

OPEN ACCESS

EDITED BY
Senjuti Sinharoy.
National Institute of Plant Genome Research
(NIPGR). India

REVIEWED BY

Anindya Kundu.

National Institute of Agricultural Botany
(NIAB). United Kingdom
Oswaldo Valdes-Lopez.

National Autonomous University of Mexico.

*co RRESPONDENCE Julia Frugoli ILjfrugol@clemson.edu

RECEIVED 06 November 2023 ACCEPTED 18 December 2023 PUBLISHED 11 January 2024

CITATION

Thomas J and Frugoli J (2024) Mutation of *BAM2* rescues the *sunn* hypernodulation phenotype in Medicago *truncatula*. suggesting that a signaling pathway like CLVI/BAM in *Arabidopsis* affects nodule number. *Front. Pfant Sci.* 14:1334190. doi: 10.3389/fpls.2023.1334190

COPYRIGHT

© 2024Thomas and Frugoli. This is anopenaccess article distributed under the terns of theCreatiVe Commons Attribution License (CCBY). The use. distribution or reproduction in other forums is permitted. provided the original author(s) and the copyright owner(s) arecredited and that the original pubLication in this journal is cited. in accordance with accepted academic practice. No use. distribution or reproduction is permitted which does not comply with these terms.

Mutation of *BAM2* rescues the *sunn* hypernodulation phenotype in *Medicago truncatula*, suggesting that a signaling pathway like CLV1/BAM in *Arabidopsis* affects nodule number

Jacklyn Thomas and Julia Frugoli*

Department of Genetics and Biochemistry. Clemson University. Clemson. SC. United States

The unique evolutionary adaptation of legumes for nitrogen-fixing symbiosis leading to nodulation is tightly regulated by the host plant. The autoregulation of nodulation (AON) pathway negatively regulates the number of nodules formed in response to the carbon/nitrogen metabolic status of the shoot and root bylongdistance signaLing to and from the shoot and root. Central to AON signaling in the shoots of Medicago truncatuta is SUNN, a leucine-rich repeat receptor-Like kinase with high sequence similarity with CLAVATAI (CLVI), part of a class of receptors in Arabidopsis involved in regulating stem cellpopulations in the root and shoot. This class of receptors in Arabidopsis includes the BARELY ANY MERISTEM family, which, like CLVI, binds to CLE peptides and interacts with CLVI to regulate meristem development. M. truncatula contains five members of the BAM family, but only MtBAMI and MtBAM2 are highly expressed in the nodules 48 hours after inoculation. Plants carry mutations in individual MtBAMs, and several double BAM mutant combinations all displayed wild-type nodule number phenotypes. However, Mtbam2 suppressed the sunn-5 hypernodulation phenotype and partially rescued the short root length phenotype of sunn-5 when present in a sunn-5 background. Grafting determined that bam2 suppresses supemodulation from the roots, regardless of the SUNN status of the root. Overexpression of MtBAM2 in wild-type plants increases nodule numbers, while overexpression of MtBAM2 in some sunn mutants rescues the hypernodulation phenotype, but not the hypernodulation phenotypes of AON mutant rdnl-2 or cm. Relative expression measurements of the nodule transcription factor MtWOXS downstream of the putative bam2 sunn-5 complex revealed disruption of meristem signaLing; while both bam2 and bam2 sunn-5 influence MtWOX5 expression, the expression changes are in different directions. We propose a genetic model wherein the specific root interactions of BAM2/SUNN are critical for signaling in nodule meristem cell homeostasis in *M. truncatula*.

KEYWORDS

nodulation, meristems, autoregulation of nodulation, M. truncatula, BAM, SUNN

! Introduction

Legumes tightly control nitrogen-fixing symbioses leading to nodulation. The autoregulation of nodulation (AON) pathway negatively regulates the number of nodules formed in response to the metabolic status of the shoot (carbon) and root (nitrogen) (reviewed in Ferguson et al., 2019; Chaulagain & Frugoli, 2021). Genetic analysis has identified multiple genes that when mutated cause plants to hypernodulate, evidence of a network of regulation in AON from both the root and the shoot (reviewed in Roy et al., 2020).

In AON, very early after rhizobial infection, expression of a subset of genes encoding the CLAVATA3/Embryo Surrounding Region (CLE) peptides, MtCLE12 and MtCLE13 in Medicago truncatula, is induced (Mortier et al. 2010). In Lotus japonicus, a similar increase upon infection is observed in the LjCLE-root signaling (RS)I, LjCLE-RS2, and LjCLE-RS3 peptide-encoding genes (Okamoto et al, 2009; Nishida et al, 2016; Hastwell et al, 2017). These CLE peptides are 12-13 amino acids in length and are signaling peptides derived from the C-terminal region of preproproteins (Araya et al., 2016; Yamaguchi et al., 2016). In Arabidopsis thaliana, CLE function is associated with regulating cell proliferation and differentiation during development, especially in the shoot and root apical meristems. In M. truncatu/a, the MtCLE12 peptide has been shown genetically to be modified by an enzyme from the hydroxyproline O-arabinosyltransferase (HPAT) family encoded by the M. truncatula ROOT DETERMINED NODULATIONI (RDNI) gene (Kassaw et al, 2017); the mutation of RDNI produces a supernodulation phenotype (Schnabel et al, 2011). After nodulation-suppressing CLE peptides are processed, they travel through the xylem to the shoot where they are perceived by a homoor heterodimeric receptor complex, likely in the parenchyma cells of the vasculature (Kassaw et al, 2017).

Central to this receptor complex is a shoot-acting leucine-rich repeat (LRR) RLI<, known as SUPER NUMERARY NODULES (SUNN) in M. truncatula, HYPERNODULATION ABBERANT ROOT FORMATION (HARi) in L. japonicus, NODULE AUTOREGULATION RECEPTOR KINASE (NARK) in Glycine max, and SYMBIOSIS29 (SYM29) in Pisum sativum (Krusell et al., 2002; Searle et al., 2003; Schnabel et al., 2005). Mutations in the MtSUNN gene produce a hypernodulation phenotype and altered root development (Schnabel et al., 2005). A shoot-controlled increase in nodulation is also observed in the MtCORYNE Tntl insertion mutant (cm) of M. truncatula (Crook et al, 2016), as well as the klv mutant (Oka-Kira et al, 2005) and the dv2 mutant (Krusell et al., 2011) in L. japonicus. Bimolecular fluorescence analysis showed that SUNN forms heteromomers with homologous CLVIinteracting proteins CLAVATA2 (CLV2), CORYNE (CRN), and KLAVIER (KLV) (Oka-Kira et al, 2005;

Miyazawa et al., 2010; Krusell et al., 2011; Crook et al., 2016). Genetic studies of a hypernodulating mutant in L. japonicus identified a root-responsive gene TOO MUCH LOVE (TML) that regulates nodule numbers in the root from shoot-derived signaling (Magori et al., 2009; Takahara et al., 2013). Knockdown of two TML

genes, MtTMLI and MtTML2, showed increased nodule number, suggesting a role for these genes in AON (Gautrat et al., 2019).

Leucine-rich repeat receptor-like kinases (LRR-RLKs) are important in meristem development in most land plants. The similarity between symbiotic AON receptors and their *Arabidopsis* meristem regulating counterparts like RPK2 (Kinoshita et al., 2010) suggests that like the shoot apical meristem (SAM) and root apical meristem (RAM), LRR-RLK complexes are involved in AON signaling to nodule meristems (Krusell et al., 2002; Crook et al., 2016). Some (but not all) legume *CLV2* and RPK2-related mutants show defects in the SAM, but the *sunn Atdvl-related* mutants do not have SAM defects, indicating overlapping receptor complexes controlling SAM activity and nodule numbers in legumes (Krusell et al., 2002; Schnabel et al., 2005).

Since similar molecules regulate shoot, root, and nodule meristems, we wondered if BAMs, which have not yet been linked to AON in any legume, could be involved in the regulation of the nodule meristem. The *Arabidopsis* BAMs bind to a wider range of CLE peptides and show more diverse expression patterns compared to CLVI (reviewed in Yamaguchi et al., 2016). We reasoned that studying *BAM* expression in *M. truncatula* could expand our understanding of plant receptor interacting partners' expression levels and location effects during signal transduction pathways. Since AtCLVI forms a complex with AtBAMs, MtSUNN might form a complex with MtBAMs to control nodule numbers. Mutational and overexpression experiments of the *M. truncatula BAM* gene family reported below support a model in which the genetic interaction of BAM2 and SUNN provides a signal to limit nodulation.

2 Materials and methods

2.1 Phylogenetic analysis

The tree was constructed with MEGA X using the maximum likelihood method (Kumar et al., 2018) with bootstrap replicates n 1,000. The analysis involved 21 amino acid sequences summarized in Supplementary Table I for a total of 1,107 positions in the final dataset, with AtCLVI used to root the tree.

2.2 Mutant line screening

The *Tnt-1* mutant lines were isolated from populations of insertion linesobtained from the Nobel Foundation Medicago Mutant Database now located at https://medicagomutantdasnr.okstate.edu/mutant/index.php described in Tadege et al. (2008). The following *Tnt-1* mutant pools were used in this study: *Mtbaml* (NF2153), *Mtbam2* (NF7126), *Mtbam3* (NF2071), *Mtbam4* (NF2835), *Mtbam5* (NF2488), and *sunn-5* (NF2262). Initial PCR screening from pools of *Tntl* insertions in *M. truncatula BAMs* was carried out to identify plants carrying the insertion in a BAM gene using PCR from genomic DNA. Two primer sets for each gene were designed specifically for capturing

the wild-type allele and another specific to flanking regions of the *Tntl* insert and *Tntl* forward primer (see Supplementary Table 2}. Plants identified as carrying an insertion were selfed, and the next generation was screened using PCR to obtain single homozygous mutants for all five *BAMs* from the *Tnt-1* pools. Each homozygous mutant was backcrossed to the parental Rl 08 ecotype and reisolated, following the inheritance of the insertion via PCR.

