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Abstract

Kinetic simulations of relativistic turbulence have significantly advanced our understanding of turbulent particle
acceleration. Recent progress has highlighted the need for an updated acceleration theory that can account for
particle acceleration within the plasma’s coherent structures. Here, we investigate how intermittency modeling
connects statistical fluctuations in turbulence to regions of high-energy dissipation. This connection is established
by employing a generalized She–Leveque model to characterize the exponents ζp for the structure functions
S lp

pµ z . The fitting of the scaling exponents provides us with a measure of the codimension of the dissipative
structures, for which we subsequently determine the filling fraction. We perform our analysis for a range of
magnetizations σ and relative fluctuation amplitudes δB0/B0. We find that increasing values of σ and δB0/B0 allow
the turbulent cascade to break sheetlike structures into smaller regions of dissipation that resemble chains of flux
ropes. However, as their dissipation measure increases, the dissipative regions become less volume filling. With
this work, we aim to inform future turbulent acceleration theories that incorporate particle energization from
interactions with coherent structures within relativistic turbulence.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); High energy astrophysics (739); Magnetic
fields (994); Relativistic jets (1390)

1. Introduction

A central goal in high-energy astrophysics is to uncover the

physical processes that power the most extreme particle

accelerators, which are accountable for bright electromagnetic
observations. Often, as is the case with gamma-ray bursts and

jets from active galactic nuclei, the sources are observed to have
a broad electromagnetic spectrum, whose interpretation requires

a relativistic nonthermal distribution of particles undergoing
radiative cooling (Band et al. 1993; Ghisellini et al. 1998). The

mechanisms responsible for the rapid particle acceleration

needed to produce these nonthermal particle distributions are a
subject of ongoing debate (see Matthews et al. 2020 for a recent

review). Nonetheless, it is commonly assumed that the free
energy required for particle acceleration comes from large-scale

perturbations within the jet, which can lead to the formation of
shocks (e.g., Böttcher & Dermer 2010) or large-scale magnetic

reconnection layers (e.g., Giannios 2013). Regardless of the
specific scenario, a large-scale separation exists from the energy

injection scale to plasma kinetic scales, where energy dissipation

occurs. This scale separation typically involves turbulence
modulation, highlighting the need to understand turbulence for

a comprehensive understanding of particle acceleration and high-
energy emission.

Turbulence, a complex nonlinear phenomenon already
challenging the study of hydrodynamical fluids on Earth, poses

additional challenges in astrophysical plasmas. Factors such as
low particle collisionality, strong magnetic fields, relativistic

velocities, and extreme temperatures contribute to the complex-
ity. The analytical treatment of turbulence often relies on

phenomenological cascade models (or scaling theories) that
link large-scale fluid fluctuations to smaller scales, extending
down to the dissipation scale. The most renowned model
of hydrodynamic turbulence is due to Kolmogorov (1941),
with adaptations later developed for magnetohydrodynamics
(MHD; e.g., Iroshnikov 1963; Kraichnan 1965; Goldreich &
Sridhar 1995). Initial investigations into the validity of cascade
models were conducted through numerical simulations using
the MHD approximation. However, recent progress in this field
has seen the development of first-principle kinetic simulations,
which are crucial for enhancing our understanding of
turbulence in weakly collisional plasmas, particularly at the
smallest scales where most energy is dissipated.
Given its relevance in relativistic magnetized outflows, we

focus on investigating turbulence in conditions where the
magnetic energy density exceeds the rest-mass energy density
and the plasma pressure. Under these conditions, plasma
motions approach the speed of light, marking the relativistic
turbulence regime. This regime of turbulence is intrinsically
linked to magnetic reconnection (Lazarian et al. 2012;
Comisso & Sironi 2019), which has been shown to be an
efficient accelerator of relativistic particles (e.g., Comisso &
Sironi 2018). Additionally, in the relativistic regime, the
stochastic Fermi acceleration mechanism (Fermi 1949) oper-
ates on short timescales, facilitating the rapid conversion of
magnetic energy into plasma particle energy. Turbulent
acceleration in magnetized plasmas has been associated with
various sources of high-energy emissions, including solar
flares (Miller et al. 1996), gamma-ray bursts (Bykov &
Meszaros 1996), and blazar jets (Marscher 2014; Davis et al.
2022; Zhang et al. 2023).
The traditional analytical approach to understanding turbu-

