
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

KG-Planner: Knowledge-Informed Graph Neural
Planning for Collaborative Manipulators

Wansong Liu , Kareem Eltouny , Sibo Tian , Xiao Liang , and Minghui Zheng

Abstract— This paper presents a novel knowledge-informed
graph neural planner (KG-Planner) to address the challenge
of efficiently planning collision-free motions for robots in
high-dimensional spaces, considering both static and dynamic
environments involving humans. Unlike traditional motion plan-
ners that struggle with finding a balance between efficiency and
optimality, the KG-Planner takes a different approach. Instead
of relying solely on a neural network or imitating the motions
of an oracle planner, our KG-Planner integrates explicit physical
knowledge from the workspace. The integration of knowledge has
two key aspects: 1) We present an approach to design a graph that
can comprehensively model the workspace’s compositional struc-
ture. The designed graph explicitly incorporates critical elements
such as robot joints, obstacles, and their interconnections. This
representation allows us to capture the intricate relationships
between these elements; 2) We train a Graph Neural Network
(GNN) that excels at generating nearly optimal robot motions.
In particular, the GNN employs a layer-wise propagation rule
to facilitate the exchange and update of information among
workspace elements based on their connections. This propaga-
tion emphasizes the influence of these elements throughout the
planning process. To validate the efficacy and efficiency of our
KG-Planner, we conduct extensive experiments in both static
and dynamic environments. These experiments include scenarios
with and without human workers. The results of our approach
are compared against existing methods, showcasing the superior
performance of the KG-Planner. A short video introduction of
this work is available via this link.

Note to Practitioners—This paper was motivated by the prob-
lem of human-robot collaboratively working on remanufacturing
processes such as disassembly that require human operators

Manuscript received 1 April 2024; accepted 12 June 2024. This article
was recommended for publication by Associate Editor S. Wang and Editor
J. Yi upon evaluation of the reviewers’ comments. This work was supported
by the U.S. National Science Foundation under Grant 2026533/2422826
and Grant 2132923/2422640. (Corresponding authors: Minghui Zheng;
Xiao Liang.)

This work involved human subjects or animals in its research. The authors
confirm that all human/animal subject research procedures and protocols are
exempt from review board approval.

Wansong Liu is with the Mechanical and Aerospace Engineering Depart-
ment, University at Buffalo, Buffalo, NY 14260 USA (e-mail: wansongl@
buffalo.edu).

Kareem Eltouny is with the Civil, Structural and Environmental Engi-
neering Department, University at Buffalo, Buffalo, NY 14260 USA
(e-mail: keltouny@buffalo.edu).

Sibo Tian and Minghui Zheng are with the J. Mike Walker ’66 Depart-
ment of Mechanical Engineering, Texas A&M University, College Station,
TX 77843 USA (e-mail: sibotian@tamu.edu; mhzheng@tamu.edu).

Xiao Liang is with the Zachry Department of Civil and Environmen-
tal Engineering, Texas A&M University, College Station, TX 77843 USA
(e-mail: xliang@tamu.edu).

This article has supplementary material provided by the
authors and color versions of one or more figures available at
https://doi.org/10.1109/TASE.2024.3415497.

Digital Object Identifier 10.1109/TASE.2024.3415497

and collaborative robots to work closely with each other. The
robots need to plan their trajectories efficiently enough to avoid
collision with humans and the trajectories need to be short
enough to reduce the cycle time. Traditional motion planners
usually struggle with finding a balance between efficiency and
optimality, which limits wide applications of collaborative robots
in remanufacturing systems that are usually less structured than
manufacturing systems. This paper suggests a new planning
approach that integrates the workspace’s physical information
into a graph and leverages deep learning to obtain safe and
near-optimal solutions quickly. Experimental studies and obser-
vations demonstrated some advantages of this approach including
learning capability, efficiency, and optimality, which makes it a
great potential approach to be applied to real remanufacturing
processes.

Index Terms— Motion planning, graph neural network, collab-
orative robot, human-robot collaboration.

I. INTRODUCTION

CONSIDERABLE attention has been directed towards
the field of robotic motion planning within the context

of human-robot collaboration scenarios. The primary objec-
tive is to translate high-level collaborative task requirements
into precise low-level movement descriptions for robots [1].
An illustrative application of this concept is observed in
collaborative disassembly [2], [3], [4], where robots work
alongside human operators to disassemble end-of-use prod-
ucts. To facilitate a safe and efficient collaboration, robots must
rapidly formulate collision-free and near-optimal motion plans
within dynamic environments involving human workers [5],
a challenge often attributed to the interplay between robot
trajectory optimality and computational efficiency [6], [7], [8],
[9], [10].

Recently, the utilization of neural networks has emerged as a
strategy for effectively managing the trade-off between compu-
tational cost and trajectory optimality in motion planning [11],
[12], [13]. For example, existing studies leverage graph neural
networks (GNNs) to create policies for quickly generating
robot actions and accomplishing specific tasks. Nevertheless,
there has been relatively little exploration within robotic
motion planning that harnesses the graphical approach to
enhance the comprehensibility of motion generation. In other
words, there is a gap in how the influence of workspace objects
on the generation of robot configurations can be visually and
conceptually illustrated. A notable challenge in this pursuit is
that the configuration space of a robot constitutes a complex
topological entity, particularly in dynamic environments. This
complexity renders its explicit representation and visualization

1545-5955 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Texas A M University. Downloaded on August 26,2024 at 13:40:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2773-8537
https://orcid.org/0000-0003-3918-2297
https://orcid.org/0009-0000-5788-5848
https://orcid.org/0000-0003-4788-8759
https://orcid.org/0000-0002-1460-3246
https://zh.engr.tamu.edu/wp-content/uploads/sites/310/2024/03/KGPlanner.mp4

2 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 1. The illustration of the graph representation: (a) The robot’s current
and desired goal states are represented using blue and green colors, where
the nodes indicate the robot joints and the edges indicate the robot links. The
static obstacles as well as the human in the workspace are represented using
pink color. The nodes of static obstacles indicate their corners, and the nodes
of the human indicate the joints of the human arm. (b) The blue nodes denote
the joints of the robot’s current state. To simplify the graph representation
here, we represent the robot’s goal state with six small green nodes, and all
obstacles with one pink nodes. The goal and obstacle nodes are connected
with each current joint node since they have effects on the robot’s motion
generation.

through a single graph a challenging endeavor. The difficulty
is further magnified when confronting the motion planning of
manipulators endowed with a high degree of freedom (DOF).
Manipulator joints are interconnected through links, and each
joint imparts its unique contribution to parameterizing the
overall manipulator configuration. This prompts our concep-
tualization of neural robot motion planning: instead of blindly
mimicking motion patterns from a reference planner, we aspire
to explore two critical questions. Firstly, we seek to unravel
an optimal approach for a neural planner to consciously
leverage the extensive planning knowledge inherent in the
workspace. Secondly, we aim to effectively highlight the
influences of diverse workspace elements—such as robot joints
and obstacles—when orchestrating the generation of secure
robot motions.