2.3 PCR to identify single and double mutants and *sunn-5* structure

A leaf press was made by pressing a leaflet of each plant to a Plant Card (Whatmanrn, GE Healthcare UK Limited, Amersham, UK} according to the manufacturer's instructions for long-term storage. A 1.2-mm-diameter piece of Plant Card was excised and washed with Whatmanrn FfA Purification Reagent (GE Healthcare UK Limited, UK) followed by TE-1 buffer according to the manufacturer's instructions and directly used in PCR. The 10-μL PCR used to identify single and double mutants contained 2 µL of gDNA (equivalent to 100 ng RNA), 1 mm each primer, 0.2 mm dNTPs, lx colorless GoTaq buffer, and 1 U GoTaq (Promega, Madison, WI, USA) with cycling conditions of 95°C for 2 min followed by 40 cycles of 95°C for 5 sec, 55°C for 10 sec, and 72°C for 20 sec. Sequencing of sunn-5 was performed using PCR products amplified from cDNA using pairs of gene-specific primers for sequences JF7092, JF7093, and JF7094 and a Tnt-1 specific primer for JF7091 as referred to in Supplementary Figure 1. PCR conditions were 95°C for 2 min followed by 35 cycles of 95°C for 30 sec, 55°C for 30 sec, and 72°C for 4 min. Sequencing was performed by Ariwna Life Sciences.

2.4 Plant crossing

Two pairsoffine-tip forceps (HL-14#5, Buyin Coins Promotion) and straight-edge scalpels (scalpel blade handle 9303 #3 and scalpel blade 9311 #11, both from Microscopes America, Cumming, GA, USA) were used for keel petal incision and the removal of anthers from the unopened female flower bud and artificial cross-pollination (Veerappan et al, 2014). The mature pods from the successful cross-pollinations were wrapped using micro-perforated polythene sheets (MP1120160T, Prism Pak, Berwick PA, USA) to dry on the plant before harvesting at desiccation. The following crosses were successfully performed and the F2 was screened for double mutants: bam2 x bam3, bam2 x barn4, bamS x barn4, bam2 x sunn-5, barn3 x sunn-5, and barn3 x sunn-5.

2.5 Plant growth conditions and materials

The identified homozygous *barn* mutants used for making genetic crosses were grown in a greenhouse, with supplemental lighting to create a 14:10 light:darlc (L:D) cycle, a nightly minimum

of 18°C, and a daily maximum between 21°C and 27°C. For nodulation screening, the following seeds were used: M. truncatu/a wild-type Jemalong Al7; the AON-defective mutants rdnl-2 (Schnabel et al., 2011), sunn-1, and sunn-4 (Schnabel.et al, 2005}; and *M. truncatu/a* wild-type R108 and *Tntl* mutants *barnl-5* (thiswork), crn (Crook et al., 2016), and cra2(Huault et al, 2014) in the R108 genetic background (Garmier et al., 2017). Seeds were removed from the pods and scarified in sulfuric acid for 8 min, rinsed five times in dH₂O, imbibed in dH₂O for 2-3 hours at room temperature, then placed at 4°C for 48-72 hours in the dark to synchronize germination, and allowed to germinate for 1 day at room temperature. This procedure as well as the growth in an aeroponic apparatus is described in Cai et al (2023). Inoculation of allwhole plants screened for nodulation phenotypes was carried out using Sinorhizobiurn rneliloti RM41 (Luyten and Vanderleyden, 2000) for the R108 ecotype with 6 mL each of an $OD_{600} = 0.2$ culture, and data were collected 14 days post inoculation (dpi). The apparatus was subjected to 14:10 L:D conditions and maintained at room temperature. Nodule number comparisons of wild-type R108 plants and hypernodulating *sunn-5* plants to individual single *barns* plants, barn double-mutant plants, and barn sunn-5 plants were carried out by visual count of individual plant roots using headmounted magnification glasses.

Transgenic hairy root plants made with Agrobacterium rhizogenes containing the gene constructs described below or the empty vector were grown in TY (selection 25 µg/mL kanamycin) and used for hairy root transformation as described in Limpens et al (2004). Inoculated seedlings were grown on plates containing modified HMF (Huo et al., 2006). The plates were incubated flat in the growth chamber at 20°C for 3 days to facilitate transformation and then moved to 25°C to facilitate root growth for 2-3 weeks. Transformed rootsexpressing the DsRED fluorescence marker were identified on the Olympus SZH-10 stereoscopic system (excitation 540 nm; emission detected at 570-625 nm), and untransformed roots were removed. The plants with transformed roots were then grown in perlite for 2 weeks before being used for the nodulation assay described in Kassaw et al. (2017) by inoculation using Sinorhizobiurn rnedicae strain ABS? (Leong et al., 1985; Bekki et al., 1987} for Al7 plants or S. rneliloti RM41 as described in Kassaw and Frugoli (2012). Nodules were counted at 14 dpi.

Grafting was performed following the protocol of Kassaw and Frugoli (2012), and grafted plants were allowed to grow in the growth chamber at 20"C with a 16--hour photoperiod for 3 days to facilitate transformationandthen moved to 25°C witha 16-hour photoperiod to facilitate root growth for 2-3 weeks. Plants were transferred to pots filled with washed, autoclaved perlite and maintained on a light bench with (14:10 L:D) cycle and temperatures between 21°C and 24°C. Plants were watered daily with a 100-fold dilution of water-soluble 20:10:20 (N:P: K) Peat-Lite Special fertilizer (Scotts Company, Marysville, OH, USA) for 5 days. After an additional 4 days of nutrient starvation induced by watering with water alone, the plants were used for inoculation experiments using *S. rnedicae Rm41*, and nodule number was assessed at 14 dpi The survival rate for allgrafted plants was approximately 40%-50% except for *sunn-5* shoot-to-sunn-5

root plants, which was approximately 10%-20%. The reduced survival of *sunn* self-grafts is common inboth our laboratory and others due to disrupted auxin homeostasis in *sunn* mutants (van Noorden et al, 2006).

2.5.1 Creation of BAM overexpression constructs

The MtBAM1, MtBAM2, and MtBAM3 sequences were amplified from M. truncatula RIOS cDNA using overlap PCR with the primers listed in Supplementary Table 2. Using overlap extension PCR allowed for the cloning of large fragments by fusing two gene halves together to generate large transcripts for cloning (Simionatto et al., 2009). Each transcript was amplified using the following PCRs (IOμL) that contained 2 μL of cDNA (equivalent to 100 ng RNA), 1 mm of each primer, 0.2 mm dNTPs, Ix colorless GoTaq buffer, and 1 U GoTaq (Promega, Madison, WI, USA) with cycling conditions of 95°C for 2 min followed by 40 cycles of 95°C for 5 sec, 55°C for IO sec, and 72°C for 20 sec. PCR products were gel extracted and purified using the Zymoclean gel DNA recovery kit (Zymo Research, Irvine, CA, USA). The PCR products were then digested with Kpnl and Spel restriction enzymes and ligated into the Kpnl and Spel sites of the pCDsRed/35S vector (Karimi et al 2002) under the control of the 35S promoter using Escherichia coli DHSa cells. The construct was confirmed by sequencing and transferred to A. rhizogenes strain ArQUAl (Quandt and Hynes, 1993) by electroporation for use in hairy root transformation.

2.6 *A. rhizogenes-mediated* plant transformation

Seedlings were transformed as described by Limpens et al. (2004). The hypocotyls of 5-day-old seedlings were cut and transformed by lightly scraping on the surface of Luria-Bertani plates densely grown with A. rhizogenes strain ArQUAl (Quandt and Hynes, 1993) containing the appropriate binary vector and antibiotic selections at 30°C for 48 hours. After 5 days of cocultivation with the A rhizogenes in the growth chamber at 23°C at 16:8 L:D, the seedlings were transferred to a nutrient-rich hairy root emergence medium (Limpens et al., 2004) containing 300 μg/mL cefotaxime (Phytotechnology Laboratories, St Lenexa, KS, USA) sandwiched between two half-round Whatman filter papers grown under the same growth conditions. Five days later, the top filter papers were removed from the plates, and the seedlings were allowed to grow for an additional 5 days on the same emergence medium placed vertically in the same growth chamber. Transformed roots expressing the DsRED fluorescence marker were identified on Olympus SZH-10 stereoscopic system (excitation 540 nm; emission detected at 570-625 nm), untransformed roots were removed as described in Kassaw and Frugoli (2012), and plants were transferred to perlite. For acclimation to perlite, plants were watered for 5 days with a 100fold dilution of water-soluble 20:I0:20 Peat-Lite Special fertilizer (Scotts). Fertilization was then withdrawn, and the plants were

hydrated with water alone for an additional 5 days to induce the nitrogen deficiency required for nodulation. Plants were then inoculated with *S. meli/oti* RM41 or *S. medicae* ABS? according to ecotype, with 6 mL each of an OD_{600} = 0.2 culture, and data were collected at 14 dpi.