lence’s role in particle acceleration is through quasi-linear theory
(QLT; Bernstein & Engelmann 1966). In QLT, particle
trajectories are gyroaveraged before scattering off plasma waves,
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and the analytical description often involves calculating a
diffusion tensor derived from linear eigenmodes of the plasma’s
MHD waves (see, e.g., Demidem et al. 2020). However, large-
amplitude turbulent fluctuations invalidate QLT, and recent fully
kinetic particle-in-cell (PIC) simulations have indeed cast doubts
on the QLT description. In the relativistic turbulence regime, QLT
is unable to account for the observed development of pitch-angle
anisotropy (Comisso et al. 2020; Comisso & Sironi 2021),
recreate the observed particle distributions without unexplained
advection coefficients (Zhdankin et al. 2020), or provide a
mechanism for the observed acceleration at current sheets
(Comisso & Sironi 2019). QLT’s inability to describe recent
results from PIC simulations has spurred the search for new
analytical descriptions of particle acceleration in relativistic
turbulence. Lemoine (2021) suggested abandoning the idea that
particle acceleration in relativistic turbulence is due to wave
interactions and rather that acceleration may be mainly due to a
collection of interactions with discrete structures within turbu-
lence. Current sheets are of particular interest because of their
common occurrence in magnetized turbulence (Comisso &
Sironi 2019; Zhdankin et al. 2020) and, when these sheets
undergo reconnection, they efficiently dissipate magnetic energy.
Current sheets also provide a link to phenomenological cascade
models incorporating dissipative structures (Dubrulle 1994; She
& Leveque 1994; Biskamp &Müller 2000) that can be associated
with the observed intermittency, pitch-angle anisotropy, and
energy spectra (Comisso & Sironi 2019; Zhdankin et al. 2020).

To bridge the gap between phenomenological theories of
intermittency and the dissipative structures responsible for
particle energization, we analyze PIC simulations of relativistic
magnetized turbulence. Our investigation begins with the
characterization of the turbulence intermittency and its depend-
ence on two key physical parameters: the plasma magnetization
and the amplitude of the magnetic fluctuations with respect to the
mean magnetic field. We employ a general log-Poisson model of
turbulence to establish a link between the coherent structures and
the phenomenological model. Once established, we investigate
the filling fractions of these coherent structures. This approach is
repeated for different values of plasma magnetization and the
level of the magnetic fluctuations to analyze the dependence of
the dissipative structure properties on these key plasma
parameters. Finally, we discuss the implications for current
particle acceleration theories before concluding.

2. Numerical Setup

To investigate the statistics of relativistic magnetized
turbulence from a first-principles standpoint, we solve the
Vlasov–Maxwell system of equations through the PIC method
(Birdsall & Langdon 1985) using the publicly available code
TRISTAN-MP (Buneman 1993; Spitkovsky 2005). We perform
the numerical simulations in a triply periodic cubic domain L3

that is discretized into a regular lattice of 10243 cells. We
initialize a uniform electron–positron plasma with a total particle
density of n0 according to a Maxwell–Jüttner distribution with
dimensionless temperature θ0= kBT0/mc

2
= 0.3. Here, T0 is the

initial plasma temperature, kB indicates the Boltzmann constant,
m is the electron mass, and c is the speed of light in a vacuum.
Turbulence is seeded by initializing a spectrum of magnetic
fluctuations having polarizations transverse to a uniform mean
magnetic field B zB0 ˆá ñ = (see Comisso & Sironi 2018, 2019 for
details). The initial magnetic energy spectrum peaks near
kp= 6π/L, which defines the energy-carrying scale l0= 2π/kp

and limits the particles' maximum Lorentz factor through
stochastic acceleration (Comisso & Sironi 2018).
The strength of initial fluctuating magnetic energy relative to

plasma enthalpy is quantified by

B

n w mc4
, 10

2

0 0
2

( )s
d

p
=

where δB0= 〈δB2(t= 0)〉1/2 is the initial rms amplitude of the

magnetic field fluctuations and w K K1 10 3 0 2 0[ ( ) ( )]q q= is the

initial enthalpy per particle, with Kn(z) indicating the modified

Bessel function of the second kind of order n. The corresponding

total magnetization is B B n w mc4B 0
2

0
2

0 0
2

0
( )s s d p+ = + .