In our quest to address these inquiries, we deviate from
employing a graph to directly represent the robot’s config-
uration space, as done in previous approaches [14], [15].
Instead, we harness the power of a graph as an intermediary
representation to compartmentalize the workspace. This inno-
vative strategy forms the foundation for our proposed solution,
termed the Knowledge-Informed Graph Neural Planner (KG-
Planner), devised to facilitate the generation of near-optimal
manipulator motions during disassembly processes. Our
approach entails two crucial steps. Firstly, to harness planning
knowledge in an explicit manner, we depict the composi-
tional structure of the workspace through a graph framework.
To illustrate, envision a manipulator encompassing 6 joints.
As depicted in Fig.1(a), distinct nodes represent the robot’s
current state, goal state, and the states of obstacles. These
nodes are interconnected by edges. Subsequently, to effectively
accentuate the impact of workspace objects, we employ the
convolutional operation of a GNN to actively exchange and
update information among nodes and their neighboring coun-
terparts. In essence, as we delve into learning robot motions
from an oracle planner, the attributes of nodes such as the
blue joint node depicted in Fig.1(b) are continuously refined

based on insights from surrounding joint nodes, goal nodes,
and obstacle nodes.

In summary, this work introduces significant contributions
that can be summarized as follows:

(1) This study innovatively preserves the structural charac-
teristics of a high-degree-of-freedom manipulator within the
data representation, thus aptly capturing the intricate joint
dependencies inherent in the system.

(2) The novel KG-Planner is introduced, harnessing the
potential of graphs to represent planning knowledge effec-
tively. This planner excels in generating near-optimal manip-
ulator motions while concurrently safeguarding the essential
object connectivity.

(3) This work substantiates the effectiveness of the
KG-Planner through comprehensive experimental assessments
conducted within both static and dynamic environments.

The subsequent sections of this paper are structured as
follows. In Section II, we introduce the related robotic plan-
ning works. In Section III, we lay out the formulation of
our motion planning problem using a graph-based approach.
Moving to Section IV, we delve into the intricate details of the
KG-Planner, encompassing aspects like graph construction, the
process of planning knowledge enhancement, network training
procedures, and the implementation of online bi-directional
planning. The efficacy of the proposed KG-Planner is scruti-
nized through experimental validation in Section V. Finally,
Section VI serves as the concluding segment, summarizing the
key findings and contributions of this paper.

II. RELATED WORK

A. Traditional Planning Methods

In recent decades, as the demand for autonomous sys-
tems has surged, researchers have investigated a variety of
approaches and techniques to address the intricate motion
planning problem. Traditional motion planning algorithms can
be broadly classified into three main categories: grid-based
methods, sampling-based methods, and optimization-based
methods.

Grid-based planning algorithms discretize the continuous
configuration space into a grid, effectively transforming the
space into a finite set of discrete points. Each point on the grid
represents a potential configuration of robot. By systematic
exploring the grid, the robot could find a feasible path connect-
ing the start node and the goal node, while avoiding obstacles
in the environment. The Dijkstra’s algorithm [16] and the A∗

algorithm [17] are two fundamental grid-based methods. The
Dijkstra’s algorithm works by iteratively selecting the node
with smallest tentative distance from a set of unvisited nodes
and updating the distance of its neighbor nodes accordingly.
It guarantees to find the shortest path from start to goal if such
path exists, but can be computationally expensive. To reduce
the number of explored nodes, the A∗ algorithm utilizes a
heuristic function, such as Euclidean distance, to estimate the
cost of reaching the goal from each node and prioritizes nodes
that are likely to lead to the shortest path when choosing which
nodes to explore. With a greedy search strategy, A∗ can find
the shortest path more efficiently than the Dijkstra’s algorithm.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Texas A M University. Downloaded on August 26,2024 at 13:40:05 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: KG-PLANNER: KNOWLEDGE-INFORMED GRAPH NEURAL PLANNING FOR COLLABORATIVE MANIPULATORS 3

Rooted in these two basic algorithms, many variants [18],
[19], [20] have been proposed to address challenges such
as considering kinematic feasibility in planning and planning
in dynamic environments. In summary, grid-based planning
algorithms offer great simplicity, and are widely used in
applications such as mobile robot navigation in warehouses.
However, as the dimension of the planning space increases,
the computational demands tend to grow exponentially. Conse-
quently, grid-based planners become impractical when dealing
with motion planning problems of manipulators possessing a
high DOF.

Sampling-based planners offer enhanced computational
efficiency when tackling planning problems in the high dimen-
sional planning space. Two main types of sampling-based
planning algorithms are the probabilistic roadmap (PRM) [21]
and the rapidly exploring random trees (RRT) [22]. The
PRM is a multi-query method that constructs a roadmap
of the configuration space by sampling feasible configura-
tions and connecting them with collision-free paths, enabling
faster query time once the roadmap is built. On the other
hand, the RRT is a single-query technique that incrementally
expands a tree structure starting from the initial configu-
ration to the goal configuration, making it well-suited for
online planning tasks, where the environment is continuously
changed. However, these sampling-based methods often strug-
gle to yield optimal solutions, such as the shortest path.
Although refinements of classical sampling-based methods,
such as RRT* [23], informed-RRT* [24], batch informed
trees (BIT*) [25], and fast marching trees (FMT*) [26], have
been proposed to asymptotically approach optimal solutions
with improved computational efficiency, they still grapple
with the curse of dimensionality. The time taken to search
for optimal solutions remains heavily contingent upon the
dimensionality of the planning space. What’s more, trajec-
tories generated by sampling-based planner usually contain
unnecessary nodes, resulting in non-smooth motions without
post-processing steps.

Different from previous two categories, optimization-based
algorithms formulated the robotic motion planning as an opti-
mization problem, focusing on finding the optimal trajectory
with respect to a certain objective function that typically quan-
tifies the quality of a given trajectory, while satisfying several
constraints. CHOMP [27] optimizes higher-order dynamics
and relaxes collision-free feasibility prerequisite, making it
suitable for a broad range of inputs. STOMP [28] proposes
a gradient-free stochastic optimization method that refines
the trajectory by sampling noisy trajectories around it and
evaluating their possibilities. STOMP dramatically reduces
the complexity and makes it applicable to problems with
customized and complex objective function. The work in [29]
and [30] convert the non-convex problem to a sequence of
convex sub-problems in the configuration space, and then solve
the subproblems iteratively to get a series motions for manip-
ulators. Marcucci et al. [31] propose a planner that leverages
a convex relaxation to efficiently solve the formulated opti-
mization problem and obtain collision-free robot trajectories.
Zimmermann et al. [32] develop a multi-level optimization
scheme that optimizes the robot grasping locations, the robot
configurations, and the robot motions, respectively. Although

optimization-based planning methods have the ability to gener-
ate smooth trajectories and handle the constraints effectively,
such planners have significant drawbacks, such as the local
minima problem and high computational complexity.

