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Abstract

Kinetic simulations of relativistic turbulence have significantly advanced our understanding of turbulent particle
acceleration. Recent progress has highlighted the need for an updated acceleration theory that can account for
particle acceleration within the plasma’s coherent structures. Here, we investigate how intermittency modeling
connects statistical fluctuations in turbulence to regions of high-energy dissipation. This connection is established
by employing a generalized She-Leveque model to characterize the exponents (, for the structure functions
S? o< 1%. The fitting of the scaling exponents provides us with a measure of the codimension of the dissipative
structures, for which we subsequently determine the filling fraction. We perform our analysis for a range of
magnetizations o and relative fluctuation amplitudes 6By/By. We find that increasing values of o and éB,/B allow
the turbulent cascade to break sheetlike structures into smaller regions of dissipation that resemble chains of flux
ropes. However, as their dissipation measure increases, the dissipative regions become less volume filling. With
this work, we aim to inform future turbulent acceleration theories that incorporate particle energization from
interactions with coherent structures within relativistic turbulence.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); High energy astrophysics (739); Magnetic

fields (994); Relativistic jets (1390)

1. Introduction

A central goal in high-energy astrophysics is to uncover the
physical processes that power the most extreme particle
accelerators, which are accountable for bright electromagnetic
observations. Often, as is the case with gamma-ray bursts and
jets from active galactic nuclei, the sources are observed to have
a broad electromagnetic spectrum, whose interpretation requires
a relativistic nonthermal distribution of particles undergoing
radiative cooling (Band et al. 1993; Ghisellini et al. 1998). The
mechanisms responsible for the rapid particle acceleration
needed to produce these nonthermal particle distributions are a
subject of ongoing debate (see Matthews et al. 2020 for a recent
review). Nonetheless, it is commonly assumed that the free
energy required for particle acceleration comes from large-scale
perturbations within the jet, which can lead to the formation of
shocks (e.g., Bottcher & Dermer 2010) or large-scale magnetic
reconnection layers (e.g., Giannios 2013). Regardless of the
specific scenario, a large-scale separation exists from the energy
injection scale to plasma kinetic scales, where energy dissipation
occurs. This scale separation typically involves turbulence
modulation, highlighting the need to understand turbulence for
a comprehensive understanding of particle acceleration and high-
energy emission.

Turbulence, a complex nonlinear phenomenon already
challenging the study of hydrodynamical fluids on Earth, poses
additional challenges in astrophysical plasmas. Factors such as
low particle collisionality, strong magnetic fields, relativistic
velocities, and extreme temperatures contribute to the complex-
ity. The analytical treatment of turbulence often relies on
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phenomenological cascade models (or scaling theories) that
link large-scale fluid fluctuations to smaller scales, extending
down to the dissipation scale. The most renowned model
of hydrodynamic turbulence is due to Kolmogorov (1941),
with adaptations later developed for magnetohydrodynamics
(MHD; e.g., Iroshnikov 1963; Kraichnan 1965; Goldreich &
Sridhar 1995). Initial investigations into the validity of cascade
models were conducted through numerical simulations using
the MHD approximation. However, recent progress in this field
has seen the development of first-principle kinetic simulations,
which are crucial for enhancing our understanding of
turbulence in weakly collisional plasmas, particularly at the
smallest scales where most energy is dissipated.

Given its relevance in relativistic magnetized outflows, we
focus on investigating turbulence in conditions where the
magnetic energy density exceeds the rest-mass energy density
and the plasma pressure. Under these conditions, plasma
motions approach the speed of light, marking the relativistic
turbulence regime. This regime of turbulence is intrinsically
linked to magnetic reconnection (Lazarian et al. 2012;
Comisso & Sironi 2019), which has been shown to be an
efficient accelerator of relativistic particles (e.g., Comisso &
Sironi 2018). Additionally, in the relativistic regime, the
stochastic Fermi acceleration mechanism (Fermi 1949) oper-
ates on short timescales, facilitating the rapid conversion of
magnetic energy into plasma particle energy. Turbulent
acceleration in magnetized plasmas has been associated with
various sources of high-energy emissions, including solar
flares (Miller et al. 1996), gamma-ray bursts (Bykov &
Meszaros 1996), and blazar jets (Marscher 2014; Davis et al.
2022; Zhang et al. 2023).