2.7 Quantitative real-time PCR

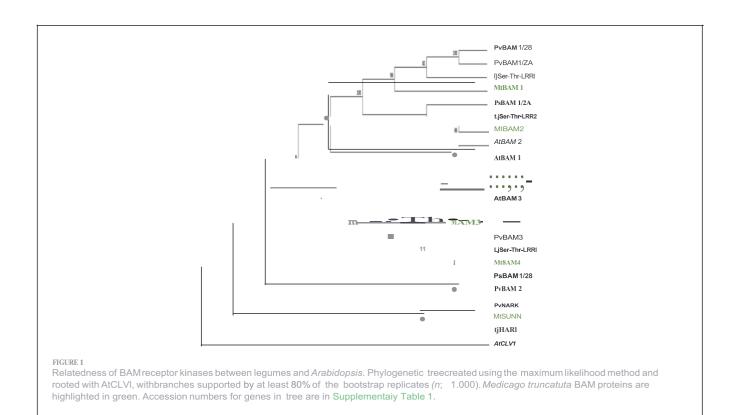
For RNA extraction, the nodule-forming zone described in Schnabel et al (2023a) was harvested from IO plants for each genotype (Al 7, sunn-1, and sunn-4, rdn2-l, cra2,Rl 08, bam2,bam2 sunn-5, and sunn-5) at multiple time points (O hours, i.e., prior to inoculation, 12 hours post inoculation (hpi), and 48 hpi) and stored at -80°C. RNA was isolated from nodulating roots using the E.Z.N.A Plant RNA Kit (Omega Bio-Tek, GA, USA) according to the manufacturer's instructions. Each RNA sample was digested with RNase-free DNase (Promega) treatment for 40 min to remove genomic DNA contamination. The iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA) was used to synthesize cDNA from 1 μg of RNA in a 20-μL reaction. The cDNAs were then diluted to 40 μL. All experiments were performed using iTaqrn Universal SYBR® Green Supermix (Bio-Rad, CA, USA) and the Applied Biosystems QuantStudio 3 Real-Time PCR System. Each reaction was performed in triplicate, and results were averaged for a single biological replicate. The total reaction volume was 12.5 μL (5 μL of master mix including 0.5 µL of each primer [0.5 µM final concentration] and 2.0 µL of cDNA). Cycle threshold values were obtained using the QuantStudio 3 software, and expression was determined relative to the internal reference Pl4K (see below). Intron spanning primers unique in the M. truncatula genome based on National Center for Biotechnology Information Primer- BLAST analysis were used (Supplementary Table 2). Relative expression levels of genes were assayed using the P{aftl method (Pfuffl, 2001) relative topreviously validated housekeeping reference gene phosphatidylinositol 3- and 4-kinase belonging to ubiquitin family (PI4K; Medtr3g091400 in MtV4.0) (Kakar et al, 2008). Data from the three biological replicates were used to estimate the mean and standard error.

2.8 Statistical analysis

Statistical difference analysis for pairwise mean comparison was calculated by the Tukey-Kramer honestly significant difference (HSD) using JMP Pro 13.1 (https://www.jmp.com/en_us/home.html). For qPCR, absolute quantification was used to compare the quantification cycle (Cq) values of test samples to those of standards (*PIK* internal reference) of known quantity plotted on a standard curve. The quantity was normalized to a unit amount of nucleic acid (i.e., concentrations). The statistical analysis tests for the probability that the relative expression RE;: 1 for data normalized to control

3 Results

3.1 Phylogenetic and structural analysis of BAM proteins


A phylogenetic analysis by neighbor-joining was performed between the protein sequences of legume and Arabidopsis BAMs, with CLVI and the related symbiotic kinases used to root the tree (Figure 1). There was not a one-to-one relationship between MtBAMs and AtBAMs; rather, they shared similarities with BAMs from other legume BAM-like LRR kinases and Arabidopsis. For all the legumes, however, there were two BAM proteins with similarities to AtBAM1 and AtBAM2, including MtBAM1 and MtBAM2. The MtBAM1 and MtBAM2 proteins have 80% sequence similarity between them, while MtBAMI has 81% similarity to AtBAMI, the highest shared similarity among all comparisons. MtBAM3, MtBAM4, and MtBAM5 were closer phylogenetically to the AtBAM3 protein with a $55\%\mbox{-}56\%$ similarity for each. The branching structure suggests that the five BAM genes in legumes arise from duplications of a BAM3 ortholog (Figure 1). To further pursue the idea that these duplicate genes might be specific for nodulation, the expression levels of each MtBAM in individual root tissues were examined during nodule development Tissue level data from a Laser Capture Microdissection experiment (Schnabel et al, 2023b) and root segment transcriptorne data from an unfixed roots experiment (Schnabel et al, 2023a) were examined, following nodule development at 0, 12, 24, 48, and 72 hpi (Figure 2).

MtBAMl and MtBAM2 wereexpressed in nodule meristems at 48 and 72 hpi at higher levels than the other BAM family members. MtBAMl and MtBAM2 expression at 12 and 24 hpi was higher in the inner cortical cells at the xylem pole, the cells from which nodules arise

(Libbenga and Harkes, 1973). In addition, *MtBAM1* and *MtBAM2* had higher expression in nodule rneristems at 48 and 72 hpi compared to *MtBAM3*, *MtBAM4*, and *MtBAMS*. *MtBAM3*, *MtBAM4*, and *MtBAMS*; all displayed similarly low levels of expression throughout nodule formation, with no clear signature in an individual tissue in this experiment (Figure 2). The expression data suggest that *MtBAM1* and *MtBAM2* are most likely to be involved in early nodule formation.

3.2 Root length and nodule number phenotypes of *MtBAM* mutants are wild type

With the expression data in hand, wegenerated single homozygous mutants for the BAM genes in M. tnmcatula using PCR to follow the segregation of *Tntl* insertions in lines isolated from pools of plants from the Nobel Foundation Medicago Mutant Database identified as containing an insertion in an MtBAM gene. The progeny of plants determined to **be** homozygous for a *Tnt-1* insertion in each *BAM* were tested for nodule number on an aeroponic chamber (see Materials and Methods). All the single MtBAM mutants had Tntl insertions in approximately the same place in the LRR domains, and wild-type nodule numbers (Supplementary Figure 2A). Since other nodule regulatory mutants also have root length defects (Schnabel et al., 2005; Schnabel et al., 2010; Schnabel et al, 2011), single mutant plants were grown in the absence of rhizobia, and root length was measured at the equivalent development point to 14 dpi None of the single MtBAM mutants displayed a root length phenotype different from the wild-type plants (Supplementary Figure 28). Similar to the observation of no meristem defects in single barn mutants in

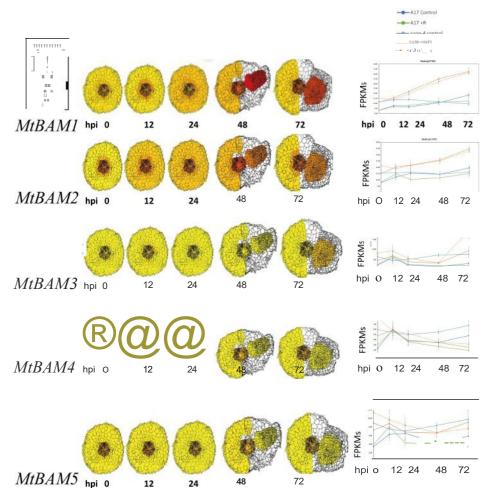


FIGURE 2

MtBAM expression in individual tissues and whole root segments during nodule formation. The tissue-speciftc expression patterns on the left for each MtBAM were created using ePlant and the data in Schnabel et al. (2023b) and a fixed maximum for comparison between genes across a time course at O to 72 hpi. The whole root expression traces for each MtBAM on the right are from the same time course and conditions, taken from the data in Schnabel et al (2023a). Expression (FPKMsl of BAMs from O to 72 hpi are displayed as blue; AV control green; AV + rhizobia. Light blue; sunn-4 control orange; sunn-4 + rhizobia, and orange dotted; rdnl-2 + rhizobia.

Arabidopsis (DeY0tmg et al, 2006), no nodule number or root length phenotype was observed in the M. the thickness ingle BAM mutants. We also generated double mutantsof Mtbam2 with Mtbam3 and Mtbam4, as well as an Mtbam4; Mtbarn5 double mutant, to determine if an effect is observable with the loss of more than one BAM, as is the situation with Arabidopsis mutants (DeYoung and Clarle, 2008), but these also had no effect on nodule number or root length (Supplementary Figure 3). Interestingly, we were unable to obtain seeds from any cross of the Mtbarn1 mutant to any other Mtbarn mutant, despite multiple attempts. Examining the ePlant database (Waese et al, 2017), transoiptomic data for MtBAM1 show high levels of expression in tissues such as pods, flowers, stems, and developing seeds (Benedito et al, 2008). When attempting to make crosses with bam1, the stamen looked frail and opaque with few pollen granules visible (data not shown), and this may explain the lack of success generating barn1 bamx double mutants.

3.3 *Mtbam2* suppresses the *sunn-5* supernodulation phenotype in the double mutant

Since Arabidopsis BAMs were originally isolated by the effects observed in a clvl mutant background (DeYoung et al, 2006), we reasoned that mutations in MtBAM genes might only have noticeable effects on nodule number in a sunn mutant background We created a set of barn/sunn double mutants by crossing and isolating F2 progeny using PCR confirmation of the phenotype: barn2 sunn-5, barn3 sunn-5, and barn5 sunn-5. We observed a suppressive effect on nodule number in the barn2sunn-5 double mutant (Figure 3A). We applied a slightly different observation to the root length phenotype; the sunn-5 short root phenotype was partially rescuedby barn2or barn3, but not barn5 (Figure 3B). Because of the suppressive effect of barn2 on both phenotypes of sunn-5 plants, we investigated the mechanism further.

