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Near-Perfect Space-Wave to Surface-Wave Coupler
Enabled Conformal Space Wave Transporting
Metasurfaces

Jordan Budhu, Member, IEEE

Abstract—A technique for the design of conformal metasurfaces
with two spatially disconnected space wave ports connected by a
surface wave is presented. The passive and lossless metasurface
absorbs the incident wave at port 1, converts it nearly perfectly
into a surface wave which transports the energy along an
arbitrarily shaped/curved metasurface to port 2, then reradiates
the captured power as a radiated field with control over its
amplitude and phase. Since the incident field is seen to disappear
at the input port and reappear at a spatially dislocated port as a
new formed beam, the space wave can be said to have been
seamlessly transported from one point in space to another. The
metasurface consists of a single, conformal, spatially variant,
impedance sheet supported by a conformal grounded dielectric
substrate of the same shape. It is modeled using integral equations.
The integral equations are solved using the method of moments
(MoM). The impedances of the sheet are optimized using the
adjoint variable method to achieve the near perfect wave
transportation operation from a passive and lossless metasurface.
MATLAB codes and COMSOL Multiphysics simulation files for
all designs presented in this paper are available for download as
supplemental material files. Possible applications include channel
optimization for cellular networks, inexpensive power harvesting,
sensing, around-the-corner radar, and cloaking.

Index Terms—Conformal, Metasurface, Plane wave coupler,
integral equations, method of moments, adjoint variable
optimization

. INTRODUCTION

HE design of metasurfaces to create tunnel-like
connections through space (with a finite travel time
from port to port) connecting two space wave ports at

distant locations is addressed in this paper (see Fig. 1). The
incident space wave field is absorbed at port 1, perfectly
converted into a surface wave which connects the two ports and
transfers power between them, and reradiated from port 2
located at a distant location. The reradiated field from port 2 is
designed with arbitrary control over its phase and amplitude in
a completely passive and lossless way utilizing nearly all (over
97.5%) of the power contained in the incident field over port 1.
As the metasurface transfers nearly all of the available power in
the incident wave to the reradiated wave, the operation is said
to be near perfect.

Jordan Budhu is with Virginia Tech, Blacksburg, VA 24060 USA. (e-mail:
jbudhu@vt.edu).
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Fig. 1. Transporting metasurface geometry. Note, the unit cells are
shown enlarged for clarity. The actual metasurface contains 200
unit cells each 1y/20 wide.

The enabling technology for the presented designs is near
perfect space-wave to surface-wave couplers. Although these
devices have been demonstrated before for planar [1]-[4] and
cylindrical surfaces [5]-[7], near perfect coupling over an
arbitrarily shaped non-canonical conformal surface has not
been shown. Furthermore, complex-valued field control over
non-canonical conformal surfaces using passive and lossless
metasurfaces has also not been shown. In this paper, near
perfect space-wave to surface-wave couplers enable wave
transportation of incident beams to spatially dislocated ports
along any desired shape surface and with complex-valued field
control of the reradiated beam from a completely passive and
lossless metasurface.

The metasurface itself is a textured interface, modeled as a
spatially variant homogenized purely reactive impedance sheet
supported by a grounded dielectric substrate [8]. The
metasurface is capable of complex-valued radiated field control
and seamless conversion between guided and unguided modes
in a lossless or perfect manner. It is modeled using integral
equations [9]-[11], the integral equations are solved using the
method of moments technique [12], and the reactances of the
impedance sheet optimized using the adjoint variable method
[11], [13], [14]. For an overview of the design procedure, see
[11], [15]. A customized integral equation for the design of the
conformal cases specific to this paper can be found in the
appendix of this paper. The metasurface can be made to
conform to any shape such as the corner of a building (see Fig.
10 for preview) or a general non-canonical curvilinear surface
(see Fig. 15 for preview) for example. We will first present a
planar design to demonstrate the near perfect wave
transportation function and understand its operation.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org
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Subsequently, the same conformal
geometries will be shown.

Similar planar transporting metasurfaces have appeared in
recent scientific works. In [2], a planar wave transporting
metasurface was designed by juxtaposing three separate
metasurfaces, two space wave to surface wave couplers
separated by a metasurface supporting a pure surface wave.
The overall metasurface system laterally shifts a plane wave
incident at an angle of 30° on the left-hand side of the
metasurface to a transmitted wave emanating from the right-
hand side of the metasurface at an angle of —7.2° with respect
to the normal. Due to the analytical design procedure, the
metasurface junctions scatter and reduce the efficiency. Also,
the coupling metasurfaces do not perfectly convert the incident
fields to surface wave fields. The authors report an efficiency
of only 10%, and hence the wave transportation cannot be
deemed perfect. Furthermore, the approach cannot control both
the phase and amplitude of the transmitted field and hence does
not have the capability of complex-valued field control. The
metasurfaces in the referenced work are also not conformal.

In [16], a planar teleporting metasurface is designed using
the principles of PT symmetry. A reactive layer is sandwiched
between an absorbing lossy Salisbury screen layer matched to
free space and an active layer with a negative impedance also
matched to free space. An incident plane wave is absorbed
nearly completely by the lossy layer, while the inductive
perforated layer allows the remaining small amount of power to
couple to the active layer where it is resonantly amplified to
recreate or teleport the incident plane wave to the opposite side.
Although this device requires active and lossy components, the
loss and gain are balanced according to PT symmetry and
hence represents an overall lossless system. Nonetheless, the
structure is planar, requires active layers which complicates
fabrication and cannot achieve beamforming.

