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Improving Disturbance Estimation and Suppression via Learning
among Systems with Mismatched Dynamics

Harsh Modi', Zhu Chen?, Xiao Liang®*, and Minghui Zheng!+*

Abstract— Iterative learning control (ILC) is a method for
reducing system tracking or estimation errors over multiple
iterations by using information from past iterations. The dis-
turbance observer (DOB) is used to estimate and mitigate dis-
turbances within the system, while the system is being affected
by them. ILC enhances system performance by introducing a
feedforward signal in each iteration. However, its effectiveness
may diminish if the conditions change during the iterations.
On the other hand, although DOB effectively mitigates the
effects of new disturbances, it cannot entirely eliminate them
as it operates reactively. Therefore, neither ILC nor DOB
alone can ensure sufficient robustness in challenging scenarios.
This study focuses on the simultaneous utilization of ILC and
DOB to enhance system robustness. The proposed methodology
specifically targets dynamically different linearized systems
performing repetitive tasks. The systems share similar forms
but differ in dynamics (e.g. sizes, masses, and controllers).
Consequently, the design of learning filters must account for
these differences in dynamics. To validate the approach, the
study establishes a theoretical framework for designing learning
filters in conjunction with DOB. The validity of the framework
is then confirmed through numerical studies and experimental
tests conducted on unmanned aerial vehicles (UAVs). Although
UAVs are nonlinear systems, the study employs a linearized
controller as they operate in proximity to the hover condition.
A video introduction of this paper is available via this link.

I. INTRODUCTION

Deploying safety-critical robotic systems such as un-
manned aerial vehicles (UAVs) in the vicinity of human
presence requires them to possess robustness against exter-
nal factors, such as wind disturbances. These disturbances
can significantly impact the trajectory of the UAVs, posing
potential dangers to external subjects [1] [2]. Therefore, it is
crucial for these robotic systems to estimate and mitigate the
effects of disturbances to ensure the necessary level of safety.
Also, various tasks may require the use of dynamically
different systems in disturbance-prone environments.
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Iterative learning control (ILC) is effective in reducing sys-
tem error over multiple iterations in repetitive tasks, thereby
enhancing performance in each iteration. It has been success-
fully applied in various applications, including manipulator-
based robotics systems [3]. Recently, ILC has been uti-
lized to improve UAV’s trajectory tracking performance [4]
using optimization-based filter designs. Researchers in [5]
implemented parameter determination-based ILC for robotic
manipulators, while [6] combined ILC with sliding mode
control to enhance the trajectory tracking for UAVs.

The disturbance observer (DOB) has been widely used
to enhance the robustness of the controller against exter-
nal disturbances. The article [7] provides an overview of
advancements in DOB from 1985 to 2020. DOB-based
controllers have been employed to compensate for unknown
disturbances in small UAV systems [8]. In [9], the authors
used DOB with a disturbance rejection signal in the form of
acceleration, which is similar to the force exerted on the UAV
due to disturbances like wind. [10] used finite-time distur-
bance observer to mitigate disturbance effects for quadrotor
UAVs, and [11] developed a linear dual disturbance observer
to improve UAV trajectory tracking. DOB has also been used
to enhance the robustness of fixed-wing UAVs [12], and in
[13], a disturbance observer was designed for nonlinear and
nonautonomous systems.

The objective of this research is to combine the advantages
of both the ILC and DOB to improve system robustness.
Specifically, this study focuses on increasing the robustness
of UAV trajectory tracking against external disturbances,
while simultaneously estimating the disturbance present in
the environment. When UAVs follow the same trajectories
within a relatively short period, it can be assumed that the
disturbances will not vary significantly. In such cases, the
benefits of ILC can be leveraged to proactively compensate
for repetitive errors in trajectory tracking caused by distur-
bance or controller limitations. However, ILC alone cannot
account for changing conditions, which can be addressed by
incorporating DOB. By combining ILC and DOB, we can
utilize the proactivity of ILC and the ability of DOB to adapt
to new disturbances.

Many studies have explored this direction. [14] employed
ILC along with DOB to account for non-repetitiveness in the
disturbances. In [15], the performance of ILC was enhanced
with DOB for wafer scanning systems. [16] utilized the
combined ILC and DOB to reject near-repetitive disturbances
in excavation operations. [17] combined ILC with DOB to
improve the robustness of machine tool feed drives. [18]
improved the closed-loop performance using ILC based on
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DOB. [19] employed ILC with DOB for rehabilitation. In
[20], ILC was combined with disturbance estimation for
unmatched model uncertainties and matched disturbances.
However, all these studies utilized the same system in each
iteration, limiting the robustness to a single system.

