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Improving Disturbance Estimation and Suppression via Learning

among Systems with Mismatched Dynamics

Harsh Modi1, Zhu Chen2, Xiao Liang3,∗, and Minghui Zheng1,∗

Abstract— Iterative learning control (ILC) is a method for
reducing system tracking or estimation errors over multiple
iterations by using information from past iterations. The dis-
turbance observer (DOB) is used to estimate and mitigate dis-
turbances within the system, while the system is being affected
by them. ILC enhances system performance by introducing a
feedforward signal in each iteration. However, its effectiveness
may diminish if the conditions change during the iterations.
On the other hand, although DOB effectively mitigates the
effects of new disturbances, it cannot entirely eliminate them
as it operates reactively. Therefore, neither ILC nor DOB
alone can ensure sufficient robustness in challenging scenarios.
This study focuses on the simultaneous utilization of ILC and
DOB to enhance system robustness. The proposed methodology
specifically targets dynamically different linearized systems
performing repetitive tasks. The systems share similar forms
but differ in dynamics (e.g. sizes, masses, and controllers).
Consequently, the design of learning filters must account for
these differences in dynamics. To validate the approach, the
study establishes a theoretical framework for designing learning
filters in conjunction with DOB. The validity of the framework
is then confirmed through numerical studies and experimental
tests conducted on unmanned aerial vehicles (UAVs). Although
UAVs are nonlinear systems, the study employs a linearized
controller as they operate in proximity to the hover condition.
A video introduction of this paper is available via this link.

I. INTRODUCTION

Deploying safety-critical robotic systems such as un-

manned aerial vehicles (UAVs) in the vicinity of human

presence requires them to possess robustness against exter-

nal factors, such as wind disturbances. These disturbances

can significantly impact the trajectory of the UAVs, posing

potential dangers to external subjects [1] [2]. Therefore, it is

crucial for these robotic systems to estimate and mitigate the

effects of disturbances to ensure the necessary level of safety.

Also, various tasks may require the use of dynamically

different systems in disturbance-prone environments.
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Iterative learning control (ILC) is effective in reducing sys-

tem error over multiple iterations in repetitive tasks, thereby

enhancing performance in each iteration. It has been success-

fully applied in various applications, including manipulator-

based robotics systems [3]. Recently, ILC has been uti-

lized to improve UAV’s trajectory tracking performance [4]

using optimization-based filter designs. Researchers in [5]

implemented parameter determination-based ILC for robotic

manipulators, while [6] combined ILC with sliding mode

control to enhance the trajectory tracking for UAVs.

The disturbance observer (DOB) has been widely used

to enhance the robustness of the controller against exter-

nal disturbances. The article [7] provides an overview of

advancements in DOB from 1985 to 2020. DOB-based

controllers have been employed to compensate for unknown

disturbances in small UAV systems [8]. In [9], the authors

used DOB with a disturbance rejection signal in the form of

acceleration, which is similar to the force exerted on the UAV

due to disturbances like wind. [10] used finite-time distur-

bance observer to mitigate disturbance effects for quadrotor

UAVs, and [11] developed a linear dual disturbance observer

to improve UAV trajectory tracking. DOB has also been used

to enhance the robustness of fixed-wing UAVs [12], and in

[13], a disturbance observer was designed for nonlinear and

nonautonomous systems.

The objective of this research is to combine the advantages

of both the ILC and DOB to improve system robustness.

Specifically, this study focuses on increasing the robustness

of UAV trajectory tracking against external disturbances,

while simultaneously estimating the disturbance present in

the environment. When UAVs follow the same trajectories

within a relatively short period, it can be assumed that the

disturbances will not vary significantly. In such cases, the

benefits of ILC can be leveraged to proactively compensate

for repetitive errors in trajectory tracking caused by distur-

bance or controller limitations. However, ILC alone cannot

account for changing conditions, which can be addressed by

incorporating DOB. By combining ILC and DOB, we can

utilize the proactivity of ILC and the ability of DOB to adapt

to new disturbances.