Since our work focuses on studying relativistic plasma

turbulence, characterized by Alfvénic velocity fluctuations vA =
c c1( )s s+ ~ , we focus on the magnetization regime

σ? 1. Our simulations cover a range of magnetizations with

values 2.5, 5, 10, 20, 40{ }s Î , and different strengths of the

mean magnetic field, corresponding to ratios B B0 0d Î
0.5, 1, 2{ }.
We adopt a spatial resolution of Δx= de0/3, implying

L= 1024de0/3, where de0= c/ωp0 indicates the initial plasma

skin depth and n e m4p0 0
2

th0w p g= is the relativistic plasma
frequency, where γth0= w0− θ0 is the initial mean thermal
Lorentz factor. We employ an average of four computational
particles per cell. Earlier studies (Comisso & Sironi 2018, 2019)
have demonstrated convergence with respect to these numerical
parameters. Since we are interested in studying fully developed
turbulence, we ran the simulation up to t∼ 3l0/c, at which
point the turbulence has been fully developed. In the following,
we mainly discuss the results obtained from the magnetic field
b= B/B0, the current density j= J/en0c, and the fluid bulk
velocity v= V/c, obtained by averaging the velocities of
individual particles.

3. Intermittency Model

Turbulence is characterized by a broad range of scales
linking energy initially injected at large scale l0 down to a much
smaller scale ld= l0 where energy can be efficiently dissipated.
To this day, there is no fully developed theory that
comprehensively explains this process. Rather, the best results
in explaining the energy cascade have come from building a
collection of hypotheses that are then integrated into a
phenomenological model.
One of the most celebrated models is Kolmogorov’s

(referred to as K41; Kolmogorov 1941), which established
the phenomenological energy spectrum E(k)∝ k−5/3 and
introduced the pivotal “4/5 law.” This law gives the third

moment of velocity fluctuations as v l l3 4

5
( ( ))dá ñ = -  , where ò

is the cascading energy flux, l is a given eddy size, and

r l rv l v v 2( ) ( ) ( ) ( )d º + -

is the velocity fluctuation. Kolmogorov suggested introducing a

simple self-similarity assumption to extend this law to a higher

power of p. In this case, one has

S l v l l , 3p p p( ) ( ( )) ( )d= á ñ µ z

with p 3
p
K41z = for K41. Though initially successful for

hydrodynamical turbulence, deviations from the scaling

relation become evident for p> 3.
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General deviations in ζp from p/3 are often attributed to
intermittency, or the tendency for subsequent eddys to become
less volume filling than the previous generation. She &
Leveque (1994) proposed a phenomenological model to
account for the observed deviations in hydrodynamical

turbulence by introducing a recursion relation that resulted in
a hierarchy of dissipative structures. From this hierarchy, She
& Leveque (1994) derived the relation

p g x C x C1 1 1 4p
p g

0 0( )( ) [ ( ) ] ( )z = - + - -

for the scaling exponents. Here, Equation (4) is presented as it

is in Politano & Pouquet (1995), where the physical

assumptions resulting in no free parameters have been

removed. In Equation (4), g corresponds to fluctuation scaling

(i.e., for velocity, δvl∝ l1/ g), x relates to cascade timescale of

the dissipative structures, τl∝ l x, and C0 is the codimension of

the structures, related to the fractal dimension by C0= d−D.

Here d is the embedded space dimension (i.e., d= 2 for 2D

turbulence and d= 3 for 3D turbulence) and D is the fractal

dimension of the structures.
In Dubrulle (1994), it was shown that the model presented in

She & Leveque (1994) corresponds to the dissipative structures
processing a distribution described by a log-Poisson equation
and in the correct limits can be described with a random fractal

β model. In the general form presented in Equation (4), we are
able to compare different phenomenological models of
turbulence. A K41 scaling can be recovered with x= 0,
g= 3, and C0= 0. To reproduce the exact result in She &
Leveque (1994), let x= 2/3, g= 3, and since She & Leveque

