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Integrating Uncertainty-Aware Human Motion Prediction into
Graph-Based Manipulator Motion Planning

Wansong Liu1, Kareem Eltouny2, Sibo Tian3, Xiao Liang4, Minghui Zheng3

Abstract—There has been a growing utilization of industrial
robots as complementary collaborators for human workers in re-
manufacturing sites. Such a human-robot collaboration (HRC)
aims to assist human workers in improving the flexibility and
efficiency of labor-intensive tasks. In this paper, we propose a
human-aware motion planning framework for HRC to effectively
compute collision-free motions for manipulators when conducting
collaborative tasks with humans. We employ a neural human
motion prediction model to enable proactive planning for manip-
ulators. Particularly, rather than blindly trusting and utilizing
predicted human trajectories in the manipulator planning, we
quantify uncertainties of the neural prediction model to further
ensure human safety. Moreover, we integrate the uncertainty-
aware prediction into a graph that captures key workspace
elements and illustrates their interconnections. Then a graph
neural network is leveraged to operate on the constructed
graph. Consequently, robot motion planning considers both the
dependencies among all the elements in the workspace and
the potential influence of future movements of human workers.
We experimentally validate the proposed planning framework
using a 6-degree-of-freedom manipulator in a shared workspace
where a human is performing disassembling tasks. The results
demonstrate the benefits of our approach in terms of improving
the smoothness and safety of HRC. A brief video introduction
of this work is available via link.

Index Terms—Motion planning, Human motion prediction,
Graph neural network

I. INTRODUCTION

To facilitate efficient and safe disassembly, robots are usu-
ally employed as complementary collaborators to work closely
with human operators [1], [2]. In such close collaboration,
robots are required to generate collision-free motions and
adjust their motions efficiently. The planning problem turns
out to be complicated when human operator’s behaviors are
involved since real-time responsiveness necessitates quick mo-
tion generation in the constantly changing configuration space.
Manipulators must respond adaptively to human operator’s
actions. Predicting human motions allows collaborative robots
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to proactively plan motions, ensuring a safe and seamless
human-robot collaboration (HRC) [3].

Integrating human motion prediction into robotic motion
planning has two technical challenges. One is that human
motion is inherently complex and stochastic, which requires
robust prediction models to handle the uncertainties arising
from human behavior variations or unexpected actions [4]–[6].
Addressing such uncertainties holds particular importance in
terms of ensuring the safety in HRC as unreliable predictions
can potentially result in the planning of a dangerous trajectory.
The second challenge is that the prediction as well as the
uncertainty introduce additional computational complexity for
generating robot motions [7]. To have a real-time respon-
siveness in HRC, the planning algorithms must integrate the
prediction and the uncertainty in an efficient way and find
collision-free motions within tight time constraints.

In this paper, we propose a motion planning framework to
enhance the seamless and safe collaboration between humans
and manipulators in disassembly processes. Fig. 1 shows the
overview of the framework. The framework is comprised of
two modules. The first one is the uncertainty-aware human
motion prediction. It seeks to provide future trajectories of
human operators and the uncertainty of the network-based
prediction model for the purpose of safe manipulator motion
planning. The second module is a graph-based neural motion
planner that incorporates uncertainty-aware prediction and
generates collision-free manipulator motions. We transform
the collaboration workspace into a graph representation that
encapsulates the relationships and dependencies among the
objects within the workspace. The uncertainty-aware predic-
tions are represented as nodes and edges, which are intuitively
integrated into the constructed graph and interconnected with
other objects.

In summary, the main contributions of this work are sum-
marized as follows:

• We present a framework for HRC that naturally integrates
the motion planning of high-DOF robot manipulators and
uncertainty-aware human motion prediction, using graph
neural networks.

• The inherent uncertainty of the human motion prediction
model is incorporated into the robot motion planning
intuitively and conveniently (i.e., using nodes and edges)
to enhance safety in HRC.

