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TransFusion: A Practical and Effective
Transformer-based Diffusion Model for 3D Human

Motion Prediction
Sibo Tian1, Minghui Zheng1,∗, and Xiao Liang2,∗

Abstract—Predicting human motion plays a crucial role in
ensuring a safe and effective human-robot close collaboration
in intelligent remanufacturing systems of the future. Existing
works can be categorized into two groups: those focusing on
accuracy, predicting a single future motion, and those generating
diverse predictions based on observations. The former group
fails to address the uncertainty and multi-modal nature of
human motion, while the latter group often produces motion
sequences that deviate too far from the ground truth or become
unrealistic within historical contexts. To tackle these issues, we
propose TransFusion, an innovative and practical diffusion-based
model for 3D human motion prediction which can generate
samples that are more likely to happen while maintaining a
certain level of diversity. Our model leverages Transformer
as the backbone with long skip connections between shallow
and deep layers. Additionally, we employ the discrete cosine
transform to model motion sequences in the frequency space,
thereby improving performance. In contrast to prior diffusion-
based models that utilize extra modules like cross-attention and
adaptive layer normalization to condition the prediction on past
observed motion, we treat all inputs, including conditions, as
tokens to create a more practical and effective model compared
to existing approaches. Extensive experimental studies are con-
ducted on benchmark datasets to validate the effectiveness of our
human motion prediction model. The project page is available
at https://github.com/sibotian96/TransFusion.

Index Terms—Human Motion Prediction (HMP), Deep Learn-
ing, Diffusion Models, Human-Robot Collaboration (HRC)

I. INTRODUCTION

HUMAN-ROBOT collaboration (HRC) in the recycling
of end-of-life electronic products has gained signifi-

cant attention in recent years [1]–[4]. Unlike traditional re-
manufacturing, where industrial robots and humans perform
separate tasks in isolation for safety purposes, HRC allows
for synergistic utilization of both human and robot agents
during collaborative disassembly. Humans excel at handling
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Fig. 1. An overview of the proposed HMP method. The proposed HMP
method consists of a diffusion process and a reverse process. In the diffusion
process, the motion sequence is transformed to the frequency domain using
DCT. The noise is then progressively incorporated into the data over T
diffusion steps, resulting in white noise representation. In the reverse process,
the observation is padded to match the length of the motion sequence. After
applying DCT, the observed motion inputs guide the denoiser in recovering the
data from the pure noise representation. Finally, IDCT is applied to reconstruct
the motion sequence from its frequency components.

uncertainty, while robots are efficient at performing repetitive,
and labor-intensive tasks. When humans and robots work
in close proximity, it is crucial for robots to understand
their collaborator’s behavior to ensure safety and improve
collaboration efficiency. Accurate prediction enables robots to
anticipate how to assist humans and avoid potential collisions.
Therefore, modeling human behavior and predicting human
motion are essential for achieving safe and seamless HRC.
Many works [4]–[18] have explored these areas.

Previous state-of-the-art human motion prediction (HMP)
works aimed to regress a single future sequence of human
skeletal data based on observations; however, considering the
inherent uncertainty and multi-modality of human motion,
it is crucial to predict the distribution of potential human
motions rather than relying on a single deterministic output,
especially for safety-critical applications like HRC, as un-
foreseen human motion may cause serious collisions. Recent
research on stochastic HMP has primarily focused on deep
generative models. Previous works have utilized generative
adversarial networks (GANs) [5] and variational autoencoders
(VAEs) [6]–[13] to generate multiple future motions based
on a short observation. These works typically incorporate
multiple loss terms to ensure both the quality and diversity of
generated samples. However, diversity-promoting techniques,
such as diversity loss and diverse sampling, may lead to
early deviations from the ground truth or sudden stagnation,
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resulting in unrealistic and implausible predictions. Overly
diverse predictions can hinder downstream applications, such
as motion planning for collaborative robot manipulators, as
the excessive variety and out-of-context predictions may cover
most of the shared working space when all predictions are
considered valid. This leads to an overly conservative planned
robot trajectory or even a failure to find a possible solution,
contradicting the purpose of incorporating HMP in HRC.

