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Abstract—A technique for the design of conformal metasurfaces 

with two spatially disconnected space wave ports connected by a 

surface wave is presented. The passive and lossless metasurface 

absorbs the incident wave at port 1, converts it nearly perfectly 

into a surface wave which transports the energy along an 

arbitrarily shaped/curved metasurface to port 2, then reradiates 

the captured power as a radiated field with control over its 

amplitude and phase. Since the incident field is seen to disappear 

at the input port and reappear at a spatially dislocated port as a 

new formed beam, the space wave can be said to have been 

seamlessly transported from one point in space to another. The 

metasurface consists of a single, conformal, spatially variant, 

impedance sheet supported by a conformal grounded dielectric 

substrate of the same shape. It is modeled using integral equations. 

The integral equations are solved using the method of moments 

(MoM). The impedances of the sheet are optimized using the 

adjoint variable method to achieve the near perfect wave 

transportation operation from a passive and lossless metasurface. 

MATLAB codes and COMSOL Multiphysics simulation files for 

all designs presented in this paper are available for download as 

supplemental material files. Possible applications include channel 

optimization for cellular networks, inexpensive power harvesting, 

sensing, around-the-corner radar, and cloaking. 

 
Index Terms—Conformal, Metasurface, Plane wave coupler, 

integral equations, method of moments, adjoint variable 

optimization  

 

I. INTRODUCTION 

HE design of metasurfaces to create tunnel-like 

connections through space (with a finite travel time 

from port to port) connecting two space wave ports at 

distant locations is addressed in this paper (see Fig. 1). The 

incident space wave field is absorbed at port 1, perfectly 

converted into a surface wave which connects the two ports and 

transfers power between them, and reradiated from port 2 

located at a distant location. The reradiated field from port 2 is 

designed with arbitrary control over its phase and amplitude in 

a completely passive and lossless way utilizing nearly all (over 

97.5%) of the power contained in the incident field over port 1. 

As the metasurface transfers nearly all of the available power in 

the incident wave to the reradiated wave, the operation is said 

to be near perfect. 
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The enabling technology for the presented designs is near 

perfect space-wave to surface-wave couplers. Although these 

devices have been demonstrated before for planar [1]–[4] and 

cylindrical surfaces [5]–[7], near perfect coupling over an 

arbitrarily shaped non-canonical conformal surface has not 

been shown. Furthermore, complex-valued field control over 

non-canonical conformal surfaces using passive and lossless 

metasurfaces has also not been shown. In this paper, near 

perfect space-wave to surface-wave couplers enable wave 

transportation of incident beams to spatially dislocated ports 

along any desired shape surface and with complex-valued field 

control of the reradiated beam from a completely passive and 

lossless metasurface. 

The metasurface itself is a textured interface, modeled as a 

spatially variant homogenized purely reactive impedance sheet 

supported by a grounded dielectric substrate [8]. The 

metasurface is capable of complex-valued radiated field control 

and seamless conversion between guided and unguided modes 

in a lossless or perfect manner. It is modeled using integral 

equations [9]–[11], the integral equations are solved using the 

method of moments technique [12], and the reactances of the 

impedance sheet optimized using the adjoint variable method 

[11], [13], [14]. For an overview of the design procedure, see 

[11], [15]. A customized integral equation for the design of the 

conformal cases specific to this paper can be found in the 

appendix of this paper. The metasurface can be made to 

conform to any shape such as the corner of a building (see Fig. 

10 for preview) or a general non-canonical curvilinear surface 

(see Fig. 15 for preview) for example. We will first present a 

planar design to demonstrate the near perfect wave 

transportation function and understand its operation. 

Color versions of one or more of the figures in this article are available 

online at http://ieeexplore.ieee.org 

T 

 
Fig. 1. Transporting metasurface geometry. Note, the unit cells are 

shown enlarged for clarity. The actual metasurface contains 200 

unit cells each 𝜆0/20 wide. 
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Subsequently, the same functionality from conformal 

geometries will be shown.   

Similar planar transporting metasurfaces have appeared in 

recent scientific works. In [2], a planar wave transporting 

metasurface was designed by juxtaposing three separate 

metasurfaces, two space wave to surface wave couplers 

separated by a metasurface supporting a pure surface wave.  

The overall metasurface system laterally shifts a plane wave 

incident at an angle of 30° on the left-hand side of the 

metasurface to a transmitted wave emanating from the right-

hand side of the metasurface at an angle of −7.2° with respect 

to the normal. Due to the analytical design procedure, the 

metasurface junctions scatter and reduce the efficiency. Also, 

the coupling metasurfaces do not perfectly convert the incident 

fields to surface wave fields. The authors report an efficiency 

of only 10%, and hence the wave transportation cannot be 

deemed perfect. Furthermore, the approach cannot control both 

the phase and amplitude of the transmitted field and hence does 

not have the capability of complex-valued field control. The 

metasurfaces in the referenced work are also not conformal.  

In [16], a planar teleporting metasurface is designed using 

the principles of 𝒫𝒯 symmetry. A reactive layer is sandwiched 

between an absorbing lossy Salisbury screen layer matched to 

free space and an active layer with a negative impedance also 

matched to free space. An incident plane wave is absorbed 

nearly completely by the lossy layer, while the inductive 

perforated layer allows the remaining small amount of power to 

couple to the active layer where it is resonantly amplified to 

recreate or teleport the incident plane wave to the opposite side. 

Although this device requires active and lossy components, the 

loss and gain are balanced according to 𝒫𝒯 symmetry and 

hence represents an overall lossless system. Nonetheless, the 

structure is planar, requires active layers which complicates 

fabrication and cannot achieve beamforming. 

This paper is organized as follows. In section II, we present 

a planar example. Next, in section III, two conformal examples 

will be presented. The first contains planar coupling regions and 

a conformal surface wave region. The second contains both 

conformal coupling regions and conformal surface wave 

regions. Some concluding remarks are provided in section IV. 

An 𝑒𝑗𝜔𝑡 time convention is assumed and suppressed throughout 

the paper.  

II. WAVE TRANSPORTING METASURFACE DESIGN AND 

ANALYSIS 

We first present a planar wave transporting metasurface to 

understand the wave transportation function as it pertains to 

metasurfaces. The metasurface geometry is shown in Fig. 1. 

