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Abstract—Industrial manipulators have extensively collabo-
rated with human operators to execute tasks, e.g., disassembly of
end-of-use products, in intelligent remanufacturing. A safety task
execution requires real-time path planning for the manipulator’s
end-effector to autonomously avoid human operators. This is even
more challenging when the end-effector needs to follow a planned
path while avoiding the collision between the manipulator
body and human operators, which is usually computationally
expensive and limits real-time application. This paper proposes
an efficient hybrid motion planning algorithm that consists of
an A* algorithm and an online manipulator reconfiguration
mechanism (OMRM) to tackle such challenges in task and
configuration spaces respectively. The A* algorithm is first
leveraged to plan the shortest collision-free path of the end-
effector in task space. When the manipulator body is risky
to the human operator, our OMRM then selects an alternative
joint configuration with minimum reconfiguration effort from a
database to assist the manipulator to follow the planned path
and avoid the human operator simultaneously. The database of
manipulator reconfiguration establishes the relationship between
the task and configuration space offline using forward kinematics,
and is able to provide multiple reconfiguration candidates for
a desired end-effector’s position. The proposed new hybrid
algorithm plans safe manipulator motion during the whole task
execution. Extensive numerical and experimental studies, as well
as comparison studies between the proposed one and the state-
of-the-art ones, have been conducted to validate the proposed
motion planning algorithm.

Index Terms—Manipulator, Motion Planning, Human-Robot
Collaboration

I. INTRODUCTION

N recent years, the rapid development of intelligent reman-

ufacturing enables human-required repetitive and danger-
ous tasks to receive assistance from industrial manipulators.
The human-manipulator collaborative tasks, e.g., disassembly
of end-of-use products [1]-[3], need them to work side-by-
side in a sharing environment. When executing tasks, the
proximity between human workers and manipulators brings
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potential collisions since manipulators usually move fast and
human motion is usually dynamic with uncertainties [4], [5].
Therefore, it’s important to develop a reliable motion planning
algorithm for manipulators to guarantee human workers’
safety.

Most robot-engaged task executions require planning a se-
quence of waypoints that enables the robot to safely move from
an initial position to a goal position in the task space. To this
end, extensive path planning algorithms have been proposed
to generate a collision-free path for robots. The manipulator
also needs to preserve task constraints throughout the planned
motion in many real-world tasks, e.g., avoiding collision with
human operators as well as following a desired task path
[6], [7] or maintaining a desired end-effector’s orientation
[8]. Such task-constrained motion planning problems usually
are solved in the configuration space by finding the config-
uration that satisfies the constraints [9]. The configuration
space usually has higher dimension compared to the task
space, especially for redundant manipulators, which limits
the application of the mentioned grid methods and intelligent
bionic planning methods due to the high computational cost.

To execute tasks as well as satisfy constraints successfully,
many efforts have been devoted to planning the manipulator
motion in the configuration space. Virtual potential field
methods enable the manipulator to avoid obstacles and track
references by creating repulsive and attractive forces on
the manipulator respectively. For example, the joint velocity
according to the repulsive and attractive forces is calculated
in [10] to guide the manipulator to avoid the obstacle and
follow the trajectory step by step. The safe set of the collision
avoidance algorithm introduced in [11] further reduces the
counteraction between the repulsive-based and attractive-based
velocity components.

Moreover, sampling-based methods keep choosing samples
randomly or determinately in the configuration space and
verifying the satisfaction of the desired constraints, and a con-
tinuous motion will be generated by connecting the admissible
configurations. For example, the probabilistic roadmap method
(PRM) [12] generates random samples in the configuration
space of the robot, and connects the generated free configu-
rations by a fast local planner. A roadmap is constructed to
handle multiple queries problems of motion planning. Rapid
exploring random tree (RRT) and its modifications formed a
sampling-based exploring tree in the configuration space and
used constraint-satisfied samples to extend the branches until
reach the target configuration [13]-[16].

The aforementioned sampling-based planner have the ca-
pability of solving high degree-of-freedom (DOF) motion



planning problems, but the generated trajectories tends to be
not optimal. In recent years, some asymptotically optimal
sampling-based algorithms, e.g., RRT* [17] and PRM* [18],
have been developed to generate not only feasible but also
asymptotically optimal robot trajectories. Every newly gener-
ated configuration and its nearby configurations are employed
to check if the planned path can be further shortened. Although
the generated trajectories are globally optimal, the compu-
tational complexity of the asymptotically optimal sampling-
based algorithms is high, and these algorithms may be not
competitive for scenes with moving obstacles.

The manipulator motion planning can also be formulated as
a nonlinear optimization problem that can be solved to obtain
a series of robot motions while satisfying several constraints
[19], [20]. As most of the formulated planning problems are
highly non-convex and nonlinear, usually they are transformed
to sequences of convex sub-problems, which can be solved
iteratively [21], [22]. However, most of them are still subject to
computational cost especially when there are moving obstacles
changing the free configuration space in a complex way.