Many studies have explored this direction. [14] employed

ILC along with DOB to account for non-repetitiveness in the

disturbances. In [15], the performance of ILC was enhanced

with DOB for wafer scanning systems. [16] utilized the

combined ILC and DOB to reject near-repetitive disturbances

in excavation operations. [17] combined ILC with DOB to

improve the robustness of machine tool feed drives. [18]

improved the closed-loop performance using ILC based on
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DOB. [19] employed ILC with DOB for rehabilitation. In

[20], ILC was combined with disturbance estimation for

unmatched model uncertainties and matched disturbances.

However, all these studies utilized the same system in each

iteration, limiting the robustness to a single system.

Some research has focused on implementing iterative

learning in dynamically different systems. [21] extended the

capability of ILC in heterogeneous systems with different

initial conditions. [22] used a transfer learning approach

to transfer input learning to a different system, but it was

specifically targeted at improving trajectory tracking and

did not include disturbance estimation. This study is an

extension of [23], where we combine ILC with DOB for

dynamically different systems. In [23], the authors designed

learning filters for dynamically different systems, allowing

each subsequent system to learn from the errors and learning

signal of the previous system. The design was based on

guaranteeing that the learning-based trajectory tracking error

of each system would be smaller than the system without

learning. However, explicit disturbance rejection was not

included, which is a focus of the present study, along with

the learning.

The main contributions of this study are as follows: we

explicitly incorporate DOB as part of the ILC update process

and consider differences in system dynamics among different

systems to enable learning. To the best of our knowledge,

this is the first attempt to implement learning with DOB

for systems with mismatched dynamics. Furthermore, the

designed methodology has undergone rigorous verification

and validation through simulations and experiments. In the

current study, the disturbance rejection and learning frame-

work is implemented as follows: (1) All systems operate

with an underlying PID baseline controller that remains

unmodified in this study. As the systems operate near hover

conditions, the linearization approximation holds. (2) All

systems utilize a DOB algorithm in conjunction with the

PID controller to estimate and reject the disturbances. How-

ever, DOB alone cannot fully compensate for disturbance

effects. Therefore, information regarding the tracking error

is passed to the next system. (3) The next system utilizes

this information to generate a learning signal, which aids in

improved disturbance estimation and rejection compared to

non-learning scenarios.

The rest of the paper is organized as follows: Section

II establishes the theoretical framework and describes the

design of the learning filters. Section III presents the simu-

lation and the experimental results. Section IV concludes the

article. Please note that throughout the paper, the term “UAV”

indicates the particular hardware used in the experiment

while the term “system” is used to describe the general order

of the learning iterations.

II. LEARNING FRAMEWORK

A. Variable Definition and Standard DOB Basics

We first introduce notations that will be used in our

framework. We denote the signals as follows: r(k) as the

reference input, y(k) as the output, e(k) as the tracking error,

(a)

(b)

Fig. 1. System block diagram with (a) a basic DOB framework (b) an
iterative learning framework along with DOB
d(k) and d̂(k) as the disturbance and its estimate, u1(k) as

the control signal directly generated by the baseline feedback

control, u2(k) as the modified control signal that is sent to

the plant. All these signals are time series. We also introduce

the following notations for different subsystems: P(z) as the

plant, C(z) as the baseline controller, Q(z) as a low-pass

filter, M(z) as the plant inverse, L1(z) and L2(z) as learning

filters; all of these are transfer functions in discrete time. In

addition, we use j to index different systems; and use the

prime symbol (′) to distinguish signals in systems without

learning. For ease of reading, we will omit k in signals and

z in transfer functions.

We now introduce the standard DOB and explain how it

works. As shown in Fig. 1(a), the DOB is added to System

j. It consists of a plant inverse M and a low-pass filter Q,

as highlighted by the dotted box. When a disturbance d is

present, the DOB can provide a disturbance estimate d̂ which

will be subtracted from u1 to cancel. Ideally, if a plant inverse

can be accurately obtained, and the intrinsic delay in P is

small, d̂ would be close to d so that the disturbance can be

suppressed. However, it is difficult to accurately estimate the

plant inverse and the delays exist in dynamic systems. These

limitations of the DOB can be addressed by using a learning

approach across multiple iterations, as proposed in this study.

The subsequent section elaborates on the development of

this learning framework over DOB for dynamically different

systems.