Recently, a new deep generative model called denoising
diffusion probabilistic model (DDPM) [20] has shown sig-
nificant progress in generative tasks. DDPMs often learn the
data distribution more accurately and produce samples of
higher quality compared to VAEs and GANs. In this work, we
propose a new diffusion model that incorporates a simple yet
powerful transformer-based denoising neural network, aiming
to predict several authentic within-context motions that are
likely to happen. Specifically, we treat HMP as an inpainting
problem, which facilitates consistency in generated motion
and historical information, inspired by [18]. Unlike current
state-of-the-art works that require additional modules to handle
diffusion steps and observation, such as cross-attention in [16]
or adaptive normalization in [15], [18], we treat all the inputs,
including diffusion steps and observation, as tokens for the
transformer. Additionally, we do not include any post-process
blocks or blocks that need to be trained separately, such as the
motion refinement block in [15], [17], and the autoencoder
as well as behavior latent space in [16]. This enables us to
train our model in an end-to-end fashion. Such innovations
reduce the complexity of the network and make our model
more practical than previous works. We utilize long skip
connections to fuse information from shallow and deep layers
for improved training. Unlike prior works that directly add two
branches together, the long skip connection in our model is
achieved by first concatenating two branches and passing them
through a linear projection layer to match the dimensions.
Furthermore, by treating the diffusion steps and historical
motion as tokens, we aim for the self-attention layer in the
transformer to more effectively learn token dependencies. We
employ squeeze and excitation (SE) blocks [21] to the token
dimensions in the transformer model. The SE mechanism
enables dynamic recalibration of all tokens, including motion
inputs and condition tokens, before they are passed to the self-
attention layer. It assigns higher weights to tokens carrying
more important information, resulting in more flexible and
adaptive self-attention mechanisms and, consequently, better
prediction performance. In addition, instead of representing
human motion in the time domain, we adopt the discrete
cosine transform (DCT) and learn the model in the fre-
quency domain. DCT helps reduce the dimension of motion
sequences while preserving important details by eliminating
high-frequency components, which are primarily noise. This
approach is beneficial for predicting continuous motions as it
extracts time properties from sequential data. Overall, the main
contributions of this work can be summarized as follows:

• We provide a detailed review of all diffusion-based HMP
works known to us, which can serve as inspiration for
future research in this area.

• We propose a novel, practical, and effective diffusion-
based model called TransFusion for HMP. Unlike prior
works, TransFusion does not require additional modules
to handle diffusion steps and observation, nor does it
need to process and refine the inputs and outputs of the
diffusion model. It can be trained end-to-end and achieves
state-of-the-art accuracy on three benchmark datasets.

• We conduct comprehensive experiments and ablation
studies to validate the performance of TransFusion.

II. RELATED WORK

A. Diffusion Models
Diffusion models [20], considered a new and promising ad-

dition to deep generative model family, have gained attention
for their ability to generate high-quality samples through a
simple training procedure. These models consist of two key
processes: the forward process and the backward process. The
forward process introduces noise gradually to the original data.
After T steps, the data will turn into pure noise. The transition
of each step is represented as:

q (xt | xt−1) = N (xt |
√
αtxt−1, βtI) (2)

where xt is the perturbed data at diffusion step t, βt is the
pre-defined noise schedule, and αt = 1 − βt. Note that xt

for an arbitrary step t can be sampled directly using x0 in a
closed form with the notation ᾱt =

∏t
i=1 αi:

q (xt | x0) = N
(
xt |

√
ᾱtx0, (1− ᾱt) I

)
. (3)

Regarding the backward process, a natural approach is to
reverse the steps applied in the forward process, aiming to
restore the clean data from pure noise. A denoising pro-
cess is proposed to approximate the true backward transition
q (xt−1 | xt) by learning a Gaussian model:

pθ (xt−1 | xt) = N (xt−1 | µθ (xt, t) ,Σθ (xt, t)) . (4)

Instead of predicting xt−1 from xt directly at each step t,
DDPM proposes that predicting the injected noise generates
better results, and the mean µθ (xt, t) can be represented as:

µθ (xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
. (5)

ϵθ (xt, t) is the noise-predicting neural network with a simple
loss function:

L(θ) = Et,x0,ϵ

∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2
2
. (6)

where ϵ ∼ N (0, I). As for the covariance Σθ (xt, t),
DDPM sets it as time-dependent constants for simplicity, i.e.,
Σθ (xt, t) = σ2

t I where σ2
t = 1−ᾱt−1

1−ᾱt
βt. Finally, xt−1 can be

sampled from pθ (xt−1 | xt) as below:

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
+ σtz (7)

where z ∼ N (0, I) is the Gaussian noise.
While DDPM excels at generating high-quality samples

without complex adversarial training, it does have a drawback
in terms of inference time. Some techniques, such as the
denoising diffusion implicit model (DDIM) [22], are proposed
to accelerate the sampling process while maintaining the
generation of high-quality samples.
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B. Diffusion-based Human Motion Prediction

Although current VAE-based methods like STARS [13]
achieve state-of-the-art prediction accuracy, they often suffer
from generating excessively diverse and out-of-context pre-
dictions because of the diversity-promoting techniques they
employ. The emergence of diffusion models has provided a
new promising direction for predicting human motion while
considering uncertainty. For example, one study [19] proposed
using spatial and temporal Transformers arranged in series
or in parallel as the motion denoiser. The observed past
motion sequence and perturbed future motion sequence are
concatenated together and passed into the noise-predicting
network. The diffusion step t is injected by first projecting
it to the vector space and then adding it directly to the input
sequence. While the model does not achieve state-of-the-art
performance, it demonstrated that diffusion models can strike
a balance between diversity and accuracy, generating motion
predictions that are contextually appropriate.