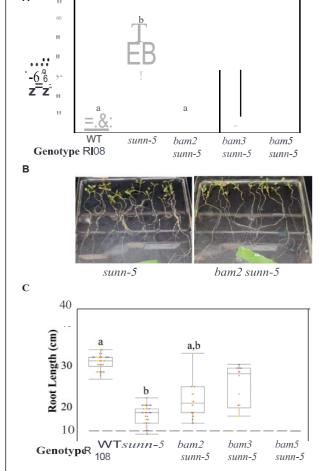


FIGURE 3 bam2 suppresses nodule number in sunn-5 mutants. while bam2 and bam3 suppress root length defects. (A) Nodule number per plant at 14 dpi. Letters denote significance compared to wild-type (BI photos of sunn-5 and bam2 sunn-5 plants. (C) Root length in wild-type plants compared to sunn-5 and bam double mutants at 14 days without rhizobia. Letters denote significance compared to wild type. Dots represent individual plants. Each dot color is associated with independent biological replicates: rep;I red. rep2; yellCMI. and rep3; blue. Box plot mean is indicated with aline.while whiskers are± standard error. pairwise comparison Tukey-Kramer honestly significant difference (HSD), p-value a:b > 0.00L p-value a: a,b > 0.00L

3.4 Grafting to determine localization (shoot or root) of *bam2* suppression of *sunn-5* phenotype

The *sunn* mutation has been shown to increase nodule number when a *sunn* mutant shoot is grafted onto wild-type shoots (Penmetsa et al., 2003). The same grafting experiment was employed to determine the location of the suppression observed in the *bam2 sunn5* double mutant. Since AON is a long-distance root to shoot to root regulatory pathway, a set of grafting experiments was designed to determine the location of the effect (Figure 4). Comparing the nodule number of plants created with a *bam2 sunn-5* shoot grafted onto a *sunn-5* root to that of a *sunn-5*

shoot on a barn2 sunn-5 root (Figure 4A), suppression of the sunn-5 hypernodulation phenotype occurred when a sunn-5 shoot genotype was grafted onto the bam2 sunn-5 root genotype, indicating that the suppression is root derived (Figure 4A). Since the root is a double mutant, two possibilities arise-either sunn-5 is required for the suppression, or barn2 alone in the roots suppresses the nodule number phenotype of a sunn-5 shoot To resolve this, a second grafting experiment was designed (Figure 4B) in which the sunn-5 shoot genotype was grafted onto a barn2 sunn-5 root genotype and compared to a sunn-5 shoot genotype grafted onto a bam2 root genotype. Suppression of the sunn-5 hypemodulation phenotype occurred in both graft combinations, suggesting that barn2 can suppress nodule numbers from the roots, with or without sunn-5 being present (Figure 4B).

3.5 Overexpression of *BAM2* increases nodulation in wild-type roots

In addition to phenotyping *barn* mutants, we observed nodule numbers in transgenic hairy roots overexpressing individual *MtBAM* genes driven by the CMV 35S promoter compared to control plants carrying empty vector constructs (Figure 5). Overexpression of *BAMI* and *BAM3* did not alter nodule numbers in wild-type plants of either ecotype, but overexpression of *BAM2* in wild-type transgenic hairy roots caused a significant increase in nodule number in both Al 7 (the ecotype used for genome sequencing) and RIOS (an ecotype used for tissue culture- based transformation and the background of the *BAM* mutant lines). This confirms the specific involvement of *BAM2* in nodule number and that the effect is not ecotype specific.

3.6 The effect of overexpression of *BAM2* in a *sunn* mutant background is allele specific

Suppression of nodule number in sunn-5 could arise from disruption of signaling downstream of SUNN, or it could arise from disruption of a signaling step at which BAM and SUNN interact (Meneely, 2020). We tested an allelic series of sunn mutants for indications of interaction between the proteins. The sunn-5 mutant in the RIOS background has been used in previous work (Crook et al, 2016; Nowak et al., 2019) and contains a *Tntl* insertion {~2 kb in size) located 406 bp upstream of the ATG start codon in SUNN gene (El-Heba et al., 2015). Using PCR on cDNA (Supplementary Figure I), we determined that this promoter insertion also removed 584 bases past the start site, resulting in a potential new start in the leucine-rich repeats, as well as a deletion of the end of the repeats, the transmembrane domain and into the kinase domain (Figure 6A); the ability to isolate RNA indicates that a truncated SUNN message is made. Additional sunn mutants exist in the Al7 ecotype; the sunn-1 allele in Al 7 produces a full transcript with only a change in an amino acid in the kinase

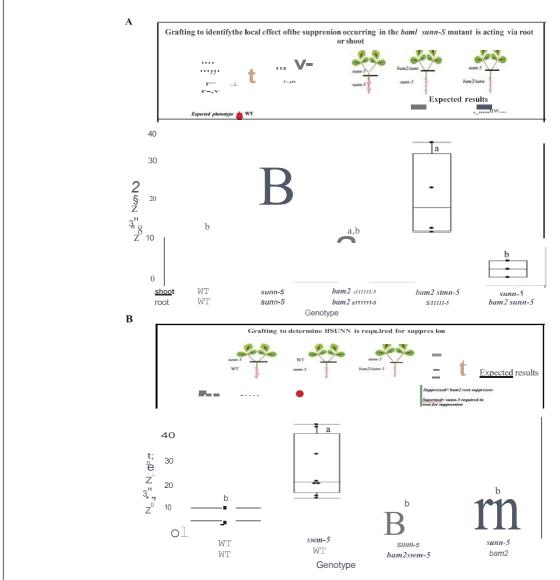
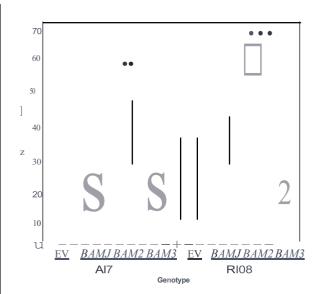



FIGURE 4
Suppression of the *sumn-5* phenotype by *bam2* is root derived and occurs regardless of *sumn-5* root genotype. (A) Nodule numbers formed on grafted plants to test root/shoot origin of suppression. Gene on top indicates shoot genotype; bottom indicates roots. Results are combined from two individual experiments. Box plot mean is indicated with aline (where more than three data points available). while whiskers are ± standard error. pairwise comparison Tukey-Kramer honestly significant difference (HSD). Letters indicate significance comparisons. p-value a:a,b > 0.001. p-value a:b > 0.001(B)Nodule numbers formed on grafted plants to determine if SUNN is required. Experimental details are the same as in (A).

domain, while the *sunn-4* allele contains a premature stop codon immediately after the signal sequence and is considered a null allele (Schnabel et al., 2005). The two alleles vary in nodule number; *sunn-1* plants have three to five times the nodules of wild-type plants, while *sunn-4* plants have a IO-fold increase in nodule number (Schnabel et al., 2010). Al 7 is difficult to cross with RIOS due to multiple rounds of RIOS selection for regeneration and differences in the genomes, which make genetic crosses problematic. Adding to the difficulties, the RIOS ecotype nodulates best with a dilferent strain of rhizobia (Hoffinann et al., 1997). Therefore, rather than making the mutants to test suppression, we chose to overexpress *BAM2* in the dilferent alleles of *sunn* in their respective ecotypes, inoculated with the rhizobia best for each ecotype. In contrast to wild-type plants in which overexpression of *BAM2* increased

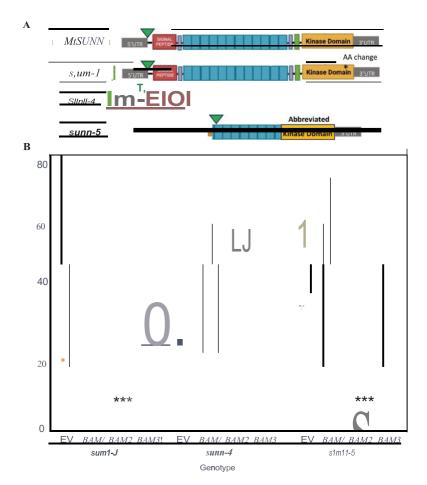
nodule number, overexpression of *BAM2* in a *sunn-5* background suppressed nodule numbers to a wild-type level (Figure 6B). Overexpression of *BAM2* also suppresses the hypernodulation phenotype of a *sunn-1* mutant, which produces a full-length *sunn* message with a single amino acid change (Schnabel et al., 2005) but did not suppress hypernodulation in *sunn-4* null allele (Figure 6B). When *BAM1* and *BAM3* were overexpressed in the *sunn-4* and *sunn-5* mutants, no alteration to the hypernodulating *sunn* phenotype was observed for either mutant (Figure 6B), again confirming the effect is also specific to the *BAM2* gene. The *sunn-1* mutant appeared to increase nodule number in response to *BAM1* overexpression, but this was not statistically significant because of the distribution spread of nodule number in the empty vector control.

Overexpression of MtBAM2 in wild-type A17 and R108 ecotypes increases nodule number. Nodule number in plants overexpressing BAM!, BAM2, or BAM3 under the 35S prcrnoter (see Materials and Methods) at 14 dpi. A17ecotype plants are inoculated with Sinorhizobium mediale Af3S7. and R108 ecotype plants with Sinorhizobium meliloti RM41. EV = empty vector control Dots represent individual plants. Each dot color is associated with independent biological replicates: rep1= red, rep2 = yellow, and rep3 = blue. Box plot mean is indicated with a line, while whiskers are ± standard error, pairwise comparison Tukey-Kramer honestly significant difference (HSD), p-value > 0.01.(...), p-value > 0.001. (***) denotes significance compared to EV control. Pictures of representativeplants are in Supplementary Figure 4.