This paper is organized as follows. In section II, we present
a planar example. Next, in section III, two conformal examples
will be presented. The first contains planar coupling regions and
a conformal surface wave region. The second contains both
conformal coupling regions and conformal surface wave
regions. Some concluding remarks are provided in section I'V.
An e/t time convention is assumed and suppressed throughout
the paper.

functionality from

II. WAVE TRANSPORTING METASURFACE DESIGN AND
ANALYSIS

We first present a planar wave transporting metasurface to
understand the wave transportation function as it pertains to
metasurfaces. The metasurface geometry is shown in Fig. 1.
The electromagnetics problem is 2-dimensional (out-of-plane
wavenumber is zero) and hence the geometry is invariant in the
z-direction. The patterned metallic cladding, described by a
spatially variant homogenized sheet impedance 7g(x), is
supported by a grounded dielectric substrate of thickness d
1.27mm (50mil) and complex relative permittivity €,. =
€-(1 — jtand) = 2.2 — j0.002. The impedance sheet is broken
into 200 unit cells of width A,/20 each at f = 10GHz. The
metasurface is therefore w = 200(4,/20) = 1041, wide along
the x-axis. The design of the transporting metasurface begins
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Fig. 2. (a) Specification of incident and scattered field amplitudes
at the metasurface plane. NOTE: the input/output ports have been
swapped with respect to Fig. 1. Metasurface sheet impedances of
(b) Initial local active/lossy metasurface design and (c) Subsequent
non-local passive and lossless design. (d) Zoomed in view within
the input port region of the non-local passive and lossless design
shown superimposed with the sheet impedance modulation

function 7; = —j53Q [1+ 0.1415 sin (2%")] where p = 10/2.58.

by specifying the desired total field tangential to the
metasurface. The incident field is assumed a normally incident
plane wave illuminating only the right-hand portion of the
metasurface between 1y < x < 44,4 as shown in Fig. 2a. The
reradiated (scattered) field is defined to have both a cosine
tapered amplitude and uniform phase (complex-valued field
control) exiting from only the left-hand portion between
—4)y < x < —A,. Critically, the absolute level of the
amplitude in V/m of the scattered field is chosen to conserve
power globally meaning the total power in the incident field,
P = |Eol?/210 = 0.12mW/m for a unit strength plane
wave, is equal to the total power in the scattered field. This
definition will lead to the near perfect transportation, i.e., all the
power is transferred from the incident field to the scattered
field.

A. Local Active/Lossy Design

The metasurface design algorithm [11] starts from a local
active/lossy (Ac/Ly) design used as a seed for the non-local
passive/lossless (Pa/Ll) design. The local active/lossy design is
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obtained from the solution of the governing integral equations
given the desired total field, E®°¢, associated with the wavefront
transformation (see (16) and (17)). By solving the integral
equations, the surface current density, J¢, on the metasurface is
obtained, thereby allowing for the direct calculation of the
metasurface impedances, 75, following from the boundary
condition 71, = E®°¢/J; (see Fig. 2b). As expected, the
metasurface is lossy over the incident field region, and contains
gain in the scattered field region. Furthermore, the loss and gain
are balanced as a result of the choice of the scattered field
amplitude. A transmission line model can be used to understand
the result. Modelling the panel as a transmission line terminated
in a shunt impedance representing the metasurface in parallel
with an inductance representing the thin grounded dielectric
substrate, the sheet impedance can be calculated as

7,77, tan ﬂd(l +F) |
n, tan Bd (F—l)_jﬂo (1+F)|r:0e/"
)

where 7. 15 the sheet impedance within the illuminated
portion of the metasurface, I' is the reflection coefficient
looking into the parallel load, f is the wavenumber in the
dielectric region, and 1, and 1, are the intrinsic impedances of
the free space and dielectric regions, respectively. For perfect
absorption, the reflection coefficient should be zero. The
resulting sheet impedance in (1) matches the numerically
obtained value in Fig. 2b. In order for power conservation, the
power absorbed in the lit region must exit the output region, and
hence the sheet impedance in the scattered field region can be
described as 15 5., = —27.54 — j98(). Note, since the shape of
the amplitude differs between the two port regions, the sheet
impedance tapers are different at the ends of their respective
regions. Thus, the desired functionality of wave transportation
can be achieved with a local balanced active/lossy metasurface
described by the sheet impedances in Fig. 2b. In this case, the
beam would teleport as the incident energy is not transported to
the output beam but rather the output beam is created through
resonant amplification given some small diffractive coupling.
Its balanced loss and gain operating principle is similar to the
balanced loss and gain of the PT symmetric teleporting
structure in [16]. In both cases, although the incident energy
itself does not teleport, a small diffractive coupling is necessary
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Fig. 4. (a) Real part of the total electric field. (b) Zoomed in to show
surface wave connecting the input and output ports.

to excite the gain medium to resonantly create the teleported
beam.

B.  Non-local Passive/Lossless Design

A purely passive/lossless metasurface eases fabrication and
avoids unnecessary complexity. To that end, the local
active/lossy metasurface is used as a seed design to obtain a
non-local passive/lossless design with the same performance.
Since the power is balanced, a surface wave can carry the power
from the lossy region to the active region. In this case, the
metasurface transports the energy to the output port rather than
teleports it. However, from an outside perspective, the beam is
seen to disappear and reappear somewhere else in space.

The integral equation solver is coupled with an adjoint
variable optimizer to obtain the non-local design [11]. To this
end, the N = 200 reactances of the unit cells comprising the
metasurface are arranged in an N-dimensional space with each
reactance varying along an orthogonal axis. A surface is defined
in this space as g(x) = f(Xq, X, X3, ..., Xy) and represents the
response of the metasurface as a function of its reactances Xy .
The cost function g is designed such that its minimum
represents the optimal solution

— 1 —i—
Xu)==AE E 2
g(¥)=7 @)
where T denotes the conjugate transpose and
AE = En/',Pa/LI (;m ) — Enf,Ac/Ly (;m ) 3)

The M observation points 7, of the electric near field Enf are
defined along a contour the same shape and dimension as the
metasurface and displaced one wavelength above it. The
optimizer is seeded with the reactive part of Fig. 2b; and then
the gradient of (3), defined in the appendix of [11], is used to
descend along g to its minimum.