(1994) considered filamentary structures, C0= 2.
Including magnetic fields also has expected effects on the

parameters in Equation (4). Following Iroshnikov (1963)
and Kraichnan (1965), we can expect g= 4 due to a larger

cascade time from the Alfvén wave interactions. Goldreich &
Sridhar (1995) introduced anisotropy of the magnetic field
fluctuations into the picture. This finds g= 3 for fluctuations
perpendicular to the background magnetic field and C0= 1 by
assuming that dissipation occurs in sheets. Müller & Biskamp

(2000) proposed to modify the She & Leveque (1994) model
by simply setting C0= 1 for magnetized turbulence, as
turbulent MHD simulations were abundant in electric current
sheets.

Instead of presuming the structure of the turbulent fluctua-

tions, in the following, we analyze the simulations discussed in
Section 2 using structure function statistics as a tool to
characterize intermittency, examine the applicability of pre-
vious phenomenological models, and understand how these

models relate to the most dissipative structures in turbulence.

4. Structure’s Codimensionality

In order to carry out an analysis that can then be compared to
phenomenological models, we first outline the construction of
the structure function (SF). For simplicity, the analysis is

carried out using the magnitude of fluctuation, as seen for the
fluid velocity in Equation (2). Due to observed anisotropy in
the turbulent spectrum (Müller et al. 2003; Zrake &
MacFadyen 2013), we also analyze the parallel component of
a fluctuation by letting l go to l∥, referring to the fluctuation

component parallel to the mean magnetic field, namely B0:

v r l v r
l

v l
l
. 5( ) [ ( ) ( )] · ( )d º + -

To calculate the value of a given fluctuation for increment l, the

simulation grid is split up into 2D slices of thickness l along the

given r value. If a slice does not fall on a grid point, the values

are linearly interpolated. The slice is then subtracted from

another slice separated by the distance l. We repeat this for 150

unique, randomly selected pairs of slices. In order to build an

SF with this fluctuation, all subtracted pairs have the absolute

value taken, raised to the p before averaging. An example of

the produced SF is shown in Figure 1.
To compare and fit to phenomenological models, we

calculate the SF exponent ζp by fitting the SF to a power law
l p
z . The fitting range is set from 1/100 to 1/10 of the box size
to ensure we are consistently within the inertial range. This
range is shown in Figure 1. We use a least-squares method for
the fit, and the coefficient’s error is determined from the
covariance matrix. We calculate ζp values for orders
p= 1,...,10 and for quantities δb, δj, and δv. All measurements
are then repeated for each simulation. Additionally, we fit
Equation (4) for C0 using again a least-squares fit. Parameters
x= 2/3 and g= 3 are assumed constant. These results are
detailed in Table 1.
For illustrative purposes, we show in Figure 2 the general

appearance of the scaling exponents for the magnetic field both
from the perpendicular and parallel SF. The pronounced
intermittency is evident through the large deviation from the
K41 scaling after p= 3. The red dotted line shows the results
from She & Leveque (1994), and we can see that we generally
have a significant deviation demanding lower values for the
codimension C0 than those typically found in hydrodynamic
turbulence. The parallel direction displays smaller deviations
that are closer to the original She & Leveque (1994) value. The
smaller deviation in the parallel direction is consistent with
what is seen in Zrake & MacFadyen (2013).

Figure 1. SF of fluctuations in b for p in the range 1–10. Colors denote
different values of p. The black vertical lines denote the scales L = 1/100 and
L = 1/10 as fractions of the simulation box size, where the SF is fitted to the

power law l pµ z . The inset shows the slope of the SF.
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Figures 3 and 4 illustrate the behavior of the codimensions

C0 and C0,∥ (for δv, δb, and δj) with respect to the

magnetization σ and the turbulence level δB0/B0. C0 and C0,∥

exhibit similar trends, albeit slightly higher values for the

parallel component. Figures 3 and 4 suggest an almost inverse

trend in the fluctuations of velocity (δv) compared to the

magnetic field (δb), deviating from the expected scaling in

incompressible MHD. This divergence might be attributed to

the significant density fluctuations observed in relativistic

turbulence. Future investigations could explore whether

considering density-weighted fluctuations in velocity, as

conducted in Zrake & MacFadyen (2012), could reinstate the

incompressible MHD behavior.
As the dissipation of the velocity fluctuations go from

filamentary to sheetlike with increasing σ, the magnetic

fluctuations go from being dissipated in sheetlike structures

to filamentary ones. This suggests that in increasingly

magnetized plasmas, more energy is dissipated within flux

ropelike structures, as seen in Dong et al. (2022). The general

dependence on δB0/B0 is strong for the magnetic field and has

a similar trend as is seen in Müller et al. (2003).

