very similar to those
obtained with ‖ · ‖6. The Nu values with ‖ · ‖6 and ‖ · ‖10 were somewhat better than with
‖ · ‖2, presumably because constraining the maximum wall deflection (approximated by
‖ · ‖6 and ‖ · ‖10) is more important for numerical accuracy than constraining the root
mean square (‖ · ‖2). The parameters A1 and A2 allow the approximate amplitudes to take
any value between 0 and the maximum, A. Terms h1( p) and h2( p) are defined as Fourier
series in p with wavenumbers ranging from 0 to M1, which results in 2M1 + 1 modes
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Optimal wall shapes and flows for steady planar convection

(sines and cosines) for each function. The Fourier coefficient vectors are denoted B1 and
B2, respectively.
For Lx we use the expression

Lx = min(5.4Pe−0.37, 0.5) + 1 + sin(L0), (5.2)

which, for arbitrary real L0, constrains Lx to be non-negative and bounded below by one
of the terms in the min function. The first of these is chosen to be about half the value
for the flat-wall case at large Pe from Alben (2023), and the second is used at small Pe.
The non-zero lower bound is used to avoid spurious optima with very inaccurate ∂nT that
appear at very small Lx.
We express the flow ψ using the same modes as in Alben (2023) but in ( p, q)

coordinates instead of ( p, y) coordinates. We also include modes that give a net flow
through the channel for greater generality, though their coefficients turn out to be
essentially zero in the optima, as was found in preliminary computations in Alben (2023).
For ψ , we first form ψ̃ , a linear combination of functions with p-period 1 that have zero
first derivatives in p and q at the walls. The functions are products of Fourier modes in p
and linear combinations of Chebyshev polynomials in q:

ψ̃( p, q) = Ã(3q2 − 2q3) +
M∑
j=0

N−3∑
k=1

AjkQk(q) cos(2πjp) + BjkQk(q) sin(2πjp), (5.3)

Qk(q) ∈ 〈T0(2q − 1), . . . , Tk+4(2q − 1)〉. (5.4)

The first term, with coefficient Ã, gives a net flux through the channel, and the remaining
terms modify the flow distribution without changing the net flux. Term Qk is a linear
combination of Chebyshev polynomials of the first kind up to degree k + 4 that have zero
values and first derivatives at q = 0 and 1. Its computation is described in appendix B of
Alben (2023). The functions ψ̃ , ybot and ytop can be shifted by the same arbitrary amount in
p without changing the solution. To remove this degree of freedom we set B11 = 0. Since
∂pψ̃ = ∂qψ̃ = 0 at the walls, the first derivatives in the tangential and normal directions
(∂sψ̃ , ∂nψ̃) are zero there as well, so no-slip conditions are obeyed.
We define a grid that is uniform in p with m points, {0, 1/m, . . . , 1 − 1/m}. Typically

m = 256. We concentrate points near the boundaries in q, in case sharp boundary layers
appear in the optimal flows as in Alben (2023). This is done by starting with a uniform
grid for η ∈ [0, 1] with spacing 1/n, and mapping to the q-grid by

q = η − qf
2π

sin(2πη), (5.5)

with qf a scalar. The q-spacing is maximum, ≈(1 + qf )/n, near q = 1/2, and minimum,
≈(1 − qf )/n, near q = 0 and 1. We take qf = 0.997 and n = 256 − 1024, giving a
grid spacing �q ≈ 3 × 10−6–1.2 × 10−5 at the boundaries. The derivative operators are
discretized with second-order finite differences on these grids.
We obtain ψ from ψ̃ by normalizing it so the flow has the power dissipation rate Pe2 in

(2.3). We do this in discrete form, discretizing the derivatives in (2.3) with second-order
finite differences and the integrals with the trapezoidal rule in ( p, q).
The discretized ψ is written Ψ , a vector of values at the m(n − 1) interior mesh points

for ( p, q) ∈ [0, 1) × (0, 1). To form Ψ , we arrange the modes in (5.3) as columns of an
m(n − 1) × (2M + 1)(N − 3) − 1 matrix V . Here we take M = 5m/32 and N = 5n/32,
so we limit the modes to those whose oscillations can be resolved by the mesh. We set
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S. Alben

Ψ̃ = Vc, a linear combination of the discretized modes with coefficients c. To form a
Ψ with power Pe2, we discretize the integral in (2.3) as a quadratic form aTMa, where
the vector a stands for a discretized ψ in (2.3), and the matrix M gives the effect of the
discretized derivatives and integrals in (2.3). Then

Ψ = PeVc√
(Vc)TMVc

(5.6)

has power Pe2, as can be seen by evaluating Ψ TMΨ . Such a Ψ automatically gives an
incompressible flow by the stream function definition, and automatically satisfies the
power constraint.
The various constraints on the walls’ shapes and the flows have been enforced

implicitly in the chosen forms of the functions that describe them. We are left with an
unconstrained optimization problem to find the values of the parameters or coefficients
that appear in these functions, and which may take any real values. Thus we maximize
Nu ((2.2), discretized at second order) over c ∈ R

(2M+1)(N−3)−1, {B1,B2} ∈ R
2M1+1 and

{A1,A2, L0} ∈ R. We compute optima over a range of Pe, and use various combinations for
M1 and A (the maximum wall deformation amplitude, approximately). We find empirically
that for a given M1, if A is too large, the algorithm converges to spurious optima that are
underresolved. We study this phenomenon using model problems in § 5.1.
We solve the optimization problem using the Broyden–Fletcher–Goldfarb–Shanno

method (Martins & Ning 2021), a quasi-Newton method that requires evaluations of
the objective function Nu and its gradient with respect to the design parameters,
{c,B1,B2,A1,A2, L0}. Parameter Nu is computed by forming Ψ from the design
parameters, then computing u and solving (2.1) for the discretized temperature field
T using second-order finite differences. We use a second-order rather than spectral
discretization to obtain a sparse matrix in the advection–diffusion equation, allowing for
relatively fast solutions.
The gradient can be computed efficiently using the adjoint method (Martins & Ning

2021). The procedure is the same as that described in Alben (2023), but now including
the wall shape parameters. In Appendix B we present formulae for the gradient of Nu with
respect to the parameters using the adjoint variable.
We initialize with about 100 random sets of {c,B1,B2,A1,A2, L0} with M1 = 1 − 4 at

various A. We run the optimization until the 2-norm of the gradient of Nu is less than
10−10 or the number of iterations reaches 10 000. The latter case is more common at
larger Pe, where the gradient is larger in the initial random state, and where convergence
to very small gradients is more difficult. Here the gradient norm is often ≈10−2 after
10 000 iterations. At large Pe, the initial gradient norm is typically between 103 and
104, so a gradient norm of 10−2 corresponds to 10−5–10−6 relative to the initial norm.
The discretized advection–diffusion equation becomes increasingly ill-conditioned as Pe
increases, causing a decrease of accuracy in Nu and its gradient, and slowing convergence
(Kelley 1999). Nonetheless, we are able to obtain accurate Nu values up to Pe = 107, the
largest value used with non-flat walls in this study. It is possible to obtain accurate optima
at larger Pe, but the large-Pe behaviour is already clear at Pe = 107.

5.1. Boundary heat flux resolution
It turns out to be computationally challenging to compute solutions accurately both with
large wall-perturbation amplitudes A and with many modes (large M1), or with small Lx.
This challenge occurs at small Lx even though we use a horizontal coordinate p that is x
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Figure 2. Examples of the temperature fields and heat flux near wavy walls, and corresponding relative errors.
For sinusoidal wavy walls with A = 0.4 and no flow, (a) the temperature field, (b) the norm of its gradient and
(c) the heat flux density along the bottom wall. (d) Streamlines for a steady flow through the wavy channel
with Pe = 104. (e) Heat flux density along the bottom wall corresponding to the flow in (d). ( f ) Streamlines
for steady convection rolls with Pe = 104. (g) Heat flux density along the bottom wall corresponding to the
flow in ( f ). (h–m) Relative errors in ∂T/∂n and Nu, computed on a 256-by-257 mesh relative to a 512-by-257
mesh, for various choices of wall perturbation amplitude A and horizontal period Lx. Specifically, panels (h,i)
plot the maximum relative errors in ∂T/∂n along the bottom wall and the relative error in its mean, for the case
of no flow (corresponding to a–c). We plot the same error quantities for the flow through the channel (panel d)
in ( j,k), and for the convection rolls (panel f ) in panels (l,m). The colourbar at the bottom left shows the error
values.

