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1. Introduction

We consider admission control for a first-in, first-out (FIFO) single-class, single-server queuing model with Poisson
arrivals and exponential service times. Specifically, there is a dispatcher that decides on admitting arrivals with the
goal to maximize the long-term average profit; each admitted arrival yields a positive reward R (obtained after a cus-
tomer finishes service), which is balanced by a holding cost for the (homogeneous) customers waiting in the queue.
The buffer capacity of this queue is infinite, and the dispatcher may decide upon arrivals to reject any customers join-
ing the queue with the profit objective in mind. When the service and arrival rates are known, this model is studied
in Naor (1969). In our investigation, we consider the situation in which the dispatcher does not have knowledge of
either the arrival rate or the service rate. One potential application is the job-dispatching problem for online comput-
ing demands, especially when the computing servers are provided by a third-party cloud-computing platform: the
dispatcher may negotiate the reward and cost with the customers and, thus, have information (via market research)
on the arrival rate of the jobs, but because the servers are provided by a third-party platform, the dispatcher may not
know the service rate. Despite prior market research, it is, however, plausible that the dispatcher doesn’t know the
arrival rate accurately.

Naor (1969) studies two problems: (1) the optimal policy for the self-optimization problem in which customers
are maximizing their own net (expected) profit so that a selfish Wardrop equilibrium is of interest as well as (2) the
optimal policy for the social welfare-maximization problem in which a dispatcher is aiming at maximizing the
long-term average profit so that a social Wardrop equilibrium is of interest. In both problems, a threshold policy is
shown to be optimal: (1) in the self-optimization problem, arrivals do not join the queue if the queue length upon
arrival is high enough, and (2) in the social welfare-maximization problem, the dispatcher doesn’t admit arrivals
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whenever a threshold level is reached. Naor (1969) shows that the threshold for the social welfare-maximization
problem is not greater than the threshold for the self-optimization problem. Our investigation and the accompany-
ing algorithm are primarily designed for the social welfare—optimization problem in which the dispatcher is inter-
ested in learning how to perform at the same level of efficiency as if knowing the actual arrival and service rate.
Any learning-based algorithm necessarily needs exploration that could violate incentive-compatibility constraints
(even ex ante and not only ex post) of individual utility-maximizing agents. Hence, we do not consider the self-
optimization version of the problem in this manuscript.

In our analysis, we couple two queuing systems: a learning system, whose dispatcher does not know the arrival and
service rate a priori, and a genie-aided system, whose dispatcher has full information of the model parameters. We
refer to the corresponding algorithm and dispatcher of the two systems as the learning algorithm, learning dispatcher
and genie-aided algorithm, genie-aided dispatcher, respectively. Our figure of metric at a given time ¢ is the difference
between the net expected profits of a genie-aided algorithm and the learning algorithm, that is, the expected regret.

1.1. Contributions

We propose a learning-based dispatching algorithm that achieves an O(1) regret when (genie-aided) optimal algo-
rithms use a nonzero threshold and achieves an O(In'*¢(N)) regret for any specified € > 0 when it is optimal to use
threshold 0, where N denotes the number of arrivals;' see Remark 4 for a refinement on the achievable regret. Our
learning-based algorithm consists of batches with each batch being composed of an optional forced exploration
phase (phase 1) and an exploitation phase (phase 2) whose length increases with batch index. The exploration phase
is omitted if there are new samples collected from the exploitation phase that just ended. Our learning algorithm
uses samples collected from all the exploitation phases as well as from any exploration phases; the former is impor-
tant if the exploration phase is omitted.

For the system studied in Naor (1969), not all values of the unknown model parameters result in a unique opti-
mal static threshold policy. For some specific choices of the model parameters, there exist two optimal static
thresholds, and therefore, all the policies that stochastically alternate between the two static optimal thresholds
also achieve the optimal long-term average profit. As mentioned earlier, we are interested in analyzing the regret,
defined to be the difference between the expected profit of the learning and genie-aided systems. When the opti-
mal policy is unique, there is no ambiguity in the definition of the regret as there is a fixed optimal policy against
which to compare. However, when there are multiple policies that are optimal, we need to specify a particular
optimal policy against which we are comparing. Among the multiple optimal policies, we compare against a pol-
icy with a specific way of randomizing between the two static optimal thresholds, and then, we prove that we can
achieve similar regret as when there exists a unique optimal policy, which is of order O(1) when both thresholds
are positive and of order O(In'*¢(N)) for any specified € > 0 when 0 is an optimal threshold and N is the number of
customers that have arrived; Remark 4 applies with nonunique thresholds too.

In our setting, we do not exclude the case in which the genie-aided dispatcher uses a static threshold zero and,
hence, rejects all customers. This leads to a balancing act for the dispatcher: quickly transitioning to reject all custo-
mers if the true threshold is zero versus admitting customers infinitely often otherwise (based on the optimal
threshold) and all of this when not being aware of the true optimal admission policy. With this in mind, for learning
to not stall, the existence of the exploration phase is crucial when the true threshold is positive. A naive learning
scheme that only uses the empirical average service time as an estimate of the unknown parameter may perform
poorly: a few extremely long service times at the beginning may mislead the learning dispatcher to think that the
service rate is low and, hence, result in it not accepting customers into the queue even when the genie-aided dis-
patcher uses a nonzero threshold; see plots in Section 6.

1.2. Related Work

On the topic of finding optimal controls vis-a-vis individual and social welfare maximization, there are many mod-
els that study generalizations of the model introduced in Naor (1969). Knudsen (1972) generalizes the model in
Naor (1969) to multiple servers with a nonlinear cost for customers waiting in the system. The reward for customers
served is constant, and customers arrive according to a Poisson process. The service times of the customers are
exponentially distributed and are independent of the identity of the currently active server. Lippman and Stidham
(1977) study a single-queue model with Poisson arrivals and nondecreasing, concave service rate with respect to
the number of customers in the system. The holding cost per unit of time for each customer is constant, and the
rewards for the customers entering the system are independent and identically distributed (i.i.d.) random variables
with finite mean. The authors first consider the discounted net profit in the finite-horizon case (in terms of the total
number of admissions and service completions) and then extend the analysis to the nondiscounted and infinite-
horizon case. Johansen and Stidham (1980) study the problem of finding the optimal admission policy of a system
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with general service and arrival processes. In the problem’s setting, the net profit is discounted, and the authors con-
sider the finite-horizon (in terms of the number of arriving customers) case. The rewards of the customers are ii.d.
random variables with finite mean, and the nonnegative waiting cost is a function of the number of customers in the
system as well as the total number of past arrivals. All the works—Knudsen (1972), Lippman and Stidham (1977), and
Johansen and Stidham (1980)—compare the optimal policy for the individual- and social welfare-maximization pro-
blems and show that the optimal policies for both optimization problems are threshold policies that depend on the
rewards of customers. Moreover, they also show that the optimal threshold for the social welfare-maximization prob-
lem is no greater than the individual-maximization problem. Assuming a random arrival rate, Chen and Hasenbein
(2020) show that the optimal thresholds for the social welfare-maximization problem are no larger than the
individual-maximization problem when the queue length is either observable or unobservable. They also show that
the optimal threshold for the revenue-maximization problem may not coincide with the social welfare-maximization
problem when the queue is unobservable.

Learning unknown parameters to operate optimally in queuing systems and analyzing queuing systems with
model uncertainly are both studied under various settings; see the tutorial Walton and Xu (2021) for a recent over-
view. Our paper focuses on regret analysis in comparison with an optimal algorithm when the parameters are
known. Under this framework, there is growing literature considering different models and various types of regret.
Adler et al. (2022) consider an Erlang-B blocking system with unknown arrival and service rates in which a cus-
tomer is either blocked or receives service immediately. The authors propose an algorithm that observes the system
upon arrivals and converges to the optimal policy that either admits all customers when there is a free server or
blocks all customers. In our setting, the queue has infinite capacity; customers may wait in the queue, and the dis-
patcher observes the whole history of the queue length when making a decision. The reward of admitting a cus-
tomer in both our paper and Adler et al. (2022) is only realized in the future as it involves knowledge of service
times and (in our case also) waiting times, and the expected net profit requires knowledge of the arrival and service
rates; this precludes the direct use of reinforcement learning-based methods discussed in Sutton and Barto (2018)
and Bertsekas (2019). Stability is always assured in Adler et al. (2022) because the maximum system occupancy is
bounded (finite number of servers with no queuing). The queuing system is stable under any optimal policy for the
problem we consider. However, under an arbitrary learning dispatcher, the supremum of the queue lengths may
be unbounded when the service rate is unknown. We discuss the impact of this on our analysis in Section 2.3. Krish-
nasamy et al. (2018a) first consider a discrete-time, single-server queuing system with multiclass customers and
unknown service rates and then modify and extend their algorithms to parallel, multiserver queuing systems, again
with multiclass customers. In the model, customers of class i have (per unit time) waiting cost ¢; when waiting in
the queue and Bernoulli services with the service success probability at server jbeing y, ; for class i (i.e., geometri-
cally distributed service times). They propose a cu rule-based algorithm that achieves constant regret compared
with using the cp rule with the true service rates. The cp rule prioritizes the service of customers of type 7 at server j
when ciy; ; is higher. Optimality of the cy rule is proved in various settings, especially in the single-server case; see
Smith (1956), Shwartz and Makowski (1986), Buyukkoc et al. (1985), and (Cox and Smith 1961, chapter 3). Zhong
etal. (2022) consider the problem of learning the optimal static scheduling policy in a multiclass, many-server queu-
ing system with time-varying Poisson arrivals. Customers of type i have exponentially distributed patience with
rate 0; and exponentially distributed service requirements with rate y;. Unlike in Krishnasamy et al. (2018a), in
which stability is not guaranteed for arbitrary scheduling policies, the impatience of the customers helps to stabilize
the queue without any extra requirements on the scheduling policy. The authors compare their learn-then-schedule
learning algorithm with the cp1/6 rule and show that their learning algorithm achieves a ®(log(T)) regret, where T
is the (finite) time horizon. For a discrete-time, multiclass, parallel-server system, when compared with the algo-
rithm that matches a queue to a server for which the success service probability is the highest among all possible
matches of this queue to any other server, Krishnasamy et al. (2021) use a multiarmed bandit viewpoint and pro-
pose Q-UCB and Q-Thompson sampling algorithms that achieve O(poly(log(T))/T) queue regret as the time hori-
zon T goes to infinity. Stahlbuhk et al. (2021) focus on a single-server, discrete-time queue and show the existence of
queue length-based policies that can achieve an O(1) regret. When each server has its own queue, Choudhury et al.
(2021) study the discrete-time routing problem when service rate and queue length are not known. Taking a Mar-
kov decision process (MDP) viewpoint, Agrawal and Jia (2022) consider a discrete-time, inventory-control problem
in which orders to be made arrive with delay and the decision maker observes solely the sales and not the demands.
Thereafter, a holding cost is collected for each unit of the good that is in storage. At each time step, the decision
maker needs to make new orders and aims to minimize the total expected holding cost. The authors study the prob-
lem of learning the proper units of orders to be made at each time step when the distribution of the demand is
unknown. The algorithm they propose achieves an O(VT) regret (for horizon T) when compared with the best
base-stock policy.
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With the goal of stabilizing the queues and also minimizing penalties enforced in a discrete-time system, Neely
etal. (2012) propose an algorithm that learns a set of max-weight functionals that depend on the unknown underly-
ing distribution and make two-stage decisions (which are shown to correspond to scheduling choices in illustrated
examples). The proposed algorithm stabilizes the system considered and achieves at most linear regret in the accu-
mulated penalties when compared with the optimal controller. Considering a scheduling problem with unknown
arrival and channel statistics, Krishnasamy et al. (2018b) study a wireless scheduling problem with switching costs.
Under their proposed explore—exploit policy with the exploration probability going to zero slowly, together with a
max-weight scheduling policy using learned statistics, the network is shown to be stable, and the algorithm
achieves at most linear regret in the accumulated switching and activating cost when compared with the optimal
scheduler with the knowledge of the model statistics. The error bound on the long-term average in both works can
be made arbitrarily small (when compared with the optimal cost) by changing algorithm parameters. Instead of
having explicit exploration, Yang et al. (2023) study a discrete-time, multiserver queuing system and propose a
max-weight with discounted upper confidence bound (UCB) scheduling algorithm. Their main result shows the
stability of the queuing system under the proposed algorithm.

There is a growing literature that studies online dynamic pricing in service systems using queuing models. We
discuss some relevant recent work next. The authors of Chen et al. (2023) consider optimal pricing with congestion
in a GI/GI/1 queue in which the unit cost depends on the service rate, the arrival rate depends on the service fee,
and customers experience congestion given by the average queue length of the system. As the cost as a function of
the service rate and the dependence of the arrival rate in chosen price is unknown, the authors propose a gradient-
based online learning algorithm that achieves a sublinear regret when compared with the accumulated profit
obtained with the optimal service rate and fee (using steady-state quantities). Also, considering an online learning
version of finding a proper price among a finite set of prices, Jia et al. (2022) consider a multiserver queuing model
with Poisson arrivals and exponential services in which the dependence of arrival and service rate prices chosen is
unknown (with the values unknown as well but such that the load for each choice is strictly less than one). Two
online batch-processing algorithms based on UCB and Thompson sampling are proposed in Jia et al. (2022). Both
algorithms achieve sublinear regret (optimal up to logarithmic factors) when compared with the accumulated profit
achieved by the optimal price choice.

In our work, we consider a paradigm in which there’s uncertainty in the model parameters. A different type of
uncertainty, often called Knightian uncertainty, is studied in Atar et al. (2022), Cohen (2019a, b), and Cohen and
Saha (2021) for multiclass queuing systems in the heavy traffic regime. In these models, the decision maker is look-
ing for robust control for a class of models. The uncertainty is modeled by including an adversarial player who
chooses a worst case scenario. Hence, the robust control problem is formulated via a stochastic game between the
decision maker and the adverse player. Optimality is then characterized by studying Stackelberg equilibria.

1.3. Outline of the Paper

In Section 2, we introduce the model, propose our learning algorithm, and state our main results. In Section 3, we
state some preliminary results, including the properties of the coupling introduced in Section 2. Sections 4 and 5 are
devoted to the analysis of our learning algorithm and include the proof of our main results. Section 6 provides the
finite-time performance of our algorithm via simulations. In Section 7, we summarize our result.

2. The Learning Problem and the Main Results

In this section, we introduce the stochastic model and the learning algorithm. Specifically, in Section 2.1, we intro-
duce the optimal admission control problem for the queuing system studied in Naor (1969). In this model, all the
parameters are known. The same model but with unknown service and arrival rates is introduced in Section 2.2.
We couple the models with known and unknown parameters so that we can characterize the regret of our learning
dispatcher. Our learning algorithm is provided in Section 2.3. Finally, in Section 2.4, we state the main results.