B. Learning-Based Planning Methods

Neural networks are being harnessed to either enhance spe-
cific components within classical planners or entirely supplant
traditional planner pipelines [33]. For example, the integration
of neural networks into classical planners has led to advance-
ments such as predicting the probability distribution of the
optimal path [34], pinpointing critical sampling points [14],
generating distributions of robot configurations pertinent to
the task [35], as well as predicting and/or streamlining colli-
sion checking procedures [36], [37]. These hybrid approaches
focus on bolstering specific planning aspects within classical
planners, all with the goal of expediting the motion planning
process. Moreover, empirical studies have demonstrated the
capacity of purely neural planners to efficiently generate
feasible manipulator motions by leveraging learned patterns
from motions planned by a reference planner. For instance,
Huh et al. [38] employed a convolutional neural network
to devise collision-free manipulator motions based on point
cloud data from the workspace as captured by sensors. Bency
et al. [39] encoded optimal manipulator motions generated
using the A∗ algorithm as sequential data, subsequently
employing a recurrent neural network to iteratively produce
near-optimal manipulator motions. Qureshi et al. [40] intro-
duced a network-based planner that encapsulates planning
information within a latent space via contractive autoencoders,
facilitating the generation of subsequent robot configurations
towards the goal region. In a similar vein, Li et al. [41]
pioneered a methodology that utilizes a network to predict
a batch of forthcoming robot states. This prediction is subse-
quently fine-tuned through model predictive control, ensuring
alignment with desired constraints.

Despite the advantages exhibited by the aforementioned
neural planners in motion planning for robots, they still grapple
with certain limitations. Primarily, it is important to acknowl-
edge that point cloud data encompasses not only pertinent
planning information, such as obstacle locations and robot
states, but also extraneous data, including background details
from the workspace. Consequently, applying convolutions to
point cloud data can lead to redundant computations [42], [43].
Furthermore, as pointed out in [44], a simple transformation
of learning-relevant information into sequential data or latent
representations may fail to capture the inherent connectiv-
ity among objects [45], [46]. For instance, successful robot
motion planning necessitates a thorough understanding of
the states of other objects within the workspace. However,
current neural planners often overlook the intricate ways in
which other objects influence the generation of robot motion.
Consequently, these planners lack the ability to account for
crucial object dependencies.

For efficient data representation and improved object con-
nectivity, the conversion of objects into a graph format
emerges as a promising solution, as graphs inherently depict
sets of objects along with their interconnections [47]. The

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Texas A M University. Downloaded on August 26,2024 at 13:40:05 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 2. The overview of planning manipulator motion using the proposed KG-Planner: (1) the graph constructor converts the workspace information X of
the step t to the feature and adjacency matrices that imply the objects’ features and connections, respectively. The black dot in the adjacency matrix indicates
the node of the row is directionally connected with the node of the column. (2) The motion generator takes the constructed graph G of the step t as input to
generate the manipulator configuration θ̂ of the step t+1.

realm of research has extensively embraced the utilization of
GNNs for learning policies through expert demonstrations,
ultimately allowing for the imitation of robotic actions like
box picking and block stacking. For instance, Ding et al.
[48] introduced a concept where all objects within a scene
are designated as nodes within a graph. The interrelationships
among these nodes, based on their manipulation interactions,
are established as edges. This constructed graph of rela-
tionships aids the robot in deducing the optimal grasping
sequence for objects. Similarly, Lin et al. [49] devised a
graph-based policy, training it to discern the appropriate nodes
indicating the subsequent object to be picked and the desired
placement location. Moreover, Huang et al. [50] presented
a novel neural network approach that employs graphs to
capture the compositional aspects of visual demonstrations.
This approach has successfully enabled the imitation of robot
actions, such as picking and placing, through the learned
graph-based representations.

III. PROBLEM FORMULATION

In this section, we introduce the notations and definitions of
variables used in this paper, and briefly present the formulation
of our graph neural planning problem.

Let 2 be the manipulator configuration space, 2obs be the
obstacle space, and 2 f ree be the obstacle-free space, where
2 f ree = 2 \ 2obs . We denote the manipulator configuration
as θ ⊂ Rq , where q is the dimension of the configuration
space. Note that the configuration planned by our KG-Planner
in this paper is denoted with ∧. Given manipulator start
and goal configurations in a workspace, our work aims to
use a graph-based planner 1(•) learning from an oracle
planner to plan a series of near-optimal manipulator motions
[θ̂1, . . . , θ̂ t , . . . , θ̂T], where θ̂ t ∈ 2 f ree and T is the step
horizon.

The planner 1(•) comprises of two components: a graph
constructor 1con(•) and a motion generator 1gen(•). As shown

in Fig. 2, 1con(•) extracts the workspace information X as
two matrices describing the feature and structure knowledge
of the workspace to construct a graph G, i.e., G = 1con(X).
The workspace actually has two categories of information: pre-
known information and real-time information. The pre-known
information includes the robot’s start state, the robot’s goal
state, and the positions of static obstacles. These details are
ascertainable before the planning process begins. Consider-
ing that the static obstacles in this study are predominantly
rectangular, it is feasible to determine the corner position
of each static obstacle, and define the corresponding nodes.
Consequently, the joint values of the robot and the corner
positions of static obstacles can be easily converted into
the features of nodes. Meanwhile, the real-time information
includes the positions of dynamic obstacles obtained by a
Vicon motion tracking system. The real-time positions of
dynamic obstacles, such as human arm, are also converted
into the features of the corresponding nodes. Furthermore,
the adjacency matrix is a binary matrix that can be manually
defined to indicate relationships between nodes. For example,
the connection between robot joint nodes and the connection
between the robot joint node and the obstacle node. In par-
ticular, the information used for training is denoted as Xseen ,
and the information used for testing is denoted as Xunseen . The
motion generator 1gen(•) is trained using motions collected
from an oracle planner based on Xseen , and takes G as the
input to generate the next manipulator configuration θ̂ toward
the goal, i.e., θ̂ = 1gen(G). Eventually, given the unseen
workspace information Xunseen , by employing bi-directional
planning strategy, the well-learned planner can recursively
plan collision-free motions for robots, and efficiently lead the
manipulator to reach the goal.