B. Iterative Learning with DOB Framework

In this subsection, we will introduce the iterative learning

framework with DOB. Fig. 1(b) shows the detailed sys-

tem block diagram with the learning framework introduced,
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Fig. 2. Learning relationship among systems

whereas Fig. 2 shows the overall learning relationship be-

tween two systems having different dynamics, i.e. System

#( j−1) and System #( j). The System #( j−1)’s learning

signal (d f , j−1) and its trajectory tracking error (e j−1) can

qualify the accuracy of its disturbance estimation. Hence,

d f , j is generated using e j−1 and d f , j−1 and to-be-deisgned

learning filters for System #( j). We propose two different

learning filters L1, j and L2, j respectively for e j−1 and d f , j−1

as illustrated in Fig. 1(b). As the framework aims to im-

prove the system’s disturbance estimation and suppression

capability as well as its trajectory-tracking performance, the

learning signal is added to the disturbance estimate (d̂′
j) from

the DOB. It is important to note that learning aims to improve

the performance of the system with learning compared to

its performance without learning. We do not compare the

performance of the system #( j) with system #( j−1) as each

system’s dynamics can affect individual performance.

The derivation is based on the following assumptions: 1.

We consider that all the systems are linear time-invariant

(LTI) as a large number of non-linear time-invariant systems

can be linearized near the equilibrium point. 2. As the

research is aimed at reducing the effects of disturbances

on repetitive tasks (such as industrial assembly or delivery

robots), we consider they follow the same trajectories and

are subject to similar disturbances 3. The current research

aims at slowly time-varying or stationary reference signals.

In the following paragraphs, we will establish the rela-

tionship between the tracking error with learning (e j) and

the tracking error without learning (e′j) after stating some

system parameters’ definitions.

System Parameters: Based on the system block diagram in

Fig. 1(b), Gr, j (dynamics from reference signal r to output

y j), Gd, j (dynamics from disturbance d to output y j), and

G f , j (dynamics from learning signal d f , j to output y j) can

be described by:

Gr, j = [1−Q j +Pj(M j +C j)]
−1PjC j (1)

Gd, j = [1−Q j +Pj(M j +C j)]
−1Pj(1−Q j) (2)

G f , j = [1−Q j +Pj(M j +C j)]
−1(−Pj) (3)

Establishing Relationship between e j and e′j: Using the

system parameters defined above, the output of system #( j)
with learning is given by:

y j = Gr, j{r}+Gd, j{d}+G f , j{d f , j} (4)

and the output of the system #( j) without learning is given

by:

y′j = Gr, j{r}+Gd, j{d} (5)

where the notation {} indicates that the signal inside is sent

to a system which can be represented by the outside transfer

function.

In order to establish the relationship between e j and e′j,

let us expand e j − e′j:

e j − e′j = (r− y j)− (r− y′j) = y′j − y j (6)

Now, using Eq. (4) and Eq. (5):

e j = e′j + y′j − y j = e′j −G f , j{d f , j} (7)

As discussed earlier, the learning signal of the current

system (d f , j) is based on e j−1, and d f , j−1 and the respective

to-be-designed learning filters L1, j, and L2, j. Hence:

d f , j = L1, j{e j−1}+L2, j{d f , j−1} (8)

Using this, we expand Eq. (7) further as:

e j =e′j −G f , j(L1, j{e j−1}+L2, j{d f , j−1}) (9)

Now, e j−1 can be expressed using Eq. (4) as:

e j−1 = r− y j−1

= (1−Gr, j−1){r}−Gd, j−1{d}−G f , j−1{d f , j−1}
(10)

Using this in Eq. (9) and after some simplification:

e j =e′j −G f , jL1, j(1−Gr, j−1){r}+G f , jL1, jGd, j−1{d}

+G f . j(L1, jG f , j−1 −L2, j){d f , j−1}
(11)

Eq. (11) contains variables r, d, and d f , j−1 apart from e′j.