Two works, MotionDiff [15] and TCD [17], also utilized
the spatial-temporal Transformer in the diffusion model. Mo-
tionDiff [15] employs an encoder-decoder structure, where the
past motion sequence is first processed by the encoder network
and then concatenated with the diffusion time encoding of step
t. This encoded information serves as a condition for motion
generation and is used multiple times within a single denoising
step through a module that combines linear transformations
with gating and bias addition. For the decoder part, MotionDiff
first utilizes the spatial-temporal Transformer [23] to extract
information from the noised future motion sequence. The
hidden vector, along with the condition, is then fed into another
Transformer block to predict the noise. After obtaining the
outputs from the diffusion model, MotionDiff uses a GCN
to refine the results, making the approach more intricate and
preventing it from being trained in an end-to-end manner.
On the other hand, TCD [17] adopts a similar approach to
condition the denoiser on the observations and diffusion step
t, much like as [19] does. However, TCD takes a different
perspective on the prediction task by breaking it into two parts:
short-term and long-term predictions. Instead of generating the
entire prediction sequence at once, the short-term diffusion
block aims to predict the first few frames of the future motion
sequence based on the observation. The long-term diffusion
block then generates the remaining frames using both the
observation and the outputs of the short-term diffusion block as
the new condition. Another contribution of TCD is its ability to
handle imperfect observation by introducing noise to missing
elements in the past motion sequence. The authors trained
various models for different data-missing situations to validate
the effectiveness of their approach.

In [18], an end-to-end diffusion model called HumanMAC
was proposed, which solves the prediction problem from the
perspective of masked completion. Specifically, the model is
trained to generate the entire motion sequence, encompassing
both the observed and future motion, starting from random
noise. During the inference stage, the future motion is treated
as a missing part within the complete sequence, as only
the observation part is available. In each denoising step, the

noisy known region is sampled from the observation, and the
inpainted region is sampled from the output of the previous
iteration. These two samples are combined through a mask
operation before being passed to the denoiser. Moreover,
HumanMAC represents the motion sequence in the frequency
space using DCT, thereby reducing the computational cost by
discarding high-frequency components. Additionally, adaptive
normalization modules are introduced after the self-attention
layer and the feed-forward network in the Transformer to guide
the prediction using historical information and diffusion steps.

Unlike the aforementioned works, BeLFusion [16] takes a
different approach by interpreting diversity from a behavioral
perspective rather than focusing on skeleton joint dispersion.
The diffusion model utilized in BeLFusion is based on the
U-net with cross-attention [24], which allows the model to
sample behavior codes in the latent space. These behavior
codes are then transferred to the ongoing motion through
a behavior coupler, resulting in more realistic predictions.
However, BeLFusion requires multiple training stages and
complex adversarial training to disentangle behavior from pose
and motion, which makes their model difficult to implement.

III. METHODOLOGY

A. Problem Definition and Notations

We note the complete sequence of human motion as x =[
q(t−H), . . . , q(t−2), q(t−1), q(t), q(t+1), . . . , q(t+F−1)

]
∈

R(H+F )×3J , where q(t) ∈ R3J is the Cartesian coordinates
of human skeleton at the frame t, and J is the number of
human joints. The first H frames of x correspond to the
observation, denoted as xO, and the following F frames
represent the future motion xP to be predicted. Given the
observed human motion xO, the objective of HMP consists
in predicting the future motion sequence xP . We use y to
represent the frequency components after the DCT operation.

B. Transformer-based Diffusion Model (TransFusion)

We propose a direct adaptation of the diffusion model to the
HMP problem. As shown in Fig. 1, in the forward process,
the motion sequence x is first projected to the frequency
domain via the DCT operation, which is commonly used in
HMP [10], [12], [18] due to its ability to encode the temporal
nature of human motion. Thus, y = DCT(x) = Dx, where
D ∈ R(H+F )×(H+F ) is the DCT basis. Since the DCT
operation is an orthogonal transform, we can always recover
the original motion sequence from frequency coefficients y
by applying the inverse discrete cosine transform (IDCT), i.e.,
x = IDCT(y) = D⊤y. What’s more, considering that the
most important and relevant information of human motion
is concentrated in the lower frequency coefficients, and the
higher frequency terms are mainly related to the noise, we
simply keep the first L rows of DCT basis and ignore the
remaining H + F − L rows to reduce the dimensionality of
the data while processing the DCT and IDCT. Then, the noisy
DCT coefficients yt at any diffusion step t can be sampled by
the reparameterization trick:

yt =
√
ᾱty0 +

√
1− ᾱtϵ (8)

where ϵ ∼ N (0, I) and y0 equals to DCT(x).
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Fig. 2. Architecture of the noise prediction network. The noise prediction network consists of several SE-Transformer blocks. At each diffusion step t, and
with the inclusion of historical information, the tokens are embedded and combined. Along with positional embeddings, these tokens are then processed
through the SE-Transformer blocks. The final outputs from the last layer of SE-Transformer blocks are passed to a linear projection layer, which yields the
predicted noise for the given input.