2.1. The Stochastic Model with Known Parameters

Naor (1969) studies the self-optimization and social welfare-maximization problems for the following model.
Homogeneous customers arrive at a singl-server queue according to a Poisson process with a rate 0 < A < oo.
When a customer arrives, and only then, the dispatcher decides whether to admit this customer to the queue or not.
A customer that is not admitted (i.e., rejected) leaves and does not return. An admitted customer remains in the
queue until being served. Upon service completion, the dispatcher receives a reward R > 0. Once the service is com-
pleted, the customer leaves the queue. The dispatcher suffers from a waiting/holding cost at the rate of C>0 per
time unit for each customer in the queue until service completion. The service requirements for the customers are
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iid. EXP(u) (i-e., exponentially distributed random variables with the rate 0 < u < o0). The dispatcher’s goal is to
maximize the social welfare, that is, to maximize the long-term average profit accrued by serving customers: the
ergodic reward-maximization problem. Let Q(t) denote the queue length of the system at time ¢ and N (f) denote
the number of customers that arrived at the system until and including time ¢, and then, for an admission policy p,
the long-term average profit can be expressed as

1 Na(T) T
h]m inff Z R]I{Policy p admits customer i} /0 CQ(t)dt ’ (1)
i=1

—00

where, throughout the paper, 1,4 is the indicator function of event A: namely, 14 =1 if A happens and zero
otherwise.

The optimal admission policy of the dispatcher in Naor (1969) is a static threshold policy. That is, there is a thresh-
old that depends on the parameters of the model such that the dispatcher admits an arriving customer if and only if
the queue length upon arrival is strictly below this threshold. Naor (1969) studies optimal admission control for the
ergodic cost-minimization problem by choosing the best threshold value among all possible thresholds. When the
dispatcher uses a static threshold policy with a threshold K, the resultis an M /M /1/K queueing system. The queue-
length process of such a system has a stationary distribution and is also ergodic. Note that the optimal threshold
can then be determined by computing the expected reward using the stationary distribution of the M/M/1/K
queueing system for all possible values of K. Using this logic, Naor (1969) characterizes the optimal threshold via
the function V : N x (0, c><>)2 — [0, 0) given by

K(y —2) —z(1— (z/y)") £y

2
V(K,y,2) = MK+JW“) @)

2y

, ify=z.

The following proposition states a few properties of this function V., -, -).

Proposition 1. The following hold:
1. For all fixed K, the function V(K, - ,-) is continuous in its domain.
2. For all fixed (y, z), V(K,y, z) is strictly increasing in K.

Note that, when K=0, V(0,y,z) =0 for all (y,z) € (0,00)%. Consider any point (K,y,z) € N* x (0,00)2. In order to
prove the continuity of V, it is easier to rely on an alternative formulation of V based on the stationary distribution
that we now provide. Let pX denote the stationary probability of having the queue length equal to i and let Ex
denote the stationary expected queue length when using the threshold policy with a threshold K. One can show
that

K

Ex-1 —Ex1 K /y) K
V(K y,z)=———5—, where  p; =—%—"—— and Ex=) ip;.
Pk —Pk1Z Yo (/) 12:02

Clearly, when (y,z) € (0,00)%, 1/z, Ex, Ex_1, pk, and pK-1 are all continuous in (y, z). Moreover, pk~1 # pK for all
(,2) € (0,00)".

Now, let us consider the function V(K,y, z) for any fixed (v,z) € (0, 00)?. To show the monotonic increasing prop-
erty, we consider the function f : [0,00) — [0, ), f(K) = V(K,y,z) by extending the definition of V(;, -,-) to real-
valued K. From (2), it follows that, when y =z, f(K) is strictly increasing. Now, we focus on the case y # z. Computing
the derivative of f(K), we get

(v —2) +2(z/y)"In(z/y)
(vy—2)
Using the inequality In(x) > 1 —1/x forall x > 0,x # 1, we get
(v —2) +2(/y)"In(z/y) > (y —2) +2(z/9)" (1 = y/2) = (y = 2)(1 ~ (2/y)") > O,

for all y # z. This shows that f(K) is strictly increasing, which implies that V(K,y, z) is strictly increasing in K for all
fixed (y,z) € (0, 00)?.

f(K) =
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Using these properties, Naor (1969) shows that, for every service rate p and arrival rate A, the following inequal-
ities for integer x

Vix,u,A) < g < Vx+1uA) (3)

have a unique solution x = K, and this K is an optimal admittance threshold for the problem considered. Moreover,
when V(K, u,A) < R/C, the optimal threshold is unique. However, when V(K, 4, A) = R/C, both K and K — 1 are
optimal thresholds; hence, any policy that randomizes between the two thresholds at each arrival is also optimal.”

Letm:=1/pyand v:=1/A denote the average service time and average interarrival times, respectively. Consider
a pair of the true service and arrival rates (i, A) for which there exists a unique optimal threshold and the corre-
sponding K satisfying (3) with strict inequalities. Proposition 1 implies that there exist 6; >0 and 6, > 0, both
depending on u and A, such that, for all pairs of points (77, V), where

m—01<m<m+d6, and v—0, <V <vV+0, 4)

we have
— o~ o R — A
V(K,1/m,1/7) < c < V(K+1,1/m,1/7). (5)

That is, if one can estimate the average service time and the average interarrival time accurately so Inequality (4) is
satisfied, one can obtain the corresponding K by solving (3) using 1/# and 1/¥ instead of u and A.

When equality holds in (3), for pairs of the true service and arrival rates (u, 1) and the corresponding K that satis-
fies V(K, i, A) = R/C, there exist 61 > 0 and &, > 0, both depending on u and A, such that, for all pairs of points
(111,9), where

m—=06; <m<m+d, and v—03, <V <v+0y, (6)

we have
V(K — 1,1/m,1/7) < g < V(K+1,1/m,1/9). (7)

That is, as long as the estimated average service time and average interarrival time are accurate enough to satisfy
Inequality (6), the integer solved from Inequality (3) using 1/ and 1/7 in place of 1 and A is in the set of optimal
thresholds, thatis, {K — 1,K}.

2.2. The Learning System and the Genie-Aided System

We assume that the reward R and the cost per time unit C are known to the learning dispatcher but neither the ser-
vice rate u nor the arrival rate A. Consider again the potential application of job dispatch for online computing
demands. When the computation clusters are provided by a third-party cloud-computing platform, the dispatcher
of the online computing jobs may not have knowledge about the configuration of the servers and their service rate.
The dispatcher may also be unfamiliar with the customer type that demands services and, therefore, may only pos-
sess limited knowledge of the arrival rate. In our model, the dispatcher continuously observes the queue length and
past admission control decisions. Hence, we restrict the dispatcher to admission controls that, at the time of a new
arrival, admit or reject based on the entire history of the queue length until the arrival time and also the past admis-
sion control decisions. We call such controls admissible. Note that, based on the FIFO serving discipline that’s used,
we can infer the time to enter service for all customers entering service by time t and also the departure epochs for
all the customers departing (after completing service) by ¢. Therefore, when a new customer arrives, the dispatcher
can estimate the mean service time (also the service rate) using the service times of the customers that have
departed before the new arrival and use it for admission control. Further, knowledge of all past admission control
decisions enables the dispatcher to obtain information on all past interarrival times, which are then used to compute
the statistics for the arrival process, that is, the arrival rate.

We measure the performance of a policy chosen by the learning dispatcher by the regret it incurs in comparison
with an optimal policy. Specifically, we use the difference between the expected net profit under the given
learning-based control/policy and the best expected net profit the dispatcher could have obtained had it known the
parameters u and A. To rigorously define the regret, we introduce some relevant processes for both the genie-aided
and learning systems.
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We use the marker ~ to denote processes associated with the genie-aided system (dispatcher knows up and 7).
The processes without a marker are associated with the learning system (dispatcher does not know p and A). We let
e Q(t) and Q(t) denote the queue length at time ¢.
e Q, and Q; denote the queue length right before the arrival of the ith customer.
N4(t) and N(t) denote the number of customers that have arrived at the system until and including time ¢.

Njoin(t) and Njoin(f) denote the number of customers that have joined the queue until and including time t.
. Tf and T# denote the arrival time of the ith customer to the system (i.e., Tf =inf{t: Na(t) > i} and T4 = inf{t :

Na(t) > i}, respectively).
e K;and K; denote the threshold policy used by the respective dispatchers at the arrival of the ith customer.

2.2.1. A Coupling Between the Two Systems. Consider a probability space (Q, F,P) rich enough to support two
independent Poisson processes (P(t)),so and (N4(t)),so with rates p and A, respectively. Set N4 = N4 so the arrival
processes to both systems are the same. Let T'P denote the ith jump time of P. The service requirements of the cus-
tomers that are being served at time ¢ by all systems to be analyzed are determined as follows: the head of the line
customer of each system (assuming not empty) completes service at the time of the next jump of P(t). Note that it
may be the case that the services of the currently in-service customers are initiated at different times for the learn-
ing and genie-aided systems. Nevertheless, because the exponential distribution is memoryless, this does not
change the distribution of the random process corresponding to the two systems and, in particular, the distribu-
tion of the customer’s service times. In other words, the time between the beginning of a service of a customer and
the next jump of P is EXP(u) distributed. Hence, we refer to P(t) as the potential departure process and to {T"P},.,
as the potential departure times; that is, when there is a jump in P and the queue length is larger than zero, there is
a departure of a customer, but when the queue length is zero, that is, no customer is being served, this potential
departure is wasted. Therefore, {P(T#) — P(T# ,)}»; is the number of potential services between two consecutive
arrivals for both systems.

Now, we use the underlying processes N4 = N4 and P to couple the queue-length processes of both systems,
assuming that a threshold policy is used in each system. Consider a sequence of random variables {K;};., taking
vales in N such that each K; is measurable with respect to the filtration generated by the queue length until time
T#: because T# is a stopping time for the filtration being used, we can define the o-algebra F1 := F; (for short)
using the original filtration Fy = ¢(Q(#) : t < T) in the usual way (see Durrett 2016). We use {K;}izo as a sequence
of thresholds. Similarly, we use {K;};», to denote the sequence of thresholds used by the genie-aided dispatcher.
We refer to any such {K;};5, as a threshold policy. For the coupled genie-aided and learning systems, we have the
following: forany i >1,

Qi =(Qi1+ 1y, , <k} — (P(TH = P(TE )T,
and Q; = (Q,  + Lo, <k~ (P(TH — P(TE)T,

where, for x € R, (x)* := max(x, 0). Similarly, we have

Q(t) = (Qn + ]I{Q,,<K,,} - (P(t) - P(Tﬁ)))+/ (8)
and Q(t) = (Q, + 15 .z, — (P(t) ~ P(T))", 9)

where 1 := max{m : Tﬁ < t}. Once the initial queue lengths Qp and @0 are specified in Z., b}L induction, one can
show that the processes {Qi};so and {Q;};so are well-defined, and using these, {Q;}so and {Q,},»o are also well-
defined.

2.2.2. The Regret. Let E[-] be expectation associated with (Q2, F,P). Then, the regret is given by
t t
G(t):=E {R Nioin(t) — C/ O(u)du — <R Njoin(t) — C/ Q(u)du)] .
0 0

This definition of the regret compares the net reward processes of the learning and genie-aided systems: if the
learning-based admission control algorithm achieves the same long-term average profit, then this allows us to esti-
mate the sublinear offset. The genie-aided dispatcher uses a static threshold policy that maximizes the long-term
average profit described in (1). Note that, when equality does not hold in (3), the genie-aided policy is unique, so

there is no ambiguity in the definition of the regret. In this case, K; = K, where K uniquely satisfies Inequality (3).
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However, when equality holds in (3), the genie-aided policy is not unique. We compare our learning algorithm
with a particular optimal genie-aided system that is specified in Section 5.

Consider a threshold policy for the learning system, {K;};,, and a threshold policy for the genie-aided system,
{K:};50; the regret can be estimated as

Na(t)

t
G =E [Rz(n@w - tig.<)| ~E|C [ @) - Qi
i=1

Na(f) £
< ElRZ|]1@<K}— 11{Qi<K,_}|] +E[c/0 |Q(u)—Q(u)|du]. (10)
i=1

From (8) and (9), we note that
130~ QW) < [Qu+ 15 -, — (Qu+ g, <ic)l-

This expression helps us to get an upper bound for the integral [; é |Q (1) — Q(u)|du in (10) as follows:
' Na(t) B
/ Q00— Quldie < 3 (T, ~TNIQ - Qi + 15, )~ e < i
0

Substituting this bound in (10), we get

Na(t)

Na(t)
G() < E[RY 15 .x) — Lio<kyl +ElCZ(TZ+1 T{*)lQi—QA]
i=1 i=0
Na(t) N
CZ(TH1 THIg, k) — Lia<xal|- (11)

Note that the (future) interarrival time T4, — T# is independent of the queue length of the learning and genie-aided
systems Q; and Q;, respectively, as well as the threshold used at the arrival of the ith customer K; and K;. In particu-
lar, T4, — T# is independent of |Q; — Q;| and |1 ©,<ky ~ Lo <k} |. Then, as the increments of the Poisson process
are independent, we have
Na(t)

CD 1~ THIQi — Qs lCZ(T,+1 T?)l@—Qiln{T{w}]

= CZE (TA1 = THIQi — Qil Tacy] (MCT)
= CZE[ —-Qil 1 (A <t}} (By independence)
C _
=E lXZ|Q1 —Qil 1{Tf§t}] (MCT)
i=0

C Na®)
=XElZ|Qi—Qi|],
i=0

where MCT stands for the monotone convergence theorem. Similarly, we can also simplify E CZNA (t)(Tz+1 T;“)
115,<xy — Ligi<ky|] to get

Na(t) NA(t)
G(t)sEl( )Zm{Q X} 11{Qi<K,_}|] +]El Z| ]

C Na(t) .
< (R+X)1E S g 5y — Ligeky| + 10— Qi 12)
i=1

Following this bound, from now on, we analyze the systems at the arrival epochs {T#} ..
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With the shift to analyzing the systems at arrival epochs, we characterize the regret in terms of the total number
of arrivals N. We use G(N) := G(T4) to denote the total regret accumulated up to the arrival of the Nth customer.
Recall that m = 1/u denote the average service time and v = 1/A denote the interarrival time. We assume that 0 <
m < o0 and 0 < v < co: we allow for the average service time to be large, and it is possible to have K = 0, where the
optimal policy for the genie-aided system is to reject any arriving customer. Note that, when K = 0, equality in (3) is
not possible for R, C > 0; therefore, the optimal policy is unique, and K; = K = 0 for all i > 0. If the genie-aided dis-
patcher always admits customers when the queue is empty and the learning dispatcher knows this, then the algo-
rithm design would be simpler: there is no need to balance exploration and exploitation explicitly. With this
knowledge, a learning dispatcher can achieve constant regret using a policy that always accepts customers when
the queue is empty and uses a threshold computed by solving Inequalities (3) using the empirical service rate other-
wise. The conflicting requirements for a learning algorithm in the two different regimes—K = 0 (stop admitting cus-
tomers soon) versus K >0 (admit customers infinitely often but at the correct rate via the right choice of the
threshold)—are critical to the difficulty of our problem and its analysis.