divided by Lx, so the number of grid points per period is fixed. The challenge is illustrated
numerically by considering the simplest case of no flow, i.e. Laplace’s equation with wavy
walls. Figure 2(a–g) shows temperature and heat flux distributions in this and two other
simple cases. Figure 2(h–m) shows measures of the numerical errors in these cases with
256 grid points uniformly spaced in the p coordinate.
To begin, figure 2(a) shows the pure diffusion temperature field for A = Lx = 0.4. The

temperature gradient is nearly uniform in the central region, 0 ≤ y ≤ 1, and nearly zero
above and below this region. Figure 2(b) shows this clearly by plotting values of the
temperature gradient norm, which transitions from 1 in the central region to 0 in the
remainder of the domain. However, there are small regions at the wall inward extrema
(near y = 0 and 1) where the gradient norm rises sharply to slightly above 4. Figure 2(c)
plots the wall heat flux along the bottom wall, which has sharp peaks at the wall’s
inward extrema. The wall shape is sinusoidal with two periods per domain period Lx,
and is easy to resolve with 256 points per Lx. But the resulting heat flux peaks are much
sharper and more difficult to resolve. For Laplace’s equation there are many alternative
methods, such as boundary integral methods, that would give better resolution of the
boundary heat flux with all the grid points concentrated along the boundary. However,
in general we have the steady advection–diffusion equation with arbitrary flow fields
in the advection-dominated limit, which requires a fine grid in the interior, not just on
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the boundary. Figure 2(d,e) shows the streamlines and boundary heat fluxes for a second
case, a Poiseuille-like flow that conforms to the boundary, ψ = c(3q2 − 2q3), with c
chosen so Pe = 104. Figure 2(e) shows that the peaks in ∂nT decrease and become
asymmetric, but are still quite sharp. Figure 2( f,g) shows a third case, ψ = c(3q2 −
2q3) cos 2πp, with c again chosen so Pe = 104. The streamlines (figure 2f ) show that
we have chosen convection rolls aligned with the walls’ extrema, and that between the
convection rolls, vertical jets of fluid run from one wall extremum to the other. The
configuration is similar to some of the optimal flows and wall shapes that are presented
later. The heat flux from the bottom wall (figure 2g) is greatly increased from the previous
cases at its maximum, where the downward jet impinges on the lower boundary, as well
as at the smaller peak where the upward jet emanates from the lower boundary. All three
cases are qualitatively similar in having sharp peaks in ∂nT that require a fine grid to
resolve.
Figure 2(h–m) plots estimates of the errors in ∂nT in the three cases. For each case, two

measures of error are used: the max norm (‖ · ‖∞) and the relative error in Nu. The error
is estimated by comparing ∂nT at the lower wall, computing T with a 512-by-257 ( p, q)
grid and the 256-by-257 grid that omits every other point in the p direction. Figures 2(h)
and 2(i) show

Δrel‖∂nT‖∞ ≡ maxp |∂nT256( p, 0) − ∂nT512( p, 0)|
maxp |∂nT512( p, 0)| ,

ΔrelNu ≡
∣∣∣∣Nu256 − Nu512

Nu512

∣∣∣∣ ,

⎫⎪⎪⎬
⎪⎪⎭ (5.7)

respectively, for the case of no flow (figure 2a–c). Figures 2( j,k) and 2(l,m) show the
same quantities for the second and third cases (figures 2d,e and 2f,g, respectively). In
each panel in the bottom row, the errors have a similar distribution in Lx–A space. Errors
are largest at small Lx and large A, and are roughly constant along curves A = Lrx for
r slightly larger than 1. The Δrel‖∂nT‖∞ errors (figure 2h,j,l) are significantly larger
than the corresponding ΔrelNu errors (figure 2i,k,m), particularly in the second and third
cases (figures 2j versus 2k and figures 2l versus 2m). This is perhaps not surprising since
Δrel‖∂nT‖∞ is a measure of local error and is more sensitive to how well the peak of ∂nT
is resolved.
Our optimization algorithm computes Nu over a much wider range of flows than the

three cases here, but when we check the accuracy of Nu for our optimal flows, the same
general trend holds: for a given grid size and a given level of error, there is a limit as
to how large A can be and how small Lx can be. We also find large errors if we exceed
relatively small integer values of M1, the number of modes that describe the wall shape.
Increasing M1 allows for finer length scales in the wall shape, similarly to decreasing Lx,
except that the grid spacing is proportional to Lx but does not change with M1. In this
study we perform the optimization withM1 ranging from 1 to 4, with a smaller maximum
A required at larger M1. The limit on A can be (very roughly) approximated by a power
law of the formMR

1 with R ≈ −1.7. Fortunately, we find in our optimal flow computations
that the optimal flows give significantly lower relative errors at a given (A, Lx) pair than
the values shown in figure 2(h–m). The reason is not entirely clear, but the lower errors are
seen across a wide range of different optimal flow and wall configurations. Specifically, at
Pe = 102, 103, . . . , 107, we take the 2–4 flow and wall shape optima with largestNu at each
M1 = 1 − 4, yielding 10–12 optima in total at each Pe. The optima are computed withm =
256 and n ranging from 256 to 1024, with larger n at larger Pe. For each case, we compute
the error quantities (5.7) by doubling m and keeping n fixed. We find that ΔrelNu ≤ 0.012
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Figure 3. Validation of (4.13) which shows the decoupled effect of small wall and flow perturbations on
Nusselt number at leading order. (a) Example of a wall shape and flow streamlines using randomly generated
coefficients. (b) Streamlines of the optimal flow for Pe = 101.5 (with flat walls), stretched vertically to
correspond to a sinusoidal wall perturbation. (c,d) Contour maps of the relative errors (log base 10) in
the linear decoupled approximation to the Nusselt number for the streamlines and wall shapes in (a,b),
but with a range of flow and wall perturbation amplitude Pe and A, respectively. The relative error is
log10(|Nu − (NuA + NuB − Nu0)|/|Nu − Nu0|), with the quantities as defined in the main text. (e) Contour
maps of the maximum of the relative error over the values in (c,d), and an ensemble of 50 other cases described
in the main text.

across all 78 optima, and ≤0.005 in 74 out of 78 cases. Also, Δrel‖∂nT‖∞ ≤ 0.13 in all
78 cases with a median value of 0.044. The maximum error occurs at a sharp peak of ∂nT
and is much smaller elsewhere, which is why the error in Nu is much smaller. Since Nu is
our main focus of interest, m = 256 is a reasonable value to use for the optimization, since
much larger m would greatly slow the computations.
We also study the analogous error quantities when n is doubled and m is fixed. The

maximum of ΔrelNu is somewhat larger than previously, 0.033 over the 78 cases, though
it is below 0.0076 in 74 out of 78 cases. By contrast, the maximum Δrel‖∂nT‖∞ is much
smaller than previously, 0.041 over the 78 cases, with a median value of 0.0021.
Having described the computational framework, we now use it to validate the decoupled

approximation (4.13) that was used in § 4 to explain the transition to optima with non-flat
walls at a critical Pe > 0.

5.2. Testing the accuracy of the decoupled approximation
In § 4 we derived an expansion for Nu for small flow and wall perturbations in which
the leading-order effects of the perturbations are decoupled. In figure 3 we show that the
expansion (4.13) is accurate for a large ensemble of flows and wall shapes over ranges
of small Pe and A. The expansion should hold for any flows and wall shapes – not just
optima – as long as Pe and A are sufficiently small.
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To test this hypothesis, we take m = n = 256, set M1 = 4 giving 9 modes for each wall
shape and use 15 flow modes (products of the first three modes in the p direction with the
first five modes in the q direction, corresponding to M = 1 and N = 8). We generate 50
random sets of coefficients for all the modes to obtain an ensemble of 50 sets of random
wall shapes and flows (one example is shown in figure 3a, with A = 10−0.5), and add
two more non-random choices. These are the optimal flows at Pe = 101.5 and 102 with
flat walls, i.e. convection rolls ψ( p, y) on a rectangular domain 0 ≤ p, y ≤ 1. We set
ybot( p) and ytop( p) to sinusoidal walls of varying A, and substitute q for y in ψ , essentially
stretching the rectangular convection rolls to fit the wavy walls. Figure 3(b) shows an
example – the optimal flow at Pe = 101.5 with A = 10−0.5.
For the resulting set of 52 flow and wall-shape combinations, we vary Pe from 10−1.5