Recently, several motion planning studies aim to opti-
mize the balance between two criteria, efficiency, and safety,
especially in human-robot collaborative environments. For
example, [23] embedded a human model in the robot’s
motion planner and converted the robot’s safety speed limit
into configuration-space cost functions that drive the path’s
optimization. [24] presents a spatio-temporal avoidance of
predictions-prediction and planning framework (STAP-PPF)
which proactively determines time-optimal robot paths by con-
sidering the predicted future human motions and robot speed
restrictions. [25] introduced an S* algorithm that leverages
a graph search guided by an informed cost balance criterion.
While these studies improve the planning efficiency in human-
robot collaborative environments, the task constraints are not
explicitly considered.

Actually, problems in the task space have to be converted
into the configuration space online to find a locally optimal
configuration as well as satisfying task-space-based constraints
in the aforementioned optimization-based studies, e.g., [21],
[26], [27]. Such a conversion is inevitable and may increase the
computational cost, especially when facing moving obstacles.
The moving obstacle makes the manipulator motion is more
difficult to be efficiently planned since the free configuration
space is changing with the obstacle state in real-time. In
this paper, we present a hybrid algorithm to plan safety
manipulator motion in a dynamic environment. A collision-
free path is first planned as the end-effector’s reference in
the task space. The manipulator body’s motion safety is
then ensured by OMRM in the configuration space when
facing a moving obstacle as well as following the planned
path. OMRM uses the alternative manipulator configuration
provided by a database to satisfy nonlinear constraints in
motion planning. Instead of converting the task space to the
configuration space online, the database of the manipulator
reconfiguration establishes the relationship between the task
space and configuration space offline, which significantly
reduces the computational cost.

The main contributions of this work are summarized as
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Fig. 1. The potential collision scene: the manipulator motion is introduced in
the left-down corner of the figure, the orientations of the end-effector in the
four manipulator states are the same, and we focus on the motion from state
B to state C. The green line is the planned collision-free path, the yellow box
is the obstacle.

follows. (1) We presented a new hybrid motion planning
algorithm which aims to efficiently plan the shortest end-
effector’s path while avoiding collisions between the whole
manipulator and the dynamic environment with minimum
reconfiguration effort (i.e., minimum joint-angle change). (2)
The database of the manipulator’s reconfiguration minimizes
the necessity of the online task-configuration-space conver-
sion, which improves the motion planning efficiency. (3) The
effectiveness of the proposed motion planning algorithm has
been experimentally validated.

The remainder of this paper is organized as follows. Section
2 gives the overview of the proposed motion planning algo-
rithm; Section 3 describes the end-effector path planning in
the task space; Section 4 presents the avoidance of collision
between the manipulator body and the human operators in the
configuration space; Section 5 shows the effectiveness of the
proposed algorithm in the simulation; Section 6 demonstrates
the experimental tests with two scenarios; Section 7 concludes
this paper.

II. OVERVIEW OF THE PROPOSED MOTION PLANNING
ALGORITHM

This section presents the overview of the proposed new
hybrid algorithm for manipulator motion planning. This al-
gorithm aims to efficiently generate (1) a collision-free path
for the end-effector with the shortest distance from the start
position to the goal position in the task space, and (2) a
collision-free path for the manipulator links with minimum
reconfiguration effort. We first briefly introduce a potential
collision scene between the obstacle and the manipulator
body. We then formulate the planning problem with collision
avoidance into an optimization problem with constraints in
both task and configuration spaces. Eventually, we focus on
how the optimization problem is solved using the proposed
motion planning algorithm that consists of hybrid online-
offline reconfiguration.

Fig. 1 illustrates a potential collision scene. Suppose the
manipulator is conveying components, e.g., screws, to a



container in a disassembly process. The end-effector of the
manipulator carrying a screw tries to move from state B
to state C with the shortest distance. The task completion
requires the end-effector to follow the green obstacle-free path.
Meanwhile, an obstacle represented by the yellow box appears,
which would cause a collision if the manipulator moves
forward following the planned path. In this case, to follow
the planned path and avoid such a collision simultaneously,
the configuration causing a collision has to be substituted by
a new collision-free configuration leading to the same end-
effector’s position.