Some research has focused on implementing iterative
learning in dynamically different systems. [21] extended the
capability of ILC in heterogeneous systems with different
initial conditions. [22] used a transfer learning approach
to transfer input learning to a different system, but it was
specifically targeted at improving trajectory tracking and
did not include disturbance estimation. This study is an
extension of [23], where we combine ILC with DOB for
dynamically different systems. In [23], the authors designed
learning filters for dynamically different systems, allowing
each subsequent system to learn from the errors and learning
signal of the previous system. The design was based on
guaranteeing that the learning-based trajectory tracking error
of each system would be smaller than the system without
learning. However, explicit disturbance rejection was not
included, which is a focus of the present study, along with
the learning.

The main contributions of this study are as follows: we
explicitly incorporate DOB as part of the ILC update process
and consider differences in system dynamics among different
systems to enable learning. To the best of our knowledge,
this is the first attempt to implement learning with DOB
for systems with mismatched dynamics. Furthermore, the
designed methodology has undergone rigorous verification
and validation through simulations and experiments. In the
current study, the disturbance rejection and learning frame-
work is implemented as follows: (1) All systems operate
with an underlying PID baseline controller that remains
unmodified in this study. As the systems operate near hover
conditions, the linearization approximation holds. (2) All
systems utilize a DOB algorithm in conjunction with the
PID controller to estimate and reject the disturbances. How-
ever, DOB alone cannot fully compensate for disturbance
effects. Therefore, information regarding the tracking error
is passed to the next system. (3) The next system utilizes
this information to generate a learning signal, which aids in
improved disturbance estimation and rejection compared to
non-learning scenarios.

The rest of the paper is organized as follows: Section
IT establishes the theoretical framework and describes the
design of the learning filters. Section III presents the simu-
lation and the experimental results. Section IV concludes the
article. Please note that throughout the paper, the term “UAV”
indicates the particular hardware used in the experiment
while the term “system” is used to describe the general order
of the learning iterations.

II. LEARNING FRAMEWORK

A. Variable Definition and Standard DOB Basics

We first introduce notations that will be used in our
framework. We denote the signals as follows: r(k) as the
reference input, y(k) as the output, e(k) as the tracking error,
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d(k) and d(k) as the disturbance and its estimate, u (k) as

the control signal directly generated by the baseline feedback
control, u(k) as the modified control signal that is sent to
the plant. All these signals are time series. We also introduce
the following notations for different subsystems: P(z) as the
plant, C(z) as the baseline controller, Q(z) as a low-pass
filter, M(z) as the plant inverse, L;(z) and Ly(z) as learning
filters; all of these are transfer functions in discrete time. In
addition, we use j to index different systems; and use the
prime symbol (') to distinguish signals in systems without
learning. For ease of reading, we will omit k in signals and
z in transfer functions.

We now introduce the standard DOB and explain how it
works. As shown in Fig. 1(a), the DOB is added to System
Jj. It consists of a plant inverse M and a low-pass filter Q,
as highlighted by the dotted box. When a disturbance d is
present, the DOB can provide a disturbance estimate d which
will be subtracted from u; to cancel. Ideally, if a plant inverse
can be accurately obtained, and the intrinsic delay in P is
small, d would be close to d so that the disturbance can be
suppressed. However, it is difficult to accurately estimate the
plant inverse and the delays exist in dynamic systems. These
limitations of the DOB can be addressed by using a learning
approach across multiple iterations, as proposed in this study.
The subsequent section elaborates on the development of
this learning framework over DOB for dynamically different
systems.

System block diagram with (a) a basic DOB framework (b) an

B. Iterative Learning with DOB Framework

In this subsection, we will introduce the iterative learning
framework with DOB. Fig. 1(b) shows the detailed sys-
tem block diagram with the learning framework introduced,
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Learning relationship among systems

whereas Fig. 2 shows the overall learning relationship be-
tween two systems having different dynamics, i.e. System
#(j—1) and System #(j). The System #(j—1)’s learning
signal (dy;—1) and its trajectory tracking error (e;—1) can
qualify the accuracy of its disturbance estimation. Hence,
dy ; is generated using e;_ and dy ;| and to-be-deisgned
learning filters for System #(j). We propose two different
learning filters Ly ; and L, ; respectively for e;_; and dy ;i
as illustrated in Fig. 1(b). As the framework aims to im-
prove the system’s disturbance estimation and suppression
capability as well as its trajectory-tracking performance, the
learning signal is added to the disturbance estimate (dz-) from
the DOB. It is important to note that learning aims to improve
the performance of the system with learning compared to
its performance without learning. We do not compare the
performance of the system #(j) with system #(j—1) as each
system’s dynamics can affect individual performance.