The electromagnetics problem is 2-dimensional (out-of-plane 

wavenumber is zero) and hence the geometry is invariant in the 

𝑧-direction. The patterned metallic cladding, described by a 

spatially variant homogenized sheet impedance 𝜂𝑠(𝑥), is 

supported by a grounded dielectric substrate of thickness 𝑑 =
1.27mm (50mil) and complex relative permittivity 𝜖𝑟𝑐 =
𝜖𝑟(1 − 𝑗𝑡𝑎𝑛𝛿) = 2.2 − 𝑗0.002. The impedance sheet is broken 

into 200 unit cells of width 𝜆0/20 each at 𝑓 = 10GHz. The 

metasurface is therefore 𝑤 = 200(𝜆0/20) = 10𝜆0 wide along 

the 𝑥-axis. The design of the transporting metasurface begins 

by specifying the desired total field tangential to the 

metasurface. The incident field is assumed a normally incident 

plane wave illuminating only the right-hand portion of the 

metasurface between 𝜆0 ≤ 𝑥 ≤ 4𝜆0 as shown in Fig. 2a. The 

reradiated (scattered) field is defined to have both a cosine 

tapered amplitude and uniform phase (complex-valued field 

control) exiting from only the left-hand portion between 

−4𝜆0 ≤ 𝑥 ≤ −𝜆0. Critically, the absolute level of the 

amplitude in V/m of the scattered field is chosen to conserve 

power globally meaning the total power in the incident field,  

𝑃𝑖𝑛𝑐 = |𝐸0|2/2𝜂0 = 0.12 mW/m for a unit strength plane 

wave, is equal to the total power in the scattered field. This 

definition will lead to the near perfect transportation, i.e., all the 

power is transferred from the incident field to the scattered 

field.  

A. Local Active/Lossy Design 

The metasurface design algorithm [11] starts from a local 

active/lossy (Ac/Ly) design used as a seed for the non-local 

passive/lossless (Pa/Ll) design. The local active/lossy design is 

 
Fig. 2. (a) Specification of incident and scattered field amplitudes 

at the metasurface plane. NOTE: the input/output ports have been 

swapped with respect to Fig. 1. Metasurface sheet impedances of 

(b) Initial local active/lossy metasurface design and (c) Subsequent 

non-local passive and lossless design. (d) Zoomed in view within 

the input port region of the non-local passive and lossless design 

shown superimposed with the sheet impedance modulation 

function 𝜂𝑠 = −𝑗53Ω [1 + 0.1415 sin (
2𝜋𝑥

𝑝
)] where 𝑝 = 𝜆0/2.58. 
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obtained from the solution of the governing integral equations 

given the desired total field, 𝐸𝑡𝑜𝑡, associated with the wavefront 

transformation (see (16) and (17)). By solving the integral 

equations, the surface current density, 𝐽𝑠, on the metasurface is 

obtained, thereby allowing for the direct calculation of the 

metasurface impedances, 𝜂𝑠, following from the boundary 

condition 𝜂𝑠 = 𝐸𝑡𝑜𝑡/𝐽𝑠 (see Fig. 2b). As expected, the 

metasurface is lossy over the incident field region, and contains 

gain in the scattered field region. Furthermore, the loss and gain 

are balanced as a result of the choice of the scattered field 

amplitude. A transmission line model can be used to understand 

the result. Modelling the panel as a transmission line terminated 

in a shunt impedance representing the metasurface in parallel 

with an inductance representing the thin grounded dielectric 

substrate, the sheet impedance can be calculated as 

( )
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s inc
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where 𝜂𝑠,𝑖𝑛𝑐 is the sheet impedance within the illuminated 

portion of the metasurface, Γ is the reflection coefficient 

looking into the parallel load, 𝛽 is the wavenumber in the 

dielectric region, and 𝜂0 and 𝜂𝑑 are the intrinsic impedances of 

the free space and dielectric regions, respectively. For perfect 

absorption, the reflection coefficient should be zero. The 

resulting sheet impedance in (1) matches the numerically 

obtained value in Fig. 2b. In order for power conservation, the 

power absorbed in the lit region must exit the output region, and 

hence the sheet impedance in the scattered field region can be 

described as 𝜂𝑠,𝑠𝑐𝑎 = −27.54 − 𝑗98Ω. Note, since the shape of 

the amplitude differs between the two port regions, the sheet 

impedance tapers are different at the ends of their respective 

regions. Thus, the desired functionality of wave transportation 

can be achieved with a local balanced active/lossy metasurface 

described by the sheet impedances in Fig. 2b. In this case, the 

beam would teleport as the incident energy is not transported to 

the output beam but rather the output beam is created through 

resonant amplification given some small diffractive coupling. 

Its balanced loss and gain operating principle is similar to the 

balanced loss and gain of the 𝒫𝒯 symmetric teleporting 

structure in [16]. In both cases, although the incident energy 

itself does not teleport, a small diffractive coupling is necessary 

to excite the gain medium to resonantly create the teleported 

beam.  

B. Non-local Passive/Lossless Design 

A purely passive/lossless metasurface eases fabrication and 

avoids unnecessary complexity. To that end, the local 

active/lossy metasurface is used as a seed design to obtain a 

non-local passive/lossless design with the same performance. 

Since the power is balanced, a surface wave can carry the power 

from the lossy region to the active region. In this case, the 

metasurface transports the energy to the output port rather than 

teleports it. However, from an outside perspective, the beam is 

seen to disappear and reappear somewhere else in space.  

The integral equation solver is coupled with an adjoint 

variable optimizer to obtain the non-local design [11]. To this 

end, the 𝑁 = 200 reactances of the unit cells comprising the 

metasurface are arranged in an 𝑁-dimensional space with each 

reactance varying along an orthogonal axis. A surface is defined 

in this space as 𝑔(𝑥) = 𝑓(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑁) and represents the 

response of the metasurface as a function of its reactances 𝑋𝑁. 

The cost function 𝑔 is designed such that its minimum 

represents the optimal solution 

 ( )
†1

2
ng X E E=   (2) 

where † denotes the conjugate transpose and 

 ( ) ( ), / , /nf Pa Ll m nf Ac Ly mE E r E r = −  (3) 

The 𝑀 observation points 𝑟𝑚 of the electric near field 𝐸⃗⃗𝑛𝑓 are 

defined along a contour the same shape and dimension as the 

metasurface and displaced one wavelength above it. The 

optimizer is seeded with the reactive part of Fig. 2b; and then 

the gradient of (3), defined in the appendix of [11], is used to 

descend along 𝑔 to its minimum. 