3.7 Overexpression of BAMs in other AON mutants

To determine if BAM2 overexpression can suppress nodulation in other hypernodulators, we repeated the previous experiment with three mutants in different portions of the AON pathway. RDNl functions in the root early in the AON pathway upstream of SUNN, modifying the ligand for the SUNN receptor (Kassaw et al., 2017). The pseudokinase CRN displays an increase in nodule number when mutated and acts at the same point as SUNN in the AON pathway, forming heteromultimers with SUNN (Crook et al., 2016). In contrast, the CRA2 receptor kinase mutants signal in a different part of nodule number regulation, separate from SUNN, conveying information on nitrogen status to the AON pathway through signaling with CEPI peptide (Laffont et al., 2019). The cra2 mutant does not make nodules because the signal for nitrogen needs is not sent to the roots. None of the BAMs affected the hypernodulation phenotype of rdnl-2 mutants when overexpressed; however, BAM2 overexpression suppressed the hypernodulation phenotype of cm mutants (Figure 7). Interestingly, overexpression of all BAMs tested resulted in the death of all cra2 plants before nodulation could occur, while their empty vector controls remained alive (Figure 7), suggesting that there maybe some effect unrelated to nodulation of excess BAM2 in these plants.

3.8 Expression of genes downstream of *BAM/SUNN*

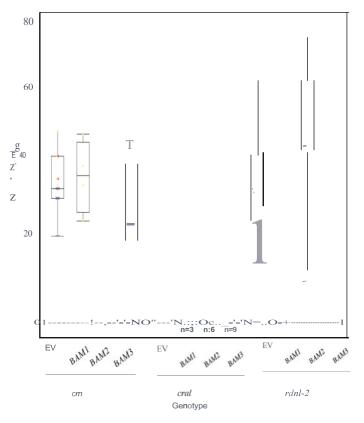

The *MtWOXS* transcription factor is downstream of *SUNN* signaling. Since *MtWOXS* has been implicated in nodule development in *M. truncatula* (Osipova et al., 2012), in this work, we examined expression levels in several mutant combinations. We examined the relative expression of *MtWOXS* during nodulation in both *barn2* and *bam2 sunn-5* plants by utilizing a time-course experiment using root segments to assess the relative expression of each marker gene at 0, 12, and 48 hpi. Previous work in our lab measured absoluteexpression for each genein wild-type and *sunn-4* root segments, and we also used the ePlant resource to confirm the tissue-level expression of these genes. We examined the expression of *MtWOXS* at each time point in wild-type, *bam2*, and *bam2 sunn-5* plants using quantitative real-time PCR (Figure 8).

MtWOXS expression is the strongest in developing nodules (Figure SA) and may reflect the expression of the nodule meristem since the LCM resource colors the entire tissue. MtWOXS maintains a steadylow-level expression throughout nodule development but is slightly higher in the inoculated roots compared to the noninoculated controls (Figure 8B). In sunn-4 roots, MtWOXS expression increases at 12 hpi and continues to increase to peak expression in this time course at 48 hpi (Figure 8B). In contrast, in a bam2 background, WOXS expression as measured using real-time quantitative RT-PCR is greater at 0,12, and 48 hpi compared to the wild-type control (Figure SC). However, in the double-mutant barn2 sunn-5 root segments, the highest level of relative expression of MtWOXS was observed at O hpi, with expression less than that of the wild-type control at 12 and 48 hpi in the double mutant (Figure 8D). Expression of the master regulator MtWOXS decreases after inoculation in the barn2 sunn-5 mutant versus in the single barn2 background in which MtWOXS increases and stays up after inoculation.

4 Discussion and conclusions

Phylogenetic analysis (Figure 1) suggests the expansion in the *BAM* gene family between *Arabidopsis* with three *BAM* genes, and *M. truncatula* with five suggests that if the expansion of the gene family resulted in new genes used for nodule meristems, *MtBAM4* and *MtBAMS* would be the best candidates based on their position with additional legume *BAMs* in a clade away from most of the rest of the *BAMs*. However, neither *BAM4* nor *BAMS* was expressed in nodules (Figure 2), while *MtBAMl-3* were expressed in nodules.

Since we did not identify nodule number or root length phenotype in any plants carrying a mutation in a single *barn* (Supplementary Figure 2) or any of the plants carrying two *barn* mutations (Supplementary Figure 3), mutation analysis of *BAM* genes alone did not identify a *BAM* specific to the regulation of nodule number. The lack of an observable effect from single *barn* mutants was not unexpected, as single *Atbarns* showed no phenotype (DeYoung et al., 2006). While we did not investigate further, *MtBAMI* could be important to multiple developmental

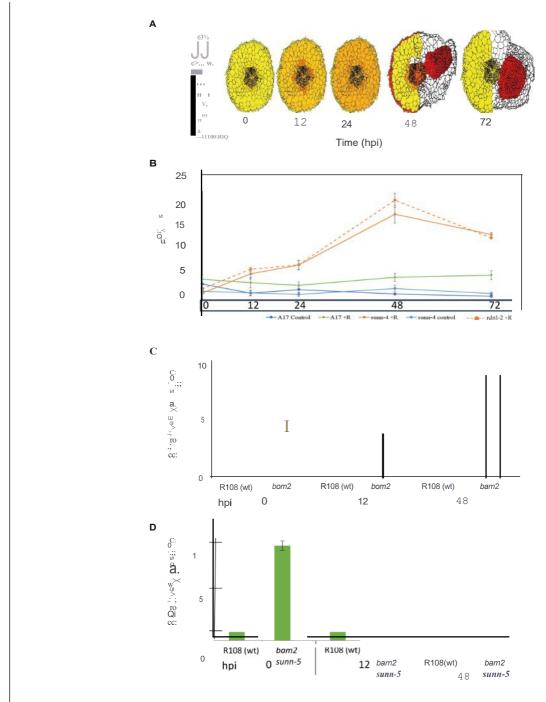

Results of overexpressionof *MtBAM1*. *MtBAM2*. and *MtBAM3* in *sunn* mutants are allele specific. (AI Diagram of SUNN protein and effects of *sunn* alleles. Green arrowindicates Met used for start, purple boxes are paired Cys residues, turquoise boxes represent leucine-rich repeats (not to scale; there are 22), and green box is transmembrane domain. (BI Nodulation on plants overexpressing indicated *BAM* genes. EV; empty vector control. Dots represent individual plants. Each dot color is associated with independent biological replicates: rep;l red. rep2; yellow, and rep3; blue. Box plot mean is indicated with a Line, while whiskers are± standard error, pairwise comparison Tukey-Kramer honestly significant difference (HSD). (...*) denotes significance compared to EV.p-value > 0.001. Pictures of representative plants are in Supplementary Figure 4.

systems, as we were unable togenerate any double mutants with this line. The discovery that adding a *bam2* mutation to a *sunn* mutation suppressed nodule number to wild-type levels (Figure 3) indicates *BAM2* is involved in nodule development, but visualization of this role is only possible when *SUNN* is disrupted. This effect is specific to *bam2* and not observed when *sunn-5* is combined with *bam3* or *bam5*. We were unable to test the mutations of *bam4* or *bam1*, as a double mutant with *sunn-5* could have a suppressive effect; however, *bam4* is not expressed in nodulating roots, making suppression unlikely. Since overexpression of *BAM2*, but not *BAMJ* or *BAM3*, increases nodule number in wild-type plants (Figure 5), multiple lines of evidence support a specific role for *BAM2* in nodule number regulation.

The data support the action of BAM2 in nodulation as root specific rather than systemic. While SUNN signals from shoot to root to control nodule number (Penmetsa etal, 2003) and is central to AON (reviewed in Roy et al., 2020), *SUNN* is expressed throughout the plant in the vasculature (Schnabel et al., 2012), and the function of SUNN in the root has not yet been determined. The localization of the suppressor effect of *bam2* in the root

(Figure 4A) is particularly interesting, as the SUNN protein is a systemic negative regulator of nodule number; sunn-5 mutants hypernodulate because they cannot send a wild-type regulation signal to the roots to control nodule number. Nevertheless, the mutation in bam2 in the roots of a sunn-5 mutant allows the regulation to proceed, suggesting that thelack of bam2compensates for the lack of the SUNN signal from the shoots (Figure 4B). Further support of a local rather than systemic effect is the grafting experiment in which a bam2 mutant in the shoot but not the root does not suppress the sunn hypernodulation phenotype (Figure 4A). All sunn mutants have normal nodulation if mutant roots are grafted to wild-type shoots (Penmetsa et al., 2003; Schnabel et al., 2010, Figure 4B), suggesting that whatever the function of SUNN in the root, a mutation of sunn in the root is not causal to hypernodulation. However, the addition of a bam2 mutation in the root along with a sunn mutation changes the response to the shooting signal, supporting action locally in the root versus systemic action.

In *Arabidopsis*, the differentiation of stem cells in the root apical meristem and cell division in the root is controlled by CLE peptides



Results of overexpressionof *MtBAM1*. *MtBAM2*. and *MtBAM3* in autoregulation of nodulation (AON) mutants cm and *rdnl-2* and *cra2* mutants. No significant nodule number phenotype was observed from the overexpressionof *MtBAM1*. *MtBAM2*. or *MtBAM3* in any of the AON mutants. However. *MtBAM2* overexpression in *cm* resulted in almost all plants dying, withonly one plant surviving the screening stage. No nodules formed on the sole surviving *cm:pMtBAM2* plant All *cra2* plants overexpressing *BAM* gene died before screening. EV; empty vector control Dots represent individual plants. Each dot color is associated with independent biological replicates: rep;l red. rep2; yellow, and rep3; blue. Box plot mean is indicated with a Line, while whiskers are ± standard error.