Algorithm 1 (Learning-Based Customer Dispatch with Unknown Service and Arrival Rate)
i=0;j=0; a; grows at polynomial rate in j; s = 0; K*(j) = max{[In(j)], 0} + I; + Qo.
whilei < N do

j=j+1

% If the phase 1 of the jth batch happens, it sees I; customers.

ifj==1o0r (K(j—1)==0and B/ == 1) then

for the next I; customers do

i=i+1;

% we update the belief of the average arrival time when there is a new arrival.

{ = {) 4 inter-arrival tlme observed — v

Exploration phase customers always join the queue, K; = I;.
end

if there are Sene > 0 new services completed during this phase 1 then
forcnt =1 to Sot do

s=s+1;
=1+ service time of the s custon;er that completed servicefrh;
end
end
end

Compute integer K, which satisfies V(K,1/11,1/7) < R/C < V(K+1,1/m,1/7);

Set K(j) = min{K"(j), K};

count =0;

% The phase 2 of the jth batch sees at least a;l, customers. The queue length is zero when phase 2 ends.
while count < a;l; or Q; >0 do

count = count +1;

i=i+1;

{) = {) 4 inter= arrival nme observed — v

Customers join the queue if and only if the queue length is smaller than K(j), and so K; = K(j).
end

if there are Sene > 0 new services completed during this phase 2 then

forcnt=1 to S do

s=s+1;
M=+ service time of the s custon;er that completed servicefrﬁ;
end
end

end.

2.3. The Learning Algorithm

We propose (and study) Algorithm 1 for learning-based, social welfare-maximizing dispatch that consists of a
sequence of batches, where each batch has two phases: phase 1 for exploration and phase 2 for exploitation. For cus-
tomer i who arrives during phase 1 (assuming that a phase 1 is used), we can assume that K; = oo as this customer is
admitted in the queue no matter the queue length at this arrival. However, in our algorithm, we fix any exploration
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phase (if used) for all batches to last for exactly [; arrivals, and so the threshold K; is effectively K; = [; for all arrivals
in any phase 1. At the beginning of phase 2 of the jth batch, K(j) is computed by finding the minimum between K*(})
and the integer that solves inequalities V(x,1/11,1/7) < R/C < V(x+1,1/11,1/7). The computed K(j) is used for
the entire exploitation phase of batch j. That is, for customers 7; and i, who arrive during phase 2 of the jth batch,
Ki, = K;, = K(j), and these customers are admitted to the queue when the queue length seen at their arrival is strictly
less than K(j). For technical reasons, we insist that, at the termination of phase 2, the queue is empty. As the batch
number increases, our algorithm extends the length of the exploitation phase and reduces the occurrences of the
exploration phases.

Here is some notation that we use in the algorithm:

e [;: A positive integer representing the length of phase 1, /; > 1.

e [;: A positive integer representing the initial minimum length of phase 2, I, > I;.

e it A positive integer that is the index of the arriving customer from the very beginning. It is used to update the
belief of the average arrival rate.

e j: A positive integer that indices the batch number.

e a; > 1: Growth factor for the length of phase 2 in the jth batch that ensures that the phase 2 duration lasts for at
least [al,] arrivals.

e B’: A Bernoulli random variable that is independent of everything else, where P[B/ = 1] = 1 for j=1, and P[B/ =
1] =In°(j)/j for j>1 and fixed € > 0. If the threshold used in the previous batch (the (j — 1)th batch) is zero, the ran-
dom variable B’ is used to determine if phase 1 will happen.

e K(j): The threshold used by the learning dispatcher during phase 2 of the jth batch.

e K*(j): The upper bound of the threshold used by the learning algorithm. This parameter slowly increases to
infinity and is chosen to be larger than the initial queue length, Q, and the length of phase 1, that is, /;.

e St A counter that counts for the number of completed services in each phase. This counter is used to update
the belief of the average service rate after each phase.

Note that Algorithm 1 enforces an exploration phase only for the first batch and then utilizes one in a probabilistic
manner when the learned threshold in the previous batch is zero. When the genie-aided system uses a nonzero
threshold, as the number of services experienced by the customers admitted by the dispatcher increases, the thresh-
old learned by the algorithm quickly becomes nonzero for phase 2. In this scenario, the exploration phase can
potentially be eschewed and, in fact, should be used more and more infrequently as time progresses so that the
regret is not large. In fact, in our algorithm, we completely eliminate a phase 1 for a batch if, in the previous batch,
the threshold of its phase 2 is positive: some customers are admitted in a phase 2 with a positive threshold, so new
service time estimates obtain, and on the contrary, a phase 2 with a zero threshold will not admit any customers.
However, allowing for an exploration phase is necessary. When the genie-aided system uses a nonzero threshold, it
is possible that the learning system sees the first few service times being long enough so that the learned threshold
is zero. Then, without the exploration phase, the learning system stops admitting any customers to the queue and,
therefore, will not get any more samples to update its false belief. Although this is a low-probability event, the prob-
ability of this happening is nonnegligible for any fixed length I, of the exploration.

The frequency of the exploration phase in our algorithm is controlled by the distribution of B'. Our theoretical
regret analysis uses P[B/ = 1] = In(j) /j. When the genie-aided system uses the threshold zero, the exploration phase
should not happen too often. This is because, every time the learning system admits a customer into the queue, the
regret increases. Hence, this regime demands that phase 1 be eschewed as quickly as possible. However, as the
algorithm is unaware of the parameter regime (even whether the optimal threshold is zero or nonzero), we neces-
sarily need enough phase 1s when the threshold from the previous batch is zero. Hence, to combat the regret accu-
mulation from phase 1s when the optimal policy is not to admit any arrivals, we increase the length of phase 2 (the
exploitation phase) as the batch count increases. The control of the length of phase 2 of the jth batch is achieved
using parameter «;: phase 2 of the jth batch lasts for at least [a;]>] arrivals. Whereas we do require that a; grows to
infinity, we do not want it to grow too fast as this could lead to poor performance: when the thresholds used by the
learning and genie-aided systems do not match in a batch, there may be too much regret accumulated during that
batch if there is a large value of a; for small j (when the probability of an error is higher).

Note that K*(j) = max{|In(j)],0} + l1 + Qo is a deterministic function with K*(j) no smaller than /; and the initial
queue length of the learning system Q, (when Q, is chosen in a deterministic manner). We also note that
lim; o, K*(j) = co. This ensures that, as the number of batches increases, eventually, the (true) optimal thresholds are
smaller than this upper bound. Note that, for all j > [¢X] batches, K*(j) > K. Therefore, if the estimations on the service
and arrival rates are accurate during batch j for j > [eX], then the learning dispatcher is using K during phase 2.
Although [¢X] can be a large number, it is a fixed constant (fixing u and 1), and the total expected regret accumulated
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during the first LeEJ batches will also be a constant (see Remark 2). Therefore, in our analysis, we focus on the regret
accumulated when j > [¢X1.

2.4. Main Results: Regret Bounds for Algorithm 1

Theorem 1. Assume that the initial queue length for the learning and genie-aided systems are the same and zero is not in
the set of optimal thresholds used by the genie-aided system. Then, Algorithm 1 achieves O(1) regret as N — oo, where N is
the total number of arrivals.

Theorem 2. Assume that the initial queue length for the learning and genie-aided systems are the same and zero is in the
set of optimal thresholds used by the genie-aided system. Then, Algorithm 1 achieves O(In***(N)) regret for any specified
€>0as N — oo, where N is the total number of arriving customers.

When the learning and genie-aided systems have different initial queue lengths as stated in Remark 1, the regret
characterization still holds. This is done by introducing another genie-aided system that has the same initial queue
length as the learning system. Thereafter, we use Proposition 2 (discussed in the following section), which shows
that, if two coupled systems use the same threshold policy, then the ordering of their queue lengths is preserved.
We end this section by pointing out that the regret characterization in Theorem 2 can be changed to O(log'*(N))
foralle > 0 as N — o0; see the discussion in Remark 4.

3. Preliminary Results

We use a few coupled systems to prove the main results. Besides the coupling between the learning and genie-
aided systems mentioned before, we also compare the queue-length process of the learning system with systems
using the same threshold policy but with different initial queue lengths. The following results are proved for sys-
tems coupled by having the same arrival process and with the service time of the customers in the queue of both
systems begin determined by the same Poisson process from t =0.

The next proposition states that the order of the queue lengths of two coupled systems is preserved over time if
their threshold policies satisfy certain conditions. This is a core preliminary result that is used in different ways and
helps us establish our main results in considerable generality. Consider two systems G and L coupled through pro-
cess {Na(t)}so and {P(t)};so as described in Section 2.2.1 but with possibly different initial queue lengths and
(threshold) admission policies. Let Q°(#) and Q"(t) denote the queue length at time t of the two systems, respec-
tively. Let {K®},5, and {K}},.( denote the threshold policies of the two systems, respectively.

Proposition 2.
1. If the dispatchers for the two coupled systems G and L use the same threshold admission policy for all arrivals, that is,
K& = KE for all i, then with probability one, the order of their queue lengths is preserved for all time, that is,

Q%(0) = Q"(0) = Q°(H = Q"(), Vt>0. (13)

2. Assume that both systems have the same initial queue length q := Q%(0) = Q(0). Let D(t) and D"(t) denote the num-
ber of departures up to time t for the systems G and L, respectively. If K& > Kt for all i, then with probability one,

QY(t) > Q" (t) and D(t) > D (1), Vi>0. (14)

Moreover, every customer that joins the queue in the system L necessarily joins the queue in the system G when static
thresholds K& > K are used in the two systems, respectively, and g < K.

Before proving the proposition, we state a useful corollary.

Corollary 1. Assume that phase 1 of the jth batch did not happen and the queue-length processes of the learning and genie-
aided systems are coupled. If the two systems use the same threshold during the phase 2 of the jth batch and if the queue
length of the genie-aided system hits zero during this phase 2, then the queue lengths of both systems are zero at the end of
this phase 2.

Proof of Corollary 1. Recall that, under the proposed algorithm, the queue length of the learning system is zero
at the end of each phase 2. Hence, the result follows immediately by Proposition 2. [

Proof of Proposition 2. Let us start by proving the first part of Proposition 2. Because the queue-length process is
a jump process, it is sufficient to show that, after each jump, the queue lengths of the two systems satisfy (13).
Note that the set of potential jump times is the union of the arrival times (jump times in the arrival process) and
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the jump times in the Poisson process that determines the service process. Let {t;}5o = {T}i50 U {TFP};5 denote
the ordered countable set of potential jump times of the queue-length process, where t,_; < f;. By the superposi-
tion property of independent Poisson processes, with probability one, {T#}; N {T'P}; =0 so that, at any time
instant #, either there is an arrival or there is a potential departure. Let QF and QF denote the queue lengths
immediately before the /th potential jump of the system G and L, respectively. Also, let Q5 and Qf, respectively,
denote the initial queue length of the two systems.

The proof follows by induction. Fix # >0 and assume QF > QF holds for all I < n. Immediately after time #,,
one of the following can happen:

o If Q% = QF: In case the jump at time ¢, is due to a service completion or a service wasted, Q%,, = QL. . If the
jump is due to a new arriving customer, the dispatcher makes the same choice in both systems, and Q%,, = Q% ,
holds.

e If QY > QL > 0: In case the jump at time ¢, is due to a service completion or a service wasted, Q%,; > QL. ,. Oth-
erwise, the jump is due to an arriving customer. We have Q%,, > QS > QL +1> QL .

Now, let us consider the second part of Proposition 2. First, we show that Q(t) > Q*(t) holds for all . Again, it
is sufficient to show Qf > QF for every >0, the proof of which follows by induction. Fix >0 and assume that

¢ > QF for all I < n. Immediately after t,, one of the following can happen:

e If Q% = QL: In case the jump at time t, is due to a service completion or a service wasted, then Q%,, = QL.
Otherwise, the jump is due to an arriving customer. Because K" > K for all 7, this customer is admitted in system L
only if also admitted in system G, and we have Q%,; > Q% ;.

e If QY > QL > 0: As before, either both processes jump in the same direction at time t, or only one of them jumps
(which would be the L system). In either case, Q%,, > QL. ;.

Because Q°(t) > Q(t) holds for all ¢, it follows that, whenever there is a service completion in system L then
there is one also in G. Therefore, DC(t) > D*(t).

Now, assume that the static thresholds K and K" are used in the systems G and L, respectively. To show that every
customer who joins the queue in system L also joins the queue in system G, we show first that Q°(f) — Q(t) <
K& — KE. Fix n> 0 and assume that Q° — QF < K© — K holds for all I < n. One of the following can happen immedi-
ately after time t,;:

e If Q% — QL = K¢ — K: Under this case, either we have {Q$ = K®, QL = K*} or {QL < QY < K¢, QL < K%}, Then,
only when QY = K¢ — KL, QL = 0 and the jump is due to a service completion or service being wasted, the queue-
length processes of the two systems evolve differently: system G has a service completion but not L. However,

€., — QL. < K®—KEstill holds.

o If Q¢ — QL < K® — K!: Either we have {QL < Q% < K%, QL =K'} or {QF < QY < K&, QL < K}. When {QL <
Q¢ < K€, QL = KL}, if the jump is due to an arriving customer, the dispatcher in the system G assigns this customer
to the queue but not the dispatcher in the system L. Otherwise, both systems have a service completion. Then,

C., — QL. < K¢ —K! holds in either case. When {QL < Q% < K¢, QL < K%}, if the jump is due to a new arriving
customer, the dispatchers in both systems admit the customers to the queue. Otherwise, the jump is due to a service
completion or service being wasted, and it is possible that only in system G there is a service completion. Again,

¢, —QL,, < KC— KL holds in either case.

At the time T,A, which corresponds to the arrival of the /th customer, assume that this customer is admitted to
the queue in the system L but not in G. We must have Q' < K and Qf = K€, that is, Q° — Q} > K¢ — K. This is a
contradiction. Therefore, for any arriving customer, either the dispatchers in both systems G and L make the
same admission decision or only the dispatcher in the system G admits this customer. As a result, any customer

who joins the queue in the system L necessarily joins the queue in the system G. O

Remark 1. In case the genie-aided and learning systems have different initial queue lengths, we can introduce a
second genie-aided system that has the same initial queue length as the learning system and is also coupled with
the two systems using the procedure from Section 2.2.1. Let Q; denote the queue length of this new system right
before the ith arrival customer and G’(N) denote the regret of the learning algorithm with respect to the second
genie-aided system. Using the triangle inequality and Equation (12), we get

N
Z g, <xy — ]1{Q;<K-}| +1Q; —Qil| +G'(N).

i=1

G(N) < <R+§>E

Theorems 1 and 2 provide regret bounds for G’(N). By Proposition 2, the orders of Q; and Q; are preserved; thus,
after both queue-length processes hit zero, Q; and Q; evolve together. Because the expected time of both queue-
length processes to hit zero simultaneously is finite, the regret characterization in Theorems 1 and 2 still holds.
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4. Unique Admittance Threshold Case
In this section, we analyze the case in which (3) holds with strict inequality. In this case, the genie-aided dispatcher
uses a unique optimal threshold K, and the resulting queue-length process has a stationary distribution.