The optimizer converged to a value of g = 0.05 in 160
iterations (see Fig. 3). The optimal non-local metasurface sheet
impedance is shown in Fig. 2¢ and the near fields computed
from the non-local design are shown in Fig. 4. Three distinct
regions are evident, a spatially modulated input and output port
connected by a nearly constant surface wave region. Sharp
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Fig. 5. (a) Amplitude spectrum of the scattered electric field at the
metasurface plane. (b) Zoomed in view of Fig. 4a within the tunnel
region to show tunnel surface wave wavelength. (c) Zoomed in
view of Fig. 4a within the input port region to show port surface
wave wavelength. (d) Dispersion curve relating the surface
wavenumber and wavelength to the homogenized sheet reactance.

discontinuities in the sheet impedance of Fig. 2c¢ excite a
number of auxiliary surface waves in the input and output port
regions (in addition to the prominent surface wave within the
port regions and within the tunnel region connecting the two
ports) responsible for redistributing power transversally within
the port region facilitating passivity and losslessness [11], [17].
These perturbations also aid in obtaining a seamless transition
region between the ports and the connecting surface wave
region increasing the overall port-to-port power transfer
efficiency.

The surface waves can be visualized in Fig. 5a. Figure 5a
shows the amplitude of the plane wave spectrum of the scattered
electric field evaluated on the metasurface. The tunnel surface
wave responsible for transporting power between the ports is
evident at i, ; = —7.95k,. This wavenumber is in agreement
with the sheet impedance of n; = —j22Q in the tunnel region
in Fig. 2¢ since a sheet of this impedance supports a surface
wave of wavenumber [, , = —7.95k,. This can be verified by
viewing the dispersion curves plotted in Fig. 5d. In Fig. 5d, a
plot of the surface wavenumber and wavelength versus the
sheet reactance of the metasurface is shown. The plot is
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Fig. 6. (a) x-component of the Poynting vector at the plane of the
metasurface. (b) Line cut of near electric scattered field amplitude
at a height of one wavelength above the metasurface.

obtained using the Transverse Resonance Technique [11]. A
reactive sheet impedance of n, = —j22() is seen to support a
surface wave of wavenumber f,, = —7.95k,. The surface
wave wavelength can also be verified to agree with the curves
of Fig. 5d. In Fig. 5b, a zoomed in view of the surface wave in
the tunnel region is shown. The measured wavelength agrees
with the dispersion curves.

The amplitude spectrum in Fig. 5a also shows another peak
at Bsw,p = —2.58kg, which is the surface wave generated from
the incident plane wave within the input port region. Figure 5d
shows this surface wavenumber is associated with a sheet
impedance of 7y, = —j53( in agreement with the average of the
sheet impedances shown in Fig. 2¢ within the input port region.
The sheet impedance modulation within the input port region
can be understood by noting that for broadside radiation of the
n = —1 harmonic from a surface wave of wavenumber B, , =
—2.58k,, the period of the modulation should be k,, =
,Bsw,p —2n/p=>0= :Bsw,p —2m/p or p= 27T/,Bsw,p = o/
2.58. Shown in Fig. 2d, a sinusoidal sheet impedance
modulation function with this period is fit to the non-local
passive/lossless metasurface sheet reactances. As can be seen,
the modulation period corresponding to the n = —1 harmonic
for broadside radiation fits the optimized sheet reactances well.
The perturbations of the reactances around this analytic result
excite the auxiliary surface waves and lead to the near perfect
coupling. No other spatial harmonics fall within the light cone.
A zoomed in view of the port surface wave within the input port
region is shown in Fig. Sc. The measured surface wave
wavelength is also in agreement with the dispersion curves in
Fig. 5d.

Finally, a remark on the spectrum limits. The spectrum has a
cut-off at B, = 10k, which is the highest wavenumber
possible as the onset of a stop-band at B, = m/d = 0.1k, for
the chosen unit cell discretization of d = 1,/20 occurs at this
wavenumber. This corresponds to a maximum sheet impedance
of —j20Q according to Fig. 5d. For this reason, hard limits of
—j20Q on the impedances during the optimization phase were
set, and is why the tunnel sheet impedance is approximately
—j20Q. The remaining evanescent spectrum is due to the sharp
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Fig. 7. COMSOL Multiphysics simulation results. (a) x-

component of the Poynting vector at the plane of the metasurface.
(b) Real part of the total electric field. (c¢) Line cut of near electric
scattered field amplitude at a height of one wavelength above the
metasurface. (d) Amplitude spectrum of the scattered electric field
at the metasurface plane.

perturbations in the sheet impedances of Fig. 2¢c. These surface
waves are responsible for redistributing power transversally
within the port regions and at their transitions with the surface
wave region in order to achieve passivity and losslessness.

The power in the surface wave can be seen to grow
approximately linearly in agreement with the conclusions in [3]
in Fig. 6a, although here the spectrum (Fig. 5a) contains many
spatial harmonics rather than the single harmonic considered in
[3] and the metasurface is strongly non-local. The figure shows
the x-component of the Poynting vector, S:°¢ = —(1/
2)Re[E;*H3"]. Hy® was obtained by taking the inverse
Fourier transform of E5%k, /nok,, where E3® is the electric
field spectrum at the plane of the metasurface (the amplitude of
E$¢@ is shown in Fig. 5a). The power density in the surface wave
is shown to increase from zero within the input port region
approximately linearly as more of the power in the plane wave
is absorbed, then become constant through the tunnel region as
the power is carried to the output port region, and finally decay
approximately linearly in the output port region to zero as the
power is shed into the scattered beam. The oscillations in the
power density profile occur due to the interference between the
similarly polarized incident and surface wave fields.