(Willoughby and Nimchuk, 2021). Recent studies have shown that the SUNN ortholog CLV1 signals through a BAM protein complex to control CLE-mediated signaling of the root apical meristem (Wang et al., 2022) and root phloem development (Hu et al., 2022). Nodule primordia use many of the same regulatory genes, as lateral root primordia (Schiess! et al, 2019) contain a nodule meristem and develop vasculature at the time points used to measure gene expression in this work (48-72 hpi in our growth systems), making the involvement of a BAM quite likely.

In our system, both the *sunn-5* and *bam2* mutants make transcripts detectable by PCR of cDNA, but *sunn-5* is not likely to produce protein due to the lack of regulatory sequences around the possible alternate start in *sunn-5* (Figure6), while the disruption of the coding sequence in all of the *barn Tntl* insertion mutants occurs from insertion of the *Tnt-1* sequence in the middle of the LRR region, leading to a truncated protein (Supplementary Figure 1). In *Arabidopsis*, truncated BAM proteins lacking a kinase domain interfere with meristem homeostasis in a dominant negative manner because of the LRR repeats interacting with other proteins (Wang et al., 2018), but this is not observed in our system, suggesting that the insert in the LRR disrupts any dominant negative effect from the lack of a kinase domain.

The expression of BAM2 in wild-type plant roots before nodulation (0 hpi in Figure 2, right panel) is approximately half the expression of BAM2 in sunn-4 mutant roots and rdnl-2 hypernodulation mutant roots before nodulation begins. BAM2 expression rises in rootsof all inoculated plantsover the 72-hpi time course, but the rise is larger in the hypernodulation mutants sunn-4 and rdnl-2, and there is no reason not to expect the same pattern in sunn-1 and sunn-5 mutants given that the nodule number phenotypes of these mutants are similar to rdnl-2. If increased BAM2 expression is observed in plant roots that hypernodulate, it is logical that overexpression of *BAM2* in wild-type roots increases nodule number. More interesting is the observation that adding more BAM2 to sunn mutant roots already expressing higher levels of BAM2 than wild-type decreases nodule number for sunn-1 and sunn-5 mutant roots but not sunn-4 roots. The decrease in thesunn-1 and sunn-5 roots could be explained if the level of BAM2 from the overexpression construct rises high enough to trigger RNA interference, acting like a bam2 mutation, but the lack of suppression in *sunn-4* roots is perplexing. Because the expression of BAM2 in these roots was not measured, it is not possible to rule out the explanation that the construct was not correctly expressed However, the effect was seen in sixplants tested in two independent

Expression of MtWOX5 during nodule formation. (A) MtWOX5 tissue-specific expression created using ePlant and the data in Schnabel et al. (2023b). (BI Whole root expression traces for WOX5 from the same time course and conditions were taken from the data in Schnabel et al. (2023a). Expression (FPKMs) of WOX5 from 0 to 72 hpi is displayed as blue; AV control. green; A17 + rhizobia. light blue; sunn-4 control. orange; sunn-4 + rhizobia. and orange dotted; rdn1-2 + rhizobia. (CI Expression of MtWOX5 in bam2 mutants and (DJ bam2 sunn-5 mutants. For each time point relative expression was calculated by fold change compared to the wild-type control at that time point (see Materials and Methods). Data represent three biological andthree technical replicates. Error bars represent ± standard error. Note that WOX5 expression was undetectable in the bam2 sunn-5 mutant at 12 hpi and barely detectable at 48 hpi.

experiments, giving confidence in the result. Since the transformations are performed in hairy roots in which auxin homeostasis is perturbed, it is possible that the extreme hypernodulation phenotype in the null allele is affected more by the hairy root environment than expression of *BAM* genes, given that the range of nodule numbers in Figure 6 is below the 125 average nodules per plant in *sunn-4* mutants on an aeroponic

system in all conditions including the empty vector (Schnabel et al., 2010), adding difficulties to interpretation of the *sunn-4* results.

It is important to note that overexpression of wild-type BAM2 did not suppress (or enhance) hypernodulation in the cm and rdnl-2 AON mutant roots, even though the rdnl-2 mutant has high BAM2 expression compared to wild type, so the effect of the

mutation is not on the AON pathway itself. the suppression seems to be specific to plant roots carrying mutations in SUNN, with sunn-4 as an exception. Relative expression measurements of MtWOXS add some insight into how the downstream nodulation signaling may be disrupted in barn2 and barn2 sunn-5 mutants. MtWOXS expression in the nodule apical meristem (NAM) (Osipova et al., 2011; Roux et al., 2014) provides molecular support for the derivation of nodule development programs from lateral root developmental programs (Hirsch and Larue, 1997; Mathesius et al, 2000; Bright et al., 2005; Desbrosses and Stougaard, 2011). WOXS gene is downstream from the CLE/CLVI/BAM signaling complex in Arabidopsis (Willoughby & Nimchuk. 2021), but other receptor kinases are involved in connecting CLE/CLVI/BAM signaling to WOX5 expression (Wang et al., 2022). The expression of MtWOXS is increased compared to the wild type at O hpi barn2 mutants and barn2 sunn-5 mutants but is the same as the wild type in sunn-4 and rdnl-2 hypernodulation mutants (Figure 8). In contrast to the steady higher expression observed in sunn-4, rdnl-2, and barn2mutants at 12 and48 hpi, the barn2sunnS mutant decreases MtWOXS expression below wild-type levels. Rather than eliminating nodule development, the lower expression is correlated with only a reduction of nodule number in sunn-5 mutants. Likewise, even though barn2 mutants have increased MtWOXS expression, the number of nodules is not affected, suggesting that other factors outside of MtWOXS are also involved in nodule number regulation.

In the event of genetic or environmental disruption, plants can initiate a genetic buffering mechanism called "active compensation" in which genes change their behavior to compensate for the disruption (Rodriguez-Leal et al., 2019). For example, in Arabidopsis, the weak clvl phenotype is genetically buffered by the paralogous BAM receptors through active compensation (Diss et al, 2014; Nimchuk et al., 2015). The loss of CLVI resulted in an increased expression of BAMs and a change in their expression domains, allowing for the compensation of CLVI loss (Nimchuk et al., 2015).1n Solanurn lycopersicurn, the loss of SICLV3, the tomato CLV3 ortholog. triggers an active compensation mechanism, by which the upregulation of SICLE9 buffers stem cell homeostasis in tomato(Rodriguez-Lealet al, 2019). Considering the related distance between Arabidopsis and tomato, genetic buffering of stem cells reflects a determining feature of indeterminate meristem development, including nodule meristems (Rodriguez-Leal et al, 2019). A similar efect may be happening with BAM2 and SUNN.

We speculate that the loss of, or disruption to, the CLE/SUNN/BAM2 signaling in the roots alters signaling, affecting the nodule-specific transcription factor *MtWOXS*. We propose a genetic model, wherein the specific root interactions of BAM2/SUNN are critical for signaling in nodule meristem cell homeostasis in M. *truncatula*. Except for the perplexing *sunn-4* overexpression results, an anomaly to pursue in future studies, our data support the involvement of CLE/CLVI/BAM signaling influencing nodule number in M. *truncatu/a*.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

Author contributions

JT: Data curation, Formal analysis, Investigation, Methodology, Writing - original draft, Writing - review & editing. JF: Conceptualization, Formal analysis, Funding acquisition, Methodology, Resources, Supervision, Visualization, Writing - review & editing.

Funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by NSF 1733470 to JF.

Acknowledgments

We thank Elise Schnabel for the identification of the *BAM* mutant lines in the *Tntl* pools and the Genetics and Biochemistry Teaching Lab for the use of their real-time PCR machine.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls2023.l334190/full#supplementary-material