• We conduct comprehensive experimental studies within a
collaborative disassembly scenario to validate the perfor-
mance of our model. The proposed planning framework
showcases the benefits in terms of earlier robot’s response
and near-optimal trajectory planning when a sudden
human intervention occurs.
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Fig. 1: Overview of the proposed HRC motion planning framework: 1) Observed human motions are used to compute future uncertainty-aware human motions;
2) The collaboration workspace is converted to a graph. It preserves the structural attributes of objects by employing multiple nodes and edges. The key
elements and characteristics of the workspace are depicted through nodes with features, and their connections are established through edges. Note that we
only show a few of the nodes in the figure to simplify the illustration. 3) The uncertainty-aware prediction is also represented using nodes and edges and
naturally integrated into the overall graph. 4) The GNN-based motion planner eventually generates a safe robot configuration, directing the robot toward the
desired goal, while avoiding the moving human agent in close vicinity.

II. RELATED WORKS

A. Human motion prediction

Traditional statistic-based models have been utilized to learn
the probability distribution of human motion, enabling them
to reason about possible future human trajectories based on
historical data, such as the hidden Markov model [8] and the
Gaussian regression model [9]. Although these probabilistic
methods are suited for capturing the stochastic nature of
human motion, their performance tends to be less satisfac-
tory when dealing with intricate motion patterns. To predict
complex human motion, recurrent neural networks (RNNs)
have been widely used to obtain deterministic future human
trajectories [10]. In addition, graph convolutional networks
[11], [12] and Transformer [13], [14] have recently become
popular in human motion prediction. These works show
significant improvement in capturing the spatial and temporal
dependencies of human motion data.

Instead of blindly trusting the predicted human motions,
existing studies quantified the uncertainty of the predicted
human motions using statistic-based prediction models, e.g.,
[4], [9], [15], [16]. These models can naturally predict tra-
jectories in a probabilistic way, handling irregular human
movements in HRC. While network-based models typically
provide deterministic predictions, some studies have developed
techniques to measure the uncertainty inherent in these models
and to provide the confidence level associated with the model’s
outputs. For example, Cheng et al. [17] developed a parameter-
adaption-based neural network to provide uncertainty bounds
of the prediction in real time. Zhang et al. [18] employed con-
ditional variational autoencoders (CVAEs) to sample multiple
saliency maps from the latent space, ultimately obtaining an
accurate saliency map using the quantified uncertainty. Eltouny
et al. [6] trained an ensemble of motion prediction network
models, and estimated the uncertainty based on the aggregation
of diverse motion predictions.

B. Robot motion planning

One of the most important problems in HRC is to plan
collision-free robot motions in dynamic workspaces. The

computational expense imposed by the curse of dimension-
ality limits the application of traditional grid-based methods,
such as A* algorithm [19]. Random-sampling-based meth-
ods such as the rapidly exploring random tree (RRT) [20]
have demonstrated effectiveness in high-dimensional planning
problems. Furthermore, to ensure the optimality of the robot
trajectories, asymptotically optimal sampling-based such as
batch-informed trees (BIT*) [21], fast marching trees (FMT*)
[22], and optimization-based methods [23], [24] are developed.
Nowadays, network-based motion planners have been widely
used to generate near-optimal robot trajectories with low com-
putational cost. For example, the work in [25]–[27] leveraged
a network-based model to imitate expert robot trajectories
generated from oracle planners, providing near-optimal robot
motions. Furthermore, rather than imitating expert trajectories,
the work in [28], [29] employed reinforcement learning to
obtain the optimal policies to generate robot motions. Despite
the advantages demonstrated by such planners, they may
struggle to capture the intrinsic connectivity among objects
within the workspace. Rather than blindly preprocessing all
data together, the graph representation proposed in [30] high-
lights the both local and global dependencies of objects in
the workspace when generating robot motions, which however
does not explicitly consider human motion prediction in the
motion planner.