to 101, vary A from 10−4 to 100 and compute Nu in each case. In order to validate (4.13)
we need to compute Nu1A and Nu1B and compare the sum with Nu − 1. We do this in a
way that highlights the decoupled effect of the flow and wall perturbations. Parameter Nu
with both the flow and wall perturbations should be approximately Nu0 + Nu1A + Nu1B;
Nu with the same wall perturbation but no flow – call it NuA – should be approximately
Nu0 + Nu1A; and Nu with the same flow perturbation but no wall perturbation – call it
NuB – should be approximately Nu0 + Nu1B. Summing the last two expressions, NuA +
NuB − Nu0 should be approximately Nu. In figure 3(c–e) we plot the absolute value of
the ratio of the difference of Nu and NuA + NuB − Nu0 – which should be the omitted
higher-order terms in (4.13) – relative to Nu − Nu0, which approximates the first-order
terms. If the ratio is small, the first-order terms that arise from decoupling the wall and
flow perturbations are indeed dominant over the remaining terms. Figure 3(c) gives the
relative error (log base 10) for the flow and wall configuration in figure 3(a), figure 3(d)
gives the relative error for figure 3(b) and figure 3(e) gives the maximum of the relative
errors in figure 3(c,d) and the 50 other flow and wall shape combinations in the ensemble
of 52 described earlier. Figure 3(c–e) shows that the error in the decoupled approximation
is indeed small when A and Pe are small. Figure 3(e) shows that the relative errors become
significant in some cases when Pe reaches 100.3. The transition to optima with wavy walls
occurs at higher Pe, between 101 and 102.
It is possible that the largest relative errors in figure 3(e) are due to flows that are unlike

the optimal flows and wall shapes near the transition. We will see in figure 4 that near
the transition the optima are relatively smooth, as in figure 3(b), and compared with
the less smooth case in figure 3(a), we can see smaller relative errors in the decoupled
approximation for the smoother case (contours of a given value in figure 3d are shifted
upwards and rightwards relative to those in figure 3c). Therefore, for the optimal flows,
perhaps the decoupled approximation remains accurate up to higher Pe than for some of
the random flows studied here.

6. Moderate-to-large convection (Pe � 1)

The transition to optima with non-flat walls at a critical non-zero Pe value, predicted
theoretically in § 4, is consistent with our optimization calculation. We find only optima
with flat walls for Pe ≤ 101, but at Pe ≥ 102, we find optima with non-flat walls that
outperform those with flat walls – by an increasing margin as Pe increases, as we will
show. Using plots of Nu versus Pe (like figure 6, shown later) for the best local optima
with flat and non-flat walls, we find the two curves meet at Pe ≈ 101.6, which approximates
the transition Pe value where non-flat walls become optimal. We find non-flat optima at
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Figure 4. Optimal flows and wall shapes, temperature fields and heat flux densities at Pe = 102. Eight cases
are shown, four in the top three rows and four in the bottom three rows. Each case is labelled A–H at the top,
followed by the Nusselt number value. Below the label are three rows with a contour plot of the streamlines (top
row), the temperature field colour plot (middle row, with colourbar at left) and a plot of the heat flux distribution
versus the horizontal coordinate along the lower wall (bottom row). The numbers of modes describing the walls’
shapes (M1) are (A, B) 1, (C, D) 2, (E–G) 3; H shows the flat-wall optimum for comparison.

Pe = 101.6 but not at 101.2 and 101.4, so the transition value seems to lie between 101.4 and
101.6.
For Pe = 102, the top-performing optima are shown in figure 4 (cases A–G), and the

flat-wall case, also a local optimum, is shown as case H. For each optimum, three panels are
shown. The top panels, labelled A–H and followed by the Nu values, show the streamlines
and wall shapes. The middle panels show the temperature fields and the bottom panels
show the heat flux per unit horizontal width along the bottom walls. These optima have
different numbers of modes (M1) for the walls’ shapes – (A, B) 1, (C, D) 2, (E–G) 3 – and
the Nu values, shown at the top, do not correlate strongly with M1.
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The convection rolls with non-flat walls (A–G) roughly resemble those with flat walls
(H), but are stretched by various amounts vertically, either upward or downward, or both.
The non-flat cases have slightly larger Lx values, 1.9–2.2, versus 1.7 for the flat case.
The temperature fields (middle panels) are generally similar in all cases, with one

upward hot plume and one downward cold plume. Cases A–C and E have large wall
deformations but near the peaks of the deformations there is almost no flow, and the
temperature is almost constant. These regions could be extended farther downward (for
the bottom-wall peaks) or upward (for the top-wall peaks) without significantly altering
the flow and temperature elsewhere, the net power dissipation or the net heat transfer.
Therefore, there is some insensitivity to wall perturbations beyond a certain magnitude.
The distributions of heat flux per horizontal width from the bottom wall (bottom panels)

clearly show the effect of waviness in the bottom wall (A, B, D–G) compared with the
cases with flat bottom walls (C, H). In the flat cases, there is a peak in heat flux where
the cold plume reaches the bottom wall, a trough where the hot plume emerges from the
wall and a monotonic change between them. For the non-flat walls, there is one large peak
where the downward jet impinges on an upward peak in the bottom wall. There is usually
a smaller ‘dimpled’ peak (in A, B, D and F) where the upward jet emanates from another
upward peak on the bottom wall. Between these peaks, the rest of the heat flux distribution
is essentially zero, in the troughs along the bottom wall. These are in the aforementioned
‘dead zones’ of no flow and nearly constant temperature corresponding to nearly zero heat
flux density. In each of these cases, the upward peaks of the bottom wall usually align with
the upward and downward jets, i.e. the streamlines that connect stagnation points on the
top and bottom walls. Although the heat flux distributions are quite different from those
of case H, the net increases in Nu are modest, about 1%–5% at this Pe. Cases E and
G show similar but less symmetric changes in the extrema in the heat flux distributions,
because the upward peaks of the bottom wall are asymmetric, sloped on one side (where
heat transfer density is larger) and flattened on the other (where heat transfer density is
smaller).
Next, we compare the best optima with non-flat and with flat walls across a range of

Pe extending up to five orders of magnitude larger than that of figure 4. Each column of
figure 5 compares these two optima at Pe = 103, 104, 105, 106 and 107 (in order from left to
right). In each column, the top six panels arrayed vertically show the streamlines (first and
second rows, Nu values at the top), temperature fields (third and fourth rows, colourbar at
left) and flow speed distributions (fifth and sixth rows, colourbar at left), with the non-flat
optima above the flat optima in each case. The seventh row shows the bottom-wall heat
flux distributions (flat-wall case in red, non-flat-wall case in blue).
First, we note from the Nu values at the top of the streamline plots (top two rows) that

Nu is larger for the non-flat walls, 37% larger at Pe = 103 and a factor of 3.8 larger at
Pe = 107. The streamline distributions show a series of convection rolls for both flat and
non-flat walls. Unlike in figure 4, the x axes are dilated relative to the y axes. This makes the
flow structures visible at large Pe and in all cases with non-flat walls, whose deflections
are very large. The streamlines are somewhat concentrated away from the walls in the
non-flat cases, leaving ‘dead zones’ near the walls. The non-flat cases’ streamlines show
a few different types of configurations. The first and third columns have convection rolls
positioned horizontally between the walls’ inward extrema, though the two rolls are much
more symmetric in the third column. In the second column, the convection rolls touch the
inward extrema on one side only, and lie below the outward extrema on the other side. The
fourth and fifth columns’ rolls are similar but skewed, so they meet the inward extrema at
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Figure 5. Comparisons of the best optima with non-flat walls and flat walls. Each column compares the two
cases for Pe = 103, 104, 105, 106 and 107 (in order from left to right). In each column, the top two rows show
streamline contour plots for the optima with non-flat and flat walls, respectively, each labelled at the top by the
corresponding Nu value. The third and fourth rows show the temperature fields (colourbar at left). The fifth and
sixth rows show the flow speed distributions. The seventh row compares the heat flux distributions along the
bottom wall for the optima with non-flat walls (blue) and flat walls (red).

an oblique angle. We will show later that similar versions of these different optima and
many more seem to occur in all Pe with wavy walls. That is, the same types of optimal
flow and wall configurations occur at all Pe � 103. The main difference is simply that the
horizontal period Lx decreases with Pe as a power law (to be shown later). Both walls are
wavy at these higher Pe, unlike for most cases at 102 in figure 4.
The corresponding flat-wall optima, shown in the second row, have predominantly

rectangular convection rolls with Lx that also decreases as a power law. The Lx values
in the flat cases are about a factor of 4 smaller than in the non-flat cases at the largest Pe,
but the difference is closer to a factor of 2 when one considers that there are two pairs of
convection rolls in the top row of the fourth and fifth columns. There is a strong skewness
in the flat walls’ convection rolls in the last two columns, but this is exaggerated by the x
dilation, and does not seem to influence heat transfer much (Alben 2023). Actually, there
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Figure 6. Values of Nu and Lx for optima with non-flat walls (black plus signs and circles, respectively), with
flat walls (red crosses and circles, respectively) and for two special flow and wall configurations A and B (green
and blue symbols, respectively), for Pe from 102 to 107.