The derivation is based on the following assumptions: 1.
We consider that all the systems are linear time-invariant
(LTT) as a large number of non-linear time-invariant systems
can be linearized near the equilibrium point. 2. As the
research is aimed at reducing the effects of disturbances
on repetitive tasks (such as industrial assembly or delivery
robots), we consider they follow the same trajectories and
are subject to similar disturbances 3. The current research
aims at slowly time-varying or stationary reference signals.

In the following paragraphs, we will establish the rela-

tionship between the tracking error with learning (e;) and
the tracking error without learning (e’j) after stating some
system parameters’ definitions.
System Parameters: Based on the system block diagram in
Fig. 1(b), G,.; (dynamics from reference signal r to output
¥j), Gq,j (dynamics from disturbance d to output y;), and
Gy, (dynamics from learning signal dy ; to output y;) can
be described by:

Grj=[1-Qj+Pi(M;+C))] 'PC; (1
Gaj=[1—-Qj+PM+C)I"'P(1-0)) ()
Grj=[1—-Q;+Pi(M;j+Cj)] ' (—P)) 3)

Establishing Relationship between ¢; and e}: Using the
system parameters defined above, the output of system #( )

with learning is given by:

vj =G i{r} +Ga{d} + Gy {dy )} )

and the output of the system #(j) without learning is given
by:
Y= Gri{r} + Gy {d} ®)

where the notation {} indicates that the signal inside is sent
to a system which can be represented by the outside transfer
function.

In order to establish the relationship between e; and e’j,

let us expand e; — e’
¢j=¢;=(r=y) = (r=yp) =Y; =y ©)
Now, using Eq. (4) and Eq. (5):
ej=¢j+y; =y =¢€;—Gr{ds;} )

As discussed earlier, the learning signal of the current
system (dy ;) is based on e;_y, and dy ;| and the respective
to-be-designed learning filters L, ;, and L, ;. Hence:

drj="Lij{ej1}+ Lo {dy 1} ®)
Using this, we expand Eq. (7) further as:
ej=¢;—Gyj(Li{ej 1} +Loj{dyj1}) ©)

Now, e;_1 can be expressed using Eq. (4) as:

€j-1=r—yj-1

(10)
=(1=Grj i ){r} = Gaj-{d} = Gpj-{dy -1}
Using this in Eq. (9) and after some simplification:
¢ =€;= Gr (1= Grj-){r} +Grjla jGaj{d} |

+Gy.j(L1,jGyrj—1 — Lo j){df,j1}

Eq. (11) contains variables r, d, and dy ;1 apart from ¢.
In order to effectively establish a relationship between e;
and e;-, let us try to reduce the number of variables in the

equation. Using Eq. (5), we can express e’j as:

G=r—yj=0-G){r}~Gaj{d} ~ (12)
Hence, d can be expressed in terms of r and e’j as:
d =G, (r—G {r}-¢)) (13)

substituting this in Eq. (11) and with some re-arrangements,
we get

ej=(1=GyjL1,jGa,j1G, ) e}
— Gy L1 j(1=Gpj1) = Gaj 1 G 5(1 -G )){r}

+ Gy j(L1,jGy j—1 — Lo j){dy,j-1}
(14)

Considering that the trajectory tracking controller C is well
designed such that

C(jo)P(jo)

GU T cGorte)

5)



for @ < mp, where @y is the desired unity-gain bandwidth
of the closed-loop system G,.

As seen in a later section, for the UAVs used in this study,
the gain of the transfer function G, is close to 0 dB and
the phase is close to 0° for @ < 1 rad/s. Considering Eq.
(15) and with the presence of (1—G,;_1) and (1-G,), the
following term

~Gy,jL1,j(1=Gypj1) = Gaj1Gy (1= Grj)){r} =0 (16)
for stationary or slowly time-varying trajectories.
With Eq. (16), we can re-write Eq. (14) as:
ej=(1=Gy L1 jGa j1Gy {e}+

Grj(L1,jGyj1 = Lo j){dy j1}

This relationship between e; and e’j will be used in designing
the learning filters.