In Section 4.1, we start by providing an estimate for the number of samples of completed service times that the
learning algorithm uses in order to estimate the average service time and then to update the threshold policy for
each phase 2; see Proposition 3. We use it to estimate the probability that the learning system can obtain an accurate
estimate of the average service time; see Proposition 4. Combining this estimate with the probability that the learn-
ing system can obtain an accurate estimation on the arrival rate, see Proposition 6, we can bound the probability of
the learning system using the same threshold as the genie-aided system; see Corollary 2. In Section 4.2, we estimate
the regret of the learning algorithm because of having phase 1 (if used) and using incorrect thresholds in phase 2
separately. In Proposition 8, we consider “bad” events for which there is regret accumulated during phase 2
because of using the wrong threshold. In addition, we use an upper bound on the difference between the queue-
length processes of the learning and genie-aided systems to bound the regret accumulated because of the existence
of phase 1 (if used) in Lemma 1 and because of using the wrong threshold during phase 2 in Lemma 2. The proof of
Theorems 1 and 2 are stated in Sections 4.3 and 4.4, respectively.

4.1. Sample Estimation
First, we state and prove some results on the number of samples the learning dispatcher gets on the interarrival
times and completed service times and the resulting implications on the estimates of the arrival and service rates.

In the following proposition, we show that, with high probability, the number of samples of completed service
times that the learning algorithm can observe is sufficiently large at the beginning of the phase 2 of the jth batch. For
this, we use the fact that (by design) each phase 2 is longer than phase 1.

Proposition 3. Let D; denote the number of observed service times up to the beginning of phase 2 of the jth batch. Then,

PIDy < 4(1+€)(A+p) 16(1 +€)(A + p) 8 8(1+¢€))’

where Co(e) 1= 1+ Y1)’ .(’) liﬂ is a constant depending on the choice of €.

Consider the epoch that is the beginning of phase 2 of the jth batch. Let X’ denote the total number of arrlvals that
the learning dispatcher sees during the past batches and the potential phase 1 of the jth batch. Note that X' counts
for the arrivals in phase 1s (wWhen they occur) and all past phase 2 s using a threshold > 1.
The following inequality holds when a;l, > I; for all ji:
. j—1 ]
X] >+ Z(]I{K(,')>0}ailz + ]l{K(i):O}BH—lll) > llz B'.
i=1 i=1

Observing that the function In(x)/x is decreasing when x > ¢¢, when j > [¢¢], we have

ln1+6(]-) 1n1+€(|'e€'|) ]lne(x) I lne(l)
- = [ < S
Jora

1+e€ 1+e€ X ; i
i=[e€]

zf':lne(i) In‘([e]) , [/In‘(x) dx_lne(l'ee])+ln1+€(]')_ln”e(ee).

= [ e X T Tee] 1+e€ 1+e€

Set

() ' ([e]) “lin() I (e)

Cole):=1+ - and Cole):=1+ ,

i:z2 1 1 + € Z 1 +€

and we get
ln1+€ B 1n1+5 .
Cole) + 77~ ZB’ < Cole) + 1+g).
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Using the multiplicative Chernoff bound for independent Bernoulli random Varlables, the preceding inequalities,
and Co(€) > 0 for all € > 0, we get the following upper bound on the probability of X’ being small:

o hIn'*e(j) hin'*(j) Cole) In""(j)
X <Si+ve ] lllzB] 201+ ] eXp<_ 8 _8(1+e)>'

Recall that i is the index of the customers arriving from the very beginning. Let (; be a Bernoulli random variable
such that (; =1 when there is at least one potential service completion between the arrival time of the ith and
(i+1)" customer. The random variables {G;}; areiid., and P[C; = 1] = u/(A + u). When the threshold used is at least
one, if the ith customer is rejected, the queue length at the arrival of this customer is nonzero; obviously, when the
ith customer is admitted to the queue, the queue length right after the arrival of this customer 1s nonzero. In either
case, if there are any potential services during the interarrival times between the ith and (i + 1) customers, at least
one of the completed services is observed by the learning dispatcher. This implies that » *; .4 in %,Gi= Zn o Cent,
< Dj, where cnt, is a subsequence of i and cnt,, is the index from the beginning of the nth arrival customer that is
counted in X j- Then, we have

P

D < lllnlﬂ:”(j)y

P Dy < 4(1+€)(A+p)

A]' . lllnlJre(].) B ]P) r711n1+e%/2(1+€)-|c l 1n1+€(i)|l,l
~2(1+e€) oty = 41+e)(A+p)

n=1

llln1+€(j)y
p (‘ 16(1+e)(A + y)) '

We dropped the conditioning in the first inequality using lezll (< D, and P[0 G < o] < P[Y, G < c] for all

n,c € Z*, and the second inequality follows from multiplicative Chernoff bound for independent Bernoulli random
variables. Combining these results, we obtain

oo < hmmmulzpl o b Gy

"= 41 +e)(A+p) "Sal+e)A+p)|T T 200+e) = 2(1+e)

s l1lnl+e(j)1 P lf(] S lﬂn“e(j)]

1+e, -
D, < hin" " (j)u
41+e)(A+p)

llln1+e(i)[.l CO(E) 1n1+€(j)
= exp<_16(1+e)()\+y) TP\ TR TR 1e) )
This completes the proof. [

Using Proposition 3, in the next proposition, we establish that, with high probability, the learning dispatcher has
an accurate estimate of the average service time and, therefore, the service rate.

+P

N lllnlJrE(]-) N lllnl+€(]-)
X < 2(1+e)]P[X S 2(+e)

Proposition 4. Let 11(j) denote the empirical service time estimated by the learning dispatcher at the beginning of phase 2
of the jth batch. For the proposed algorithm,

P[|#71(j) — m| > A1] < C1 exp(—Cy In'*(j)), (15)

where

- _Gole))  2exp(Al/@Bm?))
Ci = max{exp( 3 >, exp(A2/(8m2)) — 1" l},

. hy 1 huA?
Cy = 1
2 mm{ma Te)A+p) 8(1+e) 321 +emAm+1)J’ (16)

with Ay := min{6y,2m}, and 61 is the constant from Inequality (4), which is one part of the condition needed for the conclusion
in (5).
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The proof of the proposition relies upon tail concentration bounds for subexponential random variables. We fol-
low the definition and concentration bounds as in Wainwright (2019, section 2.1).

Definition 1. A random variable X with mean yu is called subexponential if there are nonnegative parameters
22,2
(a?,B) such that E[e"*~#] < ¢ forall |y| < [l;

Proposition 5. Suppose that X is subexponential with parameters (a?,f). Then,
2
et o<t
2 t
PX>pu+t] < B = max{ezﬂ,ezﬁ}.

Proof of Proposition 4. Let S; denote the service time of the ith service completion. Because S; are i.i.d. with dis-
tribution EXP(1/m), which is a (4m?,2m) subexponential random variable, 31, S; is a (4m?n,2m) subexponential
random variable; see Vershynin (2018, section 2.8). Observe that 0 < kA; < 2mk. Using the preceding subexpo-
nential concentration bounds, we get

k
> Si—km

i=1

P[|1#(j) — m| > Ay |Dj > n] < f:ﬂ»

k=n+1

kA? 2 exp(A?/(8m?)) M
<kzn;12 exP( 8m2> exp(A2/(8m2)) — exP(‘ 82 )

2@1]

The third inequality follows by the geometric sum formula.
Then, substituting n = |4 lnHe(])y /A1 +e)(A + )], we get

1+e

P[|na(j)—m| > A|D; >

Hn ™ (Mp | . hin""()u
FTEETST +[u)] - P["”(]) —ml>AD;> {4(1 +e)(/\+y)H

2 exp(A?/(8m?)) B hin'*€(j)u Ai%
Sexp(A%/(SmZ»—1“1”( Q4(1+e)(7\+u) T

L 2exp@Ai/@m?)  f huln()A]
= exp(a2/(8m2) —1° P\ " R0 +eme(A+p) )

Using the last upper bound and Proposition 3, we find

P[|r(j) —m| > Aq] =Pl|m(]')m| > M \Dj < 41 +e)(A+p) 7= 41+ e)(A + p)

D < ll ln“e(j)‘u 1]}»[ . ll 1n1+6(]~)‘u ‘|

4(1 +e)(A+p) 41 +e)A+p)

I In"*e () Cole) In'"(j)
= exp (‘ 16(1 + €)(A + ,J)> Texp <_ 8  8(1+e)

2 exp (A%/(sz)) L uln'*(j)A2
exp(A2/@Bn2) — 1 P\ 321+ )2 (A + )

+]P’[|1f1(]') m| > A |D

ll 1n1+€(]')# ]P[D . ll 1n1+€(]')‘u ]

< Crexp(—Cy In'*é(j)),

where C; and C; are given by (16). O
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Proposition 6. Let v(j) denote the empirical interarrival time estimated by the learning dispatcher at the beginning of phase 2
of the jth batch. For the proposed algorithm,

Pllv—7(j)| > A2] < Cs exp(fC4ﬁj),

where

2 exp(A2/(82)) 1 A2 =

= C = —2, d L= 1 i 17

S opl/e) -1 e M Bl a 47

with Ay := min{6,,2v}, and 6 is the constant from Inequality (4), which is the second part of the condition needed for the con-
clusion in (5).

Note that, no matter whether customers are admitted to the queue or not, the learning dispatcher is able to observe
all arrivals. We always have the first phase 1 and that the number of customers who arrived during the jth phase 2 is
at least ajl>. Note that we also have [, > I;. Let ﬁ =1+ Z -1 al Right before the jth phase 2, there are at least [; +
Z; 1@nl> 2 B;ly customers that have arrived at the system, and the learning dispatcher would have observed all the
interarrival times. Following a similar logic as in the proof of Proposition 4, let A; denote the interarrival time of consec-
utive customers. The random variables A; are i.i.d. with distribution EXP(1/v), which is a (412, 2v) subexponential ran-
dom variable. Using the concentration result detailed in Proposition 5 for subexponential random variables, we have

k
ZAi — kv
i=1

kA3 2 exp(A3/(8v2)) BLA;
= ZZ exp( 81/2) exp(A?/(8v2)) — 1P <_ ]81/2 ’

Pllv—9()| >A] <> P > kA,

which establishes the result. O

Note that, because a; > 1 for all j, §; > j. Therefore, as the number of batches, j, increases, the probability of not
having a correct estimate of the average arrival rate decreases faster than the probability of not having a correct esti-
mate of the average service time. In the following corollary, we combine Propositions 4 and 6 to get a bound on the
probability of the learning dispatcher not using (an optimal) threshold K when j is large.

Corollary 2. For the proposed algorithm, when j > [ek1,
P[K(j) # K] < C1 exp(—Cz In"*(j)) + C3 exp(~Cap), (18)
where Cy and Cy are defined in (16); Cz and C4 are defined in (17).

Recall that, for the true arrival and service rates A and p, we have
" — R ~
V(K,u,A) < C < V(K+1,u,A).

Proposition 1 says that, if 71 and 7 satisfy Inequality (4), then the learning dispatcher would be able to solve for the
desired threshold K. Moreover, because j > X, K*(j) > K, that is, the learning dispatcher would be able to use K in
the jth phase 2. Using Propositions 4 and 6, we have

PK() # K] < Pl[|m —m(j)] > A +P[[v = 9()| > Ao]
< Cr exp(=C2 In'*()) + C3 exp(~Csp),

which concludes the proof. O

When the learning dispatcher has knowledge of either 1 or A, one can obtain an inequality similar to that in Cor-
ollary 2 by setting the corresponding bound from Propositions 4 and 6 to zero. When the service rate is known and
the arrival rate is not known, then a better characterization of the regret obtains; see Remark 3.

4.2. Regret Accumulated in Each Phase

We now analyze the regret. Let G| denote the expected regret accumulated during the period starting with the
(potential) phase 1 and ending at the first time the queue is emptied in the immediate phase 2 for the jth batch that
follows. Let G, denote the expected regret accumulated in the remainder of phase 2 of the jth batch. Whenever phase
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1 of the jth batch does not happen, there is no regret to be grouped to G/, and the regret accumulated in phase 2 is
entirely in G; in this case, the regret accumulated during the entire jth batch is also solely in G}. Both G} and G, count
for the regret accumulated because of not having accurate estimates of the service rate as well as not estimating the
arrival rate accurately. Intuitively, G, takes into consideration the regret accumulated because of the existence of a
phase 1, and G}, considers the regret accumulated because of the learning system using an incorrect threshold. Despite
the subtleties, for easier recall, we refer to G, as the regret accumulated in phase i € {1,2} of batch j.

Let N denote the number of arrivals as a function of which we determine the regret. Then, we have

] mm
Z(GHGQ)} < Y (G +Gy, (19)

1 =1

G(N) < E

where | := J(N) is the total number of batches until N arrivals including the batch in progress or initiated by the Nt
arrival. The last inequality follows by the observation

]
N2> a2 Bh2]h,
i=1

which implies | < N/l almost surely (a.s.). When one uses a; that grows like j*, for some a > 0, we obtain that ] is of order
of O(N'/@*1). This adjustment would not affect the order of the regret but only the constants; see Sections 4.3 and 4.4.

For each j, we analyze G, and G, separately. Let & denote the event that phase 1 of the jth batch happens.
Because in the proposed algorithm, we always have the first phase 1, we have P[£]] = 1. Phase 1 is omitted when
the threshold used in the previous phase 2 is nonzero. By the independence of B’ and K(j), for j > 1, we have

P[] = P[&] |K(j — 1) = OJP[K(j — 1) = 0] + P[&} |[K(j — 1) # O]P[K(j — 1) # 0]
=P[B = 1]P[K(j — 1) = 0]. (20)

Let Eé denote the event that K(j) = K, and 52 denote the event that the queue lengths of the two systems are the
same at the beginning of the jth batch, that is,

&:={K()=K} and  &:={Qy=0Q,).
Also, denote by 7%/ the number of arrivals during a busy period of an M/M/1/K queue with initial queue length I.
The proof of Lemmas 1 and 2 rely on an upper bound of E[t%'!], which is stated in the following proposition.

Proposition 7. Consider an M/M/1/K queue with arrival rate A, service rate u, and initial queue length 0 < 1 < K.

E[c*] < (LK), (21)
where
Au+1 (/\)K
- =1/, A ,
g(1;K) = A/y—l( u FH
2K, A=y,

and foralll <1 < K,

M (A (AN A —n(1-A) 2
gLK) =S (AJu—1) ((l (#) ) <<u) TS 1)(1 y) AT

K —1+1), A=
In particular, B[t51] is of order O((A/u)* + K?).