The traditional analytical approach to understanding turbu-
lence’s role in particle acceleration is through quasi-linear theory
(QLT; Bemnstein & Engelmann 1966). In QLT, particle
trajectories are gyroaveraged before scattering off plasma waves,
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and the analytical description often involves calculating a
diffusion tensor derived from linear eigenmodes of the plasma’s
MHD waves (see, e.g., Demidem et al. 2020). However, large-
amplitude turbulent fluctuations invalidate QLT, and recent fully
kinetic particle-in-cell (PIC) simulations have indeed cast doubts
on the QLT description. In the relativistic turbulence regime, QLT
is unable to account for the observed development of pitch-angle
anisotropy (Comisso et al. 2020; Comisso & Sironi 2021),
recreate the observed particle distributions without unexplained
advection coefficients (Zhdankin et al. 2020), or provide a
mechanism for the observed acceleration at current sheets
(Comisso & Sironi 2019). QLT’s inability to describe recent
results from PIC simulations has spurred the search for new
analytical descriptions of particle acceleration in relativistic
turbulence. Lemoine (2021) suggested abandoning the idea that
particle acceleration in relativistic turbulence is due to wave
interactions and rather that acceleration may be mainly due to a
collection of interactions with discrete structures within turbu-
lence. Current sheets are of particular interest because of their
common occurrence in magnetized turbulence (Comisso &
Sironi 2019; Zhdankin et al. 2020) and, when these sheets
undergo reconnection, they efficiently dissipate magnetic energy.
Current sheets also provide a link to phenomenological cascade
models incorporating dissipative structures (Dubrulle 1994; She
& Leveque 1994; Biskamp & Miiller 2000) that can be associated
with the observed intermittency, pitch-angle anisotropy, and
energy spectra (Comisso & Sironi 2019; Zhdankin et al. 2020).

To bridge the gap between phenomenological theories of
intermittency and the dissipative structures responsible for
particle energization, we analyze PIC simulations of relativistic
magnetized turbulence. Our investigation begins with the
characterization of the turbulence intermittency and its depend-
ence on two key physical parameters: the plasma magnetization
and the amplitude of the magnetic fluctuations with respect to the
mean magnetic field. We employ a general log-Poisson model of
turbulence to establish a link between the coherent structures and
the phenomenological model. Once established, we investigate
the filling fractions of these coherent structures. This approach is
repeated for different values of plasma magnetization and the
level of the magnetic fluctuations to analyze the dependence of
the dissipative structure properties on these key plasma
parameters. Finally, we discuss the implications for current
particle acceleration theories before concluding.

2. Numerical Setup

To investigate the statistics of relativistic magnetized
turbulence from a first-principles standpoint, we solve the
Vlasov—Maxwell system of equations through the PIC method
(Birdsall & Langdon 1985) using the publicly available code
TRISTAN-MP (Buneman 1993; Spitkovsky 2005). We perform
the numerical simulations in a triply periodic cubic domain L?
that is discretized into a regular lattice of 1024° cells. We
initialize a uniform electron—positron plasma with a total particle
density of ng according to a Maxwell-Jiittner distribution with
dimensionless temperature 6y = kgTo/ mc* = 0.3. Here, T, is the
initial plasma temperature, kg indicates the Boltzmann constant,
m is the electron mass, and c is the speed of light in a vacuum.
Turbulence is seeded by initializing a spectrum of magnetic
fluctuations having polarizations transverse to a uniform mean
magnetic field (B) = ByZ (see Comisso & Sironi 2018, 2019 for
details). The initial magnetic energy spectrum peaks near
k,=6m/L, which defines the energy-carrying scale I, =27/k,
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and limits the particles'’ maximum Lorentz factor through
stochastic acceleration (Comisso & Sironi 2018).