7)

C. Learning Filter Design

In this subsection, we will introduce the design of the
learning filters, i.e., L;; and L, ;, such that e; can be
reduced compared to e’j. For simplification, we introduce the
following notations:

T.,; =(1=GyjL1 jGaj1G,})

(18)
Ter; =Gyj(L1,jGr j-1 = L2,))
Using this, Eq. (17) can be re-written as:
ej =T {ej} + T, {dpj1} (19)

To explicitly analyze robustness, we denote the modeling
uncertainty as A; and the relationship between the actual
plant (P;) and the identified plant model (I3j) as:

Pj=(1+A))P; (20)

In the following paragraphs, we will introduce the learning
filter design in a theorem-proof format. We also split our
proof into two cases: without and with modeling uncertain-
ties. We use || - || to denote the 2-norm of a signal and the
H-infinity norm of a system. That is,

sl = (L [s(01*)"/? and ||Gl| = max|G(jw)|  (21)
0
where s is a discrete-time signal and G is a LTI transfer
function.
Theorem: The following learning filters

Lij=(Gs;Gaj1) " Gu, (22)
and
Ly =(GyrjGuj 1) 'GajGr i (23)
can ensure |le;|| < [e]|] if
A1l < [I(1+Pj—1Cj-1)/2]] (24)

Proof: With the learning filters in Eq. (22) and Eq. (23), Eq.
(18) can be expanded as:

A A 1A —1
To,; =(1 = Gyj[Gy,jGaj-1) " Ga jlGa,j-1Gy ;)
To,; =Gr.j([GriGaj1) " Gaj1Gr i
—16yjGaj-1)""Ga jGyj1))

(25)

Now, let us analyze Eq. (25) in 2 different cases.

Case I: No modeling uncertainty

When there is no modeling uncertainty, i.e., A; =0 and
Aj1=0,wehave Gy ;= Gy j, Ga,j = Ga,j» Gy j1= Gy j1,
and G4,;1 = Gy, ;1. Hence, Eq. (25) reduces to

o 70 (26)
T, =0

Therefore, with the derived learning filters, e; will converge
to zero as per Eq. (19) when there is no modeling uncertainty.

Case I1: With some modeling uncertainty:

When there is some modelling uncertainty present, i.e.
[[Aj|| #0 or ||Aj_1]| # 0, we can simplify Eq. (25) using
Eq. (2), Eq. (3), and Eq. (20) as:

Aj,1

7, =—— 4 27
€ 1+Pj,1Cj,1 27)

_ Aj
T, =gt
1+P;1Cjy
Using Eq. (12), Eq. (19), Eq. (27), Eq. (28), and with
the approximation |[AjA;_{|| =0 for A; and A;_; of small

gains, the error “with learning” for System #(j) can be
approximated as:

_ 2-Aj_1Gd;
€= 1+Cj,1Pj,1

Gy 1Ga,jGrj (28)

“2A:
{d} = —
1+Cj,1P,1

{e/} (for j>2) (29)
As per Eq. (29), to achieve ||e;[| < [[e/||, we need

2.A;
H I < (30)

1+ Cjm1Pj1

As 1/(1+C;_1Pj_,) is the transfer function from r to e;_,

it will have a bounded gain for a stable closed-loop system.
Hence, as per Eq. (30), for |[A;_|| < [|(1+P;j—1Cj-1)/2]],
the |le;|| is guaranteed to be less than [|¢’|[. This result also
confirms that if the system parameters are accurate (i.e. A; =
0 for V), then the error with learning will be 0 as proven
earlier in case I. This is the end of the theorem proof.

It is noted that the learning filters are explicitly dependent
on model inverse; when the systems are not minimum-phase,
we need to find their stable inverse approximation in the
learning filter design [24].