Incorporating human motion prediction into robotic plan-
ning can improve the efficiency of HRC. Cheng et al. [31]
included the task recognition and trajectory prediction of
human workers into HRC systems to significantly improve
efficiency. Unhelkar et al. [7] proposed a planning algorithm
that leverages the prediction of nearby humans to efficiently
execute collaborative assembly tasks. Moreover, incorporating
the prediction is beneficial for generating collision-free robot
trajectories proactively, thus expanding the safety margin of
the collaboration. Park et al. [9] used the predicted human
motion to compute collision probabilities for safe motion plan-
ning. Kratzer et al. [32] proposed a prediction framework that
enables the mobile robot to avoid the possible area occupied
by a human partner. Zheng et al. [33] developed an encoder-
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decoder network to predict the human hand trajectories, and
integrated the avoidance of future collisions as constraints into
a model predictive control framework, allowing the planning
of safe trajectories.

III. UNCERTAINTY-AWARE HUMAN MOTION PREDICTION

In this section, we introduce an RNN-based human motion
prediction model and explain how the uncertainty of the model
is quantified.

A. Human motion predictor

To predict human trajectories during task execution, we
train a prediction model based on an RNN with long short-
term memory (LSTM) architecture. Rather than using 3-
dimensional position data of arm joints, we employ unit
vectors of bones for the network training. In this case, we
can ensure a consistent distance between two joints when
reconstructing arm poses from bone vectors using the corre-
sponding bone lengths. This choice preserves the anatomical
constraints of the arm during the prediction process. The
human arm bone vector is denoted as x = (ϕ1, ϕ2) ∈ R6,
where ϕ1 ∈ R3 and ϕ2 ∈ R3 are two bone vectors of human
upper-arm and forearm respectively. Notably, the position of
arm joints and human arm occupied area in the workspace can
be reconstructed using x and anthropometric parameters ph,
which contain the average bone length and radius of the human
arm for each segment. The prediction process is denoted as:

X̂ = F (X,W) (1)

where X=[x−N+1, ..., x0] ∈ R6N is the human motion of
observed N steps, F (•) indicates the prediction function, and
X̂=[x̂1, ..., x̂m, ..., x̂M ] ∈ R6M stands for the human motion
of predicted M steps. Additionally, we treat the well-trained
network as the prediction model, and W indicates the learning
weights of the network after training.

B. Uncertainty quantification using MCDS

The previous subsection briefly introduces that using a
network-based motion predictor can predict human trajectories
in upcoming time steps. However, human motions in HRC
exhibit a certain level of variability that is influenced by
factors such as individual characteristics and worker fatigue.
Therefore, it’s necessary to explicitly quantify uncertainties,
enabling effective consideration of variations in human move-
ments. We employ Monte Carlo dropout sampling (MCDS) to
quantify the uncertainty of our prediction model, considering
that it provides accurate uncertainty estimations and only
requires training a single model.

We aim to obtain the prediction distribution such that the
possible future trajectories can be utilized for safe robot
motion planning. To this end, we apply dropout to every layer
of the prediction model, and treat it as a Bayesian approxima-
tion of a Gaussian process model over the prediction model
parameters [34]. The prediction distribution is calculated using
the following equation:

p(X̂|X) =
p(X̂|X,W)p(W)

p(W|X, X̂)
(2)

where p(W) is a prior Gaussian distribution over the model
parameters, p(X̂|X,W) indicates the likelihood used to cap-
ture the prediction process, and p(W|X, X̂) denotes the
posterior distribution.

Considering that the posterior distribution can not be evalu-
ated analytically, we use variational inference to approximate
it. The approximating distribution q(W) can be close to the
true posterior distribution by minimizing the Kullback-Leibler
(KL) divergence between them:

KL
(
q(W) || p(W|X, X̂)

)
(3)

where q(W) is defined using Bernoulli distributed random
variables and some variational parameters that can be opti-
mized. As pointed out in [35], the training of the prediction
model would also be beneficial for minimizing the KL diver-
gence term. Therefore, q(W) is optimized after the network
training, and sampling from q(W) is equivalent to applying
dropout on each layer of the prediction model. Eventually,
the predictive variance u at test time is calculated using the
following equation:

u ≈ 1

K − 1

K∑
k=1

[
F (X,Wk)

TF (X,Wk)−KETE
]

(4)

where u = [u1, ..., um, ..., uM ] indicates the prediction vari-
ance, K is the Monte Carlo sampling size, Wk is fitted to
q(W) and denotes the model parameters of the kth sample,
and E ≈ 1

K

∑K
k=1F (X,Wk) represents the predictive mean.