is a key difference in the flat-wall optima that is difficult to see in the streamline plots.
They have a thin boundary layer whose thickness scales as Pe to a power, close to that of
Lx. The boundary layer switches from a horizontal flow along the wall to branching flows
in the last two columns, too thin to be seen clearly. No similar boundary layer is seen in
the wavy-wall optima.
The presence or absence of boundary layers is somewhat apparent in the temperature

fields, shown in the third and fourth rows. In the third row, as in figure 4, there are hot and
cold temperature plumes aligned with the downward and upward jets that run between the
walls. The full range of temperatures from 0 to 1 can be seen clearly in all the columns
of the third row, across Pe. The fourth row also has hot and cold temperature plumes, but
moving leftward toward larger Pe, the temperature values are more concentrated in the
middle range, near 0.5. Temperatures close to 0 and 1, the wall temperatures, are confined
to ever thinner boundary layers. The flow speed fields, in the fifth and sixth rows, show
the boundary layer phenomenon as well. In the fifth row, with wavy walls, the full range
of flow speeds occurs throughout the domain and is equally visible at small and large
Pe. In the sixth row, by contrast, the largest flow speeds (yellow) are less visible at large
Pe because they are more confined to the boundary layer. Evidence for boundary layers
is not particularly clear in the seventh row, the bottom-wall heat flux distributions, but
clear differences are seen between the wavy-wall and flat-wall distributions (blue and
red, respectively). Logarithmic scales are used instead of the linear scales in figure 4,
but otherwise the flat-wall distributions are similar, with intervals of monotonic change,
more numerous for the branching flows in the fourth and fifth columns. The wavy-wall
distributions show peaks near the convection rolls and decay sharply in the ‘dead zones’
where temperatures are nearly constant.
In figure 6 we plot Nu and Lx (red crosses and circles) for the best flat-wall optima

at Pe = 102, 103, . . . , 106, 106.5, 107, and at each Pe, Nu and Lx values (black plus signs
and circles) for an ensemble of 8–12 non-flat optima that include the 2–4 best optima at
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Optimal wall shapes and flows for steady planar convection

each M1 from 1 to 4, including all the cases in figures 4 and 5. The fit lines showing
Nu ∼ Pe0.575 and Lx ∼ Pe−0.36 are shown in red next to the corresponding flat-wall data.
There are subtle but noticeable changes in the positions of the data relative to the fit lines
when Pe exceeds the branching transition value for the flat-wall optima, between Pe = 105
and 105.25 (Alben 2023). At lower Pe, the flat-wall Nu are better fit by Pe0.54, while the Lx
values (red circles) lie slightly below the red fit line versus slightly above at larger Pe. The
Nu values for the non-flat optima (black plus signs) seem to follow a single trend, Pe2/3,
more consistently. This is the scaling that was found for computations of 3-D optimal
flows with flat walls by Motoki et al. (2018a). This is also an a priori upper bound that
was proved using the background method for the 2-D flat-wall case (Souza 2016), and
for the same class of non-flat walls considered here by Goluskin & Doering (2016). In
Appendix C we compare the Nu values in figure 6 with those from recent simulations
of Rayleigh–Bénard convection with wavy and flat walls. Perhaps not surprisingly, the
optimal flows with flat and wavy walls give significantly larger Nu than both steady and
unsteady flows from natural convection at the same Pe.
The Lx values for the non-flat optima are shown by black circles in figure 6, and they

show more scatter than the Nu values (the black plus signs). One reason is that for these
optima the horizontal periods may contain one or two pairs of convection rolls. Differences
in flow and wall configurations like in the top row of figure 5 also account for a significant
amount of the scatter in Lx values, as can be seen subsequently in figure 7, by comparing
Lx for flows at the same Pe. The Lx values in the flat cases scale approximately as Pe−0.36,
while in the non-flat cases, the bottom envelope of the black circles scales approximately
as Pe−0.35. These scalings are much closer than those for the Nu values.
By extrapolating the plots of Nu versus Pe for flat and non-flat walls to smaller Pe, we

find the two curves meet at Pe ≈ 101.6, which approximates the transition Pe value where
non-flat walls become optimal.
In figure 6 we also plot Nu and Lx values (green and blue, labelled A and B in the legend)

for two specific flow configurations to be discussed later.
When discussing the best optima with wavy walls that we found, shown in figure 5,

we suggested that all the optima are different members of a single class that occurs at all
Pe � 103, and are simply scaled by different Lx at each Pe. In figure 7 we provide evidence
for this claim. Starting from the top, we have eight purple boxes, labelled A–H, showing
a pair of optima. The first occurs at a large Pe (107, labelled at the top) and the second
at a much smaller Pe, 103–105. The two are chosen from among the four top optima at
each M1 ranging from 1 to 4 (except for the second member of pair H which is eighth
best at Pe = 105 and M1 = 3). In A–D, M1 = 1; in E and F, M1 = 2; in G and H, M1 = 3
except for the first member of pair H, which has M1 = 4. The remaining flows, following
the eight pairs, are chosen simply for their differences from the preceding flows and from
each other, to show the diversity of flows and wall configurations that occurs among the
optima.
Pair A are optima that show essentially the same pattern of streamlines and wall shapes

(but with reversed flow directions), even though Pe differs by a factor of 103, Nu by
a factor of about 102 and Lx by about a factor of 10. Pair B have streamlines that are
more confined vertically than pair A, and with more asymmetric walls, but very similar
Nu values, showing that very different flows can achieve heat transfer close to the top
values we have found. Pair C have a more complicated wall shape and less symmetric
vortices than pairs A and B. The second member of pair C is approximately obtained by
reflecting the first member about a horizontal line and reversing the flow direction, and
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Figure 7. Typical flow and wall configurations of optima. Each purple box (labelled A–H at the top) shows a
pair of streamline contour plots for optima with similar flow and wall configurations, one at high Pe (left) and
one at low Pe (right). At the top of each contour plot is a label showing (Pe value): (Nu value). Following the
eight pairs are eight individual examples of other optimal flows and wall shapes (the two rightmost plots in the
third row and all six of the plots in the fourth row).

increasing Lx by a factor of about 20. Pair D is an almost identical pair of wall shapes
and flows, except for the difference in Lx. In E and F, M1 is increased to 2, allowing for
somewhat more complicated wall shapes and vortices. Pairs G and H have wall shapes that
commonly occur at M1 = 3 and 4, with peaks resembling indented hats. Pairs A–H are
just a small sample of the similar flows and wall shapes that occur across 103 ≤ Pe ≤ 107.
Examination of a larger set of 100 optima at each Pe = 102, 103, . . . , 106, 106.5 and 107
shows that most flow and wall configurations recur throughout this Pe range with little
change apart from Lx.
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Optimal wall shapes and flows for steady planar convection

The last eight flows and wall shapes in figure 7 are chosen to illustrate optimal
configurations that are clearly different from those that have already been shown. In order
from left to right and top to bottom, these haveM1 = 1, 1, 2, 2, 2, 3, 2 and 2, respectively.
The convection rolls appear somewhat oblique and asymmetric in some cases, but when
the horizontal dilation of the figures is taken into account – i.e. that Lx � 1 in most cases –
the convection rolls are seen to be very thin horizontally and elongated vertically. The walls
have various positions but in all cases the sides of the convection rolls run alongside the
walls vertically for O(1) distances at all Pe, allowing for heat transfer over a large surface
length.
Having presented a variety of optimal flow and wall configurations, we now attempt

to understand the basic scalings of the optima with Pe, i.e. Nu ∼ Pe2/3 (the black plus
signs in figure 6) and Lx ∼ Pe−0.35 (the bottom envelope of the black circles in figure 6).
We consider a simple model flow and wall configuration, the same one we considered
in figure 3(b), but with A increased to 1. This configuration, shown in figure 8(a), is a
model for some of the optima we have seen, e.g. at the top of the first and third columns
in figure 5, and pairs B, G and H in figure 7. The ‘dead zones’ of little flow and nearly
constant temperature seen in some of those cases can essentially be treated as though the
wall were at the inward boundary of the dead zone. There is little viscous dissipation in
the dead zone and the temperature at its inward boundary is almost the same as at the wall.
To the right of panel (a) in figure 8, a four-by-four array of temperature fields is shown.
These result from the configuration in figure 8(a) but with the stream function scaled to
have four different Pe. At each Pe, the flow and wall shape are scaled horizontally to have
four different Lx. Thus, from left to right, the four columns correspond to Pe = 105, 106,
107 and 108, respectively. Within each column, four Lx values are used, increasing from
top to bottom (listed at the right-hand end of the x axis in each case). The Nu values are
shown at the top of each temperature field, and the maximum values occur in the third row.
Each column shows a transition between two types of temperature fields as Lx increases.