ITIT. SIMULATION AND EXPERIMENTAL VALIDATION

In order to assess the effectiveness of the learning frame-
work, the simulations and experiments have been performed
on three dynamically different quadrotor UAVs as described
in Table I. The quadrotor UAVs are inherently non-linear

TABLE I
SPECIFICATIONS OF THE SYSTEMS USED
UAV#(1) | UAV#(2) | UAV#(3)
Frame Brand F450 S500 Tarot 650
Mass 0.921 kg 1.001 kg 1.234 kg
Motor Distance from
Center of Mass 228 mm 240 mm 318 mm
Proportional Gain
of PID controller 30 1.2 1.9




systems but are operating near their hover conditions using
the linearized controller and hence we can assume that the
linear system approximation holds here. It is to be noted that
the proportional gains of the outer-loop PID controllers are
kept different for each UAV to further vary their dynamics
from each other.
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Using the identified transfer functions, we plot the Bode
plots for the response of the systems given the reference
(Gy,j) and the response of the systems given the disturbance
(Gg,j) as shown in Fig. 3. The G, ; for lower frequencies
and very high frequencies have very low gain, indicating
UAVs’ inherent disturbance rejection capabilities in those
frequencies. The middle frequencies (0.1 rad/s to 5 rad/s) are
where the disturbances can have the maximum effects and
hence we analyze the performance of the learning framework
for the disturbances within this range.
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Fig. 5 shows the bode plots of designed learning filters
for UAV#(2) learning from UAV#(1) and UAV#(3) learning
from UAV#(2). Fig. 4 shows the bode plots for Te; ;, and
Te; ; (Eq. (19)). The bode plots of Q; are also shown in the
same figure, where

dj = Q;{d} (31)

and Q; can be given by

Q= [1-Q;+Pi(M;+C))] " (M;+Q;C))P; (32)

A. Simulation and Experimental Procedure

The simulation for all the validations is done in MATLAB
using the transfer functions derived from system identifica-
tion experiments. The Eq. (4) and Eq. (5) are used to simulate
the trajectories followed by the UAVs for “without learning”
and “with learning” cases respectively. Also, as the system
parameters for the simulations are accurate, they reflect the
ideal case presented in the proof, while the experiments
reflect the performance of the learning framework with some
deviation from the ideal scenario. For experiments, the UAV's
are equipped with a Pixhawk flight controller responsible for
controlling the UAV’s attitude. Additionally, a Raspberry Pi
serves as a companion computer to the Pixhawk. The position
of the UAVs is tracked using Vicon motion capture cameras,
and the position data is transmitted to the Raspberry Pi.
The Raspberry Pi runs a trajectory (outerloop) controller that
generates desired attitude and thrust inputs for the Pixhawk’s
attitude controller. Both the trajectory controller and the
attitude controller utilize PID control algorithms. The gains
of the PID controllers are not a concern for this study, as
long as the system remains stable. The basic PID controller
for trajectory control is based on the work presented in
[25]. Furthermore, all systems employ the DOB algorithm as
part of the trajectory controller. To keep the validation and
description neat, the disturbance is added to the x-direction
only and thus the learning is just for the x-direction. To
introduce the disturbance into the system, the corresponding
acceleration is virtually added to the control signal just before
it reaches the plant. Importantly, the disturbance remains
unknown to the controller.

For learning on hardware, the error data and the learn-
ing signal from a previous UAV are passed through their
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Fig. 6. Learning flow for simulations and experiments



respective learning filters and a low-pass filter. This process
generates the learning signal for the next UAV. The resulting
learning signal is then stored in the next UAV and used by
the trajectory controller. Alternatively, the learning signal can
also be generated onboard in the next UAV by performing a
simple time series conversion. Also, for both the simulations
and experiments, the learning is done in a cyclic way (i.e.
after system 3, system 1 is tried again with the learning data
from system 3) until a convergence is achieved as shown in
Fig. 6. We also perform 2 additional experiments for each
UAV for data comparison purposes: (1) without learning and
without DOB and (2) without learning but with DOB.

B. Validation Scenarios

Validation Scenario 1

(Stationary Reference) Validation Scenario 2
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Fig. 7. Reference trajectories (dashed lines) and disturbance profiles (solid
lines)

With the simulation and experimental procedure described
in Section III-A, we assess the effectiveness of the proposed
learning methodology with various reference trajectories
and disturbance scenarios. We consider 4 distinct reference
trajectory-disturbance combinations with increasing com-
plexities as shown in Fig. 7. The reference trajectory is a
stationary point (x: 0 m, y: 0 m, z: 2.5 m) in scenario 1,
while it is a circle of radius 1 m with a constant altitude of
2.5 m in scenarios 2 and 3, and a diamond shape of 2 m
diagonal length in scenario 4.