LSTM LSTM LSTM

Observation

Network

Prediction
Samples

Uncertainty-Aware
Prediction

Monte Carlo 
dropout sampling

Motion statistics from 
the sample bin

Sample size

Time horizon

Fig. 2: The uncertainty quantification of the prediction model: green dots are
the observed human joints, red dots are the predicted human joints, and the
uncertainty-aware prediction is generated based on the predictive distribution
and includes multiple possible human arm poses at each time step.

The process of obtaining uncertainty-aware human motion
prediction is illustrated in Fig. 2. The observed human motion
is propagated into a well-trained LSTM model. MCDS is
employed to generate different possible configurations of
the network parameters, and multiple prediction samples are
obtained. Finally, the uncertainty-aware prediction includes
multiple possible human arm poses at each time step, and
is denoted as X̂∗=[x̂∗

1, ..., x̂
∗
m, ..., x̂∗

M ] ∈ R6M×K . Notably,
we use ∗ to indicate there are multiple possible arm poses
at a predicted time instance. And these poses fit a normal
distribution ∗∼N (E, u), where E represents the mean and u
indicates the predictive variance.
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IV. GRAPH-BASED MOTION PLANNER

This section presents 1) explanations of converting the
collaboration workspace and the uncertainty-aware prediction
to a graph representation; 2) details of how to leverage a GNN
to operate on the constructed graph and generate near-optimal
robot motions.

A. Graph representation: illustrating features and connections
of objects in the workspace

Rather than simply imitating reference motions like tradi-
tional neural motion planners, our approach aims to emphasize
the dependencies of each key object within the workspace
since the object dependencies significantly influence the plan-
ning of robot motions. To highlight such dependencies in the
planning, we use nodes to represent the essential objects in
the collaboration workspace and connect them using edges.
As shown in Fig. 3, the robot’s current state is denoted using
six blue nodes, corresponding to the six joints of the robot.
The same representation strategy is applied to the robot’s goal
state and the obstacle states. To simplify the illustration, we
respectively use dots A, B, and C to represent the robot’s cur-
rent state, the robot’s goal state, and the obstacle’s state in the
graph of Fig. 3. Furthermore, the uncertainty-aware prediction
contains multiple future human arm joint positions, which are
represented as nodes. In summary, we use v to represent the
node of the graph, and V = [v1, ..., vt, ..., vT ] stands for total
T essential nodes in the collaboration workspace.

A

Updated graphAWorkspace

Uncertainty-aware
prediction

Fig. 3: The representation of objects in the workspace and the simplified
illustration of the overall graph: the uncertainty-aware prediction is
represented using red color. We use dots A, B, and C to simplify the graph
representation. Blue dot A indicates the robot’s current state, purple dot B
denotes the robot’s goal state, and green dot C indicates the obstacle’s state.
All dots contain multiple nodes and edges based on their own structural
attributes.

B. Graph operation: node embedding based on neighbors

In the previous subsection, we employ a graphical rep-
resentation to efficiently illustrate the objects in the col-
laborative workspace and showcase their connections. To
generate collision-free robot motions, we first employ an
oracle planner that generates expert robot trajectories in
collaborative workspaces to obtain the training data, and then
leverage a GNN to operate on the constructed graph and train
the network to generate near-optimal motions.

The graph is described by two matrices: a feature matrix and
an adjacency matrix. The feature matrix H describes features
of the objects in the workspace, such as the manipulator
joint value, the current and future arm’s positions, and the
static obstacles’ potions. The adjacency matrix A indicates
the relationships between all nodes. The layers of GNN update

features of each node based on the adjacency matrix A. The
node embedding process is denoted as:

h(l)
vt

= fupdate

(
θ(l), h(l−1)

vt
, {h(l−1)

vj
}j∈Nvt

)
(5)

where h
(l)
vt denotes the embedding of node vt in the layer l, θ

is learning weights, and Nvt
indicates neighbors of node vt.