Regarding noise prediction in the backward process for
human motion sequences, we propose an alternative approach
to the U-net used in the original DDPM [20]. Our approach
involves a Transformer-based network denoted as ϵθ, and
its architecture is given in Fig. 2. Specifically, in order to
enable predictions conditioned on the observation, we leverage
the conditional DDPM to guide the sample generation. The
observation sequence xO is first padded to match the length
of the complete motion sequence, with the last frame of xO

extended accordingly. Subsequently, the padded sequence is
processed through the DCT operator to obtain compact histor-
ical information cm. Different from prior works that employed
extra modules like cross-attention and adaptive normalization
to inject the observation and diffusion step, we calculate the
condition by directly adding the encoded diffusion step t and
historical data cm together. This condition, along with all the
noisy DCT coefficients, are treated as tokens and fed into the
denoiser network which comprises several Transformer layers
with long skip connections between shallow and deep layers.
The skip connection is achieved by concatenating two tensors
and passing them through a linear projection layer. Each
Transformer layer is composed of an SE block [21], a self-
attention module, and a feed-forward network. The SE block
functions as an attention mechanism, but with significantly
fewer parameters compared to the self-attention module. It
consists of only two fully connected layers with a single
pointwise multiplication. The SE block adaptive rescales each
token by modeling inter-dependencies among different tokens.
It optimizes the Transformer encoder’s learning process, and
enhances network performance.

Furthermore, in the inference stage, as we already have
the historical motion, inspired by [18], we propose the in-
tegration of noisy observation guidance at the beginning of
each denoising step. This guidance involves several sequential
operations. Firstly, we project the denoised DCT coefficients
obtained from the previous denoising step and the noisy
frequency coefficients acquired from the observation into the
temporal domain using IDCT. Subsequently, these components

are mixed together via a mask operation, where we define
the mask as M = [1, 1, . . . , 1, 0, 0, . . . 0]⊤. The mask M
consists of H elements set to one, representing the noisy
observation, and all other elements are set to zero, representing
the denoised motion. To distinguish between samples from the
last denoising step and the observation, we use yD

t to denote
the denoised samples and yO

t to denote the observed samples.
With these notations, the process of the noisy observation
guidance can be summarized as follows:

yt = DCT
[
M ⊙ IDCT

(
yO
t

)
+

(1−M)⊙ IDCT
(
yD
t

)]
.

(9)

We present the workflow for model training and inference,
as outlined in Algorithm 1 and 2.

IV. EXPERIMENTS

A. Experimental Setup

Datasets. We evaluate the performance of TransFusion
on three benchmark datasets: Human3.6M [26], HumanEva-
I [27], and Amass [28]. Human3.6M is a commonly-used
benchmark dataset for HMP, comprising 3.6 million frames
of human poses recorded at 50 Hz. The dataset consists of
15 daily actions, such as walking and smoking, performed by
11 actors. To ensure a fair comparison with other works, we
adopt the widely-used setting proposed by [6]. Specifically, we
represent the human pose using 17 joints. The model is trained
on 5 subjects (S1, S5, S6, S7, and S8) and tested on 2 subjects
(S9 and S11). We utilize 25 frames (0.5 seconds) as the
observation to forecast the following 100 frames (2 seconds).
Compared to Human3.6m, HumanEva-I is a relatively smaller
dataset and exhibits less variation in motion and is recorded
at a higher frequency of 60Hz. In line with prior works, we
represent the human skeleton using 15 joints and follow the
official train/test split provided in the original dataset. The
prediction horizon is set to 60 frames (1 second) given an
observation of 15 frames (0.25 seconds). AMASS is a large-
scale dataset that currently combines 24 extremely varied
datasets, all with a standardized joint configuration. It contains
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Fig. 3. The HRC reaching motion dataset scenario, depicting human-robot
collaboration in collecting screws on the table. The top row illustrates the
human reaching out to pick up a screw, while the bottom row showcases the
human bringing a screw back. Motion data is recorded using markers attached
to the human body.

9 million frames when downsampled to 60 Hz. We follow the
same training and evaluation pipeline proposed in [16], and use
30 frames (0.5 seconds) to predict 120 frames (2 seconds).

We also conduct performance evaluations on a HRC reach-
ing motion dataset [4], where the human and robot collaborate
in collecting screws from various locations on a table, as
depicted in Fig. 3. Mocap system is employed to record the
human motion at a frequency of 50 Hz. The human agent
is represented as a 5-joint skeleton, consisting of the xiphoid
process, the incisura jugularis, the shoulder, the elbow, and
the wrist. For training purposes, we utilize 400 data samples,
and 63 data samples are reserved for testing. The prediction
period is set to 60 frames (equivalent to 1.2 seconds), given an
observation window of 15 frames (equivalent to 0.3 seconds).