The strength of initial fluctuating magnetic energy relative to
plasma enthalpy is quantified by

6B3 W
Adrnowome? '

where 6By = <6Bz(t: O)}l/ 2 is the initial rms amplitude of the
magnetic field fluctuations and wy = [K3(1/6)/K>(1/00)] is the
initial enthalpy per particle, with K,,(z) indicating the modified
Bessel function of the second kind of order n. The corresponding
total magnetization is o -+ og, = (6B + Bg)/4mnowomc?.
Since our work focuses on studying relativistic plasma
turbulence, characterized by Alfvénic velocity fluctuations vy =

cyJo/(1 + o) ~ ¢, we focus on the magnetization regime
o> 1. Our simulations cover a range of magnetizations with
values o € {2.5, 5, 10, 20, 40}, and different strengths of the
mean magnetic field, corresponding to ratios 6By/By €
{0.5, 1, 2}.

We adopt a spatial resolution of Ax=d,y/3, implying
L =1024d,y/3, where d.,o = c/w,o indicates the initial plasma

skin depth and w,y = \/47mnge? / Yo 1s the relativistic plasma

frequency, where ~y0=wg— 0y is the initial mean thermal
Lorentz factor. We employ an average of four computational
particles per cell. Earlier studies (Comisso & Sironi 2018, 2019)
have demonstrated convergence with respect to these numerical
parameters. Since we are interested in studying fully developed
turbulence, we ran the simulation up to 7~ 3ly/c, at which
point the turbulence has been fully developed. In the following,
we mainly discuss the results obtained from the magnetic field
b=B/B,, the current density j=J/engc, and the fluid bulk
velocity v="V/c, obtained by averaging the velocities of
individual particles.

3. Intermittency Model

Turbulence is characterized by a broad range of scales
linking energy initially injected at large scale /, down to a much
smaller scale /; < Iy where energy can be efficiently dissipated.
To this day, there is no fully developed theory that
comprehensively explains this process. Rather, the best results
in explaining the energy cascade have come from building a
collection of hypotheses that are then integrated into a
phenomenological model.

One of the most celebrated models is Kolmogorov’s
(referred to as K41; Kolmogorov 1941), which established
the phenomenological energy spectrum E(k)x k>3 and
introduced the pivotal “4/5 law.” This law gives the third

moment of velocity fluctuations as ((6v (l))3> = —%El, where ¢
is the cascading energy flux, / is a given eddy size, and
ovih=vr+D — v 2)

is the velocity fluctuation. Kolmogorov suggested introducing a
simple self-similarity assumption to extend this law to a higher
power of p. In this case, one has

SP() = ((GvD)?) o 1%, 3)

with gf‘“ =p /3 for K41. Though initially successful for
hydrodynamical turbulence, deviations from the scaling
relation become evident for p > 3.
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General deviations in ¢, from p/3 are often attributed to
intermittency, or the tendency for subsequent eddys to become
less volume filling than the previous generation. She &
Leveque (1994) proposed a phenomenological model to
account for the observed deviations in hydrodynamical
turbulence by introducing a recursion relation that resulted in
a hierarchy of dissipative structures. From this hierarchy, She
& Leveque (1994) derived the relation

¢, = (p/e)(1 —x) + Coll — (1 — x/CoyPs] (@)

for the scaling exponents. Here, Equation (4) is presented as it
is in Politano & Pouquet (1995), where the physical
assumptions resulting in no free parameters have been
removed. In Equation (4), g corresponds to fluctuation scaling
(i.e., for velocity, év; ol 1/ 8), x relates to cascade timescale of
the dissipative structures, 7; o< [*, and Cy is the codimension of
the structures, related to the fractal dimension by Cy=d — D.
Here d is the embedded space dimension (i.e., d =2 for 2D
turbulence and d =3 for 3D turbulence) and D is the fractal
dimension of the structures.

In Dubrulle (1994), it was shown that the model presented in
She & Leveque (1994) corresponds to the dissipative structures
processing a distribution described by a log-Poisson equation
and in the correct limits can be described with a random fractal
[ model. In the general form presented in Equation (4), we are
able to compare different phenomenological models of
turbulence. A K41 scaling can be recovered with x=0,
g=3, and Cy=0. To reproduce the exact result in She &
Leveque (1994), let x=2/3, g =3, and since She & Leveque
(1994) considered filamentary structures, Cop = 2.