IV. GRAPH NEURAL PLANNER

This section presents the details of our KG-Planner. We (1)
explicitly preserve the workspace information using graph

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Texas A M University. Downloaded on August 26,2024 at 13:40:05 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: KG-PLANNER: KNOWLEDGE-INFORMED GRAPH NEURAL PLANNING FOR COLLABORATIVE MANIPULATORS 5

representation, (2) efficiently utilize the planning knowledge
to update the nodes of the graph, (3) train a GNN offline, and
(4) implement the well-trained GNN on online bi-directional
motion planning.

A. From Workspace to Graph

Manipulator motions are planned based on workspace states.
The input of our KG-Planner does not consist of the image
observation of the workspace or the point cloud representation.
Instead, the input of our KG-Planner directly comprises the
pre-known information including the joint values of the robot
states and the positions of the static obstacle, as well as the
real-time information including the positions of the human
arm. Considering that each component in the workspace has
its own features, the graph constructor 1con(•) extracts the key
features of the components, and represents each of them using
node v associated with a feature vector c(v). For example,
to preserve the manipulator structure attributes enhancing
the joint dependency, the constructor denotes each joint of
the manipulator as a node, and successively connect them
with edges, which is illustrated in Fig. 1(a). Furthermore,
to highlight the component connectivity, as shown in Fig. 1(b),
each joint node is connected with both the obstacle nodes and
the goal nodes such that the obstacle and goal states would
have effects on the manipulator’s joints during planning.

The node feature extraction comprises three cases. The first
case involves extracting the start and goal states of the robot.
As these details are ascertainable prior to the planning stage,
we simply convert the joint values of the robot’s start and
goal configurations into the features of the robot-state-related
nodes. This choice of utilizing joint values, as opposed to
joint positions, offers advantages in addressing the inconsistent
link length issue caused by bringing the relative translation
into training. Similarly, in the second case, which pertains to
the extraction of static obstacles, we possess foreknowledge
of the obstacles’ positions. Considering the static obstacles
in this study are predominantly rectangular, we select the
corners of each static obstacle and convert the positions of the
corners into the features of the static-obstacle-related nodes.
The third case involves the extraction of dynamic obstacles,
with the joints of the human arm serving as dynamic-obstacle-
related nodes. By employing a Vicon motion tracking system,
we obtain real-time positional data for the human arm and
subsequently convert the real-time joint positions of human
arm into the features of the dynamic-obstacle-related nodes.
What’s more, we do not include embedding layers to these
features; instead, we utilize zero padding to match the dimen-
sion between each node. Note that the green nodes should have
the same number as the blue nodes, and the total number of
pink nodes depends on the number and shapes of different
obstacles. To simplify the representation, we only show six
small green nodes and one pink node in Fig. 1(b).

In summary, the workspace contains feature knowledge
(e.g., a feature matrix) and connection knowledge (e.g.,
an adjacency matrix). We use a graph G = {V, E} to capture
the planning knowledge of the workspace, where a set of
nodes V=[v1, . . . , vm, . . . , vM] indicates total M objects in

Fig. 3. The update of node embedding in the GNN model: the joint node
4 receives the planning knowledge from its neighbors, c34 means the feature
vector sent from the joint node 3 to the joint node 4, and the node embedding
update happens on all nodes simultaneously.

the workspace, and a set of edges E implies the connection
between nodes.

B. Planning Knowledge Update

The previous subsection briefly presents how to construct a
graph from a workspace. The graph description of the feature
and adjacent matrices preserves the property of permutation
invariances [51]. Such a property ensures that the graph
can be operated without changing the object connectivity.
To efficiently utilize the knowledge stored in nodes as well
as the object connectivity, we use the convolution operation
of GNN to update the node knowledge.

GNN shows the great capability of operating on graphs.
The GNN layer updates each node embedding based on
its neighbors (i.e., directly connected nodes using edges).
We denote Nvm as the set of neighbor nodes used to update
the embedding of vm . The node embedding updates using the
following equation:

hk
vm
= σ

(
f k
w(hk−1

vm
, {hk−1

vi
}i∈Nvm

)
)

(1)

where σ is a ReLU activation function, hk
vm

is the updated
embedding of node vm in hidden layer k, and f k

w indicates the
knowledge update function with weights w. Fig. 3 presents
an example of the embedding update, where the joint node
4 of the robot’s current state collects the embeddings from
its neighbors to update itself based on Eq. (1). In this case,
the states of obstacles, all six small green nodes indicating the
manipulator goal, and the 3rd and 5th manipulator joint would
all influence the updated embedding of the joint node 4.

We simultaneously update all nodes in layer k using a
layer-wise propagation rule [52]:

H k
= σ

(
D̃−

1
2 ÃD̃−

1
2 H k−1W k−1

)
(2)

where H k is the updated layer embedding including all nodes
in matrix form, Ã = A + IM is the binary adjacency matrix
of the graph G with added an identity matrix IM , D̃mm =∑

i Ãmi indicates a degree matrix, and W k−1 is a learning
weight matrix. In addition, considering that the embedding
update is not needed for all nodes, i.e., the obstacle and goal
nodes, we specify the adjacency matrix A to ensure a certain
directional update between nodes. For example, the black dot
in the adjacency matrix shown in Fig. 2 implies the embedding
only updates from the nodes of the row to the nodes of the
column.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Texas A M University. Downloaded on August 26,2024 at 13:40:05 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

By stacking multiple hidden layers, even if the nodes are
not directly connected, they are also capable of exchanging
planning knowledge. For example, the joint node 1 and 6 are
not directly linked by edges shown in Fig. 3, they would
also influence each other’s updated embeddings after several
layer-wise propagations. Eventually, the next manipulator con-
figuration θ̂ is predicted based on all updated nodes using the
following equation:

θ̂ = Ow(
∑

vm∈G hk
vm

) (3)

where Ow stands for the output layer with weights w. Note
that in the robotic motion planning problem of this study, it is
assumed that the start and goal states of the robot are pre-
known, and the primary objective is to find a sequence of
collision-free motions that connect the specified start and goal
robot configurations. Therefore, our KG-Planner is trained and
tested based on a goal-oriented manner.

C. Network Training

This subsection introduces that our KG-Planner learns
from an oracle planner to generate near-optimal manipulator
motions. We borrow the prediction strategy from [40], which
uses the workspace state as the planning information to predict
one-step ahead for the robot.

Let the robot motion sequences from an oracle planner
E = {ϵ1, . . . , ϵp, . . . , ϵP} be the training dataset, where ϵ =

[θ1, . . . , θT] is an optimal manipulator motion, bridging the
given start and goal configurations. The training of GNN iter-
atively updates the parameters of our KG-Planner according
to the loss of the training sample batch. Especially, instead
of blindly intercepting the manipulator configuration θ from
the whole training dataset E , we construct the traning batch
using the manipulator motion ϵ, thus enhancing the motion
integrality during training. The loss function is defined using
the following equation:

lKG =
1

Np

Np∑
p

Tp−1∑
t=0

∥∥θp,t+1 − θ̂ p,t+1
∥∥2

(4)

where Np is the batch size, and Tp is the length of the pth
motion.