Consider a finite-state Markov chain with state space {0, 1, ..., .K} and with the following transition matrix:

p(0,0)=1;

=

p(l,l+1):L, p(l,1-1) = whenl€e{l,...,K—-1};

A+

A
p(K/K)_m/ p(K/K_l)_A_i_ 7

/\ 7

\t+
= =
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let g(I; K) denote the expected number of jumps of this Markov chain until it hits zero for the first time when the ini-
tial state is / and the threshold is K. Conditional on the first jump, we obtain the following relationship for g(/ : K):

g(LK) = —g(l+1 K)+—g(l—1 K)+1, whenle{l,..., K—1};

K= ok H 1 :
g(K/K) —A+H8(K1K)+A+yg(l< 1/K)+l/

together with the condition g(0; K) = 0, we can solve for g(/; K) and obtain

AMu+1 [ (A\K
§K) = A/u—1<(u> _1>’ HEH

2K, A=u,

andforalll < <K,

=[O 200 e
12K —1+1), A=

From the transition probabilities of the Markov chain, g(n : K) is also the expected number of services and arrivals
of the corresponding M/M/1/K queue with arrival rate A > 0, service rate y > 0, and initial queue length ! during
the busy period that is initiated with 7 customers in the queue. Because each arrival must also be served when the
Markov chain hits zero, E[7%!] < ¢(I;K) < 2E[tX!] + K. Therefore, g(/; K) serves as an upper bound on E[7X]. This
upper bound is tight in the sense that ¢(/; K) is at most 2E[t%/] + K. O

Lemma 1. For j > eK, we have the following:

1. When K >0,
G = (R+5) B+ 4 Db+ 1+ KGR IPIEL)
2. WhenK =0,
G = (R+5 )R 1+ Copplel )+ (R 5 ) 1+ KOst K (IPIEL
here,

Cs:= (1 +l1)ll—/\.
u

The function g(I; K) is defined in Proposition 7 and is O((A/ y)K +K?) foralll < K.

Let #/ denote the total number of customers that arrived until the beginning of the jth batch, and L := min{n|
Quit1,+n = 0}. Recall that 5] denotes the event that phase 1 happens during the jth batch. Using (12) and observing
that regret accumulates in G’ only when S] happens, we have

. w+l B . ‘
G < ( ) [Z 115, <ky = o<y +1Qi = Qil 5’1]11’[571]
i=n/+1
C nf+ll+L; | |
+<R+X>E 3 Mg xy— Lkl +1Q—Qil|&] | PIE]]
i=n+l+1

(1) + (10).

Note that (I) is a bound on the regret accumulated during phase 1 of the jth batch (when it occurs) and (II) is a bound
on the regret accumulated in phase 2 of the jth batch until the queue is emptied for the first time in this phase 2.
When K > 0 or K = 0, we can follow the same logic to bound (I), that is the regret accumulated during phase 1 for
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j> eK:
C nf+11 C o i
(I < ( ) S (1+K+4)|P[E)] < <R+X) B+ (K +1)h)PE].
i=n/

Now, we bound (II) in the case K > 0. We use K*(j) to obtain a bound on the queue length difference of the two sys-
tems as well as the expectation of L. The queue length of the learning system at the beginning of each phase 2 is at
most /; because the queue length of the learning system is zero at the end of the previous phase 2. Moreover, the
threshold used by the learning dispatcher in the jth batch is bounded above by K*(j) > I;. Hence, the queue length of
the learning system is bounded by K*(j) during phase 2. Consider a system S, that uses the admission policy with
threshold K*(j) and is coupled with the learning system according to Section 2.2.1. Assume that the initial queue
length of S, is the same as the queue length of the learning system at the beginning of the jth phase 2, which is at
most [;. Note that the threshold used in the learning system is less than or equal to the one used in S,. Let T denote
the total number of arrivals during the first busy period of the system S,. Using Proposition 2, we get Q; < Q” for
Wal+1<i<n+h+L}, and E[L] |€’ ] < E[zK(Vh]. Using Proposition 7, and together with the upper bound
K*(j) of the queue length of the learning system, we get

(I < < )(1 +K(f)E[ L] |£] ]IP’[S’] < <R+ )(1+K*(]))g(ll,K*(]))lP’ é’]

where F(j) is defined in the statement of Lemma 1.
Together, we have the following bound for G] when K > 0:

Gy < (R 5)(6+ @ o 1+ 4K KGRI

In the case of K =0, we take a slightly different path of analyzing (II): we consider the threshold used in the jth
phase 2 to get a better regret bound compared with using the same argument as in the case K > 0. We have

W+l +L
C ' _ o o
(H):(R+A>E Y NG gy~ Loyl +1Q:— Qi€ N & | PIE; N &)
i=n/+1l+1
Wl +1
c 1 35 i~y lpre A ey
F(RATIEL D Mgy~ Tia<kal +1Qi = Qil|E) N (&) [ PLE N (€))]
i=n/+l+1

< (R+5)a+weilie nepie ey
( C y il i\ £f i\
; R+X) (1+ K GNELL 18] 0 (E)TPLE] 0 (€))°]
. ( )(1 N zl>“_"p[gg] . (R +§) (14 K ()3l K GIPLE)]

The first follows because the total number of customers admitted in phase 1 is /; and in the case K = 0 and under &, ,
the threshold used in phase 2 is zero. Under 5] N 5]2, the learning system does not accept any new customers to the
queue, and E[E] neé »] is the number of arr1vals during the period of serving all the remaining customers in the
queue. Observe that the queue length of the learning system at the beginning of phase 2 is at most I;; condltloning
on the time used to serve [; customers, we get the desired bound on E[&] N &}]. The bound on IE[L] |} N ()] fol-
lows the same logic as the bound of ]E[L] |€,]. Combined with the bound for (I) we get the desired result. O

We observe that, under the event 5] N 5]3, there is no regret accumulated in G): indeed, under the event
(8] )N 5] N 6’]3, the dispatcher of the learrung system and the dispatcher of the genie- alded system make the same
decision on every arrival customer in phase 2 of the jth batch. As a result, their queue lengths are matched and there
is no regret accumulated during this exploitation phase, thus, also no regret accumulated in G,. The threshold used
in phase 1 can be considered as the maximum allowed value, namely, K*(j)(> 1), because all the arriving customers
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during phase 1 are admitted. Under the event £, the threshold used in the jth phase 2 is the same as the genie-
aided system. Therefore, under the event & N &, N &, although phase 1 of the jth batch happens, the queue length
at the beginning of the jth batch is the same for both systems, and the thresholds used in the learning system is no
smaller than the threshold used in the genie-aided system. The coupling between the learning and genie-aided sys-
tems preserves the order between the queue lengths of the two systems as proved in Proposition 2: when the queue
length of the learning system hits zero the first time after phase 1, the queue length of the genie-aided system is also
zero. Therefore, under event 5] N 8] N 5]3, after the queue length of the learning system hits zero after phase 1, the
queue lengths of the learning and geme-a1ded systems are matched, and no regret is accumulated in G]

The next proposition shows that the probability of the event & N &, is high. We use De Morgan'’s law to get an
upper bound on the probability of this event by using already characterized bounds on the probabilities of a few
events.

Proposition 8. Fixj > [eXY. Then, we have the following:
1. Inthe case K >0,

PI(€) N €5)°] < Cr exp(=Caln™™(})) + C1 exp(~Coln'**( ~ 1))
+C3 eXp(—C4,Bj) +C3 exp(—C4ﬁ],71) + (Cf)“/—llz.
2. Inthecase K =0,

P[() N E))] < C1 exp(—Caln'*(j)) + C5 exp(—Cap)).

The constants Cq, Cy, C, and Cy are defined in (16) and (17), and

K
S
g =1 ()\ " y) €(0,1).

We first consider the case K > 0. Let &, denote the event that the queue length of the genie-aided system hits zero
during phase 2 of the jth batch. The probability that at least K potential services occur between two consecutive
interarrivals is 1 — cz. Because the genie-aided system is an M/M/1/K queue, there are at most K customers in the
queue. Because the total number of arrivals during the phase 2 of the jth batch is at least a;l>, we get

P[(£})] < (cp)™".
By Corollary 1, we have
P 1ES"] < PIET) 16T < ()™ ™.

Using De Morgan’s laws, we can rewrite the event (Sj2 n Sé)c as (f,’é)c u (Sé)c, and by using Corollary 2 for j > ek, we
obtain

P(€, N )] < PI(EL)] +PI(E, ) +PIEL) 1€ ]
< Cy exp(—C; In'*(j)) + Cy exp(—C, In'*(j — 1))
+C3 QXp(—C4ﬁj) +C3 exp(—C4‘B]._1) + (Cf)a];llz.

In case that K = 0, the queue length of the genie-aided system is always zero, and 5]_;, happens with probability one.
Hence,

PI(E) N €)= P[(€5)] < C1 exp(~C2 In"*() + C5 exp(~Cap)).

This completes the proof. O

Next, we estimate G,, which considers the regret accumulated during the jth batch after the first time the queue
length of the learning system hit zero during the jth phase 2 if there is a phase 1 and considers the regret accumu-
lated during phase 2 if phase 1 did not happen. As we mention before, only under the event (£, N &), regret is
accumulated to G).
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Lemma 2. Forj > ek,
G < (R N )((1 SR Gayla + (1 + KK (K (BLE N €5,

with (1; K) defined in Proposition 7.

Let i/ denote the total number of customers that arrived until the beginning of phase 2 of the jth batch. Note that,
when phase 1 did not happen in the jth batch, i/ = n/, and when phase 1 happened, 7t/ = #/ + I;. However, because
we are analyzing the regret accumulated in phase 2 because of using an incorrect threshold and not conditional on
having a phase 1 or no, using it/ gives simpler expressions during the analysis. By its definition, G] takes into con-
sideration only part of the regret that is accumulated in phase 2. Because we are interested in fmdmg an upper
bound, we double count parts of the regret that are already considered in G in the case that there is a phase 1 and
compute the regret accumulated during phase 2. Set L, := min{n|Q,, L = = 0}. This is the total number of arriving
customers beyond the first a;l» ones during the exploitation phase for the jth batch. Using (12) and (é'] N&L)°, we
get

i=n/+1

C W +ajl+L
+ <R+X>E Z 10, — Qi L nelyy

C il +aly+L
] o
G, < <R +X>E Z |]1{§,.<f} — Lig <k |]1{(£’205f3)5}

i=n/

= (R + %) (D) + (IV)).

In what follows, we bound the two expectations on the right-hand side (RHS). For the first expectation, because
1 ©,<% — L@ <Koy | <1, after splitting phase 2 into two parts, we get

i+l il +al+L,
D <E| D Lgngy | YE| D Leneiyy

i=i/+1 =i/ +ajl+1

=K [a]lzﬂ{(gémggy}] +E |:L]2 ﬂ{(ﬁéﬁgg)c}}
= L P[(E) N EYT+E[LL (&, N ETP(E, N &Y.

Using a similar way of analyzing LQ in the proof of Lemma 1 but comparing with a coupled system that uses thresh-
old K*(j) and having initial queue length K*(j), we get

E[L}1(&) 0 €5 < BITXOX0] < g(K* () K (7).
Together with the preceding inequalities, we get a bound for (III):
(I < (ajly + g(K*(); K*G))PL(E, N EL)°].
We can split (IV) in a similar manner as before, and then, together with Q; < K*(j), we have
il +ayly il +aglp+L,
) <kO(E| > Lieneyy | +E > Leinely)
i=i/ i= nfac]lz
< K (i) @l + g(K* (1) K ())IPL(E, N EX)°].
Combining the bounds for (III) and (IV), we get
i C /. s yy e i i \C
Gy = (R )@+ Koyt + (L + KGR () K GIFLE, 0 €]

And g(I;K) is defined in Proposition 7.
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Before proving the regret bound for Algorithm 1, the following remark gives an upper bound on the regret accu-
mulated during the first | X | batches in which the upper bound of the threshold used in the phase 2 of the learning
systems may be smaller than K.

Remark 2. Recall that the queue length of each batch does not exceed K*(j) in the jth batch. Following the defini-
tion of K*(j), when j > [eX], K*(j) > K +I; + Qo > K. The regret accumulated during the first [eX | batches is at the
most

[eK]
Go := (R + i) > (K () + K+ 1)1 + ajly + (K (7); K*(j)),
j=1

where g(I;K) is defined in Proposition 7. This bound is loose because it assumes that phase 1 happens at each batch
and a worst case assumption of regret being accumulated at all times is enforced. Note that the bound is a finite
function of the system parameters.

4.3. Proof of Theorem 1
In the case that K > 0, using Inequality (19) and Lemmas 1 and 2, we have

[N/l>] C [N/I]
Z G] + G]2 < <R + > Z (l2 + (K + D)L +(1+ K*(]))g(ll,K"(])))IP’[E’]
j=1eK] j=leK1

C [N/L]
* ( ) > (@ +K eyl + 1+ K () GLK EIE N ENT

j=lek]

Substituting values/bounds for IP’[é’]i] and IF’[(SQ N Eé)c] from Corollary 2 and Proposition 8, we get
NGBl
> G +G)
j=Tex]

()

[N/L] C
<> (R + )(z2 +(K+1)h + (1 +K()g(h, K (,))) (C1 exp(—Ca In'*(j)) + Cae~ 1)

[N/L] C
+ > (R + )(1 + K (7)) (al2 + g(K*(j), K (7))
j=Tek1
x (C1 exp(—CaIn'™(j — 1)) + C1 exp(—Cy In'*(f)) + Cse™ i + Cze™ i1 + (cp) 1),

where g(I; K) is defined in Proposition 7 and is of order O((1/ y) + K?). Recall that [ All terms involved are par-
tial sums of convergent series when a; increases to infinity as a function bounded by polynomial in j. Therefore
limy—co G(N) is bounded, and the proposed algorithm achieves O(1) regret in the case that K > 0.

4.4. Proof of Theorem 2
Similarly to the proof of Theorem 1, using Inequality (19), Lemmas 1 and 2, Corollary 2, and Proposition 8, we have

S Gi+Gh< Y (R 1“(])

j=le¥T j=leK1

[N/l]
# 3 (R )0+ K, KGN expl-Caln™ () + Ca expl(~Ca)
j=lek1

IN/L]
+ ) (R +

j=lekT

[N/LT ) rN/lz]< C> (12 PPN L)
1 5

>0

)0+ KGNt + 90K G K GINCr exp(-Ca In™™ (1) + Cs exp(-Caf).
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The dominant term on the RHS is

[N/ €+
Z (R+%>(l%+ll +C5)ln (]).

=1k J

When N is large, we have

[N/L1q e(:
Z; 1“—(’) = O(In""*(N)).
J=

Hence, the regret for K = 0 is of order O(In'¢(N)).

Remark 3. We mention earlier that one can adapt the analysis to the case when only the service rate is unknown
or only the arrival rate is unknown by adjusting the probability of the learning system using the optimal thresh-
olds in phase 2 and receiving similar regret bounds. As shown in the preceding proof, in the case when the opti-
mal threshold is zero, the reason why the regret is O(In'**(N)) is that phase 1 is likely to happen infinitely often
so that enough samples of the service rate can be obtained. This explicit exploration phase is necessary when the
service rate is unknown. However, when only the arrival rate is unknown, the learning system always obtains
free samples for the arrival rates whether accepting customers to the queue or not. In this case, it is unnecessary
to explore explicitly so that an O(1) regret results similar to the case in which the optimal threshold is nonzero
when one always omits phase 1 and only the arrival rate is unknown.