First, we note that all the temperature fields have a basic structure similar to those already
described in figures 4 and 5. In each case there is an upward plume of hot fluid at the left
and a downward plume of cold fluid at the right, running between the inward extrema of
the two walls. In the top row, the temperature fields resemble those with diffusion only
(e.g. figure 2a) in two ways. First, the temperature is almost constant in the regions near
the walls’ outward extrema. Second, at each x location the temperature field decreases
almost monotonically from the bottom wall to the top wall. The temperature gradient is
close to linear in the middle part of the flow, 0 ≤ y ≤ 1, particularly at the largest Pe (the
upper right corner, Nu = 3750). For the rightmost temperature distributions (Pe = 108),
the column at the far right shows the distributions of heat flux at the bottom wall. Along
most of the wall, the temperature gradient is nearly zero, but is large close to the walls’
inward extrema, so Nu is much greater than the value with diffusion only, 1. However, with
further decreases in Lx, the temperature field tends to the diffusion-only case and Nu → 1.
In the bottom row at the largest Lx, the temperature is more well-mixed in the middle

part of the flow, with temperatures close to 1/2. This well-mixed fluid penetrates close
to the walls even at their outward extrema, so there is significant heat flux along most
of the bottom wall, as shown by the plot adjacent to the bottom-right temperature field.
Whereas the top row resembles the diffusion-dominated limit, the bottom row is a more
convection-dominated case. As the flow speed increases further, the temperature field in
most of the domain becomes closer and closer to 1/2, because the flow on streamlines
adjacent to the walls exchanges only a small amount of heat with the hot and cold walls
during the short time it passes along either one. The hot upward and cold downward
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Figure 8. For the flow and wall configuration in (a), variations of temperature fields and heat flux distributions
with Lx are shown at four large Pe values. The same streamline pattern, shown in the upper left panel, is used
in all cases. In the four-by-four grid of temperature fields, Pe increases from left to right with the values 105,
106, 107 and 108. Within each column, Pe is fixed and Lx increases from top to bottom, with the values given at
the right-hand ends of the x axes. The column at the far right gives the heat flux distribution along the bottom
wall for the rightmost temperature distributions, Pe = 108. (b) An alternative flow configuration, described in
the main text.

plumes shrink to very thin jets concentrated along the streamlines that emanate from the
stagnation points on the upper and lower walls. This extreme is suboptimal for efficiency
in two ways. First, viscous power is expended for the flow in the middle of the domain, but
it transfers little heat because the temperature is almost uniform there, so the temperature
gradient is small. Second, the upward and downward plumes that do transport heat are
more widely separated in the bottom row than in the rows above. Therefore there is less
heat exchange per unit horizontal width. By comparison, the top row has more upward
and downward plumes per unit horizontal width, but the small values of Lx there mean
that the flow needs to be much slower in the top row than in the bottom row to have
the same viscous dissipation rate. Hence a more viscous-dominated temperature field
occurs. Optimal heat transfer, in the third row, seems to occur at the interface of the
viscous-dominated and convection-dominated regimes. The value of Lx is large enough,
and thus the flow speed is large enough, to allow cold fluid emanating from the top wall
to remain relatively cold as it approaches and passes close to the bottom wall, giving a
large temperature gradient there (likewise for the hot fluid emanating from the bottom
wall, when it nears the top wall). But Lx is also small enough to have many plumes per
unit width.
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Optimal wall shapes and flows for steady planar convection

We consider again the heat flux distribution plots in the rightmost column. The largest
peak values occur in the second row, about twice those of the smallest peak values, in the
fourth row. However, both plots have about the same average, which is Nu (1.38 × 104

versus 1.36 × 104, shown above the temperature fields to the left). The larger peaks in the
second row have much smaller widths than in the fourth row. The third row has almost the
peak values of the second row combined with almost the widths of the fourth row, so it
is better than both. The ratio in peak values between the third and fourth row is roughly
the ratio of ds/dx values (the inverse of the ratio of Lx values), so the greater heat transfer
in the third row is due to having larger ds/dx with about the same dT/dn, in other words,
more surface area of the bottom wall per unit horizontal width.
For each Pe = 103, 104, . . . , 106, 106.5 and 107 we find the Lx that maximizes Nu for

the flow in figure 8(a). The Lx values are plotted as green asterisks in figure 6, and the
Nu values as green triangles. We do the same for the flow in figure 8(b), which has the
convection rolls shifted by a quarter period horizontally. This configuration, with the jets
running between the farthest points on the two walls, is more different than flow A from
the optimal flows we have seen so far. The Nu values, shown as blue squares in figure 6, are
well below those of flow A, but both have the same scaling, ∼Pe2/3 (the slopes are within
0.5% of 2/3 for each of the line segments connecting the data points at the four largest Pe).
The Lx data fit a Pe−1/3 scaling nearly as well for both flow configurations. Although flows
A and B and the more general optima all have Nu ∼ Pe2/3, there is a significant difference
in the prefactors. The highest Nu for the more general optima is about 30% higher than
that of flow A, which is in turn about 30% higher than that of flow B. Such differences
are perhaps not surprising given the differences in the streamlines of the different flows.
Furthermore, all these flows approximate Lx ∼ Pe−1/3.
To explain these scalings, we note that flows A and B have the form

ψ = cψ̃(x/Lx, y) = cψ̃( p, y). (6.1)

That is, they each have a single pattern of streamlines given by ψ̃ that is scaled horizontally
by Lx, and with c chosen to give the power dissipation rate Pe2. The optima from the
general optimization problem also seem to have this form, as seen in pairs A–H of figure 7
for example. For a flow of form (6.1) the power dissipation constraint (2.3) is

c2
∫ 1

0

∫ ytop( p)

ybot( p)

(
1
L2x

∂ppψ̃ + ∂yyψ̃

)2

dp dy = Pe2. (6.2)

For flows A and B, ybot, ytop and ψ̃ are fixed with respect to Pe and Lx, and the same holds
approximately for pairs A–H of figure 7. The size of Lx determines whether one term in
parentheses in (6.2) is dominant, and we use this to determine the scaling of c in terms of
Pe and Lx:

Lx � 1 → c ∼ Pe L2x, Lx � 1 → c ∼ Pe. (6.3a,b)

We can estimate Nu, the rate of heat transfer per horizontal width, in the case of a thin
thermal boundary layer on the walls, e.g. in the last row on temperature fields in figure 8.
In those cases, the walls are nearly vertical except at their extrema. Near the wall, the flow
velocity is approximately vertical, and the vertical component is

v = −∂xψ = − c
Lx

∂pψ̃ = − c
Lx

(∂pψ̃ |p=pwall + (∂ppψ̃ |p=pwall)p + O( p2)) (6.4)

= − c
Lx

(
(∂ppψ̃ |p=pwall)

x
Lx

+ O
(

x
Lx

)2
)

. (6.5)
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In (6.4) we have Taylor-expanded ∂pψ̃ about a point on the wall. By the no-slip
condition, ∂pψ̃ |p=pwall = 0, so removing this term and writing p = x/Lx gives (6.5). In
the advection–diffusion equation (2.1) we can follow the classical boundary layer analysis
(Lévêque 1928; Bergman et al. 2011; Shah & London 2014) and neglect ∂yyT relative to
∂xxT in the thin thermal boundary layer near a vertical wall, because ∂xxT ∼ 1/δ2, where
δ is the thickness of the boundary layer over which the temperature changes by O(1) (from
0 or 1 at the wall to about 1/2 in this problem), while ∂yyT ∼ O(1), since the temperature
changes by O(1) over an O(1) distance along the wall. Since u � v near the wall, u∂xT
and v∂yT are of the same order (Lévêque 1928; Bergman et al. 2011; Shah & London
2014). Using the Taylor expansion (6.5) and ∂yT ∼ O(1),

c
L2x

x ∼ v∂yT ∼ ∂xxT ∼ 1
δ2

. (6.6)

In (6.6) we have x ∼ δ because we are in the thermal boundary layer, so δ ∼ c−1/3L2/3x .
The two estimates for c in (6.3) then give two estimates for δ:

Lx � 1 → δ ∼ Pe−1/3, Lx � 1 → δ ∼ Pe−1/3 L2/3x . (6.7a,b)

One could perhaps obtain more detailed formulae including prefactors using the similarity
solution of Lévêque (1928), but we focus only on the scaling with Pe here. Parameter Nu
is given by (2.2), and we estimate it assuming the total length of approximately vertical
walls per horizontal length Lx is O(1), so

Nu ∼ 1
Lx

∂xT ∼ 1
Lx

1
δ
, (6.8)

Lx � 1 → Nu ∼ Pe1/3 L−1
x , Lx � 1 → Nu ∼ Pe1/3 L−5/3

x . (6.9a,b)

In both estimates in (6.9), smaller Lx gives larger Nu. Therefore we do not consider the
possibility that Lx is sufficiently large that the walls are no longer approximately vertical
because this case is clearly suboptimal. The assumption of a thin thermal boundary layer
constrains how small Lx can be. If Lx � δ, the thermal boundary layer is much larger than
the horizontal period, i.e. the spacing between approximately vertical segments on the
same wall. This is the case in the top row of figure 8, with the smallest Lx. In the bottom
row, the temperature varies from 0 or 1 to 1/2 over the thermal boundary layer, but in the
top row, the boundary layer is so large relative to the spacing between adjacent vertical wall
segments that the temperature does not change much from 0 or 1 in the region between
the two wall segments. Then there is little heat transfer from the vertical wall segments; it
is confined to small regions near the inward wall extrema, also seen in figure 2(c). This is
the diffusion-dominated limit, in which Nu is much smaller, O(1) at large Pe. The upper
boundary of this regime, Lx ∼ δ, is the smallest that Lx can be. Thus by (6.7) and (6.9) we
have

Lx ∼ δ ∼ Pe−1/3, Nu ∼ Pe2/3. (6.10a,b)

Before concluding, we discuss the observation that the hot and cold wall separation
distance is always close to the minimum, 1, in the computed optima.