Algorithm 1 Training procedure of TransFusion
Input: complete motion sequence x, diffusion steps T , denoiser

ϵθ , maximum training epoch Emax.
1: for i = 0, 1, · · · , Emax do
2: x0 ∼ p (x) , y0 = DCT(x0)
3: cm = DCT(Padding(xO

0 ))
4: t ∼ Uniform({1, 2, · · · , T}), ϵ ∼ N (0, I)

5: θ = θ −∇θ

∥∥ϵ− ϵθ
(√

ᾱty0 +
√
1− ᾱtϵ, cm, t

)∥∥2

6: end for
Output: trained denoiser network ϵθ

Algorithm 2 Inference procedure of TransFusion
Input: observed motion sequence xO , diffusion steps T , the

mask of the observation M , trained denoiser ϵθ .
1: yT ∼ N (0, I)
2: y = cm = DCT(Padding(xO))
3: for t = T, T − 1, · · · , 1 do
4: z ∼ N (0, I) if t > 1, else z = 0
5: yO

t−1 =
√
ᾱt−1y +

√
1− ᾱt−1z

6: yD
t−1 = 1√

αt

(
yt −

βt√
1−ᾱt

ϵθ (yt, cm, t)
)
+ σtz

7: xO
t−1 = IDCT

(
yO
t−1

)
, xD

t−1 = IDCT
(
yD
t−1

)
8: yt−1 = DCT

(
M ⊙ xO

t−1 + (1−M)⊙ xD
t−1

)
9: end for

10: x = IDCT (y0)
Output: complete motion sequence x

Evaluation metrics. We adopt the commonly-used pipeline
proposed in [6] and use five metrics to evaluate our model’s
performance: (1) Average Pairwise Distance (APD): This
metric computes the average L2 distance between all pairs
of motion samples, serving as a measure of diversity within
the predicted future motions. (2) Average Displacement Error
(ADE): ADE calculates the smallest average L2 distance over
all time steps between the ground truth and predicted samples,
evaluating the prediction accuracy. (3) Final Displacement

Error (FDE): FDE measures the smallest L2 distance in the last
time frame between the prediction results and ground truth,
also evaluating the prediction accuracy. (4) Multi-Modal ADE
(MMADE): This metric is the multi-modal version of ADE,
assessing the model’s ability to capture the multi-modality
nature of human motion. Multi-modal ground truth future
motions are obtained by grouping similar observations. (5)
Multi-Moddal FDE (MMFDE): Similar to MMADE, MMFDE
is the multi-modal version of FDE.

While these metrics provide valuable insights, we argue that
relying solely on them may not be sufficient. Prior works often
prioritize increasing the APD to enhance diversity, sometimes
leading to unrealistic and implausible predictions. Moreover,
the accuracy evaluation of previous works is based on the
best-of-many strategy, where only the closest sample to the
ground truth is considered, potentially overlooking predictions
that deviate significantly from reality. This approach might not
be suitable for real-world tasks, such as HRC.

In our study, we aim to generate not just one good sample
close to the ground truth but as many good predictions as
possible while maintaining a certain degree of diversity. To
achieve this, we introduce additional strategies: worst-of-many
and median-of-many, along with their corresponding metrics:
(6) ADE-W, (7) FDE-W, (8) MMADE-W, (9) MMFDE-W for
worst-of-many evaluation, and similarly, (10) ADE-M, (11)
FDE-M, (12) MMADE-M, (13) MMFDE-M for median-of-
many evaluation. By incorporating these strategies, we offer a
more comprehensive evaluation of our model’s performance,
considering both accuracy and diversity in the predictions.

Baselines. To assess the effectiveness of our model, we
conduct a comparative evaluation with several state-of-the-
art works, which include DeLiGAN [5], DLow [6], DivSamp
[7], BoM [8], DSF [9], MOJO [10], MultiObj [11], GSPS
[12], STARS [13], Motron [14], MotionDiff [15], BeLFusion
[16], and HumanMAC [18]. Notably, we exclude TCD [17]
as it adopts a two-stage prediction strategy, which can be
readily combined with other prediction models. Therefore,
considering TCD as a baseline would not be fair.

Implementation details. We train TransFusion with 1,000
diffusion steps and the cosine variance schedule [25]. During
training, we sample 50,000 data from the training set in each
epoch for all benchmark datasets. We train the model for 1,500
epochs on Human3.6M with a batch size of 64, 100 epochs
on HumanEva-I, and 3000 epochs on AMASS with the same
batch size. We also disregard historical observation with a
probability of 0.2 during training to regularize the model. The
learning rate is initialized to 3×10−4 and is decayed by a ratio
of 0.8 every 100 epochs for Human3.6M and HumanEva-I, and
every 200 epochs for AMASS. For the noise prediction net-
work, we use 9-layer SE-Transformer blocks for Human3.6M,
5-layer SE-Transformer blocks for HumanEva-I, and 13-layer
SE-Transformer blocks for AMASS. Furthermore, we use the
first 20 rows of DCT coefficients for all datasets. Following
common practice, we set the dimension of the hidden state
to 512 for all benchmark datasets. To expedite the inference
process, we leverage a 100-step DDIM [22] and generate 50
predictions for each single observation. All experiments are
conducted using PyTorch and a single NVIDIA A100 GPU.
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TABLE I
QUANTITATIVE RESULTS WITH BEST-OF-MANY STRATEGY ON HUMAN3.6M AND HUMANEVA-I