In order to effectively establish a relationship between e j

and e′j, let us try to reduce the number of variables in the

equation. Using Eq. (5), we can express e′j as:

e′j = r− y′j = (1−Gr, j){r}−Gd, j{d} (12)

Hence, d can be expressed in terms of r and e′j as:

d = G−1
d, j(r−Gr, j{r}− e′j) (13)

substituting this in Eq. (11) and with some re-arrangements,

we get

e j =(1−G f , jL1, jGd, j−1G−1
d, j){e′j}

−G f , jL1, j((1−Gr, j−1)−Gd, j−1G−1
d, j(1−Gr, j)){r}

+G f , j(L1, jG f , j−1 −L2, j){d f , j−1}
(14)

Considering that the trajectory tracking controller C is well
designed such that

Gr( jω) =
C( jω)P( jω)

1+C( jω)P( jω)
≈ 1 (15)
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for ω < ω0, where ω0 is the desired unity-gain bandwidth

of the closed-loop system Gr.

As seen in a later section, for the UAVs used in this study,

the gain of the transfer function Gr is close to 0 dB and

the phase is close to 0◦ for ω < 1 rad/s. Considering Eq.

(15) and with the presence of (1−Gr, j−1) and (1−Gr, j), the

following term

−G f , jL1, j((1−Gr, j−1)−Gd, j−1G−1
d, j(1−Gr, j)){r} ≈ 0 (16)

for stationary or slowly time-varying trajectories.

With Eq. (16), we can re-write Eq. (14) as:

e j =(1−G f , jL1, jGd, j−1G−1
d, j){e′j}+

G f , j(L1, jG f , j−1 −L2, j){d f , j−1}
(17)

This relationship between e j and e′j will be used in designing

the learning filters.

C. Learning Filter Design

In this subsection, we will introduce the design of the

learning filters, i.e., L1, j and L2, j, such that e j can be

reduced compared to e′j. For simplification, we introduce the

following notations:

Te1, j =(1−G f , jL1, jGd, j−1G−1
d, j)

Te2, j =G f , j(L1, jG f , j−1 −L2, j)
(18)

Using this, Eq. (17) can be re-written as:

e j = Te1, j{e′j}+Te2, j{d f , j−1} (19)

To explicitly analyze robustness, we denote the modeling

uncertainty as ∆ j and the relationship between the actual

plant (Pj) and the identified plant model (P̂j) as:

Pj = (1+∆ j)P̂j (20)

In the following paragraphs, we will introduce the learning

filter design in a theorem-proof format. We also split our

proof into two cases: without and with modeling uncertain-

ties. We use ‖ · ‖ to denote the 2-norm of a signal and the

H-infinity norm of a system. That is,

‖s‖= (
∞

∑
0

[s(k)]2)1/2 and ‖G‖= max
ω

|G( jω)| (21)

where s is a discrete-time signal and G is a LTI transfer

function.

Theorem: The following learning filters

L1, j = (Ĝ f , jĜd, j−1)
−1Ĝd, j (22)

and

L2, j = (Ĝ f , jĜd, j−1)
−1Ĝd, jĜ f , j−1 (23)

can ensure ||e j||< ||e′j|| if

||∆ j−1||< ||(1+Pj−1C j−1)/2|| (24)

Proof: With the learning filters in Eq. (22) and Eq. (23), Eq.

(18) can be expanded as:

Te1, j =(1−G f , j[Ĝ f , jĜd, j−1)
−1Ĝd, j]Gd, j−1G−1

d, j)

Te2, j =G f , j([Ĝ f , jĜd, j−1)
−1Ĝd, j]G f , j−1

− [Ĝ f , jĜd, j−1)
−1Ĝd, jĜ f , j−1])

(25)

Now, let us analyze Eq. (25) in 2 different cases.

Case I: No modeling uncertainty

When there is no modeling uncertainty, i.e., ∆ j = 0 and

∆ j−1 = 0, we have G f , j = Ĝ f , j, Gd, j = Ĝd, j, G f , j−1 = Ĝ f , j−1,

and Gd, j−1 = Ĝd, j−1. Hence, Eq. (25) reduces to

Te1, j = 0

Te2, j = 0
(26)

Therefore, with the derived learning filters, e j will converge

to zero as per Eq. (19) when there is no modeling uncertainty.