7. Optimality of minimal wall separation

We mentioned in § 2 that the separation distance between the hot and cold walls is
constrained to be ≥1, but it turns out to be 1 (to within about 10−4) for all the
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computed optima. We now use a scaling argument to explain why this is so. Let
{ψ1(x, y);Lx,1; ybot,1(x); ytop,1(x)} maximize

Nu = 1
Lx

∫
C={(x,ybot(x))}

∂nT ds, (7.1)

with power

Pe2 ≡ 1
Lx

∫ Lx

0

∫ ytop(x)

ybot(x)
(∇2ψ)2 dy dx, (7.2)

such that
−∇⊥ψ · ∇T − ∇2T = 0, (7.3)

with temperatures 1 and 0 on the bottom and top walls, respectively, and with
max ybot,1(x) = 0 and min ytop,1(x) = 1. That is, this is an optimum over all periodic
wall shapes with separation distance exactly 1. Write the resulting values of Nu and the
horizontal period as Nu1(Pe), Lx,1(Pe).
Now change the separation distance from 1 to Y , any positive value. Let

{ψY(x, y);Lx,Y; ybot,Y(x); ytop,Y(x)} maximize Nu with the same power as before, Pe2, and
with max ybot,Y(x) = 0, but min ytop,Y(x) = Y , so this is the optimum over walls whose
separation distance is exactly Y now. If we divide all distances by Y , we see that the
resulting Nu can be written

NuY = 1
Y

Y
Lx,Y

∫
C={x/Y,ybot(x/Y)/Y}

∂nT ds, (7.4)

and the power can be written

Pe2 ≡ 1
Y3

Y
Lx,Y

∫ Lx,Y/Y

0

∫ ytop(x/Y)/Y

ybot(x/Y)/Y
(∇2

(x/Y),( y/Y))
2 d( y/Y) d(x/Y), (7.5)

and (7.3) still holds in the rescaled coordinates. Since Y is fixed, an optimum of problem
(7.4)–(7.5) is also an optimum of problem (7.1)–(7.2) but with power Pe2Y3 instead of Pe2.
Comparing (7.4)–(7.5) with (7.1)–(7.2) we have

YNuY = Nu1(Pe Y3/2), (7.6)

Lx,Y/Y = Lx,1(Pe Y3/2). (7.7)

If we assume power-law scalings

Nu1(Pe) = aPeα, Lx,1(Pe) = bPeβ, (7.8a,b)

then
NuY(Pe) = Y−1+3α/2Nu1(Pe), Lx,Y(Pe) = Y1+3β/2Lx,1(Pe). (7.9a,b)

For the problem of optimizing the flow only but keeping the walls horizontal in Alben
(2023), we have α � 0.575, at least up to Pe = 107. Thus −1 + 3α/2 < 0, so NuY
decreases as Y increases. In this paper we optimize the flow and the wall shapes, and
find asymptotically α = 2/3. Thus −1 + 3α/2 = 0, so NuY is independent of Y . The
power-law behaviour is only approximate, however. For flows A and B in figure 8, with
Nu and the corresponding optimal Lx shown in figure 6, Nu increases slightly more slowly
than Pe2/3 but approaches this behaviour at large Pe. Therefore, NuY decreases slightly as
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Y increases, and this is confirmed by comparing NuY for flows A and B with Y = 0.75,
1 and 1.5. For the peak Nu among the computed wavy-wall optima, i.e. the highest black
plus signs at each Pe in figure 6, the slopes of the polygonal curve connecting adjacent
points fluctuate more strongly about 2/3, from 0.64 to 0.7, than for the Nu data for flows
A and B. This may be because the highest black plus signs correspond to different flows
with different wall shapes and streamline distributions as Pe varies, and thus the Nu values
are more strongly affected by the finiteness and randomness of the ensemble of optima.
For example, different slopes (but in a similar range, [0.64, 0.69]) are obtained if instead
the second-highest black plus signs at each Pe are used. However, if the same streamline
and wall-shape configuration were used at each Pe, as with flows A and B, we might again
obtain a slight decrease in NuY with Y , consistent with the wall separation distance always
assuming the smallest allowed value, 1.
As a check, we also compute Lx,Y for flows A and B with Y = 0.75, 1 and 1.5, and find

very good agreement with Lx,Y ∼ Y0.5, consistent with (7.9), with β = −1/3 from (6.10).

8. Alternative optimization problems

We now describe a few alternative optimization problems that give additional insights. In
the first alternative, we computed solutions that optimize the average rate of heat transfer
per unit arc length of the boundary instead of per unit horizontal length. That is, we
replaced 1/Lx in (2.2) with 1/stotal(Lx), where

stotal(Lx) =
∫ Lx

0

√
1 + dybot

dx

2
+

√
1 + dytop

dx

2
dx. (8.1)

We found that all the optima had nearly flat walls. It is not surprising that with this
performance measure, the flat-wall optima would outperform the wavy-wall optima with
Nu plotted in figure 6, at least in the limit of large Pe. The ratio Lx/stotal(Lx) ∼ Pe−1/3, so
the Pe2/3 scaling in figure 6 would be reduced to Pe1/3, while the flat-wall cases would
remain the same, ≈Pe0.575.
A second alternative that we considered (at the suggestion of a referee) is to optimize the

shape of one wall only, keeping the other wall flat. Here we find that the optima combine
the features of the flat-wall and wavy-wall optima. For Pe ≥ 105 they are branched at the
flat wall, but remain unbranched near the wavy wall. Examples of optima and further
details are given in Appendix D.
A third alternative that we considered (also at the suggestion of a referee) is to study

uniformly differentiable wall shapes, which more strongly limits the non-flatness of the
walls. We modify (5.1) to

ybot( p) = −LxA
(
1 + sinA1

2

)
h1( p)2

‖2h1( p)h′
1( p)‖β

,

ytop( p) = LxA
(
1 + sinA2

2

)
h2( p)2

‖2h2( p)h′
2( p)‖β

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8.2)

which corresponds to bounding ‖dybot/dx‖β and ‖dytop/dx‖β by A. We use β = 2 and
6 to test bounds on the root-mean-square slope and an approximate maximum slope. For
each β we take A = 1 with M1 = 1, 2 and 3 and A = 3 with M1 = 1.
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Figure 9. Optimal wall shapes with bounds on the wall slope. (a–d) Optima with Pe = 105 and bounds on the
2-norm (a,b) or 6-norm (c,d) of the wall slope of A = 3 (a,c) with M1 = 1 or A = 1 (b,d) with M1 = 3. (e–h)
Optima at the same parameters as (a–d) but with Pe increased to 106.

Examples of optima at Pe = 105 and 106 are shown in figures 9(a–d) and 9(e–h),
respectively, and within each row the optima have different choices of norms (i.e. β),
numbers of modes (M1) and bounds on the norms (A). At the larger A value of 3
(figure 9a,c,e,g), Nu is larger (shown above each optimum) and there is less branching,
particularly in the top row. Thus the optima seem to interpolate between those with flat
walls, with more branching, and the optima with the less restrictive constraint (5.1), which
did not have branching. The latter constraint (5.1) bounded the deflection but allowed for
much larger slopes (and deflections) than (8.2). Without branching (i.e. figures 7 and 9a),
the convection rolls are often aligned with the peaks in wall deflection. In the branched
flows of figure 9(b–h), the branches often meet the walls at local maxima of wall deflection,
but not in every case.
A fourth alternative that we considered (again at the suggestion of a referee) is α-Hölder

types of bounds (Toppaladoddi et al. 2021) on the wall roughness. For this case we add
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Figure 10. Optima with α-Hölder constraints, for α = 1, and Pe = 106 (a–d) and 107 (e–g). Panels (a,e) have
a relatively larger amplitude and smaller number of modes (A = 3,M1 = 1) than (b–d) and ( f ,g), respectively.
These panels have the parameter values reversed (A = 1,M1 = 3).

another version of (5.1) with

ybot( p) = −ALα
x

(
1 + sinA1

2

)
h1( p)2

‖h1( p)2‖6 ,

ytop( p) = ALα
x

(
1 + sinA2

2

)
h2( p)2

‖h2( p)2‖6 .