5. Dissipative Structures

In collisionless plasmas, a comprehensive theory explaining

how the cascade eventually leads to dissipation in this regime is

still lacking. Given that energy dissipation must occur through

electromagnetic interactions, and that energy is initially stored

in the magnetic field, we choose to use the magnetic field

cascade to define the codimension C0 for the dissipative

structures. We identify structures with the corresponding C0 by

finding regions characterized by large electromagnetic dissipa-

tion. To this purpose, we employ the dissipation measure

(Zenitani et al. 2011)

J E v B v ED , 6e e e e· ( ) ( · ) ( )r= + ´ -

similarly to Wan et al. (2016) in the context of nonrelativistic

turbulence. Equation (6) describes the work done by electro-

magnetic fields on the particles, evaluated in a frame moving

with the electron fluid velocity ve. Here, ρe is the charge density

and E is the electric field. In order to find the value of the

codimension C0 for structures in De, we first establish the

fractal dimension for structures defined by De/De,rms� rmscut
using a box-counting algorithm. We plot this for various values

of rmscut in Figure 5.

Table 1

A Summary Table of the Intermittency Results

C0 C0,∥ σ δB0/B0

δb 0.963 ± 0.06 1.14 ± 0.08 2.5 1

δb 1.0 ± 0.08 1.3 ± 0.08 5 1

δb 1.09 ± 0.04 1.11 ± 0.03 10 0.5

δb 1.21 ± 0.06 1.76 ± 0.05 10 1

δb 1.23 ± 0.08 2.98 ± 0.02 10 2

δb 1.51 ± 0.04 1.94 ± 0.09 20 1

δb 1.58 ± 0.09 2.2 ± 0.1 40 1

δj 0.7 ± 0.06 0.683 ± 0.06 2.5 1

δj 0.753 ± 0.05 0.685 ± 0.06 5 1

δj 0.718 ± 0.01 0.68 ± 0.03 10 0.5

δj 0.805 ± 0.05 0.701 ± 0.06 10 1

δj 0.796 ± 0.03 0.694 ± 0.03 10 2

δj 0.824 ± 0.08 0.711 ± 0.06 20 1

δj 0.954 ± 0.05 0.728 ± 0.07 40 1

δv 1.08 ± 0.02 2.28 ± 0.01 2.5 1

δv 1.187 ± 0.008 1.98 ± 0.06 5 1

δv 1.03 ± 0.02 1.59 ± 0.02 10 0.5

δv 1.16 ± 0.01 2.05 ± 0.05 10 1

δv 0.817 ± 0.02 2.19 ± 0.04 10 2

δv 0.997 ± 0.02 1.59 ± 0.06 20 1

δv 0.865 ± 0.03 1.69 ± 0.04 40 1

Note. For each variable (δb, δj, and δv), the codimensions C0 and C0,∥ are

found by fitting Equation (4) for values of σ = 2.5, 5, 10, 20, and 40 and

δB0/B0 = 0.5, 1, and 2.

Figure 2. SF exponents ζp vs. p for σ = 10 and δB0/B0 = 1. Compared with
the trends from Kolmogorov (1941; orange dashed line) and the result from
She & Leveque (1994; green dotted line). The red dotted line shows our fit to
data using Equation (4) with x = 2/3 and g = 3. C0 = 1.14 for the top figure
and C0 = 1.73 for the bottom figure.
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From this plot, we observe minimal dependence on σ or
δB0/B0. Figure 5 enables us to visually identify the values of
rmscut corresponding to a given codimension C0, determined
earlier by analyzing the SF. In Figure 6 we show a random 2D
slice at a given z-coordinate. Structures are highlighted to show
regions with a similar value of C0 in De as was found from
fitting the SF exponent for δb. The 3D rendering of these
structures is shown in the right column of Figure 6.