The optimizer converged to a value of 𝑔 = 0.05 in 160 

iterations (see Fig. 3). The optimal non-local metasurface sheet 

impedance is shown in Fig. 2c and the near fields computed 

from the non-local design are shown in Fig. 4. Three distinct 

regions are evident, a spatially modulated input and output port 

connected by a nearly constant surface wave region. Sharp 

 
Fig. 3. Optimizer convergence plot.  

 
Fig. 4. (a) Real part of the total electric field. (b) Zoomed in to show 

surface wave connecting the input and output ports.  

(a)

(b)
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discontinuities in the sheet impedance of Fig. 2c excite a 

number of auxiliary surface waves in the input and output port 

regions (in addition to the prominent surface wave within the 

port regions and within the tunnel region connecting the two 

ports) responsible for redistributing power transversally within 

the port region facilitating passivity and losslessness [11], [17]. 

These perturbations also aid in obtaining a seamless transition 

region between the ports and the connecting surface wave 

region increasing the overall port-to-port power transfer 

efficiency.  

The surface waves can be visualized in Fig. 5a. Figure 5a 

shows the amplitude of the plane wave spectrum of the scattered 

electric field evaluated on the metasurface. The tunnel surface 

wave responsible for transporting power between the ports is 

evident at 𝛽𝑠𝑤,𝑡 = −7.95𝑘0. This wavenumber is in agreement 

with the sheet impedance of 𝜂𝑠 = −𝑗22Ω in the tunnel region 

in Fig. 2c since a sheet of this impedance supports a surface 

wave of wavenumber 𝛽𝑠𝑤,𝑡 = −7.95𝑘0. This can be verified by 

viewing the dispersion curves plotted in Fig. 5d. In Fig. 5d, a 

plot of the surface wavenumber and wavelength versus the 

sheet reactance of the metasurface is shown. The plot is 

obtained using the Transverse Resonance Technique [11]. A 

reactive sheet impedance of 𝜂𝑠 = −𝑗22Ω is seen to support a 

surface wave of wavenumber 𝛽𝑠𝑤,𝑡 = −7.95𝑘0. The surface 

wave wavelength can also be verified to agree with the curves 

of Fig. 5d. In Fig. 5b, a zoomed in view of the surface wave in 

the tunnel region is shown. The measured wavelength agrees 

with the dispersion curves.  

The amplitude spectrum in Fig. 5a also shows another peak 

at 𝛽𝑠𝑤,𝑝 = −2.58𝑘0, which is the surface wave generated from 

the incident plane wave within the input port region. Figure 5d 

shows this surface wavenumber is associated with a sheet 

impedance of 𝜂𝑠 = −𝑗53Ω in agreement with the average of the 

sheet impedances shown in Fig. 2c within the input port region. 

The sheet impedance modulation within the input port region 

can be understood by noting that for broadside radiation of the 

𝑛 = −1 harmonic from a surface wave of wavenumber 𝛽𝑠𝑤,𝑝 =

−2.58𝑘0, the period of the modulation should be 𝑘𝑥𝑛 =
𝛽𝑠𝑤,𝑝 − 2𝜋/𝑝 ⇒ 0 = 𝛽𝑠𝑤,𝑝 − 2𝜋/𝑝 or 𝑝 = 2𝜋/𝛽𝑠𝑤,𝑝 = 𝜆0/

2.58. Shown in Fig. 2d, a sinusoidal sheet impedance 

modulation function with this period is fit to the non-local 

passive/lossless metasurface sheet reactances. As can be seen, 

the modulation period corresponding to the 𝑛 = −1 harmonic 

for broadside radiation fits the optimized sheet reactances well. 

The perturbations of the reactances around this analytic result 

excite the auxiliary surface waves and lead to the near perfect 

coupling. No other spatial harmonics fall within the light cone. 

A zoomed in view of the port surface wave within the input port 

region is shown in Fig. 5c. The measured surface wave 

wavelength is also in agreement with the dispersion curves in 

Fig. 5d.  

Finally, a remark on the spectrum limits. The spectrum has a 

cut-off at 𝛽𝑠𝑤 = 10𝑘0 which is the highest wavenumber 

possible as the onset of a stop-band at 𝛽𝑠𝑤 = 𝜋/𝑑 = 0.1𝑘0 for 

the chosen unit cell discretization of 𝑑 = 𝜆0/20 occurs at this 

wavenumber. This corresponds to a maximum sheet impedance 

of −𝑗20Ω according to Fig. 5d. For this reason, hard limits of 

−𝑗20Ω on the impedances during the optimization phase were 

set, and is why the tunnel sheet impedance is approximately 

−𝑗20Ω. The remaining evanescent spectrum is due to the sharp 

 
Fig. 5. (a) Amplitude spectrum of the scattered electric field at the 

metasurface plane. (b) Zoomed in view of Fig. 4a within the tunnel 

region to show tunnel surface wave wavelength. (c) Zoomed in 

view of Fig. 4a within the input port region to show port surface 

wave wavelength. (d) Dispersion curve relating the surface 

wavenumber and wavelength to the homogenized sheet reactance. 

Tunnel SW

(a)

(b)

(c)

Port SW

(d)

 
Fig. 6. (a) 𝑥-component of the Poynting vector at the plane of the 

metasurface. (b) Line cut of near electric scattered field amplitude 

at a height of one wavelength above the metasurface.  

(a)

(b)

Output 
Port

Input 
Port

Tunnel
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perturbations in the sheet impedances of Fig. 2c. These surface 

waves are responsible for redistributing power transversally 

within the port regions and at their transitions with the surface 

wave region in order to achieve passivity and losslessness. 