Including magnetic fields also has expected effects on the
parameters in Equation (4). Following Iroshnikov (1963)
and Kraichnan (1965), we can expect g =4 due to a larger
cascade time from the Alfvén wave interactions. Goldreich &
Sridhar (1995) introduced anisotropy of the magnetic field
fluctuations into the picture. This finds g =3 for fluctuations
perpendicular to the background magnetic field and Cy =1 by
assuming that dissipation occurs in sheets. Miiller & Biskamp
(2000) proposed to modify the She & Leveque (1994) model
by simply setting Co=1 for magnetized turbulence, as
turbulent MHD simulations were abundant in electric current
sheets.

Instead of presuming the structure of the turbulent fluctua-
tions, in the following, we analyze the simulations discussed in
Section 2 using structure function statistics as a tool to
characterize intermittency, examine the applicability of pre-
vious phenomenological models, and understand how these
models relate to the most dissipative structures in turbulence.

4. Structure’s Codimensionality

In order to carry out an analysis that can then be compared to
phenomenological models, we first outline the construction of
the structure function (SF). For simplicity, the analysis is
carried out using the magnitude of fluctuation, as seen for the
fluid velocity in Equation (2). Due to observed anisotropy in
the turbulent spectrum (Miiller et al. 2003; Zrake &
MacFadyen 2013), we also analyze the parallel component of
a fluctuation by letting I go to [, referring to the fluctuation
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Figure 1. SF of fluctuations in b for p in the range 1-10. Colors denote
different values of p. The black vertical lines denote the scales L = 1/100 and
L =1/10 as fractions of the simulation box size, where the SF is fitted to the
power law /. The inset shows the slope of the SF.

component parallel to the mean magnetic field, namely Bj:
l
vy =ber+D —v)]- 7 ®)

To calculate the value of a given fluctuation for increment /, the
simulation grid is split up into 2D slices of thickness / along the
given r value. If a slice does not fall on a grid point, the values
are linearly interpolated. The slice is then subtracted from
another slice separated by the distance /. We repeat this for 150
unique, randomly selected pairs of slices. In order to build an
SF with this fluctuation, all subtracted pairs have the absolute
value taken, raised to the p before averaging. An example of
the produced SF is shown in Figure 1.

To compare and fit to phenomenological models, we
calculate the SF exponent ¢, by fitting the SF to a power law
[%. The fitting range is set from 1/100 to 1/10 of the box size
to ensure we are consistently within the inertial range. This
range is shown in Figure 1. We use a least-squares method for
the fit, and the coefficient’s error is determined from the
covariance matrix. We calculate (, values for orders
p =1,...,10 and for quantities 6b, §j, and év. All measurements
are then repeated for each simulation. Additionally, we fit
Equation (4) for Cy using again a least-squares fit. Parameters
x=2/3 and g=3are assumed constant. These results are
detailed in Table 1.

For illustrative purposes, we show in Figure 2 the general
appearance of the scaling exponents for the magnetic field both
from the perpendicular and parallel SF. The pronounced
intermittency is evident through the large deviation from the
K41 scaling after p = 3. The red dotted line shows the results
from She & Leveque (1994), and we can see that we generally
have a significant deviation demanding lower values for the
codimension Cj than those typically found in hydrodynamic
turbulence. The parallel direction displays smaller deviations
that are closer to the original She & Leveque (1994) value. The
smaller deviation in the parallel direction is consistent with
what is seen in Zrake & MacFadyen (2013).
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Table 1
A Summary Table of the Intermittency Results
Co Coy 4 6Bo/Bo
ob 0.963 + 0.06 1.14 £ 0.08 25 1
&b 1.0 +£0.08 1.3 +£0.08 5 1
ob 1.09 + 0.04 1.11 £ 0.03 10 0.5
&b 1.21 +£0.06 1.76 £+ 0.05 10 1
ob 1.23 £ 0.08 2.98 £ 0.02 10 2
6b 1.51 £0.04 1.94 £ 0.09 20 1
ob 1.58 £+ 0.09 22+0.1 40 1
& 0.7 £ 0.06 0.683 + 0.06 2.5 1
& 0.753 + 0.05 0.685 + 0.06 5 1
& 0.718 £ 0.01 0.68 +0.03 10 0.5
& 0.805 & 0.05 0.701 £ 0.06 10 1
o 0.796 &+ 0.03 0.694 £+ 0.03 10 2
of 0.824 4+ 0.08 0.711 + 0.06 20 1
of 0.954 4 0.05 0.728 £+ 0.07 40 1
bv 1.08 +0.02 2.28 £0.01 2.5 1
ov 1.187 4 0.008 1.98 £+ 0.06 5 1
ov 1.03 +0.02 1.59 +0.02 10 0.5
ov 1.16 £ 0.01 2.05 £ 0.05 10 1
bv 0.817 £ 0.02 2.19 £ 0.04 10 2
ov 0.997 + 0.02 1.59 £+ 0.06 20 1
ov 0.865 4+ 0.03 1.69 + 0.04 40 1