Next, to show the metasurface perfectly converts the incident
plane wave at port 1 to the complex-valued scattered field at
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Fig. 8. Metasurface sheet impedances of (a) Initial local
active/lossy metasurface design and (b) Subsequent non-local
passive and lossless design. (c) Real part of the total electric field
from the COMSOL Multiphysics simulation. (d) Zoomed in of (c)
to show surface wave connecting the input and output ports. (e) x-
component of the Poynting vector at the plane of the metasurface.
(f) Line cut of near electric scattered field amplitude at a height of
one wavelength above the metasurface.

port 2, the near electric field was calculated along a horizontal
line one wavelength above the metasurface. In Fig. 6b, the
stipulated scattered field amplitude (replicated from Fig. 2a),
the directly calculated (from the induced surface currents)
scattered near field amplitude, and the backprojected far fields
are all shown compared. It is evident that the non-local
metasurface nearly perfectly creates the stipulated near field
amplitude, and hence transfers all power in the incident plane
wave to the output scattered field. Integrating the power density
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Fig. 9. Conformal transporting metasurface geometry.

along a horizontal line one wavelength above the metasurface
yields Pseqgrip = 0.12mW/m and  Pgeqpp = 0.1198mW/m
giving a port-to-port transfer efficiency of 99%.

Lastly, to provide an independent verification of the
transporting metasurface, the design was imported into
COMSOL Multiphysics and a full-wave simulation performed.
The results are compared to the MoM results in Fig. 7. As can
be seen, the independent full-wave verification corroborates our
results.

C. Gaussian Beam Illumination

Although it leads to intuitive results, the finite-width non-
diffracting plane wave used to illuminate port 1 in the previous
section is non-physical. This is evident in the shadow region
behind the metasurface where the non-diffracting incident field
does not totally cancel the diffracting scattered field. To model
a more physical excitation, the same metasurface is illuminated
with a Gaussian beam [18] with a waist radius of wy, = 4, at the
metasurface plane. The center of the waist is located at x =
2.5, and y = 0. For this example, both the MATLAB design
codes and the COMSOL Multiphysics verification models are
available through the IEEE DataPort at [19].

The design procedure was repeated with the Gaussian beam
illumination in place of the plane wave. All other parameters
were kept the same as the previous design. The resultant sheet
impedances of the active/lossy design and the passive/lossless
design are shown in Fig. 8a and Fig. 8b, respectively. As can be
seen, the boundary of the input port is now not sharply defined,
but rather spread out as the Gaussian beam illumination does
not have sharp boundaries. Nonetheless, we see the same
features, sinusoidal like modulation within both the input and
output port regions. The real part of the total electric field for
the passive/lossless design of Fig. 8b is obtained using
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—_ Routing Around
= 8 Building Corner \

G .
(ol = I
k " 'mxmL'S e J /(b)

Fig. 10. (a) An urban environment. (b) Simulation results of a
conformal transporting metasurface which routes plane waves
around corners of buildings.

COMSOL Multiphysics and is plotted in Fig. 8c and Fig. 8d.
The transverse power density (Fig. 8¢) and scattered near field
obtained along a line one wavelength above the metasurface
(Fig. 8f) show excellent agreement with COMSOL
Multiphysics. The ratio of the integrated scattered and incident
field power densities produces a result of 97.5% for the port-to-
port transfer efficiency.

i -0.2

III. CONFORMAL TRANSPORTING METASURFACES

By incorporating conformal geometry modelling capabilities
into the integral equation/moment method algorithm (see
Appendix), transporting metasurfaces connecting two distant
non-colinear ports in space can be accomplished (see Fig. 9).
These types of transporting metasurfaces can be useful for
channel optimization in urban environments where the window-
pane sized metasurface conforms to the corner of a building for
example (see Fig. 10).

A. Conformal Metasurface for Communications Channel
Optimization
In Fig. 9, the geometry of a conformal transporting
metasurface which routes the surface wave around a 90° bend
is shown. The metasurface is parameterized by a superquadric
function with p = 10,

v
x(u,v) = cosu
(cosujp [sinujp
p +
a b 7/2<u<sr
“4)
% 1-d/a<v<l
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Fig. 12. (a) Metasurface sheet impedances of initial local
active/lossy (Ac/Ly) metasurface design, and subsequent non-local
passive and lossless (Pa/Ll) design vs. parameter u. (b) Line cut of
near electric scattered field amplitude at a height of one wavelength
above the metasurface.

The parameterization is also shown graphically in Fig. 11. The
parameters a and b control the aperture length along the x-axis
and y-axis, respectively, and the parameter d controls the
substrate thickness. The parameter p controls the metasurface
shape and radius of curvature at the bend. For p = 2, for
example, (4) defines a quadrant of a circular annulus in the xy-
plane. As p — oo, the parameterization approaches a quadrant
of a square ring with thickness d. When v = 1, the superquadric
has the largest radius (the curve g in Fig. 11). The impedance
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Fig. 13. (a) Conformal metasurface geometry. (b) Metasurface
sheet impedances of initial local active/lossy (Ac/Ly) metasurface
design, and subsequent non-local passive and lossless (Pa/Ll). (c)
Line cut of near electric scattered field amplitude at a height of one
wavelength above the metasurface.

sheet will be placed along this arc. When v =1 —d/a, the
superquadric has the smallest radius (the curve e in Fig. 11).
This is where the perfectly conducting ground plane will be
placed. Vv between these two values, the space between is filled
(the dielectric material of the substrate will fill this area). For
the parameters in (4), the greatest radius of curvature calculated
using (11) at the 90° bend point is R = 0.5871,. The
metasurface has length a = 81, along the x-axis, b = 84,
along the y-axis, and thickness d = 1.27mm (50mil). It is
constructed from the same three layer stack: a patterned
metallic cladding represented as a spatially variant
homogenized impedance sheet, a dielectric spacer, and a
ground plane. The incident field is a Gaussian beam again with
a waist radius of wy, = 4,. For this case, the center of the waist
is located at x = —3.51; and y = b. The Gaussian beam will
be absorbed at this space wave port and converted into a surface
wave. The surface wave will travel around the bend delivering
the power to port 2 defined along 1, < y < 44, where it will
be reformed into a collimated beam corresponding to an
aperture field with uniform amplitude and phase. Both the
MATLAB design codes and the COMSOL Multiphysics
verification models for this design are available through the
IEEE DataPort at [19].