D. Online Bi-Directional Motion Planning

This subsection presents the details of online motion plan-
ning based on the well-learned KG-Planner. At test time,
a straightforward way of online planning is to predict the next
manipulator configuration using KG-Planner, and recursively
replace the manipulator state with the predicted one until the
prediction reaches the goal. However, the predicted configura-
tion highly relies on the prediction from the previous iteration
due to such a one-step-ahead prediction strategy. The predic-
tion error would accumulate throughout the entire manipulator
motion sequence, which may lead the manipulator to a position
that is far away from the goal. Therefore, to have more robust
online planning, we employ a bi-directional planning strategy,
which plans the manipulator motion from both start and goal
configurations simultaneously.

Fig. 4. The illustration of KG-Planner-based bi-directional planning: The
KG-Planner takes the initial and target configurations as inputs to provide
forward and backward predictions simultaneously. Linearly virtual interpola-
tions are generated between two predictions, which try to directly connect
two planning branches. If there is a collision between the connected planning
branches and the environment, the predictions become the new inputs of
the KG-Planner. We do such bi-directional planning recursively until a
collision-free path is found.

Fig. 4 illustrates our bi-directional planning using the KG-
Planner. The planning separately generates two branches from
forward and backward directions. To guarantee safety, we have
two requirements of collision checking in each planning iter-
ation: (1) we directly check if the two predictions obtained
from the KG-Planner are feasible or not. (2) we first virtually
connect the forward and backward predictions, then generate
several linearly interpolated configurations between them, and
finally check if there is any collision between obstacles and
these virtual interpolations. The planning is terminated when
two requirements are satisfied, and a complete manipulator
motion is generated by stitching two branches together.

Algorithm 1 Online Bi-Directional Planning
• 2̂a→b

← interpolation(θstart , θgoal)
• ϵ̂a
← add(θstart), ϵ̂b

← add(θgoal)
• Check collision(2̂a→b)
while collision is True do
• Ga

← 1con(Xa), Gb
← 1con(Xb)

• θ̂a
← 1gen(Ga), θ̂b

← 1gen(Gb)

• Check feasible(θ̂a , θ̂b)
if feasible is True and step < δ then
• 2̂a→b

← interpolation(θ̂a , θ̂b)
• ϵ̂a
← add(θ̂a), ϵ̂b

← add(θ̂b)
• Check collision(2̂a→b)
• Xa

← θ̂a ,Xb
← θ̂b

else
•return∅

end
• Increment step

end
• return stitch(ϵ̂a , ϵ̂b)

The bi-directional planning procedure is outlined in
Algorithm 1. The forward branch ϵ̂a plans the manipulator
motion from start to goal, and the backward branch ϵ̂b

plans the manipulator motion from goal to start. The future

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Texas A M University. Downloaded on August 26,2024 at 13:40:05 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: KG-PLANNER: KNOWLEDGE-INFORMED GRAPH NEURAL PLANNING FOR COLLABORATIVE MANIPULATORS 7

Fig. 5. Experimental planning results in different environments: given random start and target manipulator configurations in the selected four environments,
our bi-directional KG-Planner plans near-optimal motions.

planning knowledge of the workspace is recursively updated
using 1con(•) and 1gen(•). After every branch expansion,
we try to directly connect two branches based on the linearly
virtual interpolations such that the joint change effort of
the manipulator can be reduced. Note that in cases where
both the position and the orientation of the goal state are
unknown, our KG-Planner cannot plan a trajectory towards
the goal. Additionally, when the position of the goal state is
known but the orientation is unknown, we can employ inverse
kinematics to determine a feasible goal configuration for the
robot. Subsequently, we can proceed with the same planning
procedure to obtain the robot trajectory.

V. EXPERIMENTAL TESTS

This section validates the efficacy of our KG-Planner in
disassembly processes. We collect the motions from an oracle
planner using simulation, and experimentally implement the
online bi-directional planning in both static and dynamic
environments.

A. Tests in Static Environments

1) Data Acquisition and Network Training: We simulate
a disassembly scenario in an open-source motion planning
platform MoveIt. We use RRT* as the oracle planner to
generate the optimal motion used for learning. A collabo-
rative robot UR5e with 6-DOF is employed to conduct all
experimental tests. The obstacles in the workspace include
a monitor, a desktop, a screwdriver box, and a disassembly
container. We create 12 different workspaces, each containing
800 planning scenarios with randomly generated start and
goal configurations. 90% of these scenarios are allocated for
training purpose, while the remaining 10% are reserved for
testing.

2) Planning Results and Discussions: Fig. 5 illustrates the
planning results using the bi-directional KG-Planner in 4 out
of 12 workspaces. The successful planning based on different
scenarios shows that our KG-Planner can be employed for the
manipulator in disassembly tasks, e.g., carrying disassembled
components to the container or taking a screwdriver to a

desired location. We also compare our approach with the
classical planner i.e., RRT, the oracle planner used for training,
i.e., RRT*, and the advanced planner, i.e., bi-directional FMT*
(BFMT*). To have a fair comparison, all planners used for
comparison studies come from the open motion planning
library (OMPL). Fig. 6 illustrates the experimental comparison
between our planner and the RRT planner. The manipulator
aims to carry a disassembled component from a start con-
figuration to a goal configuration, and the planners need to
provide collision-free motions for the manipulator. The green
and red curves are the planned end-effector’s path using our
bi-directional KG-Planner and RRT, respectively.

To better demonstrate the planning results, the
above-mentioned methods share the same environments
during the planning, and we define three measurements: (1)
the path cost denotes the trajectory length of the manipulator’s
end-effector, which implies the trajectory optimality. (2) the
planning time denotes the planning duration based on a
random pair of start and goal configurations, which implies
the approach efficiency. (3) the success rate denotes the
percentage of the successful planning instances over the total
planning attempts, which implies the approach efficiency.
The planning of the RRT planner terminates once it finds
a collision-free robot trajectory. For RRT* and BFMT*,
where the trajectory could potentially be more optimal with
increased planning time, termination criterion is based on two
rules. The first rule terminates the planning once the path
cost is within a certain percentage of the one planned our
KG-Planner. This enables a fair comparison of computational
time and success rate with nearly identical path costs. The
second rule terminates the planning if the planning time
exceeds the maximum planning time, set at 8 seconds,
acknowledging the impracticality of prolonged planning time
in human-robot collaboration scenarios. Additionally, the
10% of generated planning scenarios (i.e., 960 scenarios) is
used to evaluate the planning results in terms of path cost,
planning time, and success rate. The workspaces are seen,
while the pairs of start and goal configurations are unseen for
the KG-Planner.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Texas A M University. Downloaded on August 26,2024 at 13:40:05 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Fig. 6. The experimental comparison tests: The top and bottom rows show the planning using the RRT planner and our bi-directional KG-Planner, respectively.
They share the same start and goal configurations. We denote the two different end-effector paths using red and green colors. The experimental video is
available via this link.