Remark 4. The preceding regret analysis shows that we can obtain constant regret for the case in which the opti-
mal thresholds are nonzeros and an O(In'*(N)) regret when zero is an optimal threshold for any fixed € > 0.
From the proof of Theorem 2, the order of the regret is a result of explicit exploration as it is the dominant term.
One natural question is the following: can we further reduce the order of the regret in the case that zero is an
optimal threshold, preserving the constant regret in the case that the optimal threshold is nonzero if we reduce
P[B/ = 1], the probability of having phase 1 when the previous phase 2 uses threshold zero? Following the steps
of our proof, we can show that having P[B/ =1] =In(In(j))/j results in regret accumulating slower than
O(In'*¢(N)) for any € > 0 in the case that zero is an optimal threshold and constant regret in the case that the opti-
mal threshold is nonzero. However, this result holds for large enough N as the finite time performance of using
P[B/ = 1] = In(In(j)) /j may not outperform our discussed choices for P[B/ = 1] as it requires j to be extremely large
(but still finite) to show improved performance.

Remark 5. We believe that the dramatically different behaviors for our algorithm between cases when zero is an
optimal threshold and when it is not are fundamental to our problem owing to completely different demands in
two parameter regimes: in one case, no customers should be dispatched at all versus the other case in which
asymptotically a positive fraction of customers are dispatched. Hence, we conjecture that, for any given learning-
based dispatching algorithm, the regret accumulated would grow at least at Q(In(N)) when the parameters are
chosen in an adversarial manner. Note that our algorithm satisfies this conjecture. We argue later on in Section 6
that a UCB scheme has a worst case regret over parameter choices of Q(In(N)).

5. Nonunique Admittance Threshold Case

When the dispatcher uses a static threshold policy, the queue-length process is Markovian and ergodic. Naor (1969)
shows that the social welfare (long-term average profit in (1)) is maximized when using the static threshold K that
uniquely satisfies (3) by analyzing the stationary distributions of the queue-length process for all possible static
threshold policies. When (3) holds with equality and K > 1, static thresholds K and K — 1 are both optimal, and fur-
thermore, policies that (stochastically) alternate between the thresholds K and K — 1 with a fixed probability yield
the same long-term average profit, that is, are optimal for the ergodic reward-maximization problem. This compli-
cates our regret analysis as we need to pick a specific ergodic reward-maximizing policy for our regret analysis.

In Section 5.1, we analyze the learned threshold; in Section 5.2, we introduce the specific ergodic reward maxi-
mizing genie-aided dispatcher with which we compare, which we label the alternating genie-aided dispatcher, and
finally, Section 5.3 is devoted to the analysis of the regret of the learning algorithm compared with the specific
genie-aided dispatcher introduced earlier.
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5.1. Threshold Used by the Learning Dispatcher in Phase 2

Following Algorithm 1, the threshold used by the learning dispatcher in the jth phase 2 is K(j) = min(K*(f), K),
where K is the unique integer that satisfies the inequality V(K,1/1,7) < R/C < V(K+1,1/11,1/79), where 11 is the
empirical average service time and 7 is the empirical interarrival time computed using all completed services and
observed arrivals before each phase 2. As mentioned earlier, the threshold is fixed throughout each phase 2. Propo-
sition 1 implies that, as long as the estimations are accurate so that Inequalities (6) are satisfied and when j > [eX],
the learning dispatcher would use a threshold in {K,K — 1} during the jth phase 2. Proposition 3 still holds when
equality holds in (3). Unlike in the previous case in which we show that, eventually, the learning dispatcher uses
the same threshold K as the genie-aided dispatcher in phase 2, we now show that, as the number of batches goes to
infinity, the learning algorithm (eventually) stochastically alternate only between the thresholds K or K — 1.

We first state the analogues of Propositions 4 and 6 and Corollary 2.

Proposition 9. Let 1i(j) denote the empirical service time estimated by the learning dispatcher at the beginning of phase 2
of the jth batch. For the proposed algorithm, in the case that V(K, u, A) = R/C, we have,

P[|1(j) = m| > A] < Crexp(—Caln'*(j)), (22)

where

-  Gole) \  2exp(A;/(8m?)
o max{eXp< sea) exp(A2/(m2) —1' 1}’

~2
N . Ly 1 hpd,
= i

C, mm{16(1+€)(/\+u)' 8(1+¢€)” 32(1+e)m(Am+1) [’ (23)

with Ay := min{8y,2m}, and & is a constant for the first inequality in (6), which is one part of the condition needed to reach
the conclusion in (7).

Proof. The proof is the same as the proof of Proposition 4 but with different constants. O

Proposition 10. Let v(j) denote the empirical interarrival time estimated by the learning dispatcher at the beginning of
phase 2 of the jth batch. For the proposed algorithm, in the case that V(K, u,A) = R/C, we have,

P[|v—9(j)| > As] < Cs eXP(—Qﬁj)/
where

i “2 i =2
Cs:= 2 eXPZ(AZ/(&/ ) and  Cy:= llA;,
exp(Ay/(8v2)) — 1 8v

(24)

where f; is defined in Proposition 6, and Ay := min{d,,2v}, where 5 is the constant in the second inequality in (6) that is the
second part needed to reach the conclusion in (7).

The proof is the same as the proof of Proposition 6 but with different constants.

Corollary 3. For the proposed algorithm, when j > |'eE'|, in the case that V(K, u,A)=R/C,
P[{K(j) # K} N {K(j) # K — 1}] < C1 exp(—C; In'*(j)) + C3 eXp(—Qﬁj), (25)

where Cy and Cy are defined in (23) and C3 and Cy are defined in (24).

Proof. The proof for this proposition follows the same logic as the proof of Corollary 2 but with different
constants. [J

Corollary 4. In the case that V(K, i, A) = R/C, there exists a random index J that is finite with probability one, where the
learning algorithm uses threshold K or K — 1 after the Jth batch.
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We show that the learning algorithm uses thresholds that are not K nor K — 1 only finitely many times with prob-
ability one. From Corollary 3, when K > 1, we have

D PIHK(j) = K} U{K() =K = 1})] < Y " Cy exp(—Cy In"*(j)) + C5 exp(—Cyj?) < oo.
=1 =1
By the Borel-Cantelli lemma (see Durrett 2016), we have

P |lim sup ({K(j) = K} U {K(j) =K —1})°| =0,
j—ooo
that is, with probability one, the learning algorithm uses thresholds not in LKK —_1} only a finite number of times.
Thus, almost surely, the learning algorithm uses the optimal thresholds K and K —1 after a finite random time.
When K =1, a similar proof holds. [

5.2. An Alternating Genie-Aided Dispatcher Coupled with the Learning Dispatcher That Maximizes the
Long-Term Average Profit

If we compare our learning algorithm with a genie-aided system that uses a static threshold K (or, alternatively,
K — 1), the regret is not constant even when K > 1. The reason is that the learning dispatcher may switch between
the thresholds K and K — 1 in different phase 2s even when 11 € (m — €,m + €), where € is sufficiently small. How-
ever, we can compare the queue-length process under the learning dispatcher with an optimal genie-aided dis-
patcher to which we refer as the alternating genie-aided dispatcher: a dispatcher that may change the threshold
used between K and K — 1 at the beginning of any busy cycle (a busy period plus an immediately following idle
period). We ensure that the threshold-changing policy of this alternating genie-aided dispatcher is adapted to the
filtration generated by the queue lengths of the two systems and the random variable B/ with the threshold remain-
ing unchanged during each busy cycle. It is worth mentioning that, although the learning dispatcher may compute
and change the threshold at the beginning of each phase 2 (which may involve multiple busy cycles), only the
genie-aided dispatcher may change the threshold at the beginning of a busy cycle. This alternating genie-aided dis-
patcher is aware of the fact that the learning dispatcher follows Algorithm 1 and can compute the threshold learned
by the learning dispatcher. This alternating genie-aided dispatcher is coupled with the learning dispatcher under
the coupling described in Section 2.2.1. Moreover, when a customer arrives, having seen the realization of B/, this
genie-aided dispatcher is aware of whether this customer arrives during a phase 1 or 2 of the learning system and
picks the proper threshold to use when this customer initiates a busy cycle.

Recall that K; denotes the threshold used by the learning system at the arrival of the ith customer. Following
similar notation as in Section 2 for the alternating genie-aided dispatcher, let K; denote the threshold policy
used at the arrival of the ith customer, Q; denote the queue length right before the arrival of the ith customer,
Q(t) denote the queue length at time ¢, T8 denote the time of the beginning of the nth busy cycle, N 4(78) denote
the index of the arrival customer who arrives at the beginning of the nth busy cycle, N(t) denote the total num-
ber of completed busy cycles up to time £, and K" denote the threshold used during the nth busy cycle; note that
78 = 0. At the beginning of each busy cycle, the alternating genie-aided dispatcher then chooses a threshold
K" € {K,K — 1}, where we have

K-1, ifn=1,
kK"=J)K-1, ifn>1and {Kiy ) < K —1 OR customer N 4(78) arrives during phase 1}, (26)
K, if n>1and {Ky, s > K AND customer N (z5) arrives during phase 2}.

That is, when the customer who initiates a busy cycle in the genie-aided system arrives during phase 1 of the learn-
ing system, the genie-aided dispatcher uses threshold K — 1 in the initiated busy cycle. When the customer arrives
during phase 2 in the initiated busy cycle, the genie-aided dispatcher uses a threshold from {K,K — 1} that is closer
to the threshold used by the learning system. This threshold choice helps to preserve the queue-length ordering
under desired events as explained in Section 5.3. In other words, for customers 7; and i who arrive during the nth
busy cycle, that is, Na(t?) < iy < iy < Na(t,,), we have K;, = K;, = K". This switching policy is adapted to the fil-
tration generated by the queue lengths of the genie-aided and learning systems. Because the learning algorithm
always has the first exploration phase, we set K =K -1

The following proposition shows the optimality of the alternating genie-aided dispatcher described earlier using
the strong law of large numbers for martingales.
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Proposition 11. Consider a dispatcher that uses a static threshold policy, either K or K — 1, during a busy cycle and may
switch between these two thresholds only at the beginning of a busy cycle following the switching rule described in (26). The
long-term average profit of the system under this dispatcher is the same as a dispatcher using either one of the static thresh-
olds K or K — 1.

Assume the initial queue length is somea € {0, 1,..., K}, where the particular value doesn’t impact the asymptotic
results. We are interested in finding

1 Na®) -
lim inf> (”R+ ,Z;R]I{Qiskf} - /0 CQ(u)du
i=

1 Na(eh)-1 ey
= hm mf aR + Z R]l <Ky T / CO(u)du
0

N(t) NA(T;Hl) 1

|
+111tr_1)ionf? Z Z Rl 7y /B CQ(u)du)

1 NA(t) t 5
+ lllgrl)ionf? Z R]I{Q ~N(t)+1} /B CQ(U)dU . (27)

i=Na (8 ) TR

N(p+1

Let the tuple (X, B,,) denote the total net profit and duration of the nth busy cycle under this dispatcher. For the first
busy cycle, we have

NA(Tg)fl T123 .
X1:=aR+ Zl: R]].{Qiskl} — /0 CQ(u)du, and By := 5.
i=

Forn > 2, we have

NA(TﬁH)?l TEH ~
X, = Z R, <k = |, CQ(u)du, and B, ==, — 5.
f:NA(Tn) T

We can rewrite (27) as

N() Na(t) t 5
lntllx}onft X, + hm 1r1f¥ X1+ Z R1 @, <KNOy T /B CQ(u)du
n=2 i=N4(t

8
N(t)+1) N(t)+1

When the initial queue length is finite, E[ 31 ] and E[(531 )?] are finite; see Takagi and Tarabia (2009).

Let (Y, ¢ B denote the total net profit and the duration of the nth busy cycle of a dispatcher that uses static

threshold K and with initial queue length one, and let yK(t) denote the accumulated total net profit of this dis-
patcher up to time t. Setting the initial queue length to one is owing to a generic busy cycle starting as such. The ran-
dom variables (Y iK,5 . are iid., and YX(t) is a renewal reward process, see Durrett (2016, section 3.1). Similarly,

we can define (YK 1 BK 1) and yK L(t) for a dispatcher that uses static threshold K — 1. Naor (1969) shows that
there exists a constant (’) denoting the optimal long-term average profit of the dispatcher, for which, with probabil-
ity one,

1.7 1.7
lim ;yK (t) = lim gyK—l(t) =0.
By the renewal-reward theorem (Durrett 2016, section 3.1), we have
E[YN] =E[B{]0, and E[Yf'=E[5 0

Let F,,_1 := F ., denote the sigma-algebra generated by the queue-length process of the coupled learning dispatcher
and the dispatcher described in Proposition 11 up to time 72 (the end of the (n — 1)th busy cycle of the dispatcher
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described in Proposition 11). By the independence of the Poisson arrival and Poisson potential service process, the
distribution of (Xn, B,) conditioned on F,_; is the same as the distribution of (Xn, B,,) conditioned on the filtration
generated by K". Moreover, for n>2, (X,,B,) cond1t1oned on the event {K" =K} has the same distribution as
(YK,BK) and (X, B,)) conditional on the event {K — 1} has the same distribution as (YK 1 BK b, Using these,
fori>2, wehave

E[B,] = E[B,|K" =K|P[K" = K]+ E[B,|K" =K —1]P[K" =K — 1]

= E[BNIP[K" =K +E[BX'P[K" =K — 1],
and similarly,

E[(B,)°] = E[(B,)*|K" = KIP[K" = K] + E[(B,)*|K" =K = 1]P[K" =K - 1]

= E[(BYPIP[K" = K] + E[(B 'VIP[K" =K — 1].