Fig. 4: The process of motion generation: red dot D indicates the predicted
human arm after MCDS, multiple GNN blocks are used to update the
embeddings of nodes, and GNN finally outputs the robot configuration of
the next step.

Fig. 4 illustrates the motion generation using GNN. The
red dot D indicates the uncertainty-aware predictions. The
GNN input H(0) = [hv1 , ..., hvt , ..., hvT

] is initialized by the
node features of the overall graph. All nodes update their
embeddings simultaneously in the layer-wise propagation of
GNN using the following equation:

H(l) = ReLU
(
D̃− 1

2 ÃD̃− 1
2H(l−1)Θ(l−1)

)
(6)

where ReLU is a nonlinear activation function, H(l) indicates
the updated feature matrix in the layer l, Ã = A + I is the
adjacency matrix with added an identity matrix, D̃ stand for
the degree matrix of Ã, and Θ(l−1) is the learning weights
in matrix form. Eventually, the output layer takes all updated
node embeddings into account and provides the next robot
configuration:

ĉ = Oθ(H
(l)) (7)

where Oθ is the output function, and ĉ is the next robot
configuration towards the goal region.

C. GNN training

The previous subsection describes that our neural planner
considers various factors for generating the next robot config-
uration ĉ towards the goal position. To ensure the generated
motion to be near-optimal, GNN needs to learn optimal paths
generated from an oracle planner. The optimal robot path
connecting given start and goal configurations is denoted as
σ = [c1, ..., ci, ...cI ] ∈ RI×d, where d is the dimensionality
of the robot configuration space. Utilizing the one-step look
ahead planning strategy outlined in [27], we define the training
loss function for our neural planner as follows:

lplanner =
1

Nz

Nz∑
z

Iz−1∑
i=1

∥cz,i − ĉz,i∥2 (8)

where Nz is the total number of robot paths in a batch, and
Iz is the length of the zth path.
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D. Bi-directional planning

After the network training, the learning weights Θ in
Eq. (6) are well-tuned. We use the well-trained GNN to
perform real-time robot motion planning. Based on the one-
step-ahead planning strategy, the planned robot configurations
are iteratively used as new inputs of our neural planner until
a complete path is found. Such a planning heavily depends
on the previously generated robot configuration, which may
potentially accumulate errors throughout the planning process
and result in the robot deviating from the goal region.
Therefore, we adopt a bi-directional planning way to enhance
the robustness of online planning.

The bi-directional planning starts by initiating two sub-
planning branches simultaneously, originating from the start
and goal configurations, respectively. Then, we generate linear
interpolations trying to directly connect two branches in
each planning iteration. Additionally, the two branches grow
iteratively until the planned robot configurations and the
generated interpolations are both collision-free. Eventually,
the two sub-planning branches are stitched together to be a
complete robot path.

V. EXPERIMENTAL VALIDATIONS

A. Experiment setup

1) Experimental Setting Fig. 5 shows the experiment set-
ting of two disassembly scenarios. We use the Vicon motion
capture system to track human motions. When constructing
the human arm model for collision-checking, we introduce
an additional radius to the human arm. This precautionary
measure establishes a safety margin between the detected
collision and the actual collision. To ensure safety and prevent
potential physical injuries, robot needs to consider both the
tracked and predicted human motions.

Note that in the collaboration scenario of this work, the
human worker grabs tools located on the workstation while
the robot transports disassembled components above the work-
station. The physical barrier of the workstation effectively
separates the entire human body from the robotic arm. Con-
sequently, the human arm and the robot present the highest
likelihood of collisions. Therefore, tracking and predicting the
positions of the forearm and upper-arm suffice to ensure the
safety of the collaborative task as outlined in this work. How-
ever, it is inadequate for ensuring the safety in scenarios of
broader collaboration. Tracking and predicting the movement
of the whole human body instead of just the forearm and
upper-arm are still necessary for diverse collaborative modes.