TABLE I
SUMMARY OF PLANNING RESULTS

The average results are shown in TABLE I, where
KG-Planners A and B indicate single-directional and
bi-directional KG-Planners, respectively. Note that our
KG-Planner significantly outperforms the oracle planner (i.e.,
RRT*) in terms of success rate. Planning failures with RRT*
can be categorized into two primary cases. The first case
occurs when the RRT* planner is unable to identify a
collision-free path due to its inherent random sampling prop-
erty, and this scenario constitutes a relatively small proportion
of planning failures. The second case, which constitutes the
majority of planning failures, involving the planning duration
surpassing the maximum allowable planning time. We ter-
minate the planning of RRT* until the corresponding path
cost is within a certain percentage of the one planned by our
KG-Planner. However, during the bi-directional planning, the
virtual interpolations in our KG-Planner attempt to directly
connect two planning branches in each iteration, which would
eliminate the unnecessary planning and further reduce the
associated path cost. Therefore, RRT* is difficult to find a
sufficiently short path within the limited time duration.

Furthermore, we keep the same types and total number of
obstacles, and change the locations of the desktop, the screw-

driver box, the monitor, and the container to construct three
unseen workspaces which are different from the 12 workspaces
used for training. Random pairs of start and goal robot
configurations are given to our KG-Planner. The planner is
required to find collision-free robot motions to connect the
given start and goal configurations. Such tests are used to
validate the generalization of our bi-directional KG-Planner.
The success rate of planning is shown in TABLE II.

The above-mentioned results indicate a few points: (1) The
bi-directional KG-Planner is capable of providing near-optimal
manipulator motions since KG-Planner learns from an oracle
planner and the generated virtual interpolations keep trying
to connect the forward and backward planning branches. (2)
Our approach can efficiently plan collision-free manipulator
motions due to the short inference time of the GNN model.
(3) Compared to RRT and BFMT*, using KG-Planner to
obtain manipulator motions has less success rate. Additionally,
requiring both the forward and backward predictions to be
collision-free (i.e., KG-Planner B), further decreases the plan-
ning success rate. (4) The bi-directional KG-Planner shows
the great capability of generalization to similar but unseen
workspaces.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Texas A M University. Downloaded on August 26,2024 at 13:40:05 UTC from IEEE Xplore. Restrictions apply.

https://zh.engr.tamu.edu/wp-content/uploads/sites/310/2024/03/KGPlanner.mp4

LIU et al.: KG-PLANNER: KNOWLEDGE-INFORMED GRAPH NEURAL PLANNING FOR COLLABORATIVE MANIPULATORS 9

Fig. 7. The experimental tests without and with considering the human arm: The top row shows the task execution without considering the human arm.
It contains tow planning scenarios: scenario A (i.e., carrying a component from left to right, and shown in (a) and (b)) and scenario B (i.e., carrying a
component from right to left, and shown in (d) and (e)). The sub-figure (c) shows the transition between two planning scenarios. The transparent robot arms
in sub-figures indicate the past movements of the robot. The robot follows the originally planned motion and blindly pushes the human arm. The bottom
row presents the planning with the same initial and target configurations with the consideration of the human worker’s real-time motions, where the robot
effectively and efficiently re-plans its motions when a possible collision is detected. The Vicon system tracks the positions of the human arm and desktop
based on the attached gray markers in real time. The experimental video is available via this link.

TABLE II
PLANNING RESULTS FOR UNSEEN WORKSPACES

B. Tests in Dynamic Environments

1) Data Acquisition and Network Training: The previ-
ous subsection presents the efficacy of the bi-directional
KG-Planner in the static environment. Due to the short plan-
ning time, our approach also has the applicable potential
of re-planning the manipulator motion in real-time to avoid
the human worker. To generate training data, we import the
movement of the human arm captured by the Vicon motion
capture system into one workspace. The human arm is built
using multiple geometric models in MoveIt and treated as an
additional obstacle. We employ RRT* to generate collision-
free 12000 manipulator motions in the workspace involving
human motion. For the data generated from the dynamic
environment, 90% is used for training, and the remaining is
used for testing.

2) Planning Results and Discussions: When a manipulator
conducts a disassembly task, our planner first plans an initial
collision-free motion for the manipulator and continuously
checks if a new motion is needed to be re-planned based on the
current workspace state such that the manipulator can avoid
a sudden entry of the human worker. The simulated planning
success rate in such a dynamic environment is 79.4%.

Fig. 7 presents the task executions without and with con-
sidering the human worker. The sub-figures (a) and (b) show
the planning scenario A: carrying a disassembled component
from left to right, and the sub-figures (d) and (e) indicate the
planning scenario B: carrying a disassembled component from

Fig. 8. The joint angle comparison between two planning scenarios.

right to left. Additionally, the sub-figure (c) shows the transi-
tion between two planning scenarios. Note that the real-time
motions of the desktop and human worker are both tracked
and sent to our planner. As shown in the top row of Fig. 7,
the manipulator directly collides with the human worker and
follows the originally planned motion pushing the arm. On the
contrary, the bottom row of Fig. 7 shows that once the human
arm collides with the originally planned manipulator motion,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Texas A M University. Downloaded on August 26,2024 at 13:40:05 UTC from IEEE Xplore. Restrictions apply.

https://zh.engr.tamu.edu/wp-content/uploads/sites/310/2024/03/KGPlanner.mp4

10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

our planner immediately re-plans the manipulator’s motion
and enables the manipulator to efficiently avoids the potential
collision. Fig. 8 presents the joint angles of the manipulator
in the two task executions. The orange shadow stands for the
virtual interpolation part connecting the forward and backward
planning, the orange dot represents the start and end moments
that the robot moves following the interpolations, and the red
shadow indicates the re-planning part caused by the human
worker movements.

VI. CONCLUSION

This paper introduces a novel graph-based neural planner
designed to adeptly generate collision-free motions that are
nearly optimal for collaborative robots. Our KG-Planner capi-
talizes on the intricate interplay of nodes and edges within the
graph structure, efficiently encapsulating the planning knowl-
edge of the workspace while consciously preserving object
connectivity. To operationalize this approach, we employ a
GNN to navigate the constructed graph, thereby ensuring
that object dependencies are seamlessly integrated into the
learning process when imitating motions gleaned from an
oracle planner. Through rigorous comparative evaluations,
we have pitted the KG-Planner against widely-used and
cutting-edge planners, such as RRT, RRT*, and BFMT*.
Notably, our KG-Planner exhibits promising performance in
terms of both manipulator trajectory optimality and computa-
tional efficiency. The extensive experimental and comparative
analyses unequivocally demonstrate that our proposed method
excels in planning collision-free motions within static as well
as dynamic environments, effectively merging performance
and efficiency.