Figure 12a shows the metasurface sheet impedances for both
the local active/lossy metasurface design and the non-local
passive/lossless metasurface design. Figure 12b shows the near
field amplitude taken along a contour following the metasurface
and one wavelength above the metasurface. As can be seen, the
non-local passive/lossless metasurface performs identically to
the local active/lossy design. Finally, the real part of the total
near electric field is shown in Fig. 10b. As in the planar case,
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Fig. 15. COMSOL Multiphysics simulation results of a conformal
transporting metasurface shaped using a sinusoid added to an
exponential function.

the metasurface is performing the function of near perfect space
wave transportation, only in this case, the space wave beam is
seen to transport around the corner of a building.

B. Sinusoidally Modulated Exponential Metasurface Coupler

The final example is a near perfect conformal wave
transporting metasurface where the coupling regions are not
planar. The geometry and its parameterization are shown in Fig.
13a and in Fig. 14, respectively. The parameterization can be
described as a sinusoidally modulated exponential

x(u,v)=u —-w/2<u<w/2
(%)

y(u,v)=ce™ —d<v<0

The parameter w controls the aperture length along the x-axis,
and the parameter d controls the substrate thickness. The
parameters ¢ and a controls the amplitude and the growth rate
of the exponential function, which acts as a fundamental term
of which the sinusoid is added to. The parameters p and b
control the amplitude and period of the sinusoidal term. The
impedance sheet will be placed along the curve resulting from
v = 0, The perfectly conducting ground plane will be placed
along the curve at v = —d. Vv between these two values, the
space between is filled (the dielectric material of the substrate
will fill this area). The metasurface width, as projected onto the
x-axis, is w = 104,. The incident field is again a Gaussian
beam with a waist radius of wy, = A,. For this case, the center
of the waist is located at x = —3.54, and y = 4,. Defining the
scattered field as ES* = e /%Y for 1, < x < 4], and solving
the governing integral equation, results in the active/lossy
design impedances shown in Fig. 13b. The corresponding
passive/lossless design’s reactances after optimization are also
shown in Fig. 13b. Finally, the COMSOL Multiphysics
simulation results of the real part of the total near electric field
for the Gaussian beam excited passive/lossless design is shown
in Fig. 15. Wave transportation is again observed, as well as
near perfect coupling of a normally incident plane wave to a
surface wave over a conformal surface. In Fig. 13c, the
magnitude of the electric near field is plotted along a contour
the same shape as the metasurface displaced one wavelength
above it. The figure shows some imperfect coupling in the
COMSOL Multiphysics result and/or impedance matching
between the port region and the tunnel region as some scattered
electric field is present over the input port region. This may be
due to the paraxial approximation for the Gaussian beam used
in the MoM whereas in COMSOL Multiphysics, a more
accurate representation based on a plane wave decomposition
is used. Nonetheless, the full-wave results again corroborate our
results.

Note, both the MATLAB design codes and the COMSOL
Multiphysics verification models for this design are also
available through the IEEE DataPort at [19].

+ psinbu+v

V. CONCLUSION

Conformal, metasurface-based, space-wave to surface-wave
couplers were designed to transport a space wave from one
location in space to another via surface wave and reradiate it as
anewly formed beam. The reradiated space wave can be formed
into an arbitrary beam with control over its amplitude and
phase. The metasurfaces can conform to any shape, are fully
passive and lossless, and hence require no powered
connections. The metasurfaces are deemed near-perfect, as over
97.5% of the available power in the incident space wave is
transported to the output wave in all cases. These types of
metasurfaces can be useful to fill in hard to reach shadow zones
in new high-frequency communications systems in an efficient,
power-free manner. The conformal metasurfaces are designed
using a coupled system of integral equations formulated for
arbitrarily shaped geometries defined parametrically. The
integral equations are solved via the method of moments. All
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design codes and full-wave simulation files used for validation
are available as supplementary materials.

Finally, note the primary purpose of this paper is to show that
near perfect transportation is possible and what the sheet
impedances look like. Support for dielectric materials is
currently being added to the unit cell design process required to
realize these metasurfaces outlined in [20]. Once this is
complete, follow-on work involves translating the optimized
impedance sheets for all designs in this paper to patterned
metallic claddings.

APPENDIX A: METHOD OF MOMENTS FOR PARAMETERIZED
GEOMETRIES

A. Integral Equations for Conformal Geometry

The conformal upgrade of the integral equation in [9]-[11]
involves both line and area integrations over the boundary and
domain of the region R in Fig. 11 and Fig. 14, respectively.
Single integrals over curves bounding the region R (curve g or
e in Fig. 11 for example) can be evaluated by integrating over
curves bounding the parameter space region S (curve h or f in

Fig. 11 for example) from
2 2
+ Q du
v=v, au v=v,
(6)

where v, = 1 or 1 — d/a for integration over the metasurface
layer (curves g or h) or ground plane layer (curves e or f),
respectively. To evaluate the double integrals over the region
R, the integrations can be done over the region S in the

parameter space using
[ £ Geyyda = [[ £xtuv). @) oxfou - oy/ou gy )
" Y & VR I Ox/dv  dy/ov

Care must be taken to ensure the absolute value of the Jacobian
determinant appearing in (7) is always taken (note, the Jacobian
determinant associated with the mapping in Fig. 11 turns out to
be negative so the absolute value must be taken).