2) Data acquisition We collect 120 human arm trajecto-
ries in the frequency of 25Hz for each type of human motion
shown in Fig. 5. In our work, one human worker is involved
in the data collection, and the human worker is required to
perform actions naturally throughout task executions, without
deliberate control over the speed. Therefore, while the action
speed exhibits some variability, it remains within a reasonable
range. These trajectories are then converted to bone-vectors for
network training. We use 70% of data to train the prediction
model. Another 15% of data is employed for validation, while
the remaining portion is reserved for testing. The horizons of
the observation and prediction are both 2 seconds.

Vicon cameras

b
c

Monitor
Tool box

Container

Desktop

a
Human motion A: a b a
Human motion B: a c a

Table

Fig. 5: The experimental platform: a, b, and c represent three locations in the
table, tool box, and desktop, respectively. Human motion A demonstrates a
scenario in which a human worker initially disassembles a hard disk on the
table, then reaches towards the tool box to get a new screwdriver, and finally
resumes the disassembly task. Human motion B demonstrates a scenario where
a human worker initially disassembles a hard disk on the table, then grabs a
component from the disassembled desktop, and eventually puts the component
on the table.

3) Networks The RNN-based human motion prediction
model is based on LSTM structure. It consists of three LSTM
layers and one dense layer serving as the output layer. Each
LSTM layer is followed by a dropout layer with a dropout
probability of 10%. The input dimension of the prediction
model is a 50 × 6, where 50 indicates the observation steps
and 6 implies the number features of arm poses. The output
dimension of the model is 50 × 5 × 6, where 50 implies the
prediction steps, 5 indicates the sampling size, and 6 denotes
the number features of the arm pose. The GNN consists of five
graph convolutional layers employing Rectified Linear Unit
activation functions. Subsequently, one global sum pooling
layer is applied to compute the sum of node features, and
one dense layer is employed as the output layer. The input of
the GNN is a constructed graph described with a 55×6 feature
matrix and a 55×55 adjacency matrix, where 55 indicates the
total node number and 6 implies the number of node features.

B. Experimental test results

1) Validation of the neural planner To evaluate the ef-
fectiveness of the graph-based planner, we create a total of
12 different workspaces. We employ RRT* [36] from the
open motion planning library (OMPL) as the oracle planner
to generate optimal robot motions in a motion planning
platform MoveIt. Each static workspace includes 800 planning
scenarios with random pairs of start and goal configurations. In
static workspaces, we conducted comparative studies between
our approach and three other planners from OMPL, which are
RRT* [36], RRT [20], and the advanced planner bi-directional
FMT* (BFMT* [37]). A comparison study is provided in
Table I [30], from which the graph planner demonstrates
superior performance compared to the other three planners
in terms of path length and planning time, and it achieves
a promising level of success in generating collision-free
motions.

2) Uncertainty-aware prediction We select different val-
ues for Monte Carlo sampling size K to obtain the quantified
uncertainty. The corresponding results are illustrated in Ta-
ble. II. The “Elbow/m” and “Wrist/m” present the standard
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Planner Path length (m) Planning time (s) Success rate

RRT 1.695 ± 0.725 0.335 ± 0.650 93.5%
RRT*(±10%) 1.078 ± 0.138 3.700 ± 2.421 70.2%

BFMT*(±10%) 1.082 ± 0.137 0.541 ± 0.148 91.1%
Graph Planner 1.023 ± 0.130 0.197 ± 0.053 88.1%

TABLE I: Comparison results of planners: we assume the result data fit
normal distribution. Path length refers to the total distance traversed by the
manipulator’s end-effector along the planned path, planning time quantified
the time taken by the planner to compute a collision-free path, and success
rate measures the percentage of planning scenarios in which a collision free
path is successfully generated from the given start to the goal configuration.
Considering the dependency between planning time and trajectory optimality
in RRT* and BFMT*, we terminate the planning of RRT* and BFMT*
when the planned path length reaches a certain percentage of the path length
generated by our approach. Note that the planning time results of RRT is
imposed to be normal distribution for better comparison.