The power in the surface wave can be seen to grow 

approximately linearly in agreement with the conclusions in [3] 

in Fig. 6a, although here the spectrum (Fig. 5a) contains many 

spatial harmonics rather than the single harmonic considered in 

[3] and the metasurface is strongly non-local. The figure shows 

the 𝑥-component of the Poynting vector, 𝑆𝑥
𝑠𝑐𝑎 = −(1/

2)𝑅𝑒[𝐸𝑧
𝑠𝑐𝑎𝐻𝑦

𝑠𝑐𝑎∗]. 𝐻𝑦
𝑠𝑐𝑎  was obtained by taking the inverse 

Fourier transform of 𝐸̃𝑧
𝑠𝑐𝑎𝑘𝑥/𝜂0𝑘0, where 𝐸̃𝑧

𝑠𝑐𝑎 is the electric 

field spectrum at the plane of the metasurface (the amplitude of 

𝐸̃𝑧
𝑠𝑐𝑎 is shown in Fig. 5a). The power density in the surface wave 

is shown to increase from zero within the input port region 

approximately linearly as more of the power in the plane wave 

is absorbed, then become constant through the tunnel region as 

the power is carried to the output port region, and finally decay 

approximately linearly in the output port region to zero as the 

power is shed into the scattered beam. The oscillations in the 

power density profile occur due to the interference between the 

similarly polarized incident and surface wave fields. 

Next, to show the metasurface perfectly converts the incident 

plane wave at port 1 to the complex-valued scattered field at 

port 2, the near electric field was calculated along a horizontal 

line one wavelength above the metasurface. In Fig. 6b, the 

stipulated scattered field amplitude (replicated from Fig. 2a), 

the directly calculated (from the induced surface currents) 

scattered near field amplitude, and the backprojected far fields 

are all shown compared. It is evident that the non-local 

metasurface nearly perfectly creates the stipulated near field 

amplitude, and hence transfers all power in the incident plane 

wave to the output scattered field. Integrating the power density 

 
Fig. 7. COMSOL Multiphysics simulation results. (a) 𝑥-

component of the Poynting vector at the plane of the metasurface. 

(b) Real part of the total electric field. (c) Line cut of near electric 

scattered field amplitude at a height of one wavelength above the 

metasurface. (d) Amplitude spectrum of the scattered electric field 

at the metasurface plane. 

(a)

(b)

(c)

(d)

 
Fig. 8. Metasurface sheet impedances of (a) Initial local 

active/lossy metasurface design and (b) Subsequent non-local 

passive and lossless design. (c) Real part of the total electric field 

from the COMSOL Multiphysics simulation. (d) Zoomed in of (c) 

to show surface wave connecting the input and output ports. (e) 𝑥-

component of the Poynting vector at the plane of the metasurface. 

(f) Line cut of near electric scattered field amplitude at a height of 

one wavelength above the metasurface. 

(a)

(b)

(c)

(d)

(e)

(f)
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along a horizontal line one wavelength above the metasurface 

yields 𝑃𝑠𝑐𝑎,𝑠𝑡𝑖𝑝 = 0.12mW/m and 𝑃𝑠𝑐𝑎,𝑛𝑓 = 0.1198mW/m 

giving a port-to-port transfer efficiency of 99%.  

Lastly, to provide an independent verification of the 

transporting metasurface, the design was imported into 

COMSOL Multiphysics and a full-wave simulation performed. 

The results are compared to the MoM results in Fig. 7. As can 

be seen, the independent full-wave verification corroborates our 

results.  

C. Gaussian Beam Illumination 

Although it leads to intuitive results, the finite-width non-

diffracting plane wave used to illuminate port 1 in the previous 

section is non-physical. This is evident in the shadow region 

behind the metasurface where the non-diffracting incident field 

does not totally cancel the diffracting scattered field. To model 

a more physical excitation, the same metasurface is illuminated 

with a Gaussian beam [18] with a waist radius of 𝑤0 = 𝜆0 at the 

metasurface plane. The center of the waist is located at 𝑥 =
2.5𝜆0 and 𝑦 = 0. For this example, both the MATLAB design 

codes and the COMSOL Multiphysics verification models are 

available through the IEEE DataPort at [19].  

The design procedure was repeated with the Gaussian beam 

illumination in place of the plane wave. All other parameters 

were kept the same as the previous design. The resultant sheet 

impedances of the active/lossy design and the passive/lossless 

design are shown in Fig. 8a and Fig. 8b, respectively. As can be 

seen, the boundary of the input port is now not sharply defined, 

but rather spread out as the Gaussian beam illumination does 

not have sharp boundaries. Nonetheless, we see the same 

features, sinusoidal like modulation within both the input and 

output port regions. The real part of the total electric field for 

the passive/lossless design of Fig. 8b is obtained using 

COMSOL Multiphysics and is plotted in Fig. 8c and Fig. 8d. 

The transverse power density (Fig. 8e) and scattered near field 

obtained along a line one wavelength above the metasurface   

(Fig. 8f) show excellent agreement with COMSOL 

Multiphysics. The ratio of the integrated scattered and incident 

field power densities produces a result of 97.5% for the port-to-

port transfer efficiency.  

III. CONFORMAL TRANSPORTING METASURFACES 

By incorporating conformal geometry modelling capabilities 

into the integral equation/moment method algorithm (see 

Appendix), transporting metasurfaces connecting two distant 

non-colinear ports in space can be accomplished (see Fig. 9). 

These types of transporting metasurfaces can be useful for 

channel optimization in urban environments where the window-

pane sized metasurface conforms to the corner of a building for 

example (see Fig. 10).  

A. Conformal Metasurface for Communications Channel 

Optimization 

In Fig. 9, the geometry of a conformal transporting 

metasurface which routes the surface wave around a 90° bend 

is shown. The metasurface is parameterized by a superquadric 

function with 𝑝 = 10,  

 

( , ) cos

cos sin

2

1 1
( , ) sin

cos sin

p p

p

p p

p

v
x u v u

u u

a b u

v d a v
y u v u

u u

a b

 


= 

    +          


−  =


    +   
    

 (4) 

 
Fig. 9. Conformal transporting metasurface geometry. 

 
Fig. 10. (a) An urban environment. (b) Simulation results of a 

conformal transporting metasurface which routes plane waves 

around corners of buildings.  

Surface Wave 
Routing Around 
Building Corner

(a)

(b)
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The parameterization is also shown graphically in Fig. 11. The 

parameters  𝑎 and 𝑏 control the aperture length along the 𝑥-axis 

and 𝑦-axis, respectively, and the parameter 𝑑 controls the 

substrate thickness. The parameter 𝑝 controls the metasurface 

shape and radius of curvature at the bend. For 𝑝 = 2, for 

example, (4) defines a quadrant of a circular annulus in the 𝑥𝑦-

plane. As 𝑝 → ∞, the parameterization approaches a quadrant 

of a square ring with thickness 𝑑. When 𝑣 = 1, the superquadric 

has the largest radius (the curve 𝑔 in Fig. 11). The impedance 

sheet will be placed along this arc. When 𝑣 = 1 − 𝑑/𝑎, the 

superquadric has the smallest radius (the curve 𝑒 in Fig. 11). 