We first introduce needed notations and definitions. The
manipulator end-effector’s position is denoted as x such that
r € X C R3 where X is the task state in 3-dimensional
task space. The manipulator configuration is denoted as 6
such that 8 € © C RY, where O is the configuration state
in g-dimensional configuration space. The area occupied by
the manipulator with the configuration 6 in the task space is
represented as M () C R3. The calculation of the occupied
area is based on the forward kinematics of the manipulator.
It considers the length and radius of individual manipulator
links, as well as the precise positional offset associated with
manipulator joints. The relationship between the end-effector
position z and the manipulator configuration 6 is based on the
forward kinematics of the manipulator, e.g.,

x = F(0) ey

where F' € F denotes the forward kinematics. In order to
meet the safety requirement, the human operator, which can
be treated as a moving obstacle, has to be considered in
the manipulator motion planning. The area occupied by the
human operators in the task space is O C R3. What’s
more, considering the whole manipulator body, the dangerous
manipulator state is marked as ©07 < RY, in which @7 is
defined as:
Vo € 07, M@O)NOT #£0

We define the safe task state and the manipulator configuration
state respectively as follows:

« The obstacle free end-effector state in task space:
xfree = x\ of 2)

o The obstacle free manipulator configuration state in
configuration space:

efre =\ 0’ 3)

As shown in Fig. 1, assuming the robot needs to plan
K steps in total to move from the initial state B to the
target state C, the end-effector’s position at step & is marked
as rp € X, and the end-effector path from the initial
position xy to the goal position xx,; is represented as
[0, 21,22 .., 0k, Tx 1] € XEFT2. We do not consider the
orientation of the manipulator in this study, and the manipu-
lator motion planning aiming to generate a shortest collision-
free path can be formulated into the following optimization
problem:

K+1

min Y flay — 2k (4a)
2L

st xpe X" CR? (4b)

Op < o — 2p—1|| < 0v (4c)

0, € ©/" C R (d4e)

where 07, and dy are the minimum and maximum distances
between two successive waypoints, 05 is the manipulator
joint configuration at step k, and & = [zy,22...,2k]| and
0 = [01,02...,0k] are planned manipulator states in task
space and configuration space, respectively. Note that X,f ree
and @i’“ee may change at each step based on the moving
human operator’s state.

Eq. (4b) indicates that the planner needs to guarantee the
end-effector’s safety in the task space. To enable the task
to be executed efficiently and safely, Eq. (4c) is included
to limit the distance between waypoints to a certain range.
To guarantee that the joint configurations match up the end-
effector’s position, the nonlinear mapping Eq. (4d) is included.
To make sure that the whole manipulator body is collision-
free, Eq. (4e) is included. Note that although Eq. (4e) implies
Eq. (4b), Eq. (4b) and Eq. (4e) are guaranteed by A* in the
task space and OMRM in the configuration space, respectively.
Therefore, we include both of them in the formulation.

The manipulator motion generation is regarded as solving
the above optimization problem. Actually, the drawback of
the traditional task-constrained manipulator motion generation
lies in that the online conversion between the task and
configuration spaces is inevitable. It’s difficult to solve an
optimization problem efficiently, especially when considering
the performance of the task execution and the collision
avoidance of the whole manipulator body simultaneously.
Therefore, in this paper, we propose a new hybrid online-
offline manipulator motion planning algorithm to solve the
optimization problem Eq. (4) and respectively satisfy the
desired constraints in the task space and configuration space
in the following ways:

e The manipulator workspace is converted to a 3-
dimensional (3D) grid map in real-time. In order to
satisfy Eq. (4b) in the task space, A* algorithm is applied
to eliminate the nodes which contain the human operator
and plan a path of the end-effector only in X¥7ee,

o The waypoints of the planned end-effector path is gener-
ated between two successive nodes. The node size limits
|lxr — xr—1]| such that Eq. (4c) is satisfied.

e Eq. (4d) describes the highly nonlinear mapping from
the joint configuration to the end-effector’s position.
The manipulator motion usually is controlled in the
configuration space. In order to find the configuration 6y
such that the manipulator can reach the desired waypoint
xk, the traditional way is using the inverse kinematics
algorithm:

O = JT 0k 1) (z — F(Or_1)) + 01 5)
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Fig. 2. The framework of solving the formulated optimization problem, where the green dots represent the joint configuration candidates corresponding to

T

where J(6;,_1) € R7%3 is the pseudo inverse of the ma-
nipulator Jacobian evaluated at 05_1. In the case of ¢>3,
inverse kinematics usually provides one optimization-
based configuration solution for a desired xj since the
manipulator is kinematically redundant. However, ob-
taining 0 online is difficult if the collision checking
is integrated into the inverse kinematics. We employ
forward kinematics to construct a joint configuration
database offline. Such a database provides multiple joint
configurations which lead to the desired zj. Therefore,
instead of directly solving for one collision-checked
configuration 6, online, multiple configuration candidates
for the desired zj, are pre-computed offline, and Eq. (4d)
is satisfied instinctively.

o Eq. (4e) requires that the manipulator body cannot have
any collisions with the human operators. We develop an
online manipulator reconfiguration mechanism (OMRM)
to satisfy this constraint in the configuration space. If
M(0,) N OF # 0 in the current step k, OMRM
would select one optimal joint configuration 8} from the
database based on the desired zj, the reconfiguration
effort, and the collision checking. The optimal joint
configuration 6 replaces 6, such that M(6;)NOF = (.