Case II: With some modeling uncertainty:
When there is some modelling uncertainty present, i.e.

||∆ j|| 6= 0 or ||∆ j−1|| 6= 0, we can simplify Eq. (25) using
Eq. (2), Eq. (3), and Eq. (20) as:

Te1, j =−
∆ j−1

1+Pj−1C j−1
(27)

Te2, j =−
∆ j−1

1+Pj−1C j−1

G−1
d, j−1Gd, jG f , j−1 (28)

Using Eq. (12), Eq. (19), Eq. (27), Eq. (28), and with
the approximation ||∆ j∆ j−1|| ≈ 0 for ∆ j and ∆ j−1 of small
gains, the error “with learning” for System #( j) can be
approximated as:

e j ≈
2 ·∆ j−1Gd j

1+C j−1Pj−1
{d} ≈

−2 ·∆ j−1

1+C j−1Pj−1
{e′j} (for j ≥ 2) (29)

As per Eq. (29), to achieve ||e j||< ||e′j||, we need

∥

∥

∥

∥

−2 ·∆ j−1

1+C j−1Pj−1

∥

∥

∥

∥

< 1 (30)

As 1/(1+C j−1Pj−1) is the transfer function from r to e j−1,

it will have a bounded gain for a stable closed-loop system.

Hence, as per Eq. (30), for ||∆ j−1|| < ||(1+Pj−1C j−1)/2||,
the ||e j|| is guaranteed to be less than ||e′j||. This result also

confirms that if the system parameters are accurate (i.e. ∆ j =
0 for ∀ j), then the error with learning will be 0 as proven

earlier in case I. This is the end of the theorem proof.

It is noted that the learning filters are explicitly dependent

on model inverse; when the systems are not minimum-phase,

we need to find their stable inverse approximation in the

learning filter design [24].

III. SIMULATION AND EXPERIMENTAL VALIDATION

In order to assess the effectiveness of the learning frame-

work, the simulations and experiments have been performed

on three dynamically different quadrotor UAVs as described

in Table I. The quadrotor UAVs are inherently non-linear

TABLE I

SPECIFICATIONS OF THE SYSTEMS USED

UAV#(1) UAV#(2) UAV#(3)
Frame Brand F450 S500 Tarot 650

Mass 0.921 kg 1.001 kg 1.234 kg

Motor Distance from
228 mm 240 mm 318 mm

Center of Mass

Proportional Gain
3.0 1.2 1.9

of PID controller

4



systems but are operating near their hover conditions using

the linearized controller and hence we can assume that the

linear system approximation holds here. It is to be noted that

the proportional gains of the outer-loop PID controllers are

kept different for each UAV to further vary their dynamics

from each other.
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Fig. 3. Bode plots for Gr, j and Gd, j
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Fig. 4. Bode plots for Te1, j
, Te2, j

, and Ω j

Using the identified transfer functions, we plot the Bode

plots for the response of the systems given the reference

(Gr, j) and the response of the systems given the disturbance

(Gd, j) as shown in Fig. 3. The Gd, j for lower frequencies

and very high frequencies have very low gain, indicating

UAVs’ inherent disturbance rejection capabilities in those

frequencies. The middle frequencies (0.1 rad/s to 5 rad/s) are

where the disturbances can have the maximum effects and

hence we analyze the performance of the learning framework

for the disturbances within this range.
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Fig. 5. Bode plots for L1, j and L2, j

Fig. 5 shows the bode plots of designed learning filters

for UAV#(2) learning from UAV#(1) and UAV#(3) learning

from UAV#(2). Fig. 4 shows the bode plots for Te1, j, and

Te2, j (Eq. (19)). The bode plots of Ω j are also shown in the

same figure, where

d̂′
j = Ω j{d} (31)

and Ω j can be given by

Ω j = [1−Q j +Pj(M j +C j)]
−1(M j +Q jC j)Pj (32)

A. Simulation and Experimental Procedure

The simulation for all the validations is done in MATLAB

using the transfer functions derived from system identifica-

tion experiments. The Eq. (4) and Eq. (5) are used to simulate

the trajectories followed by the UAVs for “without learning”

and “with learning” cases respectively. Also, as the system

parameters for the simulations are accurate, they reflect the

ideal case presented in the proof, while the experiments

reflect the performance of the learning framework with some

deviation from the ideal scenario. For experiments, the UAVs

are equipped with a Pixhawk flight controller responsible for

controlling the UAV’s attitude. Additionally, a Raspberry Pi

serves as a companion computer to the Pixhawk. The position

of the UAVs is tracked using Vicon motion capture cameras,

and the position data is transmitted to the Raspberry Pi.