Both ZS’E and B{?f1 have finite first and second moments Takagi and Tarabia (2009), and thus, so does B;.
Let N, denote the number of the customers joining the queue during the nth busy cycle under the dispatching

oin
policy described in Proposition 11. Observe that the total number of arrivals joining the queue and services are
equal during a busy cycle except for the first one for which there are exactly a more service completions than the
number of customers joining the queue during the first busy cycle. When there are at least K potential services
between two consecutive arrivals, the queue length under the dispatcher described in Proposition 11 hits zero, and

a busy period ends. Therefore, for any integer M, we have

E M
" B
P[Njpin > M] < (1 <A+y) ) ,

which then implies that the random variable N ; has finite first and second moments.
Because | X, | < RN]om +CKB, as., foralln >2,and |X;| < RN]Om +aR + CKB a.s., we can conclude that X, also
has finite first and second moments, and it is clear that, with probability one,

1 NA(t) t 5
lim g\fE Xq + ~Z R]I{Q gon =~ |, CO®u)du | =0.
n:NA(rﬁmm) TN+

For almost every sample path, there exists t* such that N(t) > 1 for all t > #*, and we have the following upper and
lower bounds with probability one:

1 N(t) 1 N(t) Nt
hrtrL ionf WZ X, < llrg ionf Z X, < h?_l) gonf R 5 Z
Z B;'w=2 Z =2

We show lim inf;_,.(1/ t)zl,jz(;) X, = O a.s. by showing that, with probability one, both
N(t)
h?li? W;Xﬂ = O, and (28)

N(#)

1
lim inf———— % X, = O, (29)
m e,
Note that we have
1 N(t) ZN(t) B, 1 Nt
lim inf N+ ZX" = lim inf N1 N ZX"
Z " n=2 Z =1 Bﬂ Zn:Z B" n=2
N +1 NOB, N -1 1 Mo
— lim in (t) + % don % (t) Z ;

n n=2

t—o0 ZN(t)+1 B, N(t) -1 N(t) +1 er?:(tz) B



Cohen, Subramanian, and Zhang: Learning-Based Optimal Admission Control
96 Stochastic Systems, 2024, vol. 14, no. 1, pp. 69—-107, © 2024 The Author(s)

We can also rewrite (29) as

N(t)
N - Z(x — B,0)=0

fim In SN0 g, N(t) 1

Note that limy_, N(f) = 00 and limy_,c ZN(” B, = o0 a.s., which, in turn, imply that a.s. we have

lim i f% = inf — = lim inf g) ! and lim N — im Ili_—l =1
[ an(l) B, k—o0 Zn:l B, t—00 Z ()B f—o0 N(t) + 1 T howk+1
Then, in order to establish (28) and (29), it is sufficient to show that, with probability one,
hm mf—Z(X - B,0)=0, and (30)
0 < lim inf < lim sup < 00, (31)
koo Y B koo Doy Ba

We prove (30) by using the strong law of large numbers for martingales (Csorgs 1968, theorem 1). Let M =
Zn »(Xy — B,O) fork > 2, My = 0. Clearly, E[ |[M|] < oo forall k. Also,

E[Mi1 — Mi| Fi] = E[ X1 — B O F¢]
_k
= E[Xk+1 - Bk+1O|K ]

Pkl E[YK BKO] +1 ~k+1

L E[YK - BX1o] = 0. (32)

=K-1}
The second equality follows because the distribution of (Xn, B,) conditioned on F,_; is the same as the distribution
of (X, B,) conditioned on the filtration generated by K" foralln>2. Therefore, we have shown that M; is a martin-
gale with respect to filtration { ¥}, with martingale difference sequence X; — B;O for k > 2.

Next, we show that Y7, k2E[(X) — BrO)?] is finite. For k > 2, we have

Na(t},)-1 w :
E[(X¢ — B:O)’] > Rig gy / CQ(u)du — B,O
=N a(tP) T
Na(rf,)-1 2 ™, 2
> RL o o | + ( / CQ(u)du+BnO>
i=N 4(cP) T

E[RA(N ) + (B)X O+ CKY,

join
where we recall that N oin denotes the customers joining the queue during the kth busy cycle and By = wh, — 1P is
the duration of the kth busy cycle When k > 2, both Nj;, and By have finite second moments that do not depend on
k so that 31, k~2E[(X; — ByO)*] < 0. Therefore, by the strong law of large numbers for martingales (Csorgd 1968,
theorem 1), (30) holds.

Next, we prove (31). Consider a dispatcher that uses the static threshold policy K, which is coupled with the dis-
patcher described in Proposition 11, and also has initial queue length a. The duration of the nth busy cycles of this

dispatcher is denoted B_I:. The random variables B’I;s areii.d. forall n > 2. Although having a different distribution,

B‘f is independent of BIZ foralln > 2.
Using Proposition 2, observe that, on any sample path, when the dispatcher that uses the static threshold K has
experienced k busy periods, the dispatcher described in Proposition 11 has experienced more than k busy periods.
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Thus, we can conclude that, with probability one,

k K k
2 Biz) By
n=1 n=1
for all k. Moreover, because BKs have f1n1te first moments (Takagi and Tarabia 2009) and are nonnegative, they are
finite a.s. Therefore, limy_,o, k/ Zn -1 B =1/ IE[BK exists a.s. and is strictly positive. Therefore, with probability

one, we have

1
lim inkaz lim —= —> 0.

k—o0 anl Bn k—o0 2221 BIn( E[Bé(]

Similarly, comparing with the dispatcher using static threshold policy K — 1 that is coupled with the genie-aided
dispatcher described in Proposition 11, with probability one, we have

. k , k 1
lim sup < lim < co.

. —
koo Doy By Foosk R TR

The last two results imply (31). Then, (31) and (30) prove the desired result. O

Remark 6. When there exists a unique optimal threshold policy, the definition of regret is straightforward and
without any ambiguity. However, in the case in which there are multiple optimal threshold policies, we need to
define the regret with respect to one of the optimal policies. Proposition 11 shows that the alternating genie-
aided system is asymptotically optimal for almost all sample paths in the sense that it achieves the same long-
term average profit as the system that uses either static threshold K or K — 1 starting from the beginning. The
total net profit achieved by this alternating genie-aided system up to time T is not necessarily equal to the total
net profit achieved by the genie-aided system using static threshold K or K — 1. These three policies (including
the two static policies) do not necessarily achieve the same net profit up to time T on given sample paths of the
arrival and service processes. Note that, by Proposition 2, the net profit process of the alternating genie-aided
system during any busy cycle is either the same as the gain of one of the systems using static thresholds K and
K —1 or the net profit during the busy cycle is no smaller than the gain in the system using the static threshold
K: consider the case that the alternating system switches from using threshold K — 1 to K and the queue length
hits K during the current busy cycle. This is the only case in which the behavior of the alternating genie-aided
system may be different from the two systems using a static threshold. However, during the time between the
switch and the time that the queue length of the alternating system hits K in the current busy cycle, the queue
length of the system using threshold K is greater than or equal to the queue length of the alternating system.
Moreover, the number of customers being served is the same for these two systems (in the current busy cycle). A
similar but opposite comparison can be made with the system using static threshold K — 1. In fact, the total net
profit achieved (as a function of time) by the two systems using the static thresholds K and K — 1, respectively,
are not necessarily equal on given sample paths of the arrival and service processes either. We expect that the dif-
ference between the net profit of pairs of such systems obeys a central limit theorem behavior (including a func-
tional form of the central limit theorem) when appropriately normalized and scaled (in time).

Take as a concrete example the situation in which K = 1 and K — 1 = 0 are both optimal thresholds and assume
that the initial queue length is zero for both systems. Using the inequalities in (3), we get that these two optimal
thresholds only occur when C/u = R. The system that uses the static threshold zero does not admit any custo-
mers into the system and clearly achieves a total net profit equal to zero for any time T. The system that uses the
static threshold one admits a customer in the queue if and only if the system is empty when this customer
arrives. The busy periods of this system using the static threshold one are exactly the periods when a single cus-
tomer is served, and the expected net profit during any busy period of this system is R — C/u = 0. However, this
does not imply that the total net profit up to time T of the system using threshold one is zero. In fact, the differ-
ence of the total net profit between these two systems over the busy periods of the system using threshold one
is a sum of mean-zero random variables (with each random variable being R — C x S, where S ~ EXP(u) is the
service time of the customer in service), which, intuitively, leads to the claimed central limit theorem behavior.
Furthermore, by the (finite-time) law of the iterated logarithm (Balsubramani 2014), along (almost all) sample
paths, the difference of the total net profit of the two systems may grow at most as O(y/T In(In(T))) (with high
probability).
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For this example, we can also carry out an explicit analysis of E[G(t)], the expected total net profit up to any
time ¢ of the system using static threshold one. With the assumption that the initial queue length is zero, it is eas-
ier to consider the busy cycle as the idle period together with the consecutive busy period. Let (Y}, B}) denote the
total net profit and the duration of the nth busy cycle of the dispatcher that uses threshold one. As mentioned in
the previous paragraph, E[Y!] = 0 for all n. The random variables 5. are i.i.d. and have the same distribution as
A+S, where A is an EXP(A) random variable and S is an EXP(u) random variable independent of A. Let N(¢)
denote the number of completed busy cycles until time ¢, n(t) = E[N(t)] denote the expected number of com-
pleted busy cycles up to time £, o,(f) denote the residual service time of the current busy cycle at time ¢, and 7; =
Zf:](tl)ﬁ B! denote the end time of the current busy cycle. Recalling that the reward R is given to the dispatcher at
each service completion, we have

E[G(t)] = E[G(7)] — R+ CE[os(H)].

Note that n(t) is the renewal function of the associated (alternating) renewal process with renewal interval dis-
tributed the same as A + S. By standard renewal theory arguments, #(t) is finite for all f, and N() + 1 is a stopping
time of the sequence (Y., Bl). Applying Wald’s equality, we get

N(t)+1

E[G(ty)] = Z Yll = E[N(t) + 1]E[Y]] = 0.

Note that the distribution of o,(t) follows EXP(u): if at time f the busy period has not started yet, clearly the resid-
ual service time is an EXP(u) random variable. If there is a customer being served at time ¢, the busy cycle ends
at the completion of this service. Using the memoryless property of exponential random variable, the residual
service time is again an EXP(u) random variable. Then, using E[G(t;)] = 0, we get

E[6(D)] = E[9(1)] = R+ CE[os()] =0 =R+ C/u =0.

Despite admitting a customer when the queue is empty, the expected net profit at any time is exactly zero for the
dispatcher using static threshold one when both K =1 and K —1 =0 are optimal thresholds. We expect that a
similar but more complicated computation using renewal theory (as the memoryless argument no longer holds
for the busy period, which is now a phase-type distribution, plus we need to determine the remaining workload
to be served) can be carried out for systems using threshold K >1 and K — 1 > 0, when both are optimal thresh-
olds. We expect that, as t — oo, the expected total net profit of the two systems using static thresholds differ by at
most a constant, and so is the difference of the expected total net profit of the alternating system and the two sys-
tems using a static threshold. These questions are outside the scope of the paper and are left for future research.

5.3. Regret Analysis with Respect to the Alternating Genie-Aided Dispatcher
In Proposition 11, we prove that the alternating genie-aided dispatcher described in Section 5.2 that uses K and K — 1
in favor of the learning algorithm is optimal for (1). Next, we bound the regret of the learning dispatcher when com-
pared with this genie-aided dispatcher.

Recall from Section 5.2 that K; denotes the threshold used by the alternating genie-aided dispatcher at the arrival
of the ith arriving customer.

Following (12), we have
G(t) < (R + %) E

Similar to the earlier analysis, assuming that both systems start with the same initial queue length, we use G] to
denote the expected regret accumulated during the (potentlal) phase 1 and the first time the queue is emptied in the
consecutive phase 2 for the jth batch. Again, we use G to denote the expected regret accumulated in the remainder
of (the phase 2 of the) jth batch.

Set 5]2 = {K(j) = K} U {K(j) = K — 1}. We reuse the events 5] and é'j that were first introduced in Section 4. Recall
that 5] denotes the event that phase 1 of the jth batch happens and 5] ={Q, = Qn,} denotes the event that at the
begmmng of the jth phase 2 of the learning system, the queue length of the two systems are the same.

Only under the event &, is there a regret contribution to G (because, otherwise, phase 1 of the jth batch is omit-
ted, and the queue length at the beginning of phase 2 is Zero) Under the event (£})° N 5] N 53, there is no regret

Na(t)

> Mg, <y — Lig<kyl +1Q, — Qil |-
i=1
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contribution to GJZ: indeed, for this batch of customers, £, ensures the learned threshold is either K or K — 1. The
event (&))" ensures that phase 1 is omitted, so the queue length at the beginning of this phase 2 of the learning sys-
tem is zero. Moreover, &, ensures that the queue length of the alternating genie-aided system is also zero at this
time, which means that the arrival of the first customer of this phase 2 initiates a busy cycle for both systems. In this
case, the alternating genie-aided system picks the same threshold used as the learning system for all the busy cycles
in this phase 2. Both systems make the same choices of admitting each arrival in this phase 2, and the queue-length
processes of the two systems also coincide for the entire phase 2. Under the event & N gn 5]3, although phase 1
happens, Proposition 2 tells us that the queue length of the learning system at the end of phase 1is no smaller than
the queue length of the genie-aided system. The event 8 ensures that the threshold used by the learning system
during the entire phase 2 is no smaller than the threshold used by the genie-aided system (because the genie-aided
system would be either using the same threshold as the learning system when a busy cycle is initiated by a cus-
tomer who arrives during phase 2 or using threshold K — 1 when a busy cycle is initiated by a customer who arrives
during phase 1) when the queue length of the learning system hits zero for the first time after phase 1, the queue
length of the genie-aided system also hits zero. The next proposition gives a bound that holds in the current setting
for the probability of (Ej Nne,)r.

Proposition 12. Fixj> [eK. In the case that V(K, i, A) = R/C, we have the following:
P[(E], N L] < C1 exp(—Ca In'*<(j)) + Cy exp(—C, In'*(j — 1))
+Cs exP(—Qﬁj) +Cs exp(—(~34ﬁj71) + (c?)af—llZ_

C1, Co, C3, and Cy are defined in (23) and (24), and

X
. [
czi=1 (M#) €(0,1).

The proof for both cases K > 1 and K = 1 follows the same logic as in the case K > 0 in Proposition 8.

Because we are using I3, K*(j), and K to bound the queue length in the proof of Lemmas 1 and 2, these two lemmas
still hold when the optimal threshold is not unique. It should be now clear that Theorems 1 and 2 also hold when
equality holds in (3).

6. Simulation-Based Numerical Results
In this section, we demonstrate the performance of our proposed Algorithm 1 using simulations. To compute
the regret, we compare our algorithm to the genie-aided system that has the knowledge of the arrival and service
rates and uses the optimal strategy proposed by Naor (1969). For the simulations, we set the initial queue length
to be zero for both the genie-aided and learning systems. For all numerical experiments, unless specified other-
wise, we use the following set of parameters: [, =10, C=R =1, E[B] =1In())/j, @ =j, where recall that [, is the
minimum length of phase 2, C is the cost per unit time, R is the reward granted to the dispatcher when each ser-
vice completes, B/ is the random variable that controls the probability of having phase 1 when the threshold
used in the previous phase 2 is zero, and a; is the rate at which the minimum length of phase 2 increases. Note
that, unless specified otherwise, we use e=1 in E[B/] = In°(j)/j. We vary u and A for different experiments and
explore zero and nonzero optimal threshold cases as well as the cases in which the optimal threshold is unique
and when it is not unique. To show the pattern of the regret within a reasonable number of arriving customers,
when the largest optimal threshold is zero, we use [; = 1, and when the largest optimal threshold is positive, we
use I; =3, where [; is the length of phase 1 (when used), and stays unchanged for all batches. Our theoretical
analysis holds for arbitrary choices of the constants /; > 1. However, when [; is large and the service rate is small,
it takes a long time for the queue to empty during phase 2 and, therefore, requires more arrivals to show the cor-
rect asymptotic behavior of the regret.