This is where the perfectly conducting ground plane will be 

placed. ∀𝑣 between these two values, the space between is filled  

(the dielectric material of the substrate will fill this area). For 

the parameters in (4), the greatest radius of curvature calculated 

using (11) at the 90° bend point is 𝑅 = 0.587𝜆0. The 

metasurface has length 𝑎 = 8𝜆0 along the 𝑥-axis, 𝑏 = 8𝜆0 

along the 𝑦-axis, and thickness 𝑑 = 1.27mm (50mil). It is 

constructed from the same three layer stack: a patterned 

metallic cladding represented as a spatially variant 

homogenized impedance sheet, a dielectric spacer, and a 

ground plane. The incident field is a Gaussian beam again with 

a waist radius of 𝑤0 = 𝜆0. For this case, the center of the waist 

is located at 𝑥 = −3.5𝜆0 and 𝑦 = 𝑏. The Gaussian beam will 

be absorbed at this space wave port and converted into a surface 

wave. The surface wave will travel around the bend delivering 

the power to port 2 defined along 𝜆0 ≤ 𝑦 ≤ 4𝜆0, where it will 

be reformed into a collimated beam corresponding to an 

aperture field with uniform amplitude and phase. Both the 

MATLAB design codes and the COMSOL Multiphysics 

verification models for this design are available through the 

IEEE DataPort at [19].   

Figure 12a shows the metasurface sheet impedances for both 

the local active/lossy metasurface design and the non-local 

passive/lossless metasurface design. Figure 12b shows the near 

field amplitude taken along a contour following the metasurface 

and one wavelength above the metasurface. As can be seen, the 

non-local passive/lossless metasurface performs identically to 

the local active/lossy design. Finally, the real part of the total 

near electric field is shown in Fig. 10b. As in the planar case, 

 
Fig. 11. Parameterization of conformal metasurface. 

ground 
plane

metasurface

dielectric 
spacer

 
Fig. 12. (a) Metasurface sheet impedances of initial local 

active/lossy (Ac/Ly) metasurface design, and subsequent non-local 

passive and lossless (Pa/Ll) design vs. parameter 𝑢. (b) Line cut of 

near electric scattered field amplitude at a height of one wavelength 

above the metasurface. 

(a)

(b)

 
Fig. 13. (a) Conformal metasurface geometry. (b) Metasurface 

sheet impedances of initial local active/lossy (Ac/Ly) metasurface 

design, and subsequent non-local passive and lossless (Pa/Ll). (c) 

Line cut of near electric scattered field amplitude at a height of one 

wavelength above the metasurface. 

Patterned Metallic 
Cladding

Ground Plane

Dielectric 
Spacer

(a)

(b)

(c)
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the metasurface is performing the function of near perfect space 

wave transportation, only in this case, the space wave beam is 

seen to transport around the corner of a building.  

B. Sinusoidally Modulated Exponential Metasurface Coupler 

The final example is a near perfect conformal wave 

transporting metasurface where the coupling regions are not 

planar. The geometry and its parameterization are shown in Fig. 

13a and in Fig. 14, respectively. The parameterization can be 

described as a sinusoidally modulated exponential 

 
( , ) / 2 / 2

( , ) sin 0au

x u v u w u w

y u v ce p bu v d v

= −  


= + + −  
 (5) 

The parameter  𝑤 controls the aperture length along the 𝑥-axis, 

and the parameter 𝑑 controls the substrate thickness. The 

parameters 𝑐 and 𝑎 controls the amplitude and the growth rate 

of the exponential function, which acts as a fundamental term 

of which the sinusoid is added to. The parameters 𝑝 and 𝑏 

control the amplitude and period of the sinusoidal term. The 

impedance sheet will be placed along the curve resulting from 

𝑣 = 0, The perfectly conducting ground plane will be placed 

along the curve at 𝑣 = −𝑑. ∀𝑣 between these two values, the 

space between is filled (the dielectric material of the substrate 

will fill this area). The metasurface width, as projected onto the 

𝑥-axis, is 𝑤 = 10𝜆0. The incident field is again a Gaussian 

beam with a waist radius of 𝑤0 = 𝜆0. For this case, the center 

of the waist is located at 𝑥 = −3.5𝜆0 and 𝑦 = 𝜆0. Defining the 

scattered field as 𝐸𝑧
𝑠𝑐𝑎 = 𝑒−𝑗𝑘𝑦, for 𝜆0 ≤ 𝑥 ≤ 4𝜆0, and solving 

the governing integral equation, results in the active/lossy 

design impedances shown in Fig. 13b. The corresponding 

passive/lossless design’s reactances after optimization are also 

shown in Fig. 13b. Finally, the COMSOL Multiphysics 

simulation results of the real part of the total near electric field 

for the Gaussian beam excited passive/lossless design is shown 

in Fig. 15. Wave transportation is again observed, as well as 

near perfect coupling of a normally incident plane wave to a 

surface wave over a conformal surface. In Fig. 13c, the 

magnitude of the electric near field is plotted along a contour 

the same shape as the metasurface displaced one wavelength 

above it. The figure shows some imperfect coupling in the 

COMSOL Multiphysics result and/or impedance matching 

between the port region and the tunnel region as some scattered 

electric field is present over the input port region. This may be 

due to the paraxial approximation for the Gaussian beam used 

in the MoM whereas in COMSOL Multiphysics, a more 

accurate representation based on a plane wave decomposition 

is used. Nonetheless, the full-wave results again corroborate our 

results.  

Note, both the MATLAB design codes and the COMSOL 

Multiphysics verification models for this design are also 

available through the IEEE DataPort at [19].   

V. CONCLUSION 

Conformal, metasurface-based, space-wave to surface-wave 

couplers were designed to transport a space wave from one 

location in space to another via surface wave and reradiate it as 

a newly formed beam. The reradiated space wave can be formed 

into an arbitrary beam with control over its amplitude and 

phase. The metasurfaces can conform to any shape, are fully 

passive and lossless, and hence require no powered 

connections. The metasurfaces are deemed near-perfect, as over 

97.5% of the available power in the incident space wave is 

transported to the output wave in all cases. These types of 

metasurfaces can be useful to fill in hard to reach shadow zones 

in new high-frequency communications systems in an efficient, 

power-free manner. The conformal metasurfaces are designed 

using a coupled system of integral equations formulated for 

arbitrarily shaped geometries defined parametrically. The 

integral equations are solved via the method of moments. All 

 
Fig. 14. Parameterization of conformal metasurface. 

ground 
plane

metasurface

dielectric 
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Fig. 15. COMSOL Multiphysics simulation results of a conformal 

transporting metasurface shaped using a sinusoid added to an 

exponential function. 