At low σ= 2.5, we find a codimension C0≈ 1, indicative of
predominantly sheetlike structures in the dissipation measure
De. These can be seen in Figure 6 (left) where discrete sheets of
dissipation are discernible. In its corresponding 3D figure, we

can see that these sheets fill a large part of the volume in
comparison to other figures. At σ= 10, the corresponding
C0≈ 1.1 is highlighted in the De structures with an rmscut≈ 3.
Though generally still sheetlike, the volume occupied by these
structures is significantly reduced. For σ= 40, the codimension
C0 increases to ≈1.6, but this requires a much higher
rmscut≈ 6. This drastically decreases the occupied volume
with small slightly elongated dissipation areas that resemble
flux ropes. It is clear that as σ increases, the energy is dissipated
in smaller, less volume-filling structures.
To quantify this result, for every simulation in Table 1, we

used a bisection algorithm to determine the rmscut value that

Figure 3. Dependence of the codimensions C0 and C0,∥ on σ. Orange, blue, and
green denote fluctuations in δv, δb, and δj, respectively. Dashed lines show a
power law with a similar slope to data of the corresponding color. The top and
bottom figures are in log–log space.

Figure 4. Dependence of the codimensions C0 and C0,∥ on δB0/B0. Orange,
blue, and green denote fluctuations in δv, δb, and δj, respectively. Dashed lines
show a power law with a similar slope to data of the corresponding color. The
top and bottom figures are in log–log space.
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identifies structures defined by |De|� |De,rms| × rmscut with the
same value for C0 as listed in Table 1 within an error margin of
±1%. Then, f N NDe= represents the filling fraction or the
number of cells where |De|� |De,rms| × rmscut. Additionally,
we define qf= f+/f−, where f+ is the filling fraction for
structures defined by De�De,rms× rmscut, and f

−
is the filling

fraction for structures defined by De�− |De,rms| × rmscut. The
error bars for both f and qf are derived from repeating these
calculations using the upper and lower bounds of the original
C0 as reported in Table 1.

Results for f can be seen in Figure 7 to be generally trending
to smaller values before appearing to approach a constant as σ
increases. Larger values of δB0/B0 also result in a decreased
filling fraction of the inferred structures (Figure 7). The ratio qf
appears in Figure 8 to increase rapidly with σ before it
potentially plateaus. Additional data simulations will be
required to determine if the trend continues for larger values
of σ. The impact of δB0/B0 on qf is shown in the bottom frame
of the same figure, revealing a steep decreasing trend.

6. Discussion and Conclusions

When examining the identified dissipative structures, a trend
emerges, showcasing a preference for more compact regions of
dissipation (Figure 6) as the magnetization σ increases. This
tendency may be attributed, in part, to current sheets becoming
increasingly tearing unstable for larger values of σ (and
δB0/B0), resulting in the disruption of current sheets with a
broader thickness λd. The disruption of these sheets enables the
cascade to extend into smaller regions where the dissipation
measure becomes stronger. In Comisso & Sironi (2019), λd is
derived and shown to have a strong dependence on the
plasma’s enthalpy. Higher values of σ increase the available
free energy, leading to enhanced plasma heating and conse-
quently an increase in λd. In future work, we aim to explore the

potential link between the most dissipative structures and the
formation of flux ropes via tearing instability.
In Comisso & Sironi (2018, 2019) it was shown that

turbulent acceleration is a two-stage process with the first being
initial rapid acceleration associated with current sheets, and the
second being a stochastic Fermi-like process. The initial rapid
acceleration works as an injection process for the particles and
is controlled by the parallel electric field, thereby establishing a
preferred direction of motion along the magnetic field for
particles around this injection energy. If these same features
investigated here predominantly operate through the parallel
electric field, then understanding the distribution of these
structures may provide a link to understanding the anisotropic
features that arise in relativistic turbulence. Specifically,
combining the distribution of coherent structures with the
rate of plasma processed by a reconnecting current sheet, given

by the reconnection rate v c B B B0.1R R 0 0
2

0
2/b d d= » +

(Comisso & Jiang 2023), we can approximate the average
power per unit area experienced by the plasma from the parallel
electric field as