By solving the formulated optimization problem in real-

time, the end-effector follows the shortest planned path and the
manipulator body has no collision with the human operators
during the whole task execution. Fig. 2 illustrates that how
the optimization is solved step by step. The A* path planning
algorithm handles the generation of the end-effector’s each
waypoint xj in the task space. If the joint configuration
0, obtained from a real manipulator faces a collision with
the human operators, OMRM would handle the manipulator
reconfiguration in the configuration space to avoid the human.

III. END-EFFECTOR PATH PLANNING IN TASK SPACE

This section presents details on how the end-effector path
is planned. We consider planning a shortest end-effector path
from the initial position x( to the goal position g1 in the
task space. Here we leverage A* algorithm [28] to obtain such
a path in a dynamic environment.

Firstly, the workspace of the manipulator is rasterized, and
3D grid cells are generated. The node is at the center of the
cell and stands for the end-effector’s position x in the task
space. Then, if the end-effector is in the current node xj_1,
the next waypoint of the end-effector, i.e., x, will be searched
from the feasible successor nodes which have no overlap with
any humans. For each reachable and feasible node n, the next
node x; is selected based on the shortest distance which is
defined as following equation:

f(n) = g(n) + h(n) (6)

where f(n) stands for the total distance cost from zg to Z k41
passing a node n, h(n) is the euclidean distance cost from the
node n to k41, and g(n) denotes the actual distance cost

from ¢ to the node n through the planned path [z1, ..., z;_1]
with the following equation:
g(n) = g(xx—1) + Ag(zk—1,n) (M

where g(x_1) is the actual distance cost of the planned path,
and Ag(zr_1,n) is the distance cost from the node xj_;
to node n. The node with the minimum total distance cost
is chosen as xj until the end-effector reaches the goal node

TK+1-

In a dynamic environment, the grid map is updated with a
certain frequency in real-time such that the area occupied by
the human operators O} is informed to the end-effector path
planning. x4, is the local start node and is updated itera-
tively. Open list contains all obstacle-free successor nodes. f
list contains the cost function values of obstacle-free successor
nodes. The moving obstacle first is treated to be relatively
static to plan a local path Closed from Zgqr tO Tro1.
Every waypoint of the local path is determined based on
the cost function value in f Next, based on a certain step
size v determined by the map updating frequency, we re-
plan the local path and construct the global planned path
Z =[x1,22...,2k] for the end-effector from xg to Tj 1.
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Fig. 3. The structure of the reconfiguration database: each ©% stands for the
set of configuration candidates that leads to the same z in the task space.

IV. MANIPULATOR RECONFIGURATION IN
CONFIGURATION SPACE

A collision-free path is planned for the end-effector to reach
the goal position safely. Actually, safety is guaranteed only for
the end-effector in the task space, and the collision between
the human and the manipulator body still may happen due
to an improper joint configuration. This section presents the
avoidance of collision between the whole manipulator body
and the human operators. We construct a database based on
Eq. (1) to provide multiple manipulator configurations for
a desired x, and develop OMRM to achieve the collision
avoidance for the whole manipulator body.

A. Construction of manipulator configuration database

This subsection describes the details of the database con-
struction. In most manipulator motion planning algorithms,
a desired joint configuration, i.e., 6 for a specific end-
effector’s position, i.e., xy, is solved by the optimization-
based inverse kinematics [29]-[31]. On the other hand, the
computation time of solving the inverse kinematics may
increase if the collision checking of the whole manipulator
body is embraced, especially for redundant manipulators.
Moreover, the inverse kinematics may fail to converge a valid
solution and usually provides only one configuration solution.
Actually, a redundant manipulator has the property that it has
the different (infinite) joint configurations to reach one single
end-effector’s position. Therefore, we take advantage of such
a property using forward kinematics to construct a database of
the manipulator configuration offline. The database provides a
set of manipulator configurations @z for a single zj, where
O = [01,04,....0.,...,0c] € R7*C, cis the index, and C
is the total number of the configuration candidates and may
change based on different zj. Fig. 3 presents the structure of
the database. By selecting a proper configuration as 6;, from
9;2 the expensive cost of computing a desired configuration
is transformed to a cheap selection cost.

The database of the manipulator reconfiguration is generated
based on forward kinematics. Kinematic equations is used
to compute the end-effector’s position using the manipulator
parameters, e.g., the joint angle and the manipulator link’s
length. Suppose a manipulator is characterized by a sequence

of ¢ links S;, i = 1,2,...,q, one for each joint angle ¥,
in the robot. Each joint has a local coordinate system, e.g.,
x;, Yi, and z;. The manipulator link S; is regarded as the
coordinate transformation between tow successive joints. The
rotational and translational transformations are represented as
the Denavit-Hartenberg (DH) matrix:

cos¥; —sind; cosy; sind; sinco; a; cos v,
sin?; cosv;cosq; — cosd;sinq; a; sindd;
0 sin o COS (; d;