In scenarios 1 and 2, the sinusoidal disturbance of 0.9425
rad /s and amplitude 1 m/s? is introduced in the x direction.
In scenario 3, a half sinusoidal impulse disturbance of the
same frequency, but with a larger magnitude of 2 m/s? is
introduced. In scenario 4, a sinusoidal disturbance of 1.4138
rad /s frequency and 1 m/s> amplitude, but rectified only
above 0 is introduced. For each scenario, a sinusoidal noise
of larger frequency but smaller amplitude is added to each
system differently. This replicates the real-life conditions, in
which the disturbance is not exactly the same among the
systems.

Consider the frequencies used for the validations with
the bode gain of Gy ; in Fig. 3. For all 3 UAVs, the
frequency of 0.9425 rad/s used in scenarios 1 through 3
has a high G, ; gain. This gain is almost maximum at
1.4138 rad/s, a disturbance frequency used in scenario 4.
These disturbance frequencies for validations are chosen
considering this gain as the UAVs’ trajectories are most
affected by the disturbances at these frequencies, which
the learning framework is designed to mitigate. The large
magnitude impulse disturbance introduced for scenario 3
replicates a sudden gust of the wind on the UAVs. In
scenario 4, the sinusoidal disturbance clipped only in a
positive direction replicates the intermittent wind between
the buildings. Also, scenario 4 is coupled with sharp corners
reference trajectory, which is difficult to track for dynamic
systems like UAVs. The UAVs are flown in a different order
in scenario 4 (UAV#(1) = UAV#(3) = UAV#(2)) to
test the adaptability of the learning framework. In summary,
these scenarios are designed to validate the proposed learning
framework rigorously, proving the robustness of the same.

C. Results

In this section, we present detailed results from the val-
idation simulations and experiments. The video from the
experiments is available at Link. Fig. 8 shows the Root
Mean Square Error (RMSE) of the trajectory tracking for
each scenario in both simulations and experiments. The
RMSE of the trajectory tracking reflects the summary of each
experiment so that we can quantitatively compare them. For
each scenario and each system, we compare the errors in
“No DOB” cases (blue bars), “Only DOB” cases without
learning (orange bars), and the errors in 1%, ond - and 31
learning iterations of each system. Please note that we are
comparing the results between various experiments within
the systems and not with other systems as differences in
system dynamics affect the performance. For all the valida-
tion scenarios, the trajectory tracking error without learning
is maximum, which reduces marginally with DOB. However,
the errors with learning reduce significantly for each system.
For simulations, the errors with learning converge in the first
learning iteration itself as the system models are accurate.
For experiments, we can observe that in the 2"¢ and the 3"¢
learning iterations, the errors are very close to O for each
system.

Expanding further into the summary of Fig. 8, Fig. 9
shows the trajectory tracking errors in the experiments for
all the validation scenarios against time. Each row of plots
refers to a particular system whereas each column of plots
refers to a validation scenario. Here also, it is evident that
with DOB but without learning, the errors are marginally
reduced compared to “without DOB” cases. With learning,
the errors reduce significantly compared to the “only DOB”
cases, which become almost negligible in the 2" and the 3™
iterations.

The learning framework also improves the disturbance
estimates as shown in Fig. 10. The shaded shapes on each
plot reflect the actual disturbances while the lines show the
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estimated disturbances. We can observe that in the “only
DOB” cases, the disturbance estimates in scenarios 1 and
2 are almost perfect, but are delayed. This is expected as
the DOB estimates the performance using the output of
the system, which is delayed compared to the disturbances.
In scenario 3, the estimates are delayed as well as scaled
down in the “only DOB” cases. In scenario 4, the estimates
are highly inaccurate in the “only DOB” cases, possibly
because the disturbance was clipped in a positive direction.
However, with the first iteration of learning, the estimates
are improved significantly, which explains why the trajectory
tracking performance is better with learning. In 2"¢ and
37 learning iterations of each system, the disturbances are
nearly fully recovered, which validates the effectiveness of
the learning framework.

IV. CONCLUSIONS

This study presents a framework for designing ILC with
DOB in systems with mismatched dynamics. Both numerical
and experimental validations demonstrate the effectiveness
of the framework and the learning filters in reducing the
tracking error and improving the disturbance estimate under
various disturbance scenarios, enhancing the system’s ro-
bustness to external disturbances. Future research directions
include exploring learning with highly aggressive reference
trajectories. Additionally, the current approach utilizes errors
and learning signals from only the previous system for learn-
ing. To further improve the learning framework, future work
can explicitly incorporate data from all previous systems into
the learning process, rather than relying solely on the implicit
information contained in the learning signal of the previous
system.
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