Surface Wave Routing Up 
Conformal Metasurface
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design codes and full-wave simulation files used for validation 

are available as supplementary materials.  

Finally, note the primary purpose of this paper is to show that 

near perfect transportation is possible and what the sheet 

impedances look like. Support for dielectric materials is 

currently being added to the unit cell design process required to 

realize these metasurfaces outlined in [20]. Once this is 

complete, follow-on work involves translating the optimized 

impedance sheets for all designs in this paper to patterned 

metallic claddings. 

APPENDIX A: METHOD OF MOMENTS FOR PARAMETERIZED 

GEOMETRIES  

A. Integral Equations for Conformal Geometry 

The conformal upgrade of the integral equation in [9]–[11] 

involves both line and area integrations over the boundary and 

domain of the region 𝑅 in Fig. 11 and Fig. 14, respectively. 

Single integrals over curves bounding the region 𝑅 (curve 𝑔 or 

𝑒 in Fig. 11 for example) can be evaluated by integrating over 

curves bounding the parameter space region 𝑆 (curve ℎ or 𝑓 in 

Fig. 11 for example) from  

 

0 0

2 2

0 0

, ,

( , ) ( ( , ), ( , ))
v v v vg e h f

x y
f x y ds f x u v y u v du

u u= =

    
= +   

       
 

 (6) 

where 𝑣0 = 1 or 1 − 𝑑/𝑎 for integration over the metasurface 

layer (curves 𝑔 or ℎ) or ground plane layer (curves 𝑒 or 𝑓), 

respectively. To evaluate the double integrals over the region 

𝑅, the integrations can be done over the region 𝑆 in the 

parameter space using 

 ( , ) ( ( , ), ( , ))
R S

x u y u
f x y dA f x u v y u v dudv

x v y v

   
=

      (7) 

Care must be taken to ensure the absolute value of the Jacobian 

determinant appearing in (7) is always taken (note, the Jacobian 

determinant associated with the mapping in Fig. 11 turns out to 

be negative so the absolute value must be taken).   

The integral equations will be derived for the parametric 

geometry in Fig. 11. Those for any other geometry can be found 

analogously. The metasurface can be modeled as consisting of 

three layers, denoted by different values of 𝑣0. Layer 1, at 𝑣0 =
1 denotes the impedance sheet. Layer 2, at 𝑣0 = 𝑣, denotes the 

dielectric spacer. Layer 3, at 𝑣0 = 1 − 𝑑/𝑎, denotes the 

perfectly conducting ground plane. An integral equation can be 

constructed for each layer, and hence there are three total 

integral equations, one for each choice of 𝑣0 in the following 
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The three integral equations in (8) (one for each choice of 𝑣0) 

can be simultaneously solved by the method of moments as 

presented in the next section.  

The derivatives of (4) and (5) are also useful. For (4), they are 
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The derivatives of (5) are are 
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 (10) 

Also the curvature, 𝜅, of the impedance sheet layer can be 

computed from 
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B. Method of Moment Solution of Integral Equations 

The current densities in (8) are expanded into pulse basis 

functions placed in the parametric space tessellating the domain 

and boundary of 𝑆 (1D pulses for the boundary of 𝑆 mapping 

electric surface current densities on the metasurface and ground 

plane, and 2D pulses for the area within 𝑆 mapping polarization 

current densities in the dielectric substrate) 
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∆𝑢𝑛 denotes the width of the 𝑛𝑡ℎ basis function and ∆𝑣𝑛 

denotes its height in the 2D case. Note, the ∆𝑢𝑛 are chosen such 

that the arc length of the unit cells in the parameterized curve 

are of equal arc length. Substitution of (12) into (8) and testing 

the integral equation using the same expansion functions 

(Galerkin method) results in (for 𝑣0 = 1 for example) 
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The integral equation in (13) can be written in the following 

form 𝑉1 = 𝑍𝑠1𝐼1 + 𝑍11𝐼1 + 𝑍12𝐼2 + 𝑍13𝐼3 = (𝑍11 + 𝑍𝑠1)𝐼1 +
𝑍12𝐼2 + 𝑍13𝐼3, where 
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v v

u u u

N N

u u u

x u y u x y
du dv du

x v y v u u

k
Z H k x u x u d a y u y u d a



= + = +

= − −

= =

= +



= −

        
+   

        

= − − + − −

 

 

 

 

1

2

3

2

2

2 2 2 2

1 1 1 1

1 11

2 21

3 31

                                 '
' '

m

m

u u u

u u u

v d a v d a v v

nN

nN

nN

x y x y
du du

u u u u

I

I

I







= +

= −

= − = − = =







          
+ +                   

=

=

=

 

 (14) 

The self terms (𝑚 = 𝑛) in (14) are calculated using the 

procedure outlined in [21]. For completeness and since those 

formulas are adapted to the conformal parametric geometry 

case, the formulas for calculating the self-terms are provided in 

the next section. Following the same procedure for the 

remaining layers (𝑣0 = 𝑣 for layer 2 and 𝑣0 = 1 − 𝑑/𝑎 for 

layer 3) leads to the block matrix equation  

 

1 11 1 12 13 1

2 21 22 23 2

3 31 32 33 3

s

v

V Z Z Z Z I

V Z Z Z Z I

V Z Z Z I

+     
     

= +
     
          

 (15) 

Note, for the dielectric layer, 𝑍𝑣 = 𝑒𝑦𝑒([𝑗𝜔𝜖0(𝜖𝑟 − 1)]−1), 

where eye( ) indicates an identity matrix with the argument 

appearing along the diagonal. Also note, 𝜂𝑠 = 0 for layer 3 and 

hence 𝑍𝑠3 does not appear in (15). Finally, note in our 

implementation, each of the voltage vector and impedance 

matrix elements in (14) are normalized to their own arc length 

(for 1D) or area (for 2D).   