0 0 0 1

A= (®)

where the 9J; is the manipulator joint describing as the angle
change from x;_; to z; about z;_1, the «; is angle change
from z;_1 to z; about x; , d; is the offset between two joints
along z;_1, and a; is the offset between two joints along x;.
The transformation of the last link T, is obtained with the
following equation:

T, = HAi )

where the translation part of T, is the end-effector’s position.
The a;, d;, and «; values depend on the manipulator type.
Abundant configurations are first generated by specifying the
joint limit and changing the joint angle ¢; with a certain
interval 1. The n value determines the total number of gen-
erated configurations. Next, the corresponding end-effector’s
positions are computed using Eq. (9). Finally, considering the
database is required to provide the configuration candidate set
OT based on a certain z, the configurations that lead to the
end-effector’s position x within a task space error tolerance (
are classified as the elements of OT, i.e.,

v € OF, [F(9) —alls < ¢

Note that the error tolerance ( is a user-defined value and
is closely aligned with the grid size of the waypoints stored
within the database. It affects the number of configuration
candidates for each waypoint.

B. OMRM

This subsection describes how OMRM selects the optimal
configuration ¢; from the database. When facing a collision
of the manipulator body, the database has the capability to
provide a set of configuration candidates @z for a desired xj,
such that any configuration candidate . from 0:{ can lead to
z. On the other hand, not every configuration candidate can
make the manipulator avoid the human. A straightforward way
to guarantee the human to be avoided would be first checking
collision for all configuration candidates and then randomly
selecting a collision-free configuration to replace the current
one. However, this approach is inefficient and the selected
configuration may cause large joint angle changes. Therefore,
we develop OMRM to efficiently select a configuration 6
with the minimum joint angle change from 6; to make the
manipulator body to avoid the human.

The configuration selection procedure of OMRM is based
on two rules which are defined as follows:

e Rule 1: The joint angle change is preferred to be mini-

mized during the avoidance.



e Rule 2: The manipulator with the selected configuration
can not have any collision with the human operators.

When a manipulator with configuration 65 reaches the
position xj, and collides with the human OF, OMRM finds
the candidate configuration set @Z from the database first,
delaying any collision checking, and then ranks the elements of
@;r based on the root mean square error (RMSE) compared to
0, finally, the elements of the ranked 6: is checked collision
successively. A collision between a manipulator and a human
is defined as:

d(M(6),0") <0 (10)

where the manipulator and the human are respectively rep-
resented using the corresponding mesh model and cylinder
model. Additionally, d(e) leverages the flexible collision
library [32] to compute the minimum distance between two
models and determine whether two models have any overlaps
in the task space. Note that one potential limitation of
our proposed hybrid planning approach is that minimizing
joint-angle changes may bring the manipulator into close
proximity with obstacles, including humans. To guarantee a
minimum distance between the manipulator and any obstacle,
we incorporated a safety distance into our collision checking
process. Specifically, when the minimum distance between the
robot and a human is smaller than a predefined safety distance,
we treat it as a collision. This strategy effectively minimizes
reconfiguration efforts while maintaining a minimum distance
between the human and the manipulator.

Algorithm 1 describes the details of the proposed OMRM.
Note that the following case may happen: A* finds a path for
the end-effector within a narrow environment, but the physical
body of the robot may encounter a collision. When none of
the configuration candidates stored in the database is suitable
for the obstacle avoidance, instead of re-running A*, we claim
that the planning directly fails and, instead, we use traditional
sampling-based method for the next-step planning.

In theory, the number of the configuration candidates and
the corresponding manipulator states are finite for a specific
T, thus OMRM is guaranteed to provide an alternative
configuration if one exists. The guarantee does not extend to
the overall planner, as A* may successfully find a collision-
free path but OMRM may fail to provide collision-free
solutions. Furthermore, OMRM does indeed possess resolution
completeness. The discretization of potential configuration
candidates significant influences the solutions when facing a
potential collision.

V. SIMULATION

This section presents numerical studies to validate the
effectiveness of OMRM. The simulation section consists of
two parts, which are the simulation setup and the effectiveness
evaluation of OMRM comparing with other planning methods.

A. Simulation setup

1) Simulation platform: We employ an open-source motion
planning platform Movelt based on the Robot Operating
System (ROS) to validate the effectiveness of OMRM. All

6

Algorithm 1 OMRM

e Obtain O} based on the human’s position.

e Get O from the database based on zy.

e Calculate RMSE of each element in ©;.

e Rank @Z based on the RMSE from the minimum to the

maximum.

e Set iteration number j = 1.

e Assign the j th element of the ranked O} as a temporal 6;.

while d(M(6;),0F) <0 do

e Increment j.

if j < C then
e Assign the j th element of the ranked 6; as a
temporal 6.

else

| e No alternative configuration exist.

end

end
e Return the optimal manipulator configuration ;.

simulations were run on an Intel i9-12900K Processor. Movelt
construct a simulation model of the URSe robot arm based
on the corresponding Unified Robotics Description Format
(URDF) file. The URDF file contains key kinematic infor-
mation of the manipulator, which can be used to calculate
the occupied area in the task space. A simulation model of
the URSe robot arm with 6-DOF is applied in Movelt. To
guarantee the simulation effectiveness, the URSe simulation
model shares the same DH parameters with a real URSe robot.
To fully simulate the manipulator working state, a Robotiq 2F-
85 gripper model with 17mm length has been attached to the
URS5e model as the end-effector.