References

- Araya, T., von Wiren, N., and Takahash H. (2016). CLE peptide signaling and nitrogen interactions in plant root development. *Plant Mol. Biol* 91 (6), 607 15. doi: 10.1007/sl1103-016-0472-9
- Bekki, A., Trinchan J.-C., and Rigaud, J. (1987). Nitrogen fixation (C2H2 reduction) by Medicago nodules and bacteroids under sodium chloride stress. *Physiologia Plantan, m* 71 (!), 61 7. doi: 10.1111/j.1399-3054.1987.tb04617.x
- Benedito, V. A., Torres-Jerez, I., Murray, J. D., Andriankaja, A., Allen, S., Kakar, K., et al. (2008). A geneexpression atlasof the model legume. *Medicago tn,ru:atula. Plant J.* 55 (3), 504-513. doi: 10.1lll/j.1365-313X2008.03519.x
- Brigh L.J., Liang, Y., Mitchell, D. M., and Harris, J.M. (2005). The LATO gene of Medicago truncarula is required for both nodule and root development *Mol. Plant-Microbe Interad.* 18 (6), 521-532. doi: 10.1094/MPMI-18-0521
- Ca J., Veerappan, V., Arildsen, K., Sullivan, C., Piechowicz, M., Frugoli, J., et al. (2023). A modified aeroponic system for growing small-seeded legumes and other plants to study root systems. *Plant Methods* 19 (!), 21. doi: I0.1186/sl3007-023-01000-6
- Chaulagain, D., and Frugol J. (2021). The regulation of nodule number in legumes is a balance of three signal transduction pathways. *Int f. Mol. Sci.* 22 (3), 1117. doi: 10.3390/ijms2203ll 17
- Crook, A. D., Schnabel, E. L., and Frugoli, J. A. (2016). The systemic nodule number regulation kinase SUNN in *Medicago tn.ru:atula* interacts with MtCLV2 and MtCRN. *Plant f.* 88 (I), 108-119. doi: 10.1111/tpj.13234
- Desbrosses, G. J., and Stougaard, J. (2011). Root nodulation: a paradigm for how plant-microbesymbiosis influences hostdevelopmental pathways. *Cell Host Microbe* 10 (4), 348-358. doi: 10.1016/j.chom.2011.09.005
- DeYoung, B. J., Bickle, KL., Schrage, K. J., Muskett, P., Patel, K., and Oark, S. E. (2006). The CLAVATAI-related BAM!, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. *Plant f.* 45 (I), 1-16. doi: 10.1111/j.1365-313X2005.02592.x
- DeYoung, B. J., and Clark, S. E. (2008). BAM receptors regulate stem cell specification and organ development through complex interactions with CLAVATA signaling. *Genetics* 180 (2), 895.doi: I0.1534/genetics.108.091108
- Diss, G., Ascencio, D., Deluna, A., and Landry, C.R. (2014). Molecular mechanisms of paralogous compensation and the robustness of cellular networks. *J. Exp. Zoology Part B: MoL Dev. Evol.* 322 (7),488-499. doi: 10.1002/jez.b.22555
- EI-Heba, G. A. A., Hafez, A., Elsahly, N., and Hussien, G. M. (2015). supn, a novel supermodulation mutant in *Medicago tn,ncatula*. *Plant Gene* 4, 100-108. doi: 10.1016/j.plgene.2015.07.002
- Ferguson, B. J., Mens, C., Hastwell, A. H., Zhang, M., Su, H., Jones, C. H., et al. (2019). Legume nodulation: The hostcontrols the party. *Plant Qll Environ.* 42 (I), 41-51. doi: 10.1111/pce.13348
- Garmier, M., Gentzbitte L., Wen, J., Mysore, KS., and Rate P.(2017). *Medicago truncatula*: genetic and genomic resources. *Curr. Protoc. Plant Biol.* 2 (4), 318-349. doi:10.1002/cppb.20058
- Gautra P., Mortier, V., l.alfon C., De Keyser, A., Fromentin, J., Frugier, F., et al. (2019). Unraveling new molecular players involved in the autoregulation of nodulation in *Medicago tn,ncatula*. *J. Exp. Bot.* 70 (4), 1407-1417. doi: 10.1093/jxb/ery465
- Hastwell, A.H.,de Bang, T. C., Gressholf, P. M., and Ferguson, B. J. (2017). CLE peptide-encodinggene families in *Medicago truru:atula* and *Lotus japonicus*,compared with those of soybean, common bean and Arabidopsis. *Sci. Rep.* 7 (!), 1-13. doi:10.1038/s41598-017-09296-w
- Hirsch, A. M., and Larue, T. A. (1997). Is the Legume Nodule a Modified Root or Stem or an Organ sui generis 1 *Crit. Rev. Plant Sci.* 16 (4), 361-392. doi: 10.1080/07352689709701954
- Holfmann, B., Trinh, T. H., Leun J., Kondorosi, A., and Kondorosi, E. (1997). A new Medicago truncarula line with superior in *vitro* regeneration, transformation, and symbiotic properties isolated through cell culture selection. *Mol. Plant-Microbe Interact* 10 (3), 307-315. doi: t0.t094/MPMlt997.t0.3.307
- Hu, C., Zhu, Y., Cui, Y., Zeng, L, Li, S., Meng, F., et al. (2022). A CLE-BAM-CIK signalling module controls root protophloem differentiation in Arabidopsis. *New PhytoL* 233 (I), 282-296. doi: 10.1111/nph.17791
- Huaul E. Lalfon C., Wen, J., Mysore, K.S., Rate P., Due, G., et al (2014). Local and systemic regulation of plant root system architecture and symbiotic nodulation by a receptor-like kinase. *PloS Genet.* 10 (12), el004891.dc:i: t0.t371/journal.pgen.t00489t
- Huo, x_, Schnabel, E., Hughes, K, and Frugoli, J. (2006). RNAi phenotypes and the locali:zation of a protein::GUS fusion imply a role for *Medicago tn,ncatula PIN*genes in nodulation. *J. Plant Growth Regul.* 25 (2), 156-165. doi: t0.t007/s00344-005-0106-y
- Kakar, K., Wandrey, M., Czechowski, T., Gaertner, T., Scheible, W.-R., Stit M., et al. (2008). A community resource for high-throughput quantitative RT-PCR analysis of transcription factor geneexpression in. *Medicajp truncatu/a. Plant Methods* 4 (I), 1-12. dci: t0.1186/1746-4811-4-18
- Karimi, M., Inze, D., and Depicker, A. (2002). GATEWAY vectors for Agrobacterium-mediated plant transformation. *Trends Plant Sci.* 7 (5), 193-195. doi: t0.t0t6/st360-t385(02)0225t-3

- Kassaw, T. K, and Frugol J. A. (2012). Simple and efficient methods to generate split roots and grafted plants useful for long-distance signaling studies in *Medicago truru: atula* and other small plants. *Plant Methods* 8 (1), 38. doi: 10.1186/1746-4811-8-38
- Kassaw, T., Nowak, S., Schnabei E., and Frugoli, J. (2017). *Root determined nodulationl* is required for *M. tn,ncatula* CLEt2, but not CLEI3, peptide signaling through the SUNN receptor kinase. *Plant Phy<iol.* 174 (4), 2445-2456. doi: 10.1104/pp.17.00278
- Kinoshita, A., Belsuyaku, S., Osakabe, Y., Mizuno, S., Nag:,wa, S., Stahl, Y., et al. (2010). RPK2 is an essential receptor-like kinase that transmils the CLV3 signal in Arabidopsis. *Development* 137 (22), 391t-3920. doi: t0.1242/dev.048199
- Krusell, L., Madsen, L. H., Sato, S., Aube G., Genua, A., Szczyglowski, K., et al. (2002). Shoot control of root development and nodulation is mediated by a receptor-like kinase. *Nature* 420 (6914), 422-426. doi: t0.t038/nature01207
- Kruseli L, Sato, N., Fukuhara, 1, Koch, B. E. V., Grossmann, C., Okamoto, S., et al. (2011). The *Clavata2* genes of pea and *Lotus japonicus* affect autoregulation of nodulation. *Plant J.*65 (6), 861-871. doi: t0.llll{j.t365-313X.20t0.04474.x}
- Kumar, S., Stecher, G., li, M., Knyaz, C., and Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. *MoL Biol. Evol* 35 (6), 1547-1549. doi: 10.1093/molbev/msy096
- Laffon" C., Huaul E., Gautra P., Endre, G., Kalo, P., Bourion, V., et al. (2019). Independent regulation of symbiotic nodulation by the SUNN negative and CRA2 positive systemic pathways. *Plant Physiol. 180(1) 559 LP*-, 570. doi: 10.1104/pp.18.01588
- Leong, S. A., Williams, P.H., and Dina, G. S. (1985). Analysis of the 5' regulatory region of the gene for &-arninolevulinicacid synthetase of. *Rhizobium me/iloti. Nudeic Acids Res.* 13 (16), 5965-5976. doi: t0.1093/nar/13.16.5965
- Libbenga, K. R., and Harkes, P.A. A.(1973). Initial proliferation of cortical cells in the formation of root nodules in *Pisum sativum L Planta* 114, 17-28. doi: 10.1007/
- Limpens, E., Ramos, J., Franken, C., Raz, V., Compaan, B., Franssen, H., et al. (2004). RNA intelerence in *Agrobacterium* rhizogenes-transformed roots of Arabidopsis and *Medicago truru:atu/a.J. Exp. Bot.* 55 (399), 983-992. doi: t0.t093/jxb/erht22
- Luyten, E., and Vanderleyden, J. (2000). Survey of genes identified in *Sinorhizobium meliloti* spp., necessary for the development of an efficient symbiosis. *Eur. J. Soil Biol* 36 (I), 1-26. doi: $10.1016/\text{St} \, 164-5563(00)00134-5$
- Magor S., Oka-Kira, E., Shibata, S., Umehara, Y., Kouch H., Hase, Y., et al. (2009). TOO MUCH LOVE, a root regulator associated with the long-distance control of nodulation in *Lotus japonicus*. *Mo/. Plant-Microbe Interact*. 22 (3), 259-268. doi: t0.1094/MPMI-22-3-0259
- Mathesius, U., Weinman, J. J., Rolfe, B. G., and Djordjevic, M. A. (2000). Rhi:zobia can induce nodules in whiteclover by "hijacking" maturecorticalcells activatedduring lateral root development *MoL Plant-Microbe Interact.* 13 (2), 170-182. doi: 10.1094/MPMI.2000.13.2.170
- Meneely, P. (2020). Genetic analysis: genes, genomes, and networks in eukaryotes (USA: Oxford University Press).
- Miyazawa, H., Oka-Kira, E., Sato, N., Takahash H., Wu, G.-J., Sato, S., et al. (2010). The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and non-symbiotic shoot development in *Lotus japonic1t*<. *Development* 137, 24, 4317 LP-4325. doi: 10.1242/dev.058891
- Mortier, V., Den Herder, G., Whitford, R., Van de Velde, W., Rombauls, S., D'haeseleer, K., et al. (2010). CLE peptides control *Medicago tn,ncatula* nodulation locally and systemically. *Plant Physiol.* 153 (!), 222 LP-237. doi: 10.1104/pp.I10.153718
- Nimchuk, Z. L., Zhou, Y., Tarr, P. T., Peterson, B.A., and Meyerowitz, E. M. (2015). Plant stem cell maintenance by transcriptional cross-regulation of related receptor kinases. *Devefopment* 142 (6), 1043 LP-1049. doi: 10.1242/dev.t19677
- Nishida,H., Handa,Y.,Tanaka,S.,Suzaki,T., and Kawaguchi, M.(2016). Expression of the CLE-RS3 gene suppresses root nodulation in. *Lotus japonicus. J. Plant Res.* 129 (5),909-919.doi:10.t007/st0265-0t6-0842-z
- Nowak, S., Schnabel, E., and Frugoli, J. (2019). The *Medicago tn,ncatula* CLAVATA3-LIKE CLEt2/13 signaling peptides regulate nodule number depending on the CORYNE but not the COMPACT ROCYI' ARCHITECTURE2 receptor. *Plant Signaling Behav.* 14 (6), 1598730. doi: 10.1080/15592324.2019.1598730
- Oka-Kira, E., Tateno, K, Miura, K, Haga, T., Hayashi, M., Harada, K., et al. (2005). k.lavier (k.lv), a novel hypemodulation mutant of Lotus japonicus alfected in vascular tissue organi:zation and Ooral induction. Plant J. 44 (3), 505-515. doi: 10.t ttt/j.t365-3t3X2005.02543.x
- Okamoto, S., Ohnish E., Sato, S., Takahash H., Nakazono, M., Tabata, S., et al. (2009). Nod factor/nitrate-induced CLE genes that drive HARi-mediated systemic regulation of nodulation. *Plant Cell Phy*<iol. SO (I), 67-77. doi: t0.t093/pcp/pcnt94
- Osipova, M.A., Dolgikh, E. A., and Lutova, LA. (2011). Peculiarities of meristem-specific WOXS gene expression during nodule organogenesis in legumes. *Russian J. Dev. Biol.* 42 (4), 226. doi: 10.tt34/St0623604t1010085