The matrix equation (15) can be solved by either knowing the 

sheet impedances 𝑍𝑠1 (as in each iteration of the optimization 

phase leading to the passive/lossless design) or by knowing the 

desired total field and making the substitution 𝑊1 = 𝑍𝑠1𝐼1 

following from the boundary condition 𝐸𝑡𝑜𝑡 = 𝜂𝑠𝐽1 (as in the 

initial solve phase leading to the active/lossy design) 

 

1 11 12 13 1

2 21 22 23 2

3 31 32 33 3

v

V W Z Z Z I

V Z Z Z Z I

V Z Z Z I

−     
     

= +
     
          

 (16) 

Since, in our case, the desired total field, 𝐸𝑡, is known, the 𝑊1 

vector can be found from 

 ( ) ( )( )
2 22

1

1 12

,1 , ,1
m

m

u u u

t

v vu u u

x y
W E x u y u du

u u

= +

= == −

    
= +   

    


 (17) 
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In this case, after solving equation (16) for the current 𝐼1, the 

complex-valued sheet impedances can be found by returning 

back to the boundary condition from 𝜂𝑠 = 𝑊1/𝐼1.  

C. Calculation of Singular Matrix Element Terms 

The self terms (𝑚 = 𝑛) in (14) are calculated using the 

procedure outlined in [21]. We summarize their results here 

adapted to our case of conformal method of moments. For more 

details, refer to the original paper [21]. There are two types of 

singular integrals, the surface integrals (associated with [𝑍11] 
and [𝑍33]) and the volume integrals (associated with [𝑍22]). We 

treat the surface integrals first.  

 

Singular Surface Integrals 

The integral in question (for [𝑍11] for example) is  

   ( )
2 ' 2

2 2(2)0 0

0 0

2 ' 2

2 2 2 2

1 1 1 1

( ,1) ( ',1) ( ,1) ( ',1)
4

                                  '
' '

m n

m n

u u u u u u

s

u u u u u u

v v v v

k
I H k x u x u y u y u

x y x y
du du

u u u u


= + = +

= − = −

= = = =

= − + −

          
+ +       

          

 

 (18) 

By singularity subtraction, the Hankel function can be written 

as 

 ( ) ( )(2) (2)

0 0 0 0

2 2
ln lnH k P H k P j P j P

 

 
= + − 

 
 (19) 

where 𝑃 = √(𝑥(𝑢, 1) − 𝑥(𝑢′, 1))
2

+ (𝑦(𝑢, 1) − 𝑦(𝑢′, 1))
2
. 

The first term in the brackets is well-behaved and can be 

integrated numerically. The strategy for the remaining term is 

to perform the inner integration analytically assuming a 

variable observation point 𝑢 passed in from the outer integral, 

then integrate the outer integral numerically using the analytic 

result from the inner integral as the integrand.  

( )
2 ' 2

(2)0 0

0 0

2 ' 2

2 2 2 2

1 1 1 1

2 2' 2

0 0

1 1' 2

2
ln

4

'
' '

ln '
2 ' '

m n

m n

n

n

u u u u u u

s

u u u u u u

v v v v

u u u

v vu u u

k
I H k P j P

x y x y
du du

u u u u

k x y
j P du

u u









= + = +

= − = −

= = = =

= +

= == −

 
= + 

 

          
 + +       

          

 
    − +   

     


 


2

2

2 2

1 1

1 2

m

m

u u u

u u u

v v

s s

x y
du

u u

I I

= +

= −

= =





    
 +   

    

= +



 (20) 

The inner integral of 𝐼𝑠2 (in brackets) to integrate analytically 

becomes 

 ( )
2 2' 2

2,

1 1' 2

ln '
' '

n

n

u u u

s in

v vu u u

x y
I u P du

u u

= +

= == −

    
= +   

    
  (21) 

 

With reference to Fig. 16, the coordinate origin is denoted by 

𝑂. The observation point position vector is denoted by 𝜌⃗ =
[𝑥(𝑢, 1), 𝑦(𝑢, 1)]. The source point position vector is denoted 

by 𝜌⃗′ = [𝑥(𝑢′, 1), 𝑦(𝑢′, 1)]. The source line segment, 𝐶, is 

colored red in Fig. 16 and is parameterized by the arc length 

variable 𝑙′ measured from the line perpendicular to the 

extension of 𝐶 and which passes through the point located by 𝜌⃗ 

. The endpoints of the source segment are pointed to by the 

vectors 𝜌⃗′− and 𝜌⃗′+.  The coordinates 𝑃0 and 𝑙′ can be 

considered a pair of rectangular coordinates with origin at 𝜌⃗, 

locating points on the line segment 𝐶. Thus, the endpoints of 

the source segment are located at a distance of 

 ( ) ( )
2 2

0P P l 


 = − = +  (22) 

Other quantities in Fig. 16 are given by 

 ( )

( )

( )

0

0

0

l

u l n l z

l l

P u

l l
P

P

 

 

 

 

 

+ −

+ −









−
=

−

=  = 

= −

= −

− −
=

 (23) 

All quantities in (22) and (23) can be solved for once 𝜌⃗  (the 

observation point) and 𝜌⃗± (the source segment endpoints) are 

defined. By defining  

  

 

[ ( ,1), ( ,1)]

( 2,1), ( 2,1)

( 2,1), ( 2,1)

n n

n n

x u y u

x u u y u u

x u u y u u







−

+

=

= −  − 

= +  + 

 (24) 

the integration is done in the 𝑥𝑦-space using the above 

paradigm rather than over the parametric 𝑢𝑣-space since the 

vectors in (24) are constant (see Fig. 11). Thus, (21) becomes  

 
Fig. 16. Geometrical definitions for analytic line integration. 