The finite-time performance of the simulated results agrees qualitatively with our upper bound: when an optimal
strategy is to use threshold zero, the learning system achieves an expected regret that grows in a sublinear manner,
and when all optimal strategies use a nonzero threshold, the learning system achieves an O(1) expected regret.

6.1. Expected Regret with Nonzero Optimal Thresholds
Figure 1(a) shows the variation of the (expected) regret with respect to the number of arrivals for y=6 and 1 =6.5
when [; =3 and A=1. The regret is averaged over 1,000 simulations, and there are more than 2+ 10° customer
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Figure 1. Regret of the Learning System When All Optimal Thresholds Are Positive
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arrivals to the system. The optimal threshold is unique, and the genie-aided dispatcher uses the threshold K =5 in
both cases that are plotted in Figure 1(a). The initial upper bound is K*(1) = [;, which is smaller than the optimal
threshold but increases slowly so that eventually K < K*(j) for large j. As shown in the analysis and the numerical
experiments, the regret is O(1). Figure 1(b) shows the regret plot with respect to the number of arrivals for u=2,
A=1,and R=129/32 with I; = 3. The regret is averaged over 2,000 simulations, and there are more than 2 » 10° cus-
tomer arrivals to the system. In this case, the optimal threshold is not unique: both K — 1 =4 and K =5 are optimal
thresholds. The alternating genie-aided algorithm uses the policy that is described in Proposition 11 and only
changes the threshold used between busy cycles. Similarly, as in Figure 1(a), the learning algorithm is not able to
use K in the first few batches because of the truncation. The plots indicate that constant regret is accumulated, which
is consistent with our analytical results; interestingly, in all cases, convergence to the constant regret value happens
rapidly.

6.2. Expected Regret with Zero Being an Optimal Threshold

Figure 2(a) shows how the regret changes with respect to the number of arrivals for y = 0.8 and y =0.9 when/; =1
and A = 1. The regret is averaged over 2,000 simulations, and there are more than 10° customers arrived in the sys-
tem. In both cases shown in Figure 2(a), the genie-aided dispatcher uses threshold K = 0. Figure 2(b) shows the
regret plot with respect to the number of customers for =1 and A=1 when [; = 3. The regret is averaged over
2,000 simulations, and there are more than 2 = 10° customers arrived in the system. In this case, the optimal thresh-
old is not unique: both K — 1 =0 and K = 1 are optimal thresholds. The alternating genie-aided dispatcher uses the
policy that is described in Proposition 11 and only changes the threshold between busy cycles. The plots indicate
that sublinear regret is accumulated in all cases. Here, when the learning dispatcher uses threshold zero in phase 2
of a given batch, the existence of the forced exploration phase in the next batch results in regret being accumulated.
Note that, for all plots shown in Figure 2, the optimal thresholds can be used by the learning dispatcher in phase 2
right from the first batch.

6.3. Expected Regret with Different Choices of K*(j)

We introduce truncation with the parameter K*(j) in our analysis because we need a bound on the worst case queue
length for the learning system. We obtained a particular order of the regret with the choice of K*(j) = max{|In(;) ], 0}
+11 + Qo. Next, we explore the impact of different choices of K*(j) in Figure 3. We use ~ to indicate the order at which
K*(j) increases: specifically, K*(j) ~ f(j) means K*(j) = max{|f(j)],0} + I1 + Qo. The regret values are averaged over
2,000 simulations, and there are more than 3  10° arrival customers that arrive in more than 700 batches. In Figure 3,
we use u=3, A =3.5, and R=21. The optimal threshold is K =8. The M/M/1 queue with y=3 and A = 3.5 is not
stable. Despite this, Figure 3(b) suggests that constant regret is achieved for various truncation choices. However,
when no truncation is enforced, the regret accumulated seems to grow linearly with respect to the number of
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Figure 2. Regret of the Learning System When an Optimal Threshold Is Zero
(@)

30

(b)

25

20

averaged regret accumulated
averaged regret accumulated
o

SEM,; =0.8
——Mean ;. =0.8 5
210 SEM,: = 0.9 SEM, ;. =1
—Mean ,u=0.9 —Mean ,u =1
uO 075 ‘1I 1?5 2‘ 25 nD 0j5 1l 1.‘5 é 2.‘5 3I 3.5
number of arrival customer «10° number of arrival customer #10°

Notes. We set C=R =1, E[B/] =In(j)/j, K(j) ~ In(j) and a; =}. (a) A = 1, and the optimal threshold is K = 0. (b) A = 1, and the optimal thresholds
are {0,1; K =1.

arrivals; see Figure 3(a). This suggests that the truncation helps to ensure a lower regret, yet one may use a K*(j) that
grows faster than In(j). Confirming this through analysis is a topic to explore in future research.

6.4. Expected Regret with Different Choices of «;

We introduce a;l> to be the minimum length of phase 2 for the jth batch. Figure 4 plots the average regret accumu-
lated with different choices of a;’s. In particular, Figure 4(a) is the log versus log-log plot of the regret accumulated
when p =0.8, A =1 with more than 2+ 10° arrival customers, and Figure 4(b) plots the regret accumulated when
©=3, A = 3.5 with more than 10+ 10° arrival customers. We use a; ~ f(j) to denote a; = max{|f(j)], 1}. The regret is
averaged over 2,000 simulations in both plots. Figure 4 suggests that, for all these choices of @, a sublinear regret is
accumulated, and having an q; that grows slower may still be able to achieve the regret bounds proved for a; = j.

Figure 3. Regret of the Learning System When u =3, A = 3.5, R = 21, and the Optimal Threshold Is Eight Using and Not Using
the Truncation for the Threshold Used in Phase 2
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Figure 4. Regret Accumulated for Different Choices of «;
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mal threshold is K = 0. (b) Regret accumulated when 1 = 3, A = 3.5, and R = 21. Optimal threshold is K = 8.

6.5. Expected Regret with Different Choices of E[B/]

We also examine difference choices of E[B/], which controls the probability of having a phase 1 when the threshold
used in the previous phase 2 is zero. Figure 5 shows the plots of various choices of E[B/]. From these finite-time
experiments, it seems that having a high enough chance to explore during the first few batches the learning dis-
patcher observes helps to reduce the regret accumulated. However, comparing the plots of E[B/] = In*(j)//* and
E[B/] =In(j)/j in Figure 5(a), it seems that only having a high probability of exploration for the first few batches is
not enough to achieve O(1) regret because the slope of the plot for E[B/] = In(j)/j decreases a lot faster than the plot
of E[B/] = In* (j)/j*. Although all the choices of E[B/] seem to achieve sublinear regret for the case K = 0, always hav-
ing the exploration phase when the threshold used in the previous phase 2 is zero accumulates a higher regret with
a different scaling behavior.

Figure 5. Regret Accumulated When the Choices of E[B/] Vary
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Figure 6. Regret Plot for Various Arrival and Service Rates
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6.6. Expected Regret with Different Values of p and A

Figure 6 plots the average regret accumulated when seeing more than 3 * 10” arriving customers when fixing one of
the pair of arrival and service rates and varying the other. The regret values are averaged over 600 simulations.
From the plot, we observe that, when the arrival rate is fixed, as the service rate increases, in general, the regret
decreases. However, the decrease is not strict and instead is nonmonotonic, and the large cusps are usually around
the parameter choices that have nonunique optimal thresholds. When the service rate is fixed, as the arrival rate
increases, the regret follows a similar increasing/decreasing trend.

6.7. Comparison with Benchmark Algorithms
We also compare the finite time performance of our proposed Algorithm 1 with a few benchmark algorithms. In
Figures 7 and 8, we compared Algorithm 1 with the estimate-then-optimize (ETO) and UCB algorithms when there

Figure 7. Log of Regret Accumulated When Using Different Algorithms When the Optimal Threshold Is Unique
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Notes. Algl is the learning algorithm proposed in Algorithm 1. We set C = 1, E[B/] = In(j)/j, K*(j) ~ In(j), and a; = j. ETO(M) is the estimate-then-
optimize algorithm that always accepts the first M customers. UCB is the upper confidence bound algorithm. (a) Log average regret plot when
u=08,A=1,R=1,and K = 0. (b) Log average regret plot when 1 =3,1 =3.5,R =21,and K = 8.
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Figure 8. Log of Regret Accumulated When Using Different Algorithms When the Optimal Thresholds Are Not Unique
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optimize algorithm that always accepts the first M customers. UCB is the upper confidence bound algorithm. (a) Log averaged regret plot when
pt=1and A = 1. Both K =1and K — 1 = 0 are optimal thresholds. (b) Log of average regret plot when y =2, A =1, and R = 129/32. Both K =5
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are more than 3+ 10° arrival customers and the regrets are averaged over 2,000 simulations. We use ETO(M) to
denote the ETO algorithm that always accepts the first M customers. We use the UCB algorithm described in Latti-
more and Szepesvari (2020, section 7.1) but with UCB bias subtracted from the estimated average service time.
Figure 7(a) plots the log of average regret for the case when u = 0.8, A =1 and the optimal threshold is zero. Figure
7(b) plots the log of average regret for the case when u =3, A = 3.5, and the optimal threshold is eight. For the para-
meters used in these two plots, the optimal threshold is unique. Figure 8(a) plots the average regret for the case
when =1, A =1, and the optimal thresholds are {1, 0}. Figure 8(b) plots the average regret for the case when =2,
A=1, and the optimal thresholds are {5, 4}. For the parameter choices in Figure 8, the optimal threshold is not
unique. The regret values in these two plots are computed with respect to the alternating genie-aided system that
would change the threshold used between {K,K — 1} according to the threshold used by Algorithm 1, ETO, or
UCB.

The order of the regret accumulated by Algorithm 1 and UCB are similar in Figures 7(b) and 8(b). However, in
Figures 7(a) and 8(a) in which zero is an optimal threshold, UCB achieves constant regret, yet Algorithm 1 achieves
a sublinear regret. It is likely that the regret accumulated by Algorithm 1 would slowly increase as the number of
arrivals increases and eventually becomes larger than the regret of the UCB algorithm. Our algorithm may choose
to use threshold zero, and then a phase 1 may be enforced, and regret accumulates because of this. In Figure 9, we
compare the finite time performance of our proposed algorithm with UCB when u = 1.1 and A =1 with 2,000 simu-
lations and more than 10° arrival customers. In this case, one is the unique optimal threshold. As we can observe
from Figure 9, the regret of UCB increases in a (approximately) linear fashion, whereas our proposed algorithm is
able to achieve constant regret. In fact, we can argue the following for UCB-based dispatching (under the simpler
setting of the arrival rate being known):

1. When the optimal threshold(s) is positive, then some bad initial service time samples can result in the esti-
mated threshold being zero. This bad event happens with positive probability for all u>$ (the probability
decreases to zero as p — o0). Whenever this bad event occurs, then the UCB-based dispatching algorithm stops dis-
patching customers, obtains no new service time samples, and incurs linear regret.

2. When zero is an optimal threshold, then the corresponding bad event of estimating the threshold as posi-
tive is more benign. This holds as dispatching more customers only results in more service-time samples, which
then help to correct inaccurate estimates. Hence, we expect to achieve a constant or slowly growing (sublinear)
regret.

Note that this explanation supports the conjecture in Remark 5 because the worst case (over parameters) regret of
UCB is expected to be linear in N. Moreover, because UCB needs to compute the estimated threshold at every
arrival, it requires more computation when compared with Algorithm 1.
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Figure 9. Regret Accumulated When u=1.1,A=1,C=R=1,andK=1
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Notes. Algl is the learning algorithm proposed in Algorithm 1. We set Iy = I, =30, B/ = In(j) /j, K*(j) ~ In(j) and a; = j. UCB is the upper confi-
dence bound algorithm.

6.8. Comparison of Different Genie-Aided Algorithms

Figure 10 compares the accumulated net gain between the alternating genie-aided algorithm (“AG algo” in the
legend) coupled with Algorithm 1 and the genie-aided algorithms using threshold K (“ThreshK algo” in the leg-
end) or K — 1 (“ThreshK-1 algo” in the legend) when optimal thresholds are not unique; the accumulated net gain
of the genie-aided algorithm using threshold K — 1 are scaled to be zero. Figure 10 plots the difference between
the net gain obtained by the alternating genie-aided system and the genie-aided system using static threshold
K — 1 and the difference of the net gain between two genie-aided systems using static threshold K and K — 1 over
two sets of parameters. We also include the regret accumulated by the learning algorithm compared with the
genie-aided algorithm using threshold K — 1. The performances of the algorithms are averaged over 18,000 simu-
lations. As we can observe from the plots, the regret accumulated by the learning algorithm (with respect to either
the alternating genie-aided system or the genie-aided system using threshold K — 1) dominates the performance

Figure 10. Performance Difference Between the Alternating Genie, the Genie Algorithm Using Threshold K, and the Genie
Algorithm Using Threshold K — 1
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difference between the alternating genie-aided system and the genie-aided system using threshold K—1, and the
performing difference between the genie-aided system using threshold K and the genie-aided system using
threshold K — 1. This is more evidence in favor of Remark 6.

7. Conclusions

In this paper, we considered a social welfare-maximizing problem, which was first proposed and studied in Naor
(1969). We studied the learning problem of finding the proper threshold admission policy when the service and
arrival rates are unknown. We proposed a learning algorithm that consists of batches in which each batch has an
optional exploration phase with a fixed length and an exploitation phase. When the optimal policy is unique, we
showed that our learning algorithm achieves an O(1) regret whenever the optimal threshold is nonzero and
achieves an O(In'*¢(N)) regret when the optimal threshold is zero, where N denotes the total number of arrival cus-
tomers to the systems. When the optimal policy is not unique, we specified a particular optimal policy to compare
with and proved that similar regret bounds hold for our learning algorithm.

In our analysis, we assumed Poisson arrivals and exponentially distributed services with fixed arrival and service
rate. We want to adapt our algorithm to more general arrival processes and service-time distributions such as the
models in Lippman and Stidham (1977) and Johansen and Stidham (1980) so that a small regret is obtained in these
more general settings too, such as generalization to optimal admission control in an M/G/1 queue with our infor-
mation structure. This problem has received attention—see Oz (2022)—under a different information structure in
which only the queue length is observed by arrivals. Under this setting, the analytical optimal strategy for this prob-
lem is still unknown and may be time-varying; see Oz (2022) for details. However, the problem may be tractable
with our information structure as the Markov state—number in service and service time elapsed of customer cur-
rently being served—is observable and MDP theory could be applied. Another possible direction is to consider a
single queue with a buffer but with multiple servers as in the model in Knudsen (1972). Again, the aim would be to
adapt our current learning algorithm to this setting as well, achieving low regret. Finally, we conjectured that the
order of the regret accumulated for the worst case choice of parameters would grow at least as Q(In(N)); see
Remark 5. Proving (or disproving) this conjecture is yet another problem for future work.
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Endnotes
! We show how to translate the regret from the number of arrivals to a time horizon.

2 We discuss what we mean by “optimal” in Remark 6 after we specify the strategy to which we compare our learning algorithm in the case
that there are multiple optimal thresholds.
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