deviation in predictions relative to the mean predicted joint
position. Small values of “Elbow/m” and “Wrist/m” indicate
greater consistency among multiple arm poses at the predicted
time instance, while larger values signify greater variability.
Note that there are no target or minimum required values for
the quantified uncertainties. A large value signifies increased
variability in arm poses at the predicted time instance. This
may broaden the scope of possible arm motions for enhanced
robot motion planning. However, due to the close proximity
between the potential human arm poses and the robot, it will
make the robot more difficult to find motions to avoid potential
collisions, and the prolonged inference time increases the risk
of human-robot contacts. Therefore, the selection of suitable
K is a trade-off problem. Based on the observation of the
Table. II, the rise in the value of K leads to a substantial
increase in the inference time, whereas the escalation in the
quantified uncertainties of elbow and wrist positions has a
negligible impact. Therefore, we select K = 5 to quantify
uncertainties and take the quantified uncertainties into the safe
robot motion planning. This decision balances the need for
comprehensive uncertainty assessment with inference times.

K Elbow/m Wrist/m Inference time/s

5 5.25×10−3 9.95×10−3 0.29
10 5.69×10−3 (↑8.38%) 1.01×10−2 (↑1.50%) 0.49 (↑68.97%)
20 5.64×10−3 (↑7.43%) 1.01×10−2 (↑1.50%) 1.16 (↑300.00%)

TABLE II: Inference time and the standard deviation in predictions based on
different sampling sizes, where the value in the parentheses is the increased
percentage compared to the selection of K = 5.

3) Comparison between predictive error and uncertainty
We also define the predictive error as the difference between
the mean prediction and the ground truth, and compare
the quantified uncertainties and predictive errors in terms
of the human elbow and wrist joint positions in Fig. 6. It
includes 200 arm poses selected from the test dataset. The
predictive error and quantified uncertainty show a high co-
relation. Importantly, when human workers are conducting
collaborative tasks, the predictive error can not be utilized
in the robot planning since it’s not feasible to obtain future
ground truth at the current time step. Therefore, the quantified
uncertainty can be used as an alternative source of information
for ensuring human safety.

4) Benefits of integrating predictions To handle the plan-
ning in dynamic workspaces, we simulate a collaborative
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Fig. 6: The comparison between predicted errors and quantified uncertainties
regarding elbow and wrist: high co-relation

disassembly scenario and utilize the RRT* planner to generate
a set of 12000 collision-free motions for the manipulator in
one workspace that involved the current and future human
motions. Fig. 7 and Fig. 8 illustrate the experimental tests
based on the human motion A and B, respectively. Three
cases are considered in the experimental tests: (1) planning
without human arm, (2) planning without human prediction,
and (3) planning with human prediction. The first case is the
planning without taking into account the current position of the
human arm, resulting in direct contact between the manipulator
and the human. Such a case highlights the necessity of the
real-time re-planning in HRC scenarios. In the second case,
the planning considers the current position of the human
arm. When the arm is reaching and grabbing components
shown in Fig. 7 (III) and Fig. 8 (III), the neural planner
is capable of promptly re-planning safe motions to avoid
collisions. The third case is the planning with uncertainty-
aware prediction. Multiple future arm poses are used to
check collisions continuously. The manipulator plans motions
at the early stage of the task execution since it detects
potential collisions according to the predictions. In general,
experimental tests show that the robot exhibits abrupt changes
in motion when only considering the current human arm
positions. On the other hand, by incorporating future human
arm poses into the planning process, the robot demonstrates
smoother motions in terms of an earlier response and a
smoother path for the end-effector.