Osipova, M. A., Mortier, V., Demd>enko, K.N., Tsyganov, V. E., Tikhonovich, I. A. Lutova, LA. etal (2012). WUSCHEL-REIATEDHOMEOBOXS gene expression and interaction of CLE peptides ..; ii, con, ponents of lhe systemic control add two pieces to the puz, le of autoregulation of nodulation. *Plant* ffiysiol. 158 (3), 1329-1341. doi: 10.1104/pp.ll 1.188078

Penmetsa, R. V., Frugoli, J. A., Smith, L.S., Long, S. R., and Cook, D.R. (2003). Dual genetic pathways controlling nodule number in *Medie, ago truncatula. Plant Physiol.* 131 (3),998 LP-1008. doi: 10.1104/pp.015677

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. *Nudeic Acids Res.* 29 (9), e45.doi: 10.1093/nar/29.9.e45

Quandt, *J.*, and Hynes, M. F. (1993). Versatile suicide vectors vmich allow direct selection for gene replacement in gram-negative bacteria. *Gene* 127 (!), 15-21. doi: 10.1016/0378-1119(93)90611-0

Rodriguez-Leal, D., Xu, C., K\\Qn, C.-T., Soyars, C., Demesa-Arevalo, E., Man, J., et al. (2019). Evolution of bulfering in a genetic circuit conlrolling plant stem cell proliferation. *Nat. Genet.* 51 (5), 786-792.doi:10.1038/s41588-019-0389-8

Roux, B., Rodde, N., Jardinaud, M., Timmers, T., Sau'oiac, L., Cotlret, L., et al (2014). An integrated analysis of plantand bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. *Plant J.* 77 (6), 817-837. doi: 10.111 1/tpj.12442

Roy, S., Liu, W., Nandety, R.S., Crook, A., Mysore, K.S., Pislariu, C. I., et al. (2020). Celebrating 20 *years* of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. *Plant Cell* 32 (I), 15 LP-15 41. doi: 10.1105/tpc.19.00279

Schiess K., Lilley, J.L., lee, T., Tamvakis, I., Kohlen, W., Bailey, P. C., et al. (2019). NODULE INCEPTION recruits the lateral rootdevelopmental program for symbiotic nodule organogenesis in *Medie, ago truncatula. Curr. Biol.* 29 (21), 3657-3668. doi:10.1016/j.cub.2019.09.005

Schnab E.L., Chavan,S. A., Gao, Y., Poehlman, W. L, Feltus, F. A., and Frugol J. A.(2023a). A *Medie,ago truncatula* autoregulation of nodulation mutant transcriptome analysis reveals disruption of the *SUNN* pathway causes constitutive expression changes in some genes, but overall response to Rhizobia resembles wild-type, including induction of *TMLI* and *TML2*. *Curr. Issues Mol Biol*. 45 (6), 4612-4631. doi: 10.3390/cimb45060293

Schnab E., Joumet, E.-P., de Carvalho-Niebel, F., Due, G., and Frugoli, J. (2005). The *Medie,ago trune,atula SUNN* geneencodes a CLVi-like leucine-rich repeat receptor kinase that regulates nodule number and rootlength. *Plant Mol. Biol.* 58 (6), 809 822. doi: 10.1007/sl 1103-005-8102-y

Schnab E., Karve, A., Kassaw, T., Mukherjee, A., Thou, X., Hall, T., et al (2012). The *M. trune,atu/a SUNN* gene is expressed in vascular tissue, similarly to *RDNI*, consistent with the role of these nodulation regulation genes in longdistance signaling. *Plant Signaling Behav.* 7, 1-3. doi: 10.4161/psb.7.1.18491

Schnabel, E.L., Kassaw, T. K., Smith, L.S., Marsh, J. F. Oldroyd, G. E., Long, S. R., el al. (2011). The ROOT DEFERMINED NODULATION gene regulates nodule number in roots of *Meduagotrune, atula* anddmnes a highlyconserved, uncharacterized plant gene family. *Plant Physiol.* 157 (I),328-340. doi: 10.1104/pp.lll.178756

Schnabel, E., Mukherjee, A., Smith, L., Kassaw, T., Long, S., and Frugoli, J. (2010). The /s.s supernodulation mutant of *Medie,ago trune,atula* reduces expression of the SUNN gene. Plant Physi-01. 154 (3), 1390-1402. doi: 10.1104/pp.110.164889

Schnabel, E., Thomas, J., El-Hawaz, R., Gao, Y., Poehlman, W., Chavan, S., et al. (2023b). Laser capture microdissection Iranscriptome reveals spatiotemporal tissue gene expression pallerns of *M. trune,atu/a* roots responding to rhizobia. *Mol Plant-Microbe Interact* 36 (12), 805-820. doi: 10.1094/MPMI-03-23-0029-R

Searle, I. R., Men, A. E., Laniya, T.S., Buzas, D. M., Iturbe-Onnaetxe, I, Carro B. J., et al (2003). Long-distance signaling in nodulation directed by a CIAVATAl-like receptor kinase. *Science* 299 (5603), 109-112. doi: 10.1126/science.107793

Simionano, S., Marchioro, S. B., Gall V., Luerce, T. D., Hartwig, D. D., Moreira, A.N., et al. (2009). Efficient site-directed mutagenesis using an overlap extension-PCR method for expressing $Myroplasma\ hyopneumoniae$ genes in $Escherichia\ roli.\ J.\ Microbiol Dgie, al Methods 79 (I), 101-105. doi: 10.1016/j.mimet.2009.08.016$

Tadege, M., Wen, J., He, J., Tu, H., Kwak, Y., Eschstruth, A., et al. (2008). Large-scale insertional mutagenesis using the *Tntl* retrotransposon in the model legume *Medicago trune, atula*. *Plant J.* 54 (2), 335-347. doi: 10.1111/j.1365-313X.2008.03418.x

Takahara, M., Magori, S., Soyano, T., Okamoto, S., Yoshida, C., Yano, K., et al. (2013). TOO MUCH *WVE*, a novel kelch repeat-containing F-box protein, functions in the long-distance regulation of thelegume-Rhizobiumsymbiosis. *Plant Cell Physiol* 54 (4), 433-447. doi: 10.1093/pcp/pct022

van Noorden, G. E., Ross, J. J., Reid, J.B., Rolfe, B. G., and Mathesius, U. (2006). Defective long-distance auxin transport regulation in the *Medicago truncatula super numeric nodules* mutant *Plant Physiol.* 140 (4), 1494-1506.doi:10.1104/pp.105.075879

Veerappan, V., Kadel, K., Alexis, N., Scott, A., Kryvoruchko, I, Sinharoy, S., et al. (2014). Keel petal incision: a simple and efficient method for genetic crossing in *Medicago trune, atu/a. Plant Methods* 10 (I), II. doi:10.1186/1746-4811-10-ll

Waese, J., Fan, J., Pasha, A., Yu, H., Fucile, G., Shi, R., et al (2017). ePlant: visualizing and exploring multiple levels of data for hypothesis generation in plant biology. *Plant Cell* 29 (8), 1806-1821. doi: 10.1105/tpc.17.00073

Wang. W., Hu, C., Li, X., Zhu, Y., Tao, L., Cu Y., et al. (2022). Receptor-like cytoplasmic kinases PBL34/35/36 are required for CLE peptide-mediated signaling to maintain shoot apical meristem and root apical meristem homeostasis in Arabidopsis. *Plant Cell.* 34, 4, 1289-1307. doi:10.1093/pkell/koab315

Wang. C., Yang, H., Chen, L., Yang. S., Hua, D., and Wang. J. (2018). Truncated BAM receptors interfere the apical meristematic activity in a dominant ne tive manner when ectopically expressed in Arabidopsis. *Plant Sci.* 269, 20-3I. doi: 10.1016/j.plantsci.2018.01.003

Willoughby.A. C.,andNimchuk, Z. L.(2021). WOXgoingon: CLE peptides in plant development. *Curr. Opin. Plant Biol.* 163, 102056. doi: 10.1016/j.pbi.2021.102056

Yamaguchi, Y. L., Ishida, T., and Sawa, S. (2016). CLE peptides and their signaling pathways in plant development./. Exp. Bot. 67 (16), 4813-4826. doi: 10.1093/jxb/