2) Manipulator configuration database: In the construction
of the database used in OMRM, the joint range of the
manipulator is specified from —180° to 180°. We split the
joint range based on the interval n = 4°. It guarantees
a sufficiently ample pool of configuration candidates for
each designated waypoint, while simultaneously ensuring the
efficient utilization of the database. The tolerance of the
task space error ¢ is manually selected to be 0.01m. This
value is configured to guarantee comprehensive coverage of
all necessary end-effector positions within the workspace. To
reduce the database size and the robot configuration selection
time, the database only provides the first 5 URSe joint
angles since the 6th joint angle doesn’t affect the gripper’s
position. The original database has 90° configurations in
total. The configurations are first classified according to the
corresponding end-effector’s position and stored as cells.
Considering the cost of the data storage and the lookup time,
we specify the range of the end-effector’s position to eliminate
the unnecessary cells. The range of the end-effector’s position
in the task space is specified from 0.0m to 0.7m for all X,
Y, and Z directions. Eventually, the configurations of the
final dataset can reach 357911 waypoints, and the average
configuration candidates for each cell are more than 1000.
The grid size for the waypoint in the database is selected to
be 0.01m. This grid dimension aligns with the designed error
tolerance (. The database size, occupying 6.9GB of computer
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(d) Target state (PRM*)

(e) Target state (RRT*) (f) Target state (OMRM)

Fig. 4. Planning simulation results: the blue dot is the start position, the red dot is the target position, the green box represents the obstacle.

memory, is preloaded into the computational memory of the
computer in preparation for both simulations and experimental
trials. Once a re-configuration is requested, our OMRM is
designed to directly select configuration candidates from the
previously loaded computer memory. This strategy effectively
eliminates the necessity of re-loading the database.

B. Simulation results: comparisons with other methods

This subsection presents the motion planning results using
different methods. The selection of baseline methods stems
from the following two primary rationales. (1) The methods
used for the comparative analysis have been widely used in
the realm of robot planning, particularly concerning robots
with high degree of freedom. For example, both the Trac-
IK and our OMRM can provide the robot configuration
based on the end-effector’s position, rendering them suitable
for assessing planning efficiency through the comparative
analysis. Moreover, the RRT* and PRM* planners can provide
near-optimal robot configuration, making them apt choices
for evaluating the trajectory optimility of the planning. (2)
We are not particularly focusing on the safe and efficiency
collaboration between human and robot; instead, we particu-
larly focus on efficiently planning the “shortest” end-effector’s
path while avoiding collisions between the whole manipulator
and the dynamic environment with “minimum” reconfiguration
effort (i.e., minimum joint-angle change). In our case, human
operators are considered as moving obstacles and no human
models or human motion prediction will be Incorporated.

1) Implementation details: xo = (0.42m,0.10m, 0.26m) is
set to be the planning start position. The length, width, and
height of the obstacle are 0.3m, 0.1m, and 0.1m, respectively.
We simulate 5 different planning scenarios by changing the
positions of the obstacle and the goal. In addition, the planning
goal locates always below the obstacle.

Considering the asymptotically optimal sampling-based
planners, i.e., PRM* and RRT*, tend to find the optimal
solution as the planning time increases, we set a fixed
planning time and quantify the re-configuration effort from
the start position to the target position. The re-configuration
effort is quantified upon the average joint change. To enable
the asymptotically optimal sampling-based planners to find
a feasible trajectory successfully and have extra time to
optimize the planned trajectory, the planning time is defined
to be 500ms. For each scenario, we run 10 tests for each
method, and totally 200 solutions have been collected.

Solution Joint Change Env.
Time (ms) Effort (rads)  Collisions
OMRM  7.415+ 1.689  0.533 + 0.165 0
Trac-IK  0.107 £ 0.072 1.435 + 0.436 28
PRM*  500.000 (46.522) 0.728 + 0.475 0
RRT*  500.000 (36.150) 0.817 + 0.544 0

TABLE 1
SUMMARY OF RESULTS FROM SIMULATIONS

Task Solution time/ms
Candidate set lookup upon waypoint 1.820
RMSE calculation 1.133
Ranking candidates 0.178
Solution search upon collision-checking 4.284
sum 7.415

TABLE 1T
DETAIL OF OMRM COMPUTATIONAL PROCESS

2) Motion planning results: We evaluate the test results
based on three primary measures: solution time (ms), joint
change effort (rads), and the total number of environment
collisions. Table I shows the summary of the simulation
results. Particularly, besides presenting the fixed planning time
of PRM* and RRT*, we also provide the average minimum
time of finding a feasible solution for the two planners.
Fig. 4 presents the initial state and target states of the robot
using different kinds of planning methods. The comparison
indicates a few points. First, compared to Trac-IK, the benefits
of our OMRM, e.g., less joint change effort and collision
avoidance, outweigh the cost of the extra computational time.
Additionally, the Track-IK approach lacks the capability to
factor in potential collisions involving either the environment
or the manipulator itself. The other point is that although we
set extra time for PRM* and RRT* to optimize the solution,
our OMRM still outperforms them regarding the joint change
effort. And the prolonged and inefficient computational time
associated with PRM* and RRT* significantly diminishes
their practicality, particularly in scenarios involving dynamic
obstacles.