P mc
f

q

l

l
dl

1 1
, 7

l

l

f

C

R
2

min
inj

min

max
0

( ) ⎜ ⎟⎛
⎝

⎞
⎠ò g b=

+

where lmin refers to the minimum current sheet size, lmax

corresponds to largest scale current sheets, and γinj∝ σ

(Comisso & Sironi 2019) is the mean particle Lorentz factor

reached after being injected by the current sheet.
PIC simulations have consistently demonstrated the two-stage

nature of particle acceleration in magnetized turbulence (Comisso
& Sironi 2018, 2019, 2021; Nättilä & Beloborodov 2021) and any
successful theory of particle acceleration must encompass not only
stochastic acceleration effects but also account for initial
acceleration by nonideal fields. Comisso & Sironi (2018, 2019)
showed via particle tracking that the highest-energy particles
usually first go through an injection phase that is associated with
current sheets. If this is the case, then an acceleration theory for
the injection phase requires both an understanding of how
particles interacting with current sheets (or other dissipative
structures) gain energy and how the distribution of dissipative
regions depends on the initial plasma parameters. This work has
focused on the latter, but a full acceleration theory will need to
couple this with an adequate understanding of dissipation inside
these structures. In Lemoine (2021), the author reviews a random
walk through intermittent structures as informed by the large
deviation theory. In the random walk with a time step trw, a
particle is assumed to have a probability f+ of gaining a
momentum fraction g, a probability f

−
of losing momentum

fraction g, and a probability 1− f+− f
−
of not interacting in that

time step. This model showed it was capable of reproducing a
hardened particle spectrum, but applying it here requires an
understanding of how g depends on σ and δB0/B0. Further still, to
use this model as an acceleration theory would require the
assumption that the particle dynamics inside of magnetized
turbulence can be reduced to a Levy flight.
In this work, we combined intermittency analysis with

phenomenological scaling theories to gain insights into the
distribution of dissipative coherent structures within relativistic
turbulent plasmas. Specifically, through the construction of SFs
up to order 10 from 3D relativistic turbulent PIC simulations,
we accurately measured the SF exponents ζp, which, when

Figure 5. Codimension C0 for De � De,rms × rmscut vs. rmscut. Horizontal
dashed lines indicate C0 values corresponding to σ = 2.5, 10, and 40 as listed
in Table 1.
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Figure 6. 2D representation (left) and 3D representation (right) illustrating the most dissipative structures. From top to bottom, these structures correspond to
turbulence with σ = 2.5, 10, and 40. The figures show that as σ increases, the coherent structures become increasingly dissipative while becoming less volume filling.
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fitted to a generalized She–Leveque model, revealed the value
of the codimension C0 of the most dissipative structures. We
then determined the 3D representation of these structures by
identifying regions of significant dissipation that shared the
same value of C0. Once identified, we were able to determine
the filling fraction and the subset of positive to negative work
structures. All of this was done for a range of σ and δB0/B0

values, providing insights into how these properties scale
within the regime of relativistic turbulence. The value of the
codimension C0 for the magnetic field generally increases for
both σ and δB0/B0 going from 1, a value representative of a
sheet, toward a value of 2, more filamentary-like. Nonetheless,
when pinpointing the most dissipative structures with larger
values of C0, they exhibit characteristics more akin to discrete
flux ropes rather than extended sheets. This suggests the
possibility of current sheets becoming more tearing unstable,
allowing the cascade to continue into smaller structures.
Furthermore, we found that the filling fraction f of the
dissipative structures decreases with σ and δB0/B0, plateauing

at large values of σ. Additionally, the ratio of positive to

negative work structures, qf, increases with σ, leveling off at

large σ values, while decreasing with δB0/B0. These results

contribute to understanding the link between scaling theories

and intermittent coherent structures, paving the way for the

development of a physically informed turbulent acceleration

theory.
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Figure 7. Top: dependency of the filling fraction f of the dissipative structures
on the magnetization σ. Bottom: f dependence on δB0/B0. Dashed lines show a
power law with a similar slope to data.

Figure 8. Top: dependence of qf = f+/f− on σ. Bottom: qf dependence on
δB0/B0. Dashed lines show a power law with a similar slope to data.
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