Note. For each variable (6b, ¢j, and ¢év), the codimensions Cy and Cy ) are
found by fitting Equation (4) for values of ¢ =2.5, 5, 10, 20, and 40 and
6By/By=0.5, 1, and 2.

Figures 3 and 4 illustrate the behavior of the codimensions
Co and Cy, (for 6v, Ob, and ¢j) with respect to the
magnetization ¢ and the turbulence level éBy/By. Co and Cy
exhibit similar trends, albeit slightly higher values for the
parallel component. Figures 3 and 4 suggest an almost inverse
trend in the fluctuations of velocity (év) compared to the
magnetic field (6b), deviating from the expected scaling in
incompressible MHD. This divergence might be attributed to
the significant density fluctuations observed in relativistic
turbulence. Future investigations could explore whether
considering density-weighted fluctuations in velocity, as
conducted in Zrake & MacFadyen (2012), could reinstate the
incompressible MHD behavior.

As the dissipation of the velocity fluctuations go from
filamentary to sheetlike with increasing o, the magnetic
fluctuations go from being dissipated in sheetlike structures
to filamentary ones. This suggests that in increasingly
magnetized plasmas, more energy is dissipated within flux
ropelike structures, as seen in Dong et al. (2022). The general
dependence on éBy/By is strong for the magnetic field and has
a similar trend as is seen in Miiller et al. (2003).

5. Dissipative Structures

In collisionless plasmas, a comprehensive theory explaining
how the cascade eventually leads to dissipation in this regime is
still lacking. Given that energy dissipation must occur through
electromagnetic interactions, and that energy is initially stored
in the magnetic field, we choose to use the magnetic field
cascade to define the codimension C, for the dissipative
structures. We identify structures with the corresponding Cy by
finding regions characterized by large electromagnetic dissipa-
tion. To this purpose, we employ the dissipation measure

Davis, Comisso, & Giannios

p/3
She Leveque 1994 Model
3.0— ----' She Leveque generalized Model
{ cp/ES
2.5
Q
(o]
.§ 2.0
A
~~
"S> 1.5
1.0
,
‘?
2¥
\ | | | |
2 4 6 8 10
p structure function exponent
p/3
She Leveque 1994 Model
3.0—| ----' She Leveque generalized Model
¢ 01/
2.5
Q
(o]
|
2 2.0
]
=1.5—
NS
1.0 y 4
,
R
0'..
05— ,#
o
l | | | |
2 4 6 8 10

p structure function exponent

Figure 2. SF exponents ¢, vs. p for o = 10 and 6B,/By = 1. Compared with
the trends from Kolmogorov (1941; orange dashed line) and the result from
She & Leveque (1994; green dotted line). The red dotted line shows our fit to
data using Equation (4) with x =2/3 and g = 3. Cy = 1.14 for the top figure
and C, = 1.73 for the bottom figure.

(Zenitani et al. 2011)
D,=J-(E+v.xB)—p®- E), ©)

similarly to Wan et al. (2016) in the context of nonrelativistic
turbulence. Equation (6) describes the work done by electro-
magnetic fields on the particles, evaluated in a frame moving
with the electron fluid velocity v,.. Here, p, is the charge density
and E is the electric field. In order to find the value of the
codimension C, for structures in D,, we first establish the
fractal dimension for structures defined by D,/D, iys = rmScy,
using a box-counting algorithm. We plot this for various values
of rms,,, in Figure 5.
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Figure 3. Dependence of the codimensions Cy and Cg ; on 0. Orange, blue, and
green denote fluctuations in év, éb, and &j, respectively. Dashed lines show a
power law with a similar slope to data of the corresponding color. The top and
bottom figures are in log—log space.