Furthermore, the process of OMRM includes finding config-
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Fig. 5. URSe motion planning experimental test scenario A: Sub-figure (a) is the initial frame of the task execution by the manipulator, and the red line
is the end-effector’s path planned by the A* algorithm. A sudden intervention occurs with the appearance of the human arm, blocking the manipulator’s
intended movement, as shown in (b). The green circle indicates the potential collision on the manipulator link. The manipulator changes its configuration and
moves below the human arm to avoid the collision, as shown in (c). A short video of the experimental tests is available via this link and in the supplemental
materials.

Waypoints Target positions (X,y,z) Actually positions (X,y,z) Error
1 (0.4000m, 0.0500m, 0.2500m) (0.3958m, 0.0489m, 0.2499m) 0.0043m
2 (0.4000m, 0.2000m, 0.3000m) (0.4014m, 0.1975m, 0.3035m) 0.0045m
3 (0.4000m, 0.4000m, 0.2400m) (0.3975m, 0.3949m, 0.2401m) 0.0057m
4 (0.4000m, 0.4000m, 0.2100m) (0.4046m, 0.4032m, 0.2152m) 0.0076m

TABLE III
DETAILS OF WAYPOINTS’ POSITIONS AFTER RE-CONFIGURATIONS

uration candidates from the database, ranking candidates based
on RMSE, and filtering candidates by collision-checking. The
average solution time of OMRM is presented in Table II. In
general, considering that the database builds the relationship
between the task space and the configuration space offline, our
OMRM only requires a cheap selection cost.

VI. EXPERIMENTAL TESTS

This section presents experimental tests to validate the
effectiveness of the proposed motion planning algorithm. An
experiment platform has been built up and several experimen-
tal tests have been conducted.

A. Experiment setup

A URS5e robot arm attaching a Robotiq 2F-85 gripper is
employed to conduct the experimental tests. To plan the end-
effector path, a 3D grid map, in which the length, width,
and height are all 1m is constructed along with X, Y,
and Z directions. Each cell of the grid map employed by
the A* algorithm is defined as a cubic volume with a side
length of 0.02m. This grid resolution has been chosen to be
suitable for facilitating effective collision avoidance during
the planning phase of the manipulator’s end-effector. We
employ a Vicon motion capture system for the purpose of
perception and tracking the positions of moving obstacles.
The system is comprised of multiple high-speed cameras
positioned to capture the specific region necessitating motion
tracking. Moving obstacles are equipped with gray markers,
that are designed to reflect the infrared light emitted by
these cameras. By comparing the positions of the markers

in multiple camera views, it can precisely reconstruct the
obstacle’s movement in three dimensions (3D). Additionally,
the obstacle models incorporated into the collision checking
process are intentionally designed with enlarged dimension
relative to their original size. This scaling is implemented
to ensure a safety distance between the obstacles and the
manipulator, even in scenarios where a collision is detected.
Note that we implement safety mechanisms as a precautionary
measure in our experimental tests to protect the manipulator,
once self-collisions or singularities are detected.

Additionally, we didn’t explicitly specify the orientation of
the manipulator during the planning phase. There are two
reasons for not considering the orientation in our studies.
First, the specific application scenario under investigation
in this paper is disassembly processes with human, where
the manipulator moves to desired orientations to manipulate
disassembled components. It remains feasible to adjust the
manipulator’s orientation after it safely reaches the desired
position. Secondly, specifying orientation of the manipulator
during the planning phase will bring more computational
efforts, especially considering that the planner aims to find
a path that minimizes the end-effector’s path with minimum
reconfiguration efforts. Introducing orientation constraints may
increase the planning time, potentially impeding the manip-
ulator’s ability to attain a collision-free configuration while
reaching to the desired end-effector’s position.