The Raspberry Pi runs a trajectory (outerloop) controller that

generates desired attitude and thrust inputs for the Pixhawk’s

attitude controller. Both the trajectory controller and the

attitude controller utilize PID control algorithms. The gains

of the PID controllers are not a concern for this study, as

long as the system remains stable. The basic PID controller

for trajectory control is based on the work presented in

[25]. Furthermore, all systems employ the DOB algorithm as

part of the trajectory controller. To keep the validation and

description neat, the disturbance is added to the x-direction

only and thus the learning is just for the x-direction. To

introduce the disturbance into the system, the corresponding

acceleration is virtually added to the control signal just before

it reaches the plant. Importantly, the disturbance remains

unknown to the controller.

For learning on hardware, the error data and the learn-

ing signal from a previous UAV are passed through their

Fig. 6. Learning flow for simulations and experiments
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respective learning filters and a low-pass filter. This process

generates the learning signal for the next UAV. The resulting

learning signal is then stored in the next UAV and used by

the trajectory controller. Alternatively, the learning signal can

also be generated onboard in the next UAV by performing a

simple time series conversion. Also, for both the simulations

and experiments, the learning is done in a cyclic way (i.e.

after system 3, system 1 is tried again with the learning data

from system 3) until a convergence is achieved as shown in

Fig. 6. We also perform 2 additional experiments for each

UAV for data comparison purposes: (1) without learning and

without DOB and (2) without learning but with DOB.

B. Validation Scenarios

-1 0 1

X Direction

0

5

10

15

20

Ti
m

e 
(s

)

Validation Scenario 1

(Stationary Reference)

-1 0 1

X Direction

-1

0

1
Y

 D
ire

ct
io

n

Validation Scenario 2

-1 0 1

X Direction

-1

-0.5

0

0.5

1

Y
 D

ire
ct

io
n

Validation Scenario 3

-1 0 1

X Direction

-1

-0.5

0

0.5

1

Y
 D

ire
ct

io
n

Validation Scenario 4

Fig. 7. Reference trajectories (dashed lines) and disturbance profiles (solid
lines)

With the simulation and experimental procedure described

in Section III-A, we assess the effectiveness of the proposed

learning methodology with various reference trajectories

and disturbance scenarios. We consider 4 distinct reference

trajectory-disturbance combinations with increasing com-

plexities as shown in Fig. 7. The reference trajectory is a

stationary point (x: 0 m, y: 0 m, z: 2.5 m) in scenario 1,

while it is a circle of radius 1 m with a constant altitude of

2.5 m in scenarios 2 and 3, and a diamond shape of 2 m

diagonal length in scenario 4.

In scenarios 1 and 2, the sinusoidal disturbance of 0.9425

rad/s and amplitude 1 m/s2 is introduced in the x direction.

In scenario 3, a half sinusoidal impulse disturbance of the

same frequency, but with a larger magnitude of 2 m/s2 is

introduced. In scenario 4, a sinusoidal disturbance of 1.4138

rad/s frequency and 1 m/s2 amplitude, but rectified only

above 0 is introduced. For each scenario, a sinusoidal noise

of larger frequency but smaller amplitude is added to each

system differently. This replicates the real-life conditions, in

which the disturbance is not exactly the same among the

systems.

Consider the frequencies used for the validations with

the bode gain of Gd, j in Fig. 3. For all 3 UAVs, the

frequency of 0.9425 rad/s used in scenarios 1 through 3

has a high Gd, j gain. This gain is almost maximum at

1.4138 rad/s, a disturbance frequency used in scenario 4.