Human3.6M HumanEva-I AMASS

Method APD ADE FDE MMADE MMFDE APD ADE FDE MMADE MMFDE APD ADE FDE MMADE MMFDE

DeLiGAN [5] 6.509 0.483 0.534 0.520 0.545 2.177 0.306 0.322 0.385 0.371 - - - - -
DLow [6] 11.741 0.425 0.518 0.495 0.531 4.855 0.251 0.268 0.362 0.339 13.170 0.590 0.612 0.618 0.617

DivSamp [7] 15.310 0.370 0.485 0.475 0.516 6.109 0.220 0.234 0.342 0.316 24.724 0.564 0.647 0.623 0.667
BoM [8] 6.265 0.448 0.533 0.514 0.544 2.846 0.271 0.279 0.373 0.351 - - - - -
DSF [9] 9.330 0.493 0.592 0.550 0.599 4.538 0.273 0.290 0.364 0.340 - - - - -

MOJO [10] 12.579 0.412 0.514 0.497 0.538 4.181 0.234 0.244 0.369 0.347 - - - - -
MultiObj [11] 14.240 0.414 0.516 - - 5.786 0.228 0.236 - - - - - - -

GSPS [12] 14.757 0.389 0.496 0.476 0.525 5.825 0.233 0.244 0.343 0.331 12.465 0.563 0.613 0.609 0.633
STARS [13] 15.884 0.358 0.445 0.442 0.471 6.031 0.217 0.241 0.328 0.321 - - - - -
Motron [14] 7.168 0.375 0.488 - - - - - - - - - - - -

MotionDiff [15] 15.353 0.411 0.509 0.508 0.536 5.931 0.232 0.236 0.352 0.320 - - - - -
BeLFusion [16] 7.602 0.372 0.474 0.473 0.507 - - - - - 9.376 0.513 0.560 0.569 0.591

HumanMAC [18] 6.301 0.369 0.480 0.509 0.545 6.554∗∗ 0.209 0.223 0.342 0.335 9.321 0.511 0.554 0.593 0.591

TransFusion 5.975 0.358 0.468 0.506 0.539 1.031 0.204 0.234 0.408 0.427 8.853 0.508 0.568 0.589 0.606
* Bolded numbers indicate the best results, and numbers with underline represent the second best results. For all accuracy metrics, lower values are preferred. It is important to note

that APD measures the difference among the 50 prediction results, and a larger APD does not necessarily indicate better performance. The symbol ‘-’ indicates that certain results
are not reported in the baselines, and ‘∗∗’ denotes that the result reported in the baseline comes from dropping the observation during inference with a probability of 50%. This will
increase APD but will generate some unrealistic predictions.

TABLE II
QUANTITATIVE RESULTS WITH MEDIAN-OF-MANY AND WORST-OF-MANY STRATEGY ON HUMAN3.6M

Human3.6M (Median-of-many / Worst-of-many) AMASS (Median-of-many / Worst-of-many)

Model ADE-M/W FDE-M/W MMADE-M/W MMFDE-M/W ADE-M/W FDE-M/W MMADE-M/W MMFDE-M/W

DLow [6] 0.896 / 1.763 1.285 / 2.655 0.948 / 1.804 1.290 / 2.657 0.977 / 2.138 1.186 / 2.994 0.996 / 2.156 1.181 / 2.991
DivSamp [7] 0.924 / 2.497 1.344 / 3.263 1.001 / 2.530 1.359 / 3.267 1.958 / 3.269 1.718 / 4.479 1.970 / 3.272 1.715 / 4.478
GSPS [12] 1.014 / 2.458 1.375 / 2.964 1.066 / 2.480 1.383 / 2.964 1.089 / 1.799 1.364 / 2.642 1.099 / 1.808 1.358 / 2.638

STARS [13] 0.815 / 3.389 1.159 / 3.715 0.870 / 3.396 1.164 / 3.711 - - - -
BeLFusion [16] 0.673 / 1.355 0.976 / 2.038 0.767 / 1.418 1.009 / 2.046 0.817 / 1.791 1.069 / 2.237 0.857 / 1.815 1.074 / 2.236

HumanMAC [18] 0.585 / 1.085 0.911 / 1.843 0.736 / 1.205 0.977 / 1.877 - - - -

TransFusion 0.575 / 1.063 0.898 / 1.758 0.729 / 1.179 0.967 / 1.791 0.758 / 1.339 1.060 / 2.063 0.832 / 1.389 1.080 / 2.067
* Quantitative results of baselines are calculated from pretrained models. The symbol ‘-’ indicates that certain results are not reported in the baselines.