REFERENCES

[1] D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning
framework that learns from experience,” in Proc. IEEE Int. Conf. Robot.
Autom., May 2012, pp. 3671–3678.

[2] M.-L. Lee, X. Liang, B. Hu, G. Onel, S. Behdad, and M. Zheng,
“A review of prospects and opportunities in disassembly with human–
robot collaboration,” J. Manuf. Sci. Eng., vol. 146, no. 2, Feb. 2024,
Art. no. 020902.

[3] M.-L. Lee, W. Liu, S. Behdad, X. Liang, and M. Zheng, “Robot-
assisted disassembly sequence planning with real-time human motion
prediction,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 53, no. 1,
pp. 438–450, Jan. 2023.

[4] M.-L. Lee, S. Behdad, X. Liang, and M. Zheng, “Task allocation
and planning for product disassembly with human–robot collaboration,”
Robot. Comput.-Integr. Manuf., vol. 76, Aug. 2022, Art. no. 102306.

[5] C.-M. Huang and B. Mutlu, “Anticipatory robot control for efficient
human-robot collaboration,” in Proc. 11th ACM/IEEE Int. Conf. Hum.-
Robot Interact. (HRI), Mar. 2016, pp. 83–90.

[6] M. G. Mohanan and A. Salgoankar, “A survey of robotic motion
planning in dynamic environments,” Robot. Auton. Syst., vol. 100,
pp. 171–185, Feb. 2018.

[7] M. Rickert, O. Brock, and A. Knoll, “Balancing exploration and
exploitation in motion planning,” in Proc. IEEE Int. Conf. Robot. Autom.,
May 2008, pp. 2812–2817.

[8] A. H. Qureshi and Y. Ayaz, “Intelligent bidirectional rapidly-exploring
random trees for optimal motion planning in complex cluttered environ-
ments,” Robot. Auton. Syst., vol. 68, pp. 1–11, Jun. 2015.

[9] A. H. Qureshi and Y. Ayaz, “Potential functions based sampling heuristic
for optimal path planning,” Auto. Robots, vol. 40, no. 6, pp. 1079–1093,
Aug. 2016.

[10] W. Liu, X. Liang, and M. Zheng, “Task-constrained motion planning
considering uncertainty-informed human motion prediction for human–
robot collaborative disassembly,” IEEE/ASME Trans. Mechatronics,
vol. 28, no. 4, pp. 2056–2063, Nov. 2023.

[11] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena, “From
perception to decision: A data-driven approach to end-to-end motion
planning for autonomous ground robots,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2017, pp. 1527–1533.

[12] M. Hamandi, M. D’Arcy, and P. Fazli, “DeepMoTIon: Learning to
navigate like humans,” in Proc. 28th IEEE Int. Conf. Robot Human
Interact. Commun. (RO-MAN), Oct. 2019, pp. 1–7.

[13] B. Ichter and M. Pavone, “Robot motion planning in learned latent
spaces,” IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 2407–2414,
Jul. 2019.

[14] A. Khan, A. Ribeiro, V. Kumar, and A. G. Francis, “Graph neural
networks for motion planning,” 2020, arXiv:2006.06248.

[15] R. Zhang, C. Yu, J. Chen, C. Fan, and S. Gao, “Learning-based motion
planning in dynamic environments using gnns and temporal encoding,”
in Proc. Adv. Neural Inf. Process. Syst., vol. 35, 2022, pp. 30003–30015.

[16] E. W. Dijkstra, “A note on two problems in connexion with graphs,” in
Edsger Wybe Dijkstra: His Life, Work, Legacy. New York, NY, USA:
Association for Computing Machinery, 2022, pp. 287–290.

[17] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. SCS-4, no. 2, pp. 100–107, Jul. 1968.

[18] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*,” Artif.
Intell., vol. 155, nos. 1–2, pp. 93–146, 2004.

[19] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical search
techniques in path planning for autonomous driving,” Ann Arbor,
vol. 1001, no. 48105, pp. 18–80, 2008.

[20] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun,
“Anytime dynamic A*: An anytime, replanning algorithm,” in Proc.
ICAPS, vol. 5, 2005, pp. 262–271.

[21] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580,
Aug. 1996.

[22] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Comput. Sci. Dept., Iowa State Univ., Ames, IA, USA,
Tech. Rep. 9811, 1998.

[23] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894,
Jun. 2011.

[24] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT:
Optimal sampling-based path planning focused via direct sampling of
an admissible ellipsoidal heuristic,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Sep. 2014, pp. 2997–3004.

[25] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch informed trees
(BIT*): Sampling-based optimal planning via the heuristically guided
search of implicit random geometric graphs,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2015, pp. 3067–3074.

[26] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching tree:
A fast marching sampling-based method for optimal motion planning
in many dimensions,” Int. J. Robot. Res., vol. 34, no. 7, pp. 883–921,
Jun. 2015.

[27] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” in Proc.
IEEE Int. Conf. Robot. Autom., May 2009, pp. 489–494.

[28] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,” in
Proc. IEEE Int. Conf. Robot. Autom., Nov. 2011, pp. 4569–4574.

[29] P. Reynoso-Mora, W. Chen, and M. Tomizuka, “A convex relaxation
for the time-optimal trajectory planning of robotic manipulators along
predetermined geometric paths,” Optim. Control Appl. Methods, vol. 37,
no. 6, pp. 1263–1281, Nov. 2016.

[30] H.-C. Lin, C. Liu, and M. Tomizuka, “Fast robot motion planning with
collision avoidance and temporal optimization,” in Proc. 15th Int. Conf.
Control, Autom., Robot. Vis. (ICARCV), Nov. 2018, pp. 29–35.

[31] T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake, “Motion
planning around obstacles with convex optimization,” Sci. Robot., vol. 8,
no. 84, Nov. 2023, Art. no. eadf7843.

[32] S. Zimmermann, G. Hakimifard, M. Zamora, R. Poranne, and S. Coros,
“A multi-level optimization framework for simultaneous grasping
and motion planning,” IEEE Robot. Autom. Lett., vol. 5, no. 2,
pp. 2966–2972, Apr. 2020.

[33] J. Wang et al., “A survey of learning-based robot motion planning,” IET
Cyber-Syst. Robot., vol. 3, no. 4, pp. 302–314, 2021.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Texas A M University. Downloaded on August 26,2024 at 13:40:05 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: KG-PLANNER: KNOWLEDGE-INFORMED GRAPH NEURAL PLANNING FOR COLLABORATIVE MANIPULATORS 11

[34] J. Wang, W. Chi, C. Li, C. Wang, and M. Q.-H. Meng, “Neural RRT*:
Learning-based optimal path planning,” IEEE Trans. Autom. Sci. Eng.,
vol. 17, no. 4, pp. 1748–1758, Oct. 2020.