The integral equations will be derived for the parametric
geometry in Fig. 11. Those for any other geometry can be found
analogously. The metasurface can be modeled as consisting of
three layers, denoted by different values of v,. Layer 1, at vy =
1 denotes the impedance sheet. Layer 2, at v, = v, denotes the
dielectric spacer. Layer 3, at vy =1—d/a, denotes the
perfectly conducting ground plane. An integral equation can be
constructed for each layer, and hence there are three total
integral equations, one for each choice of v, in the following

[ fGewyds= [ 10euv,), y(,v,)) (Z—X
ge .t u

E' (x(u,va),y(u,vﬂ)) =, (x(u,vo),y(u,vo))J(x(u,vn),y(u,vo))

+M "T H(‘,Z)(k(,\/[x(u,vo)fx(u ',l)]2 +[y(,vy) - y(u ',])]2)
S

4 u'=,
x| Y (o] Y
ox] A du'
ou'l,y ou'l,y
v'=1

+Lk0 J. ufﬂ Hf)z’(ko\/[x(u,vn)fx(u',v')]z+[y(u,v0)fy(u',v')]z)

v'=l-dfau'=x/2

J(x(u',l),y(u',]))

0Ox/ou' dy/ou

du'dv'
ox/ov' oy/ov' v

J(x(u',v'),y(u',v'))

Ox
ou'

k u'=w , , :
+n0f40w:.|;/zHé)(ko\/[x(u,vo)—X(u',l—d/a)] *[Y(“avo)—y(u',l—d/a)] )
.1(X(u',l—d/a)’y(uv,l—d/a))\/[ ] +[iy jdu,
Vv=l-dfa o'l
(®)

The three integral equations in (8) (one for each choice of vy)
can be simultaneously solved by the method of moments as
presented in the next section.

The derivatives of (4) and (5) are also useful. For (4), they are

sinu —

(
(o) (55 (55 o

= cosu —

p-1 . . p-1
cosu —simnu simu cosu .
X + Smu
[(aj ( a ](bj (bj]

ox 1
= cosu
v (cosujp [sinujp
p +
a b
6_y = ! sinu
ov (cosujp (sinujp
P +
a b
©
The derivatives of (5) are are
ﬁz1, a—y=cate‘"‘+pbcosbu, @=0, Qzl
ou ou ov ov
(10)

Also the curvature, k, of the impedance sheet layer can be
computed from
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X" (u,1)

r'= [—x(u 1), y(u l)} a1

= {6622 x(u,1), 622 y(u, 1)}

B.  Method of Moment Solution of Integral Equations

The current densities in (8) are expanded into pulse basis
functions placed in the parametric space tessellating the domain
and boundary of S (1D pulses for the boundary of S mapping
electric surface current densities on the metasurface and ground
plane, and 2D pulses for the area within S mapping polarization
current densities in the dielectric substrate)

J(u) = Jl(x u,l ( ))
%

2

(

@, P, (3 (1), y(1,1)) » Ju—u, | <

=2 (x(v).y(wv))
(r(v).y(wv)

J(u) Jy(x(u,1-d/a), (u,l—d/a))

a,P ( (u,l—d/a),y(u,l—d/a)) ,
(12)

Au, denotes the width of the nth basis function and Awv,
denotes its height in the 2D case. Note, the Au,, are chosen such
that the arc length of the unit cells in the parameterized curve
are of equal arc length. Substitution of (12) into (8) and testing
the integral equation using the same expansion functions
(Galerkin method) results in (for v, = 1 for example)

P n

n

le < .‘_‘Mg

A
|u—u"|£%

Mz

n

o+ Au/2 1=, + Auf.

.[ Hm( \/[x(u D—x(u', 1)] [}’(”,1)—}’(1:',1)]2)

JHHJHE

2
] du'du

v=l

ok 22 U=t + Auf2 v'=v, +Av]2 1=, + D2 2 2
=2y, [ ] HL(yZ‘(ko\/[x(u,l)—x(u',v')]_ Dy v)] )
4 = u=u,,~Auf2 v'=v, ~Av/2 u'=u, —Auf2
A ' ! o ’ ’
ox/ou' dy/ou x| n » du'dv'du
ﬁx/ov' oy/ov'|\\ éul,., Qula
K, & gl sy s i
+ '704 0 Za” ,[ .[ H(U( \/[x(u,l) —x(u ',1—01/0)]z ly D=y 1-d/a)] )
n=1 w=u,,—Auf2 u'=u, -

ox 2 + Kid 2 o Z + L 2a’u'a’u
ou'l,\gya ou'l,i_gja Oul,_, Oul,_,
(13)

The integral equation in (13) can be written in the following
form V), =Zgl +Zi1 1y +Z,0 +Zi3l5 = (2 +Z)1, +
Zi,1, + Z1315, where

s
[ a (ko\/[x(u,l)—x(u O + [y ) -y, D] )

u=u,, —Auf2 u'=u, - Auf2
NERNE
x| + 2
oul,_, ou

Sae
"It ou'
/2 v'=v, + Av/2 u'=u, + Auf2
o= oul,_
ok, "
[Z‘X]"\‘"x.\/‘ = 040 I

ox/ou"
j H*”( \/[x(u,l)—x(u',l—d/a)]z+[y(u,l)fy(u',1—d/a)]z)
u=u,,~Auf2 u

ax/ﬁv'
2 2
al V(2 a V(o
ou'l, I-dfa ou'l, 1-d/a oul,., oul,

] du'du

v=l

oy/ou
é’y/é’v'

2
] du'dv'du
1

/2

jdu du
1

(14)

The self terms (m =n) in (14) are calculated using the
procedure outlined in [21]. For completeness and since those
formulas are adapted to the conformal parametric geometry
case, the formulas for calculating the self-terms are provided in
the next section. Following the same procedure for the
remaining layers (v, = v for layer 2 and vy =1 —d/a for
layer 3) leads to the block matrix equation

4 Z,+Z, Z, Zy || 1,
V= Zy Zp+Z, Zy||1, (15)
2 Zy Zy Zy || 1,

Note, for the dielectric layer, Z, = eye([jwey(e, — 1D]™D),
where eye( ) indicates an identity matrix with the argument
appearing along the diagonal. Also note, n, = 0 for layer 3 and
hence Z;; does not appear in (15). Finally, note in our
implementation, each of the voltage vector and impedance
matrix elements in (14) are normalized to their own arc length
(for 1D) or area (for 2D).