From this plot, we observe minimal dependence on o or
0Bo/By. Figure 5 enables us to visually identify the values of
rmsg,, corresponding to a given codimension C,, determined
earlier by analyzing the SF. In Figure 6 we show a random 2D
slice at a given z-coordinate. Structures are highlighted to show
regions with a similar value of Cy in D, as was found from
fitting the SF exponent for 6b. The 3D rendering of these
structures is shown in the right column of Figure 6.

At low o0 =2.5, we find a codimension Cy ~ 1, indicative of
predominantly sheetlike structures in the dissipation measure
D,. These can be seen in Figure 6 (left) where discrete sheets of
dissipation are discernible. In its corresponding 3D figure, we
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Figure 4. Dependence of the codimensions Co and Co; on 6By/B,. Orange,
blue, and green denote fluctuations in v, 6b, and ¢j, respectively. Dashed lines
show a power law with a similar slope to data of the corresponding color. The
top and bottom figures are in log—log space.

can see that these sheets fill a large part of the volume in
comparison to other figures. At o =10, the corresponding
Cp = 1.1 is highlighted in the D, structures with an rms., ~ 3.
Though generally still sheetlike, the volume occupied by these
structures is significantly reduced. For o = 40, the codimension
Cy increases to ~1.6, but this requires a much higher
rmsq, ~ 6. This drastically decreases the occupied volume
with small slightly elongated dissipation areas that resemble
flux ropes. It is clear that as ¢ increases, the energy is dissipated
in smaller, less volume-filling structures.

To quantify this result, for every simulation in Table 1, we
used a bisection algorithm to determine the rms.,, value that
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Figure 5. Codimension C, for D, > D, s X IS¢y VS. IMS,. Horizontal
dashed lines indicate C, values corresponding to o = 2.5, 10, and 40 as listed
in Table 1.

identifies structures defined by |D,| > |D, ms| X rms., with the
same value for C as listed in Table 1 within an error margin of
+1%. Then, f = Np,/N represents the filling fraction or the
number of cells where |D,| > |D,ms| X rmscy. Additionally,
we define gy=f./f_, where f, is the filling fraction for
structures defined by D, > D, ;s X rms.y, and f_ is the filling
fraction for structures defined by D, < — |D, | X rmscy,. The
error bars for both f and ¢, are derived from repeating these
calculations using the upper and lower bounds of the original
Cy as reported in Table 1.

Results for f can be seen in Figure 7 to be generally trending
to smaller values before appearing to approach a constant as o
increases. Larger values of 6Bg/By also result in a decreased

filling fraction of the inferred structures (Figure 7). The ratio g,

appears in Figure 8 to increase rapidly with o before it
potentially plateaus. Additional data simulations will be
required to determine if the trend continues for larger values
of . The impact of 6By/By on gy is shown in the bottom frame
of the same figure, revealing a steep decreasing trend.

6. Discussion and Conclusions

When examining the identified dissipative structures, a trend
emerges, showcasing a preference for more compact regions of
dissipation (Figure 6) as the magnetization o increases. This
tendency may be attributed, in part, to current sheets becoming
increasingly tearing unstable for larger values of o (and
0Bo/By), resulting in the disruption of current sheets with a
broader thickness A;. The disruption of these sheets enables the
cascade to extend into smaller regions where the dissipation
measure becomes stronger. In Comisso & Sironi (2019), A, is
derived and shown to have a strong dependence on the
plasma’s enthalpy. Higher values of o increase the available
free energy, leading to enhanced plasma heating and conse-
quently an increase in \;. In future work, we aim to explore the
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potential link between the most dissipative structures and the
formation of flux ropes via tearing instability.