⎫⎪⎪⎬
⎪⎪⎭ (8.3)

In the large-Pe regime, Lx → 0. Since h1 and h2 are superpositions of just a few Fourier
modes, their slopes are uniformly bounded as Lx → 0. Thus, given two points p1 and
p2, |ytop/bot( p1) − ytop/bot( p2)| ∼ Lα

x while |x( p1) − x( p2)|α ∼ Lα
x , since the horizontal

domain size is Lx. Thus (8.3) corresponds to Hölder exponent α (Toppaladoddi et al. 2021).
The original bound (5.1) corresponds α = 0. We now consider α = 0.25, 0.5 and 1. For
each α we take A = 1 with M1 = 3 and A = 3 with M1 = 1. With α = 0.25 and 0.5,
the optima are generally not branched, and resemble those with the original constraint
(5.1), but have smaller wall deflection amplitudes and smaller Nu. More distinct optima are
found at α = 1, particularly at large Pe, and examples are shown in figure 10 at Pe = 106
and 107. At each Pe, the largest Nu values occur with the largest wall deflections, A = 3
(figure 10a,e), and the flows are not branched. In the remaining cases, which have A = 1,
the flows are branched, and the branches are much more strongly aligned with the peaks
in wall deflection than in the previous case (figure 9). Taking α = 1 is approximately the
same as bounding the wall slope, but the different forms of (8.2) and (8.3) lead to distinct
types of optima.
In figure 11 we plot the Nu values for optima with the alternative forms of the wall

shapes (8.2) and (8.3) together with the values for flat walls (red crosses) and the original
constraint on the wall deflection (5.1) (black plus signs). Here Nu is divided by Pe2/3,
so the black plus signs follow a nearly horizontal trend. With the slope constraint (8.2),
i.e. the examples in figure 9, the green squares and plus signs correspond to A = 1, and
are not much higher than the flat-wall optima (red crosses). Increasing A to 3, the optima
are less constrained and thus have larger Nu, shown by the blue squares and plus signs.
With the α-Hölder constraint (8.3), the Nu values (yellow, cyan and magenta circles and
triangles) are higher as a group. The allowed wall deflection magnitudes increase as α

decreases from 1 to 0.25, and thus Nu for the yellow symbols are generally below Nu for
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Figure 11. Values of Nu divided by Pe2/3 for optimal flows with flat walls (red crosses) and with optimal wall
shapes of various functional forms. The green and blue symbols correspond to the constraint on the wall slope
(figure 9) with A = 1 and 3, respectively. The yellow, cyan and magenta symbols correspond to walls with
Hölder exponents 1, 0.5 and 0.25 (figure 10). The black plus signs correspond to the original (mild) constraint
on the wall deflection (5.1) with A ≤ 6.

the cyan symbols, while the magenta symbols have the largest Nu within this class, at
least at the highest Nu. There is considerable overlap among these three sets because the
allowed wall deflections depend strongly on A, which is 1 or 3. Overlap also results from
the randomness of the initialization in the optimization routine. Other local optima were
found with Nu values below the red crosses, but these are omitted. Figure 11 shows that
with these alternative constraints the optima interpolate between the flat-wall optima and
those with the less stringent deflection constraint (5.1). The power laws corresponding to
these alternative constraints probably depend on the various parameters (A, α, β, M1) in
complicated ways, and we do not attempt to quantify the dependences.

9. Discussion and conclusions

We have studied the problem of finding incompressible flows and wall shapes that
maximize heat transfer between two walls, one hot and one cold, with a fixed rate of
viscous power dissipation for the flow. In order to avoid the singularity when the walls
touch, we defined a minimum allowed separation distance between the walls and used it as
the characteristic length scale. We showed that with no flow, flat walls maximize Nu. With
small flow strength (Pe), we showed that the effect of the walls and the flow approximately
decouple, so flat walls are also optimal over some interval of Pe values starting from zero.
We then described our computational optimization method, and explained how limits
in resolving the temperature gradient relate to limits in the walls’ horizontal periods,
maximum amplitudes and the wavenumbers of the components defining the walls’ shapes.
We also verified the accuracy of the decoupled approximation.
At moderate-to-large Pe, we described the transition to optima with wavy walls, and

then compared the best optima with wavy and flat walls. The best wavy-wall optima are
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essentially the same as Pe increases, except for a Pe−1/3 scaling of the horizontal period Lx.
By contrast, the flat-wall optima have an additional boundary-layer structure near the walls,
that transitions to branching flows above Pe = 105. For the optima with wavy walls, Nu
scales as Pe2/3. We explained the Lx and Pe scalings by studying model flows and showing
that the optimal Lx correspond to flows at the interface between the diffusion-dominated
and advection-dominated regimes.
We now briefly explain that the Pe2/3 scaling corresponds to an upper bound for

all incompressible flows with wavy walls, shown by Goluskin & Doering (2016) using
the background method. First, Souza (2016) showed that integrating the energy balance
equation for Rayleigh–Bénard convection at a given Rayleigh number Ra over time and
space shows that

Ra(Nu − 1) = Pe2. (9.1)

Goluskin & Doering (2016) used the background method to show that

Nu − 1 ≤ CRa1/2 (9.2)

for Rayleigh–Bénard convection with rough walls (with y a single-valued function of the
horizontal coordinate, as assumed here). Combining (9.1) and (9.2),

Nu − 1 ≤ CPe(Nu − 1)−1/2, (9.3)

so Nu − 1 ≤ CPe2/3, and thus the optimal flow and wall configurations in this work
achieve the maximum scaling with Pe for rough walls.
We also used a scaling argument to show that the optima should have the minimum

allowed separation between the hot and cold walls, at least for the model flows. These
have fixed streamline configurations that are scaled horizontally by the optimal Lx at each
Pe, like the computed optimal flows and wall shapes.
We considered several alternative optimization problems. In the first, we optimized the

average rate of heat transfer per unit arc length of the wall, and found that all the optima
had nearly flat walls. In the second alternative, we went back to optimizing the average rate
of heat transfer per unit horizontal length, but we optimized the shape of one wall only,
keeping the other flat. The optima included branching at the flat wall but not at the wavy
wall. In the third and fourth alternatives, we posed the wall shapes to have constrained
slopes and Hölder exponents, respectively. As the constraints were relaxed, the optima
transitioned from branching flows with flat walls to non-branching flows and larger Nu for
highly corrugated walls, as in the original optimization problem considered here.
Previous work on natural convection studied combinations of wall roughness amplitude

and wavelength that maximized the scaling exponent of Nu with Ra (Toppaladoddi et al.
2017; Zhu et al. 2017). It was found that for a given roughness amplitude, the optimal
roughness wavelength approximately equals the roughness amplitude. The optimal scaling
Nu ∼ Ra1/2 occurs over an intermediate range of Ra in which the thermal boundary layer
thickness is comparable to the roughness amplitude. At larger and smaller Ra, the scaling
is the same as that without roughness. Although we do not consider the Rayleigh–Bénard
system here, the present results are connected in the sense that in the Nu-maximizing
configurations, the wall roughness has a horizontal length scale of the same order as
the thickness of the thermal boundary layers running along the almost vertically sloped
sections of the walls.

Funding. This research was supported by the NSF-DMS Applied Mathematics programme under award
number DMS-2204900.
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Appendix A. Equations in ( p, q) coordinates

We now give further details on how the objective and constraint equations, (2.1)–(2.3), are
written in ( p, q) coordinates using (4.2). We denote the vertical (y) width of the domain
at a given x by HT(x) ≡ ytop(x) − ybot(x). Writing u = −∇⊥ψ , (2.1) and (2.3) contain
first and second derivatives of T and ψ with respect to x and y. These are converted to
derivatives of p and q using

∂x = 1
Lx

∂p + ∂xq( p, q) · ∂q, ∂y = 1
HT( p)

∂q. (A1a,b)

The same formulae are applied to (2.2) after it is written in the form

Nu = 1
Lx

∫ Lx

0
−dybot

dx
∂xT + ∂yT dx =

∫ 1

0

dH1

dp
∂xT + ∂yT dp. (A2)

In our optimization code we wrote simpler ‘building blocks’ in ( p, q) coordinates, such
as ∂x, ∂y, dH1/dp, dHT/dp, ∂xq and its derivatives with respect to p and q, etc. We then
wrote the equations, objective function and its gradient in terms of these simpler building
blocks.