These disturbance frequencies for validations are chosen

considering this gain as the UAVs’ trajectories are most

affected by the disturbances at these frequencies, which

the learning framework is designed to mitigate. The large

magnitude impulse disturbance introduced for scenario 3

replicates a sudden gust of the wind on the UAVs. In

scenario 4, the sinusoidal disturbance clipped only in a

positive direction replicates the intermittent wind between

the buildings. Also, scenario 4 is coupled with sharp corners

reference trajectory, which is difficult to track for dynamic

systems like UAVs. The UAVs are flown in a different order

in scenario 4 (UAV#(1) =⇒ UAV#(3) =⇒ UAV#(2)) to

test the adaptability of the learning framework. In summary,

these scenarios are designed to validate the proposed learning

framework rigorously, proving the robustness of the same.

C. Results

In this section, we present detailed results from the val-

idation simulations and experiments. The video from the

experiments is available at Link. Fig. 8 shows the Root

Mean Square Error (RMSE) of the trajectory tracking for

each scenario in both simulations and experiments. The

RMSE of the trajectory tracking reflects the summary of each

experiment so that we can quantitatively compare them. For

each scenario and each system, we compare the errors in

“No DOB” cases (blue bars), “Only DOB” cases without

learning (orange bars), and the errors in 1st , 2nd , and 3rd

learning iterations of each system. Please note that we are

comparing the results between various experiments within

the systems and not with other systems as differences in

system dynamics affect the performance. For all the valida-

tion scenarios, the trajectory tracking error without learning

is maximum, which reduces marginally with DOB. However,

the errors with learning reduce significantly for each system.

For simulations, the errors with learning converge in the first

learning iteration itself as the system models are accurate.

For experiments, we can observe that in the 2nd and the 3rd

learning iterations, the errors are very close to 0 for each

system.

Expanding further into the summary of Fig. 8, Fig. 9

shows the trajectory tracking errors in the experiments for

all the validation scenarios against time. Each row of plots

refers to a particular system whereas each column of plots

refers to a validation scenario. Here also, it is evident that

with DOB but without learning, the errors are marginally

reduced compared to “without DOB” cases. With learning,

the errors reduce significantly compared to the “only DOB”

cases, which become almost negligible in the 2nd and the 3rd

iterations.

The learning framework also improves the disturbance

estimates as shown in Fig. 10. The shaded shapes on each

plot reflect the actual disturbances while the lines show the
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Fig. 8. RMSE of the trajectory tracking for all the scenarios in both the simulations and experiments. e′′ indicates the “no DOB” case, e′ indicates the
“only DOB” case and e(Ik) indicates the kth iteration for each system.

Fig. 9. Trajectory tracking errors in experiments for all 4 Scenarios. e′′ indicates the “no DOB” case, e′ indicates the “only DOB” case and e(Ik) indicates

the kth learning iteration for each system.

Fig. 10. Disturbance estimates for experiments in all the scenarios. d′ indicates the disturbance estimates in the “only DOB” case and d(Ik) indicates the

disturbance estimates with learning in kth iteration for each system.
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estimated disturbances. We can observe that in the “only

DOB” cases, the disturbance estimates in scenarios 1 and

2 are almost perfect, but are delayed. This is expected as

the DOB estimates the performance using the output of

the system, which is delayed compared to the disturbances.

In scenario 3, the estimates are delayed as well as scaled

down in the “only DOB” cases. In scenario 4, the estimates

are highly inaccurate in the “only DOB” cases, possibly

because the disturbance was clipped in a positive direction.

However, with the first iteration of learning, the estimates

are improved significantly, which explains why the trajectory

tracking performance is better with learning. In 2nd and

3rd learning iterations of each system, the disturbances are

nearly fully recovered, which validates the effectiveness of

the learning framework.

IV. CONCLUSIONS

This study presents a framework for designing ILC with

DOB in systems with mismatched dynamics. Both numerical

and experimental validations demonstrate the effectiveness

of the framework and the learning filters in reducing the

tracking error and improving the disturbance estimate under

various disturbance scenarios, enhancing the system’s ro-

bustness to external disturbances. Future research directions

include exploring learning with highly aggressive reference

trajectories. Additionally, the current approach utilizes errors

and learning signals from only the previous system for learn-

ing. To further improve the learning framework, future work

can explicitly incorporate data from all previous systems into

the learning process, rather than relying solely on the implicit

information contained in the learning signal of the previous

system.
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