Line 
Segment C
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( ) ( ) ( )

( )

2 20

2,

0 1 1

0 0

ln ' ln ' '

ln ln

tan tan

l

s in

C l

I u Pdl P l dl

l P l P

l l
P l l

P P

+

−

+ + − −

+ −
− − + −

= = +

= −

    
+ − − −     

    

 

 (25) 

The result in (25) can be singular if 𝑃± = 0, which happens 

when the observation point 𝜌⃗ lies on either of the endpoints of 

the line segment 𝐶. In this case, the observation point can be set 

to 𝜌⃗ = 𝜌⃗ + 𝜖𝑢̂, where 𝜖 is a small constant. The complete 

integral (20) can now be evaluated numerically as  

( )

2 ' 2

0 0

0

2 ' 2

2 2 2 2

1 1 1 1

2 22

0 0

2,

1 12

2
1 ln

4 2

'
' '

2

m n

m n

m

m

u u u u u u

s

u u u u u u

v v v v

u u u

s in

v vu u u

k
I j k

x y x y
du du

u u u u

k x y
j I u du

u u

 







= + = +

= − = −

= = = =

= +

= == −

  
= −   

  

          
 + +       

          

    
− +   

    

 



 (26) 

where 𝛾 = 1.781 and since [𝐻0
(2)(𝑘0𝑃) + 𝑗

2

𝜋
𝑙𝑛𝑃] = 1 −

𝑗
2

𝜋
ln (

𝛾

2
𝑘0) by the small argument expansion for the Hankel 

function. A similar approach is used for the singular terms of 

[𝑍33]. This completes the singular surface integral calculation. 

The singular volume integrals are handled next.  

 

Singular Volume Integrals 

The integral in question is 

 

   ( )
2 2 ' 2 ' 2

2 2(2)0 0

0 0

2 2 ' 2 ' 2

( , ) ( ', ') ( , ) ( ', ')
4

' '
                                  ' '

' '

m m n n

m m n n

v v v u u u v v v u u u

v

v v v u u u v v v u u u

k
I H k x u v x u v y u v y u v

x u y u x u y u
du dv dudv

x v y v x v y v


= + = + = + = +

= − = − = − = −

= − + −

       

       

   

 (27) 

Using the singularity subtraction technique, (27) becomes 
2 2 ' 2 ' 2

0 0

0

2 2 ' 2 ' 2

' 2 ' 2

0 0

' 2 ' 2

2
1 ln

4 2

' '
' '

' '

ln
2

m m n n

m m n n

n n

n n

v v v u u u v v v u u u

v

v v v u u u v v v u u u

v v v u u u

u v v v u u u

k
I j k

x u y u x u y u
du dv dudv

x v y v x v y v

k
j P

 







= + = + = + = +

= − = − = − = −

= + = +

= − = −

  
= −   

  

       


       

−

   

 
2 2

2 2

1 2

' '

' '

' '

m m

m m

v v v u u u

v v v u u

v v

x u y u

x v y v

x u y u
du dv dudv

x v y v

I I

= + = +

= − = −

   

   

   


   

= +

 

 (28) 

where 𝑃 = √(𝑥(𝑢, 𝑣) − 𝑥(𝑢′, 𝑣′))
2

+ (𝑦(𝑢, 𝑣) − 𝑦(𝑢′, 𝑣′))
2
. 

Integral 𝐼𝑣1 can be integrated numerically. Integral 𝐼𝑣2 will be 

integrated analytically for the inner integral and numerically for 

the outer integral.  

2 2 ' 2 ' 2

0 0

2

2 2 ' 2 ' 2

ln
2

' '
              ' '

' '

m m n n

m m n n

v v v u u u v v v u u u

v

v v v u u u v v v u u u

k
I j P

x u y u x u y u
du dv dudv

x v y v x v y v





= + = + = + = +

= − = − = − = −


= − 



        
 

       

   
 (29) 

Again, the term in brackets will be labeled the inner integral, 

𝐼𝑣2,𝑖𝑛. To integrate 𝐼𝑣2,𝑖𝑛 analytically, we employ a Gauss 

integral theorem. Thus, in the 𝑥𝑦-space, we express the 

integrand as 

2 ,

'

0

0

ln ' '

1
lim ln ' '

2 2

lim ln ' '

v in

A

s

A A

A

I Pdx dy

P
P P P dx dy

Pdx dy









→
−

→

=

  
=  −  

  

+







 (30) 

where 𝐴𝜖 is a small circular region of radius 𝜖 enclosing the 

observation point included to make the integrand continuously 

differentiable. For more information, see [21]. A divergence 

theorem can be applied to (30) to express the surface integral in 

terms of a flux integral around the boundary enclosing the area 

𝐴. Following the result derived in [21], (30) is evaluated as 

( )

4
0

2,

1

0 1 1

0 0

1
( , ) ln ln

2

3
tan tan

2

i iv in i i i i

i

i i

i i i

i i

I u v P u l P l P

l l
P l l

P P

+ + − −

=

+ −

− − + −

= −

    
+ − − −      

     


 (31) 

where 𝑃⃗⃗𝑖
0 = 𝑃𝑖

0𝑃̂𝑖
0, 𝑃̂ = (𝜌⃗′ − 𝜌⃗)/𝑃, and 𝑢̂ is the outward 

normal vector (ensure 𝑧̂ ∙ (𝑢̂𝑖 × 𝑙𝑖) > 0, else set 𝑢̂𝑖 = −𝑢̂𝑖). 

 

 
Fig. 17. Mapping of a quadrilateral patch in 𝑢𝑣-space to its 

corresponding quadrilateral patch A in the 𝑥𝑦-space.  

A
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Note, the mapping in (4) negates the signed area (Jacobian 

determinant is negative), and thus, going clockwise around the 

perimeter of the quadrilateral patch in the 𝑢𝑣-space maps to a 

counterclockwise path around the perimeter of 𝐴 in the native 

𝑥𝑦-space (see Fig. 17). Index 𝑖 denotes one of the four sides of 

the quadrilateral patch in 𝑅 bounding the surface area 𝐴, and 

thus each side 𝑖 is represented by the geometry in Fig. 16.  

Note, although the quadrilateral patch in the 𝑢𝑣-space is 

rectangular (is constructed from straight line segments), its 

image under the mapping 𝑟 may have curved bounding line 

segments. However, if the discretization is fine enough, the 

perimeter of 𝐴 can be approximated as constructed from 

straight line segments, and the results of Fig. 16 will hold. With 

this result, (28) is found as 
2 2 ' 2 ' 2

0 0

0

2 2 ' 2 ' 2

2

0 0

2,

2 2

2
1 ln

4 2

' '
' '

' '

( , )
2

m m n n

m m n n

m m

m m

v v v u u u v v v u u u

v

v v v u u u v v v u u u

v v u u u

v in

v v v u u u

k
I j k

x u y u x u y u
du dv dudv

x v y v x v y v

k
j I u v

 







= + = + = + = +

= − = − = − = −

= + = +

= − = −

  
= −   

  

       


       

−

   


2v

x u y u
dudv

x v y v

   

   

 (32) 

This completes the singular term evaluations. 
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