The matrix equation (15) can be solved by either knowing the
sheet impedances Z; (as in each iteration of the optimization
phase leading to the passive/lossless design) or by knowing the
desired total field and making the substitution W; = ZI;
following from the boundary condition E*°t = n.J; (as in the
initial solve phase leading to the active/lossy design)

V- VV] le Z 12 A 13 I 1
v, =\Zy Zp+Z, Zy| 1,
I/3 ZSI ZSZ Z}S [3

Since, in our case, the desired total field, E¢, is known, the W,

vector can be found from
2 2
v=1 au v=l

w=u,, +Au/2
m= [ E(xu 1),y(u,]))\/(2—i

u=u,,—Au/2
a7

(16)
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In this case, after solving equation (16) for the current I, the
complex-valued sheet impedances can be found by returning
back to the boundary condition from n, = W, /1.

C. Calculation of Singular Matrix Element Terms

The self terms (m =n) in (14) are calculated using the
procedure outlined in [21]. We summarize their results here
adapted to our case of conformal method of moments. For more
details, refer to the original paper [21]. There are two types of
singular integrals, the surface integrals (associated with [Z;4]
and [Z33]) and the volume integrals (associated with [Z,,]). We
treat the surface integrals first.

Singular Surface Integrals
The integral in question (for [Z;,] for example) is

k u=u,, +Auf2 u'=u, +Auf2
Moo HY (ko Jlran = x@ D] + [y D -y ] )

I ===
4 w=tt,, —Auf2 u'=u, —Auf2
al Y (o] Y [(ex| Y (o
7){,’ + 7)/ l + l
ou'l,_, ou'l,_, oul,_, Ou
(18)

By singularity subtraction, the Hankel function can be written
as

2
j du'du

v=l

HP (k,P)= [Héz) (kOP)+j31n P}—jglnP (19)
T T

where P = \/(x(u, 1) —x@’, 1))2 + (w1 -y, 1))2.
The first term in the brackets is well-behaved and can be
integrated numerically. The strategy for the remaining term is
to perform the inner integration analytically assuming a
variable observation point u passed in from the outer integral,
then integrate the outer integral numerically using the analytic
result from the inner integral as the integrand.

k u=it,, +Au/2 u'=u, +Auf2
=" {Héz)(kOP)+jglnP}
u=u,, —Au/2 u'=u, —Au/2 4
ax| Y (o] Y [(ex] Y .(o
X _x + _y _x + _y
ou'l,_, ou'l,_, oul,_, ou

u=u,, +Auf2 | u'=u,+Auf2 2
.noko ax 6y
_ ik mp || | ]
ine T \/[ ) [ ”

'
27 u=ut,, —Auf2 | u'=u,—Auf2 Ou

x| Y (o] Y
x, || & + & du
oul,_, oul,_,

= Isl +152
(20)

The inner integral of I, (in brackets) to integrate analytically

becomes
2 a 2
j +[—y ] du' (21)
v=I1 au' v=I1

u'=u, +Au/2 P

[SZJH (u) = J. ]np\/{_x'
u'=u, —Au/2 Ou

With reference to Fig. 16, the coordinate origin is denoted by

0. The observation point position vector is denoted by g =

[x(u, 1), y(u, 1)]. The source point position vector is denoted

2
] du'du
v=1

2
] du'
v=1

Line
po Segment C

Fig. 16. Geometrical definitions for analytic line integration.

by g’ = [x(u',1),y(u',1)]. The source line segment, C, is
colored red in Fig. 16 and is parameterized by the arc length
variable ' measured from the line perpendicular to the
extension of C and which passes through the point located by g
. The endpoints of the source segment are pointed to by the
vectors p'~ and p't. The coordinates P° and I' can be
considered a pair of rectangular coordinates with origin at g,
locating points on the line segment C. Thus, the endpoints of
the source segment are located at a distance of

Pr=|p —p|=y(P') +(FF) (22)
Other quantities in Fig. 16 are given by
22
P =P
u=Ixn=Ixz
I = (Zf —,7))-? 23)

All quantities in (22) and (23) can be solved for once g (the
observation point) and g% (the source segment endpoints) are
defined. By defining

p = [x(u,1), y(u,1)]
p = [x(u, —Au/2,1), y(u, — Au/2,1)]
p =[x, +Au/2,1), y(u, +Auf2,1)]

the integration is done in the xy-space using the above
paradigm rather than over the parametric uv-space since the
vectors in (24) are constant (see Fig. 11). Thus, (21) becomes

(24)
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Iy, (u)=[tnPdl'= ljln,/(P")Q +(1')dl'

="InP" -I"InP

+P’ (tanl (%) —tan™ (%D -(rr-r)

The result in (25) can be singular if PT = 0, which happens
when the observation point g lies on either of the endpoints of
the line segment C. In this case, the observation point can be set
to p = p + efl, where € is a small constant. The complete
integral (20) can now be evaluated numerically as

u=u,, +Auf2 u'=u, +Auf2
_ kg _iZnl”
IS_T J‘ I |:l ]ﬂ_ll’l(zkoj:|

u=u,, —Au/2 u'=u, —Au/2
C (o
NEs
el Ou

Ox ’ oy ’ Ox
X, || — +| = —
ou'|,_, ou'l,., ou

’70ko Isz,[n (u)\/(g—x
u

e
_j 27 v=1 J " (a_i )=
(26)

2r
— . () 2 —
where y = 1.781 and since [HO (koP) +];lnP] =1-

(25

2
] du'du
v=l

u=u,, +Au/2

u=u,,—Au/2

j%ln (g ko) by the small argument expansion for the Hankel

function. A similar approach is used for the singular terms of
[Z33]- This completes the singular surface integral calculation.
The singular volume integrals are handled next.