Quantitative results of smoothness evaluation in terms of
velocity profile are provided in Table III. We calculate the
acceleration and jerk, and take averages for each step and
each robot joint. Without considering the human operator,
the robot planner can find a smooth trajectory in the static
environment; however, it can lead to collisions since the
planner is not human-aware. When considering the human in
the environment during the planning process, robot motion
will be affected due to the movements of the human operator.
However, the smoothness can be improved by incorporating
human motion prediction in the planning process, compared
to the model without human motion prediction.
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Planning without 
human arm

Early re-planning with 
higher vertical trajectory

Extra re-planning 
to avoid human

Collision with 
human

Planning without 
human prediction

Planning with 
human prediction

(1) (2) (3) (4)

(I) (II) (III) (IV)

(a) (b) (c) (d)

Predicted 
motion

Fig. 7: The experimental tests based on human motion A: the experimental tests include three planning cases. Sub-figures (1)∼(4) are the planning scenario
without considering the human arm. Sub-figures (I)∼(IV) present the planning based on the current human arm’s position, where the robot re-plans its motions
to accommodate the reaching motion of the human. Sub-figures (a)∼(d) demonstrate the planning with uncertainty-aware prediction. In sub-figure (b), the
observed human motion is putting the screwdriver on the table, and the predicted human motion is reaching for a new screwdriver (i.e., human arm represented
by orange color). The robot detects potential future collisions based on the predicted human motion and has an early re-planning to avoid such collisions.
Note that the blue end-effector paths are drawn manually.

Early re-planning with 
higher vertical trajectory

Extra re-planning to 
avoid human

Collision with 
human

Planning without 
human arm

Planning without 
human prediction

Planning with 
human prediction

(1) (2) (3) (4)

(a) (b) (c) (d)

(I) (II) (III) (IV)

Predicted 
motion

Fig. 8: The experimental tests based on human motion B: the experimental tests include three planning cases. Sub-figures (1)∼(4) are the planning scenario
without considering the human arm. Sub-figures (I)∼(IV) present the planning based on the current human arm’s position, where the robot re-plans its
motions to accommodate the grabbing motion of humans. Sub-figures (a)∼(d) demonstrate the planning with uncertainty-aware prediction. In sub-figure (b),
the observed human motion is putting the screwdriver on the table, and the predicted human motion is grabbing components from the disassembled desktop
(i.e., human arm represented by orange color). The robot detects potential future collisions based on the predicted human motion, and has an early re-planning
to avoid such collisions. Note that the blue end-effector paths are drawn manually.

Experimental Case Acc. (rad/s2) Jerk. (rad/s3)

Planning w/o human arm 1.71×10−2 1.94×10−2

Planning w/o human prediction 4.21×10−2 10.1×10−1

Planning w/ human prediction 3.50×10−2 7.58×10−2

TABLE III: Quantitative results of the smoothness for the robot trajectory.
The reported smoothness is evaluated by the average acceleration and jerk
(per robot joint per step).

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a graph-based framework that seam-
lessly incorporates uncertainty-aware human motion prediction
into robotic motion planning. The human motion is predicted
using an RNN-based prediction model, and the uncertainty
of the prediction model is explicitly quantified using MCDS.
The uncertainty-aware prediction is effectively integrated into

a graph that represents the collaboration workspace. The
manipulator motions are planned based on the constructed
graph, and the uncertainty-aware prediction is utilized to
expand the safety margin during the planning. The results of
the experiments demonstrate that the proposed planning frame-
work can enhance the smoothness and safety of collaborative
disassembly processes.

To further enhance the safety of collaborations, future
studies will focus on establishing a target inference time
during the collaboration. The inference time can be determined
through iterative task execution trials, where the human worker
gradually increases the moving speed until contact occurs.
Additionally, given our heuristic approach of setting an extra
radius as a safety distance, establishing the minimum safety
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distance can also be achieved by targeting this inference
time. Additionally, our forthcoming studies will involve recon-
structing feasible arm poses at each predicted time instance,
empirically collecting uncertainties, and presenting the results
in a statistically rigorous manner to better demonstrate the
validity of our approach. Furthermore, future studies will
validate the smoothness of the robot motions such as the
execution velocity and acceleration considering that the path
length may not offer a comprehensive measure of optimality.
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