Training on Human3.6M, HumanEva-I, and AMASS takes
around 24, 1, and 49 hours respectively. Adam is used as the
optimizer for all experiments.

TABLE III
COMPLEXITY COMPARISON

Human3.6M (Best-of-many)

Model #Params Avg. Inf. Time (Sec) APD ADE FDE

HumanMAC-8 [18] 28.40M 1.266 6.301 0.369 0.480
TransFusion-7 15.52M 0.899 6.537 0.363 0.471
TransFusion-9 19.73M 1.110 5.975 0.358 0.468

TransFusion-9-DDIM10 19.73M 0.123 6.941 0.362 0.471
* The number following the model name indicates the number of layers in the noise

prediction network. If not specified, the model uses 100-step DDIM for sampling.

B. Comparison with the State-of-the-Arts

We first follow the best-of-many strategy to compare
TransFusion with existing works. The quantitative results
are presented in Table I. For Human3.6M and HumanEva-
I, TransFusion achieves the best result on ADE and the
second-best result on FDE, and for AMASS, TransFusion
outperforms all the baselines on ADE, and gets the second-
best results on MMADE and MMFDE. These findings indicate
that our model generates predictions that are closer to the
ground truth. While the APD results from our model are
not as favorable as some prior works due to not considering
explicit diversity-prompting techniques, and opting instead
to let DDPM learn the true data distribution from training
set, we have already established that the higher APD does
not necessarily imply better predictions, and sometimes the
situation can be opposite. Excessive diversity can lead to
predictions that significantly deviate from reality, resulting in
unrealistic and overly conservative outcome. As a result, such
methods may hinder efficiency in downstream tasks or even

fail to meet the requirements of certain applications, such as
motion planning for robot manipulators in HRC. Therefore,
we prioritize a balanced approach and do not solely focus on
increasing the APD in this work.

Since the commonly-used strategy only evaluates the quality
of the closest prediction, we also assess the overall prediction
quality by providing results following the median-of-many and
worst-of-many strategies in Table II. As shown in the table,
TransFusion surpasses all other baselines across all accuracy
metrics, highlighting its superior overall prediction perfor-
mance. We further illustrate the quality of the motion predicted
by our model through visualization in Fig. 4. From the visu-
alization, we can conclude that the predictions generated by
our model closely match the ground truth. Furthermore, while
maintaining semantic consistency with historical information,
the predictions still exhibit a certain level of diversity.

We also observe that HumanMAC [18] achieves slightly
inferior performance compared to ours. To delve deeper, we
compare the number of parameters and average inference time
of both models in Table III. Remarkably, TransFusion achieves
better results than HumanMAC while utilizing only 54.6%
of the parameters and reducing inference time by 29.0%.
This efficiency gain is attributed to the fact that our model
incorporates conditions without relying on any additional
modules, unlike other existing works. The average inference
time can be further reduced to 0.123 seconds when we use 10
sampling steps, without compromising sample quality.

Moreover, we adopt the best-of-50 strategy to evaluate our
model on the HRC reaching motion dataset, and we retrain
HumanMAC [18] on our dataset. The results demonstrate that
our model has an APD equal to 0.727, an ADE equal to 0.035,
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Fig. 4. Visualization results. The left column displays the results from Human3.6M, with each example corresponding to ’Walking’ and ’Smoking’. The
middle column presents the results from HumanEva-I, with the labels being ’Jogging’ and ’Boxing’. The right column presents the results from AMASS. For
each sample, the first column represents the ground truth, while the following 10 columns depict the prediction results. The observed context for each motion
is represented by red and black skeletons, while the future motion is indicated by green and purple skeletons.

and a FDE equal to 0.047, while HumanMAC has an APD
equal to 0.837, an ADE equal to 0.037, and a FDE equal to
0.050. These metrics reinforce the applicability of our model
to HRC scenarios while accounting for uncertainty.

C. Ablation Study

We conduct comprehensive ablation studies to explore
different design choices of TransFusion, including the skip
connections, the utilization of SE block and DCT, the number
of rows (L) we used in DCT/IDCT, and the number of layers
in the noise prediction network. The following evaluations are
based on the best-of-many strategy.

We begin by evaluating the effectiveness of long skip
connections in our network. As shown in Table IV, it is
evident that the inclusion of skip connections enhances the
model’s performance, as both the concatenation and addition-
based skip connections outperform the model without skip
connections. Moreover, the model with concatenation-based
skip connections demonstrates superior performance compared
to the one with addition-based skip connections. We argue
that the addition-based method of simply adding the branches
together, without employing a linear projection, does not sig-
nificantly benefit the model learning process. This is because
in the addition-based method, the deeper layers already have
a direct path from shallower layers due to the presence of
residual connections in SE-Transformer blocks. As a result, the
concatenation-based skip connections offer more advantages,
leading to improved model performance.