Singular Volume Integrals
The integral in question is

V=Y, + A2 u=t, +Auf2 v'=v, +Avf2 u'=u, +Auf2

I = ”Zko i _[ J _[ HP (km/[x(u,v)—x(u ',v')]2 +[yw.v) -y ',v')]z)

v=v,, ~Av/2 u=u, AV[2 u'=u, ~Auf2

Ox/ou  dy/ou

ox/ov  oy/ov
27)

Using the singularity subtraction technique, (27) becomes

v=v,, +Av/2 u=u,, +Auf2 v'=v, +Av/2 u'=u, +Au/2
1ok 2 Y
I = 1-j=m| Lk
/ J ol { "7 [2 ﬂ

Auf2v'=y,
Ox/ou'  ov/ou'

du'dv'dudv
ox/ov'  dy/ov'

vy
ox/ou' oy/ou'||ox/ou Oy /ou
ox/ov'  oy/ov'||ox/ov  oy[ov

v=v, +AV/2 u=u,, +Auf2 v'=v, +Av/2 u'=u, +Auf2

v=v,, —Av/2 u=u,, —Au/2 v'=v, ~Av/2 u'=u, —Au/2

du'dv'dudv

ox/ou' oy/ou'
ox/ov' oylov'

Mok
/ 27 v:vm-‘:Av/Z u:um‘[Au/l v':v,f‘:Av/z u':u,,J:Au/2 "
Ox/ou  Oy/ou
) ox/ov  dy[ov
=1,+1,
(28)

where P = \/(x(u, v) —x(u, v’))z + (y(u, v) —yu, v’))z.

Integral I,,; can be integrated numerically. Integral I, will be
integrated analytically for the inner integral and numerically for
the outer integral.

P

du'dv'dudyv

Mok,
2r

InP

v'=v, —Av/2 u'=u, —Auf2 29)

v=v, +Av/2 u=u,, +Auf2 | v'=v, +Av/2 u'=u, +Au/2
v2

v=v,, —Av/2 u=u,, —Au/2
ox/ou' oy/ou’ Ox/0u Oy/ou
X du'dv'
ox/ov'  oy/ov' ox/ov  dy/ov
Again, the term in brackets will be labeled the inner integral,
Iy2in. To integrate I,;;, analytically, we employ a Gauss

integral theorem. Thus, in the xy-space, we express the
integrand as

Ly = J.lnde'dy’
A

:liml V;-[(PlnP—ng}dx'dy’

590214

dudv

(30)

—A,

+1irr3 I In Pdx'dy'
A(.‘

where A, is a small circular region of radius € enclosing the
observation point included to make the integrand continuously
differentiable. For more information, see [21]. A divergence
theorem can be applied to (30) to express the surface integral in
terms of a flux integral around the boundary enclosing the area
A. Following the result derived in [21], (30) is evaluated as

4 —
Loy @) =3 S Pl B = npy
i=1

I’ [ 3
0 -1 i -1 i + _
+Pi (tan (EJ—tan (E]J_E(A _li ):l

where P? = P?P?, P = (' — §)/P, and @ is the outward
normal vector (ensure Z - (ﬁi X fi) >0, else set @; = —1;).

Au Av
un+7,vn+7

€2))

v Au Av
un—7,17n+7

7(u,v) = [x(u,v), y(u, v)]>

[ Au Av Au Av
P1 =Py =X un+717}n+7 Y U-n+7.17n+7
Au

Av Au Av
_7'Un+7 Y un_7'Vn+7

Au

Av Av
BN D e i e

Av Au Av
-7 Y U—n+7'Vn—7

X

Fig. 17. Mapping of a quadrilateral patch in uv-space to its
corresponding quadrilateral patch A in the xy-space.
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Note, the mapping in (4) negates the signed area (Jacobian
determinant is negative), and thus, going clockwise around the
perimeter of the quadrilateral patch in the uv-space maps to a
counterclockwise path around the perimeter of A in the native
xy-space (see Fig. 17). Index i denotes one of the four sides of
the quadrilateral patch in R bounding the surface area A, and
thus each side i is represented by the geometry in Fig. 16.

Note, although the quadrilateral patch in the uwv-space is
rectangular (is constructed from straight line segments), its
image under the mapping 7 may have curved bounding line
segments. However, if the discretization is fine enough, the
perimeter of A can be approximated as constructed from
straight line segments, and the results of Fig. 16 will hold. With
this result, (28) is found as

. 770_ko vvatAv/2uumJJ:Au/ZV‘v,,JirAv/Zu'u,]:rAu/2|:1 . z - (g . H
Vs

' 4 v=v,, —Av/2 u=u,, —Au/2 v'=v, ~Av/2 u'=u, —Au/2
ox/ou' oy/ou'||ox/ou Oy /ou
X

ox/ov' oy/ov'||ox/ov  dy/ov

V=, +Av/2 u=u,, +Auf2

du'dv'dudv

Ox/ou oy/ou
ox/ov  Oy/ov

_/720_7"; |

v=v,, —Av/2 u=u,, —Au/2

dudv

v2,in (u’

(32)
This completes the singular term evaluations.
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