B. Experiment scenario A

Fig. 5 demonstrates the experimental test scenario A.
The start position is denoted as z¢o=(0.44m, 0.08m, 0.42m),
while the goal position is xx41=(0.44m,0.44m,0.42m).
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Fig. 6. URSe motion planning experimental test scenario B: Multiple intervention occurs with the movements of the human operator. Sub-figure (a) is the
initial frame of the task execution by the manipulator, where the red line is the end-effector’s path planned by the A* algorithm. The human operator intervenes
by relocating a box, obstructing the original planned path. As such, the A* algorithm re-plans the path based on the box’s position, as shown in (b). The
human blocks the manipulator’s intended movements, which triggers the first and second re-configurations, as shown in (d) and (g). In addition, (i) and (k)
illustrate the moments when collisions between the box and the manipulator are detected. These collisions activate the third and fourth re-configurations. A
short video of the experimental tests is available via this link and in the supplemental materials.
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Fig. 7. Precision analysis after re-configuration in the experimental test scenario B: The end-effector’s position after re-configuration is highlighted with red
circles.

The planned path for the end-effector is a straight red line C. Experiment scenario B
below the human arm. In this case, the gripper, along with
some links of the URSe robot arm, has to move below the ¢ 3 ) -
human arm. Consequently, relying solely on the planning in  equires multlp}g re—gonﬁguratlons to reach the target posmqn.
the task space, as represented by the red line, is insufficient. D€ start position is 29=(0.40m, —0.20m, 0.18m), while
This necessitates the activation of our OMRM to provide an the goal position is x +1=(0.40m, 0.56m, 0.18m). The A*
alternative configuration and enable the robot to successfully ~algorithm is employed to re-plan the path of the end-effector,
reach the target position after the re-configuration. Fig. 5 (b) ~2dapting to the dynamic position of the box. The average
and (c) show the experimental frames right before and after ~Planning time for the planning is around 33.98ms. The

the manipulator reconfiguration, respectively. manipulator follows the re-planned path in the task space.
Fig. 6 (c) and (f) show that the human arm moves toward

the manipulator, and our OMRM is triggered based on the
sudden interventions of the human arm, which is shown in
Fig. 6 (d) and (g). Fig. 6 (e) and (h) illustrates the moments

Fig. 6 demonstrates the experimental test scenario B which
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right after the first and second re-configurations. Furthermore,
the manipulator needs the third and fourth re-configurations
to avoid the box, and no collision is detected after Fig. 6 (1).

The recorded positions of the end-effector during the exper-
imental test scenario B are illustrated in Fig. 7. Besides the
inherent error stemming from the mechanical design, control
system, and actuators of the manipulator, the actual end-
effector’s path also incorporates a tolerance-induced error re-
sulting from manipulator re-configurations. Detailed positional
information of four target points after re-configurations are
presented in Table III. It is worth noting that there exists a
capacity for manually reducing the positional error by spec-
ifying a smaller error tolerance (. A smaller error tolerance
correlates with a finer level of precision for the end-effector’s
position after a re-configuration. However, this improvement
of precision necessitates a trade-off, as the reduction in error
tolerance corresponds to a reduction in the count of available
configuration candidates. In this study, we choose the tolerance
¢ as 0.0lm to ensure a sufficient number of configuration
candidates for each waypoint cell. Importantly, this selected
tolerance of 0.01m remains reasonable when compared to the
overall length of the planned end-effector’s path, i.e., a total of
1.00m. Furthermore, the errors shown in Table III consistently
remain below the prescribed threshold during both simulation
and experimental tests.

VII. CONCLUSIONS AND FUTURE WORK

This study aims to efficiently plan the motion for manip-
ulators when executing tasks as well as satisfying certain
requirements, e.g., following the planned path and avoiding
collision with human operators. To this end, we first formulate
the motion planning problem into an optimization problem
with constraints, and then solve the optimization problem
using A* algorithm and OMRM. To enable the end-effector
to reach the goal position, a path planning algorithm based
on A* plans the collision-free end-effector path with the
minimum distance. To follow the reference path and avoid
the collision of the manipulator body, OMRM relying on a
database selects an alternative configuration to replace the
current one when facing a collision. The database maps the
task space to the configuration space offline, which reduces
the computational time. The proposed algorithm has been
validated in two different scenarios, and the results show that
the manipulator follows the planned path and efficiently avoids
the human arm successfully in both scenarios.

Considering that the construction of the configuration
database ignores the self-collisions and singularities of
the manipulator, future studies can prioritize developing
algorithms to eliminate these dangerous configurations from
the database. Meanwhile, additional safety mechanisms during
experimental tests can be implemented to enlarge the safety
margin. Furthermore, given that minimizing the joint-angle
change may result in frequent re-planning even when the
human barely moves, we intend to address this potential issue
through two proposed approaches. The first approach is to
explore a trade-off problem between the joint-angle change
and the minimum safety distance. Rather than employing a

fixed safety distance between the human and the manipulator,
an adaptive safety distance could be dynamically defined
based on the effort required for joint-angle changes. This
adaptive distance could be utilized in the planning process
to mitigate the need for unnecessary re-plannings. The
second approach is to leverage predictive models of human
motions and incorporating them into the safe manipulator
motion planning could offer a solution. By anticipating the
human motions, the manipulator could proactively adjust its
configuration to avoid the frequent re-planning caused by
close proximity to the human.
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