In Comisso & Sironi (2018, 2019) it was shown that
turbulent acceleration is a two-stage process with the first being
initial rapid acceleration associated with current sheets, and the
second being a stochastic Fermi-like process. The initial rapid
acceleration works as an injection process for the particles and
is controlled by the parallel electric field, thereby establishing a
preferred direction of motion along the magnetic field for
particles around this injection energy. If these same features
investigated here predominantly operate through the parallel
electric field, then understanding the distribution of these
structures may provide a link to understanding the anisotropic
features that arise in relativistic turbulence. Specifically,
combining the distribution of coherent structures with the
rate of plasma processed by a reconnecting current sheet, given

by the reconnection rate g = vg/c =~ 0.16B / «/5302 + BO2

(Comisso & Jiang 2023), we can approximate the average
power per unit area experienced by the plasma from the parallel
electric field as

, [l f 1\ u ;
Py=mc f P inj 5
” ]min 1 + 1/qf lmin ’y ! BR ( )

where [, refers to the minimum current sheet size, [jax
corresponds to largest scale current sheets, and 7 X o
(Comisso & Sironi 2019) is the mean particle Lorentz factor
reached after being injected by the current sheet.

PIC simulations have consistently demonstrated the two-stage
nature of particle acceleration in magnetized turbulence (Comisso
& Sironi 2018, 2019, 2021; Nittilda & Beloborodov 2021) and any
successful theory of particle acceleration must encompass not only
stochastic acceleration effects but also account for initial
acceleration by nonideal fields. Comisso & Sironi (2018, 2019)
showed via particle tracking that the highest-energy particles
usually first go through an injection phase that is associated with
current sheets. If this is the case, then an acceleration theory for
the injection phase requires both an understanding of how
particles interacting with current sheets (or other dissipative
structures) gain energy and how the distribution of dissipative
regions depends on the initial plasma parameters. This work has
focused on the latter, but a full acceleration theory will need to
couple this with an adequate understanding of dissipation inside
these structures. In Lemoine (2021), the author reviews a random
walk through intermittent structures as informed by the large
deviation theory. In the random walk with a time step #, a
particle is assumed to have a probability f, of gaining a
momentum fraction g, a probability f_ of losing momentum
fraction g, and a probability 1 — f, — f_ of not interacting in that
time step. This model showed it was capable of reproducing a
hardened particle spectrum, but applying it here requires an
understanding of how g depends on o and 6B,/ B,. Further still, to
use this model as an acceleration theory would require the
assumption that the particle dynamics inside of magnetized
turbulence can be reduced to a Levy flight.

In this work, we combined intermittency analysis with
phenomenological scaling theories to gain insights into the
distribution of dissipative coherent structures within relativistic
turbulent plasmas. Specifically, through the construction of SFs
up to order 10 from 3D relativistic turbulent PIC simulations,
we accurately measured the SF exponents (,, which, when
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Figure 6. 2D representation (left) and 3D representation (right) illustrating the most dissipative structures. From top to bottom, these structures correspond to
turbulence with o = 2.5, 10, and 40. The figures show that as ¢ increases, the coherent structures become increasingly dissipative while becoming less volume filling.
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Figure 7. Top: dependency of the filling fraction f of the dissipative structures
on the magnetization o. Bottom: f dependence on 6B/By. Dashed lines show a
power law with a similar slope to data.

fitted to a generalized She-Leveque model, revealed the value
of the codimension C; of the most dissipative structures. We
then determined the 3D representation of these structures by
identifying regions of significant dissipation that shared the
same value of Cy. Once identified, we were able to determine
the filling fraction and the subset of positive to negative work
structures. All of this was done for a range of o and 6By/By
values, providing insights into how these properties scale
within the regime of relativistic turbulence. The value of the
codimension C, for the magnetic field generally increases for
both ¢ and éBy/By going from 1, a value representative of a
sheet, toward a value of 2, more filamentary-like. Nonetheless,
when pinpointing the most dissipative structures with larger
values of Cy, they exhibit characteristics more akin to discrete
flux ropes rather than extended sheets. This suggests the
possibility of current sheets becoming more tearing unstable,
allowing the cascade to continue into smaller structures.
Furthermore, we found that the filling fraction f of the
dissipative structures decreases with o and 6B,/ B, plateauing
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at large values of o. Additionally, the ratio of positive to
negative work structures, g5, increases with o, leveling off at
large o values, while decreasing with 6B/B,. These results
contribute to understanding the link between scaling theories
and intermittent coherent structures, paving the way for the
development of a physically informed turbulent acceleration
theory.
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