TABLE IV
QUANTITATIVE RESULTS OF THE ABLATION STUDY ON THE SKIP

CONNECTIONS

Human3.6M HumanEva-I AMASS

Model APD ADE FDE APD ADE FDE APD ADE FDE

Concat + Proj 5.975 0.358 0.468 1.031 0.204 0.234 8.853 0.508 0.568
Add 7.224 0.404 0.508 0.996 0.206 0.235 8.824 0.511 0.571

w/o skip 7.447 0.411 0.511 0.945 0.205 0.237 8.723 0.512 0.573

As previously mentioned, we use DCT to transfer the data
from time domain to frequency domain, and add an SE block

TABLE V
QUANTITATIVE RESULTS OF THE ABLATION STUDY ON SE AND DCT

Human3.6M HumanEva-I AMASS

Model APD ADE FDE APD ADE FDE APD ADE FDE

w SE & DCT 5.975 0.358 0.468 1.031 0.204 0.234 8.853 0.508 0.568
w/o SE 6.071 0.361 0.472 1.004 0.210 0.237 9.018 0.509 0.571

w/o DCT 0.622 0.600 0.855 0.549 0.566 0.647 0.786 0.760 0.973

TABLE VI
QUANTITATIVE RESULTS OF THE ABLATION STUDY ON L

Human3.6M HumanEva-I AMASS

DCT-L APD ADE FDE APD ADE FDE APD ADE FDE

5 5.738 0.381 0.493 0.797 0.227 0.284 8.429 0.529 0.573
10 5.790 0.364 0.473 0.931 0.204 0.244 8.967 0.513 0.567
20 5.975 0.358 0.468 1.031 0.204 0.234 8.853 0.508 0.568
30 6.018 0.360 0.470 1.136 0.204 0.229 8.884 0.513 0.574

Full 5.798 0.365 0.472 1.589 0.209 0.216 9.027 0.517 0.575

in the Transformer encoder to optimize learning. The results
shown in Table V indicate that the utilization of DCT and
the addition of the SE module indeed enhance the model’s
performance, as evidenced by improved ADE and FDE results.

Additionally, we investigate the design choice of DCT, and
the impact of the dimensionality of the problem by using
only the first L rows of DCT basis. Smaller values of L
may result in the loss of important information, while larger
values may add computational burden to the model, and
include the irrelevant noise information during the training
process. Therefore, we assess the influence of L on the model’s
performance, and the results are provided in Table VI. For
Human3.6M and AMASS, the best ADE and FDE metrics are
achieved when L = 20, whereas for HumanEva-I, more than
one model could achieve best ADE. We opt to set L equal
to 20 for all datasets, as it achieves good accuracy without
imposing excessive computational burden on the model.

Table VII presents the results of experiments with different
number of layers. For Human3.6M, we use 9 layers in our
model as it yields the best performance in both ADE and
FDE. For HumanEva-I, a 5-layer network shows the best
FDE, while a 7-layer network performs best in terms of ADE.
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TABLE VII
QUANTITATIVE RESULTS OF THE ABLATION STUDY ON #LAYERS

Human3.6M HumanEva-I AMASS

#Layers APD ADE FDE APD ADE FDE APD ADE FDE

3 8.172 0.416 0.533 1.288 0.210 0.238 - - -
5 6.494 0.374 0.485 1.031 0.204 0.234 - - -
7 6.537 0.363 0.471 0.923 0.203 0.236 8.777 0.530 0.588
9 5.975 0.358 0.468 0.872 0.206 0.239 9.044 0.523 0.580

11 5.722 0.360 0.472 0.846 0.205 0.243 8.841 0.513 0.573
13 - - - - - - 8.853 0.508 0.568
15 - - - - - - 8.771 0.505 0.567

Considering efficiency, we finally choose the 5-layer network
for HumanEva-I. Similarly, we choose the 13-layer network
for AMASS, as it outperforms the baselines and offers greater
efficiency compared to the 15-layer network.

V. CONCLUSIONS

This paper presents TransFusion, a practical and effective
diffusion-based HMP method, leveraging the Transformer as
the backbone with long skip connections between shallow and
deep layers. We design the model in the frequency domain, uti-
lizing the DCT operation. To condition the predictions on his-
torical information, we treat the conditions as a token, avoiding
the use of any additional module like cross-attention and
adaptive normalization. The extensive experimental studies
demonstrate that our model achieves state-of-the-art prediction
results in terms of accuracy. In contrast to prior works often
prioritize diversity and produce unrealistic future motions,
TransFusion stands out by offering superior overall prediction
quality while still maintaining a certain degree of diversity.
The model’s ability to strike a balance between accuracy and
diversity makes it a promising solution for HMP tasks. A
future research direction could involve proposing more effi-
cient sampling methods, such as reducing denoising steps and
parallelizing the denoising process [29], and integrating them
with TransFusion to further reduce inference time without
retraining the model.
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