Appendix B. Adjoint-based gradient

Here we give the adjoint-based formulae for the gradient of Nu with respect to the design
parameters, {c,B1,B2,A1,A2, L0}. For the functions {T, ψ, ybot, ytop} we define discrete
versions {T , Ψ, ybot, ytop} which are vectors of values on the appropriate grids in ( p, q)
or p.
Using the discretized version of (2.2), Nu is a product of discrete differential and integral

operators, i.e. matrices, and T . The matrices depend on ybot, ytop and Lx. Temperature
field T in turn depends on Ψ , ybot, ytop and Lx through the discretized advection–diffusion
equation (2.1) (including dependences through the discrete differential operators). And our
chosen form of Ψ (5.6), which is normalized to satisfy the discretized power dissipation
constraint (2.3), depends on ybot, ytop and Lx through the denominator of (5.6).
Thus Nu depends on each of ybot, ytop and Lx in three different ways, and these

dependences can be seen when we write the gradient of Nu with respect to ybot, ytop and
Lx using the chain rule:

dNu
dybot

= ∂Nu
∂ybot

+ dNu
dT

dT
dybot

+ dNu
dT

dT
dΨ

dΨ
dybot

, (B1)

dNu
dytop

= ∂Nu
∂ytop

+ dNu
dT

dT
dytop

+ dNu
dT

dT
dΨ

dΨ
dytop

, (B2)

dNu
dLx

= ∂Nu
∂Lx

+ dNu
dT

dT
dLx

+ dNu
dT

dT
dΨ

dΨ
dLx

. (B3)

The first terms on the right-hand sides of (B1)–(B3) come from the dependences of the
differential and integral operators in Nu on ybot, ytop and Lx. The second terms are the
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dependences through T via operators in the advection–diffusion equation, and the third
terms are the dependences through the denominator of Ψ and then through T via Ψ in the
advection–diffusion equation.
The optimization algorithm requires the gradient of Nu with respect to {c,B1,B2,A1,

A2, L0}. These can be written as

dNu
dc

= dNu
dT

dT
dΨ

dΨ
dc

, (B4)

dNu
dB1

= dNu
dybot

dybot
dB1

,
dNu
dA1

= dNu
dybot

dybot
dA1

, (B5)

dNu
dB2

= dNu
dytop

dytop
dB2

,
dNu
dA2

= dNu
dytop

dytop
dA2

, (B6)

dNu
dL0

= dNu
dLx

dLx
dL0

, (B7)

where we have used the left-hand sides of (B1)–(B3) to make (B5)–(B7) relatively simple.
We can replace the derivatives of T with respect to Ψ , ybot, ytop and Lx in (B1)–(B4)

with quantities that are simpler to compute by using the ‘adjoint method’. First we write
the discretized advection–diffusion equation (2.1) as

r(T , Ψ, ybot, ytop, Lx) = 0, (B8)

with r (the ‘residual’) a vector that takes values at each interior grid point. We can think
of (B8) as an implicit equation for the temperature field T as a function of Ψ , ybot, ytop
and Lx. If we apply small perturbations �Ψ, . . . , �Lx to these four variables, we obtain a
small perturbation �T to the temperature field such that the residual remains zero:

0 = �r ≈ dr
dT

�T + dr
dΨ

�Ψ + dr
dybot

�ybot +
dr

dytop
�ytop + dr

dLx
�Lx. (B9)

In the limits that the small perturbations tend to zero, we obtain

dT
dΨ

= − dr
dT

−1 dr
dΨ

,
dT
dybot

= − dr
dT

−1 dr
dybot

,

dT
dytop

= − dr
dT

−1 dr
dytop

,
dT
dLx

= − dr
dT

−1 dr
dLx

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B10)

When these expressions are inserted in (B1)–(B4), in each case we obtain a product

dNu
dT

dr
dT

−1
≡ ηT , (B11)

which we have defined as ηT , where η is the ‘adjoint variable’. It is easy to compute η by
solving the ‘adjoint equation’

dr
dT

T
η = dNu

dT

T
, (B12)

with a cost that is essentially the same as that for solving the advection–diffusion equation.
The remaining derivative terms in (B4)–(B7) are less expensive to compute since they
involve evaluating explicit formulae using the current values of {T , Ψ, ybot, ytop, Lx}.
Therefore the cost of computing the gradient of Nu is similar to the cost of computing
Nu itself; both are dominated by a large sparse matrix solution (the advection–diffusion
equation and its adjoint).

984 A43-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

20
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.202


Optimal wall shapes and flows for steady planar convection

104

Nu
Nuflat
NuT17

NuT21
NuW22

103

~Pe2/3

~Pe0.575

102Nu

101

100

102 103 104

Pe
105 106 107

Figure 12. A comparison of Nu for the optima with wavy walls (black plus signs) and flat walls (red crosses)
with those from simulations of natural convection: unsteady 2-D flows between walls with a sinusoidal profile
and an optimal wavelength (Toppaladoddi et al. 2017); unsteady 2-D flows between one flat wall and one
wall with a fractal profile at an optimal roughness exponent (Toppaladoddi et al. 2021); and steady 2-D flows
between flat walls (Wen et al. 2022b).

Appendix C. Comparison with Nu from natural convection flows

Figure 12 compares the Nu values found here with those from three previous studies of
natural convection. Parameter Pe is derived from Ra in those works by the relation Pe2 =
Ra(Nu − 1). The blue circles give Nu from Toppaladoddi et al. (2017), which simulated
unsteady 2-D natural convection between sinusoidally wavy walls. The (peak-to-trough)
amplitude of the roughness profiles is 0.1 times the maximum separation between the
hot and cold walls. At large Ra (or Pe), the largest Nu values occur when the profile
wavelength equals the roughness amplitude, and this is the case shown by the blue circles.
The green plus signs show Nu when one wall is flat and the other has a fractal profile with
an exponent p = −1.5 that maximizes Nu at large Ra (or Pe) (Toppaladoddi et al. 2021).
Having a fractal profile for both walls would presumably increase Nu further. The black
squares show Nu between two flat walls, assuming steady 2-D convection (which allows
computations at larger Pe) (Wen et al. 2022b). This work also reported data from unsteady
(turbulent) 2-D and 3-D direct numerical simulations and experiments over similar ranges
of Ra, all of which had lower Nu at a given Ra than the black squares (Wen et al. 2022b).
All of the data fromWen et al. (2022b), including the black squares, follow the ‘classical

scaling’ Nu ∼ Ra1/3 (or Nu ∼ Pe1/2). Decreasing Nu while keeping Ra fixed corresponds
to decreasing Pe by the square root of the factor of decrease in Nu, i.e. along a line with
slope 2 in figure 12. Since all the data in figure 12 follow lines with smaller slopes, the
data in Wen et al. (2022b) with lower Nu at a given Ra than the black squares (not shown
here) would also have lower Nu at a given Pe when plotted in figure 12.
The green plus signs in figure 12 follow the trend Nu ∼ Ra0.352 (or Nu ∼ Pe0.52). The

blue circles have a non-constant slope, but a least-squares estimate gives a maximum
slope Nu ∼ Ra0.482 (or Nu ∼ Pe0.65) (Toppaladoddi et al. 2017), close to the scaling of
the wavy-wall optima, though with a much smaller prefactor. The scaling exponent of the
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Figure 13. Optimal flows with one flat wall (bottom) and one non-flat wall (top), at four different Pe (left to
right) and the maximum wall mode number M1 increasing from 1 to 4 (top to bottom). The Pe values are 103

(a–d), 104 (e–h), 105 (i–l) and 106 (m–p).

blue circles decreases at larger Pe as the thermal boundary layer thickness decreases below
the roughness scale.

Appendix D. One wavy wall and one flat wall

In figure 13 we show examples of optimal flow and wall configurations when the shape
of only one wall is optimized while the other is kept flat. As we have mentioned, for
steady flows the net heat flux out of the hot wall equals the net heat flux into the cold
wall. Therefore Nu is limited to the net heat flux through the flat wall, and it is not
a priori obvious how much Nu can be increased by optimizing the other wall shape. In
figure 13, each column shows the best local optimum at a given Pe, as the maximum wall
mode number M1 increases from 1 to 4 (from top to bottom), chosen from 20 random

984 A43-34

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

20
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.202
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initializations at eachM1 and Pe. The Pe values are 103 (figure 13a–d), 104 (figure 13e–h),
105 (figure 13i–l) and 106 (figure 13m–p), increasing left to right as in the first four columns
of the two-wall case (figure 5).
The Nu values with one wavy wall are 28% and 35% greater than the flat-wall values at

Pe = 105 and 106, respectively, but less than half the two-wavy-wall values (see figure 5).
Thus the Nu values are closer to, but still noticeably larger than, the flat-wall values. When
only a single wall is wavy, the largest Nu occurs with M1 = 4 for Pe ≥ 104, instead of
with M1 = 1 or 2 for two wavy walls. At the larger Pe, the maximum wall deflection is
smaller in the optima with one wavy wall, and the flows do not have the ‘dead zones’ seen
in figures 5 and 7. These features may result from a constraint on the convection rolls due
to the need to interface with one flat wall.
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