[35] P. Lehner and A. Albu-Schäffer, “The repetition roadmap for repetitive
constrained motion planning,” IEEE Robot. Autom. Lett., vol. 3, no. 4,
pp. 3884–3891, Oct. 2018.

[36] C. Liu, W. Liu, Z. Chen, and M. Zheng, “A deep-ConvLSTM collision
prediction model for manipulators in dynamic environment,” in Proc. 9th
IFAC Symp. Mech. Syst. 16th Int. Conf. Motion Vibrat. Control, 2022,
vol. 55, no. 27, pp. 68–75.

[37] C. Yu and S. Gao, “Reducing collision checking for sampling-based
motion planning using graph neural networks,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 34, 2021, pp. 4274–4289.

[38] J. Huh, V. Isler, and D. D. Lee, “Cost-to-go function generating networks
for high dimensional motion planning,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2021, pp. 8480–8486.

[39] M. J. Bency, A. H. Qureshi, and M. C. Yip, “Neural path planning:
Fixed time, near-optimal path generation via Oracle imitation,” in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Nov. 2019,
pp. 3965–3972.

[40] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, “Motion planning
networks: Bridging the gap between learning-based and classical motion
planners,” IEEE Trans. Robot., vol. 37, no. 1, pp. 48–66, Aug. 2020.

[41] L. Li, Y. Miao, A. H. Qureshi, and M. C. Yip, “MPC-MPNet: Model-
predictive motion planning networks for fast, near-optimal planning
under kinodynamic constraints,” IEEE Robot. Autom. Lett., vol. 6, no. 3,
pp. 4496–4503, Jul. 2021.

[42] Y. Zhang et al., “Three-dimensional convolutional neural network prun-
ing with regularization-based method,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), Sep. 2019, pp. 4270–4274.

[43] Y. Chen et al., “Drop an octave: Reducing spatial redundancy in convo-
lutional neural networks with octave convolution,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 3434–3443.

[44] Q. Li, G. Chalvatzaki, J. Peters, and Y. Wang, “Directed acyclic graph
neural network for human motion prediction,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2021, pp. 3197–3204.

[45] W. Liu, X. Liang, and M. Zheng, “Dynamic model informed human
motion prediction based on unscented Kalman filter,” IEEE/ASME Trans.
Mechatronics, vol. 27, no. 6, pp. 5287–5295, Dec. 2022.

[46] S. H. Park, B. Kim, C. M. Kang, C. C. Chung, and J. W. Choi,
“Sequence-to-sequence prediction of vehicle trajectory via LSTM
encoder–decoder architecture,” in Proc. IEEE Intell. Vehicles Symp. (IV),
Jun. 2018, pp. 1672–1678.

[47] B. Sanchez-Lengeling, E. Reif, A. Pearce, and A. B. Wiltschko. (2021).
A Gentle Introduction to Graph Neural Networks. Distill. [Online].
Available: https://distill.pub/2021/gnn-intro

[48] M. Ding, Y. Liu, C. Yang, and X. Lan, “Visual manipulation relationship
detection based on gated graph neural network for robotic grasping,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2022,
pp. 1404–1410.

[49] Y. Lin, A. S. Wang, E. Undersander, and A. Rai, “Efficient and
interpretable robot manipulation with graph neural networks,” IEEE
Robot. Autom. Lett., vol. 7, no. 2, pp. 2740–2747, Apr. 2022.

[50] D.-A. Huang et al., “Neural task graphs: Generalizing to unseen tasks
from a single video demonstration,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 8557–8566.

[51] F. Gama, J. Bruna, and A. Ribeiro, “Stability properties of graph neural
networks,” IEEE Trans. Signal Process., vol. 68, pp. 5680–5695, 2020.

[52] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Represent., 2016.

Wansong Liu received the B.S. degree in materials
processing and controlling engineering from China
University of Mining and Technology, Xuzhou,
China, in 2017, and the M.S. degree in mechan-
ical and aerospace engineering from University at
Buffalo, Buffalo, NY, USA, in 2020, where he is
currently pursuing the Ph.D. degree in mechanical
engineering. His research interests include planning,
learning, and the control of robotic manipulators in
collaboration with human.

Kareem Eltouny received the B.S. degree in civil
engineering from Suez Canal University, Ismailia,
Egypt, in 2014, and the M.Sc. degree in civil engi-
neering from University at Buffalo, Buffalo, NY,
USA, in 2019, where he is currently pursuing the
Ph.D. degree in civil engineering.

His research interests include machine learning
applications for structural health monitoring and
human–robot collaboration.

Sibo Tian received the B.S. degree in flight vehicle
design and engineering from Dalian University of
Technology, China, in 2019, and the M.S. degree
in mechanical engineering from the University of
California at San Diego, San Diego, CA, USA,
in 2021. He is currently pursuing the Ph.D. degree
in mechanical engineering with Texas A&M Uni-
versity, College Station, TX, USA. His research
interests include prediction, planning, learning, and
control with applications to human–robot collabora-
tion.

Xiao Liang received the B.S. degree in civil engi-
neering from Hunan University, Changsha, China,
in 2010, and the M.S. and Ph.D. degrees in civil
engineering from the University of California at
Berkeley, Berkeley, CA, USA, in 2011 and 2016,
respectively. He is currently an Assistant Professor
with the Zachry Department of Civil and Environ-
mental Engineering, Texas A&M University, College
Station, TX, USA. Before that, he was an Assistant
Professor with the Department of Civil, Structural
and Environmental Engineering, University at Buf-

falo, Buffalo, NY, USA. His research interests include health monitoring
and autonomous inspection of infrastructure systems through advanced data
analytics, model-based, and machine learning.

Minghui Zheng received the B.S. degree in engi-
neering mechanics and the M.S. degree in control
science and engineering from Beihang University,
China, in 2008 and 2011, respectively, and the Ph.D.
degree in mechanical engineering from the Univer-
sity of California at Berkeley, Berkeley, CA, USA,
in 2017. She is currently an Associate Professor with
the J. Mike Walker ’66 Department of Mechanical
Engineering, Texas A&M University, College Sta-
tion, TX, USA. Before that, she was an Associate
Professor with University at Buffalo, Buffalo, NY,

USA. Her research interests include learning, planning, and control with
applications to several areas that are of vital importance to manufacturing
and robotics. She was a recipient of the NSF CAREER Award in 2021.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Texas A M University. Downloaded on August 26,2024 at 13:40:05 UTC from IEEE Xplore. Restrictions apply.

