]
QUANTITATIVE % Routledge

Taylor & Francis Group

Quantitative Finance

Rese ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/rquf20

Quantume-inspired variational algorithms for
partial differential equations: application to
financial derivative pricing

Tianchen Zhao, Chuhao Sun, Asaf Cohen, James Stokes & Shravan
Veerapaneni

To cite this article: Tianchen Zhao, Chuhao Sun, Asaf Cohen, James Stokes & Shravan
Veerapaneni (2024) Quantum-inspired variational algorithms for partial differential
equations: application to financial derivative pricing, Quantitative Finance, 24:1, 1-11, DOI:
10.1080/14697688.2023.2259954

To link to this article: https://doi.org/10.1080/14697688.2023.2259954

E Published online: 29 Sep 2023.

&
Submit your article to this journal (£

||I| Article views: 296

[
& View related articles &

() View Crossmark data@

CrossMark

@ Citing articles: 1 View citing articles &

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=rquf20


https://www.tandfonline.com/action/journalInformation?journalCode=rquf20
https://www.tandfonline.com/journals/rquf20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/14697688.2023.2259954
https://doi.org/10.1080/14697688.2023.2259954
https://www.tandfonline.com/action/authorSubmission?journalCode=rquf20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=rquf20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/14697688.2023.2259954?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/14697688.2023.2259954?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/14697688.2023.2259954&domain=pdf&date_stamp=29 Sep 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/14697688.2023.2259954&domain=pdf&date_stamp=29 Sep 2023
https://www.tandfonline.com/doi/citedby/10.1080/14697688.2023.2259954?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/14697688.2023.2259954?src=pdf

Quantitative Finance, 2024
Vol. 24, No. 1, 1-11, https://doi.org/10.1080/14697688.2023.2259954

g Routledge

Taylor & Francis Group

M) Check for updates

T=0

Dirichlet

21
=
&
[ o]
. .

Tui

Quantum-inspired variational algorithms for
partial differential equations: application to
financial derivative pricing
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Variational quantum Monte Carlo (VMC) combined with neural-network quantum states offers a
novel angle of attack on the curse-of-dimensionality encountered in a particular class of partial dif-
ferential equations (PDEs); namely, the real- and imaginary time-dependent Schrédinger equation.
In this paper, we present a simple generalization of VMC applicable to arbitrary time-dependent
PDEs, showcasing the technique in the multi-asset Black-Scholes PDE for pricing European options

contingent on many correlated underlying assets.

Keywords: Variational quantum algorithms; Variational quantum Monte Carlo; Multi-asset Black-

Scholes PDE

1. Introduction

The field of stochastic variational algorithms has under-
gone dramatic recent developments based on two relatively
recent, albeit independent, developments: (i) the availability
of near-term quantum computers (Preskill 2018) and (ii) the
existence of scalable stochastic algorithms for training deep
neural networks. The former development has motivated a
new research direction called variational quantum algorithms
(VQAs) (Cerezo et al. 2021), in which the stochastic vari-
ational character of the algorithms render them suitable for
noisy intermediate-scale quantum computers (Preskill 2018).
The latter holds promise to accelerate a host of scientific
computing problems including general-purpose solvers of
partial differential equations (PDEs) using physics-informed
neural-networks (PINNs) (Raissi ef al. 2019) and has already
made substantial headway in solving the time-(in)dependent
Schrodinger equation in high dimensions using variational

*Corresponding author. Email: shloshim @ gmail.com

quantum Monte Carlo (VMC) with neural-network quantum
states (Carleo and Troyer 2017). It is noteworthy that there
exist many shared parallels between the fields of VQAs, VMC
(Stokes ef al. 2020, 2022) and PINNs. In particular, both
VMC and VQAs hinge on the concept of adaptive stochas-
tic estimation of the time-independent and time-dependent
variational principles originally due to Rayleigh-Ritz and
McLachlan (McLachlan 1964), respectively. VQAs and VMC
differ essentially in the choice of parametrized quantum state
and the associated adaptive sampling strategy used to esti-
mate quantum expectation values. PINNs can be viewed as
an alternative approach to McLachlan’s variational principle.
They gained significant traction outside the quantum physics
literature and have been advocated for solving general PDEs
that appear in other areas of science and engineering. This
approach involves solving a non-convex optimization prob-
lem for the PDE residual in order to determine the space-time
development of the state variable. A large number of variants
of this proposal have been subsequently put forward targeting
PDEs either in many spatial dimensions (e.g.Sirignano and

© 2023 Informa UK Limited, trading as Taylor & Francis Group
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Spiliopoulos 2018, Wang ef al. 2021) or parametric PDEs in
low dimensions (e.g. Li ef al. 2020). Deep backward stochas-
tic differential equation methods (Weinan ef al. 2017, Han
et al. 2018, Beck ef al. 2019, Huré et al. 2020) are another
class of deep learning approaches that have been applied to
parabolic PDEs that arise in mathematical finance.

In this paper, we introduce a generalization of McLachlan’s
variational principle applicable to a wide variety of time-
dependent PDEs and propose a variational quantum Monte
Carlo (VMC) stochastic approximate solution method utiliz-
ing autoregressive neural-network quantum states. A closely
related algorithm has been recently introduced in the VQA
literaturet (Alghassi ef al. 2021, Fontanela ef al. 2021), which
was motivated by the problem of solving linear PDEs using
digital quantum computers without the necessity of HHL
linear system solves (Harrow ef al. 2009). Ref. Alghassi
et al. (2021) argued for an approximate solution concept,
with respect to which exponential quantum speedup could be
achieved for state evolution, which however is overwhelmed
by auxiliary costs of state preparation and extraction of prop-
erties of the state (see Alghassi ef al. 2021, Section HI.C
for details). These complications of read-out and state prepa-
ration are not relevant to the VMC-based solver, however,
since the VMC computing model permits efficient queries
to arbitrary probability amplitudes. Interestingly, our gen-
eralization of McLachlan’s variational principle is closely
related to the neural Galerkin method recently put forward
in Bruna et al. (2022), which also introduced a different
neural-network-based stochastic solution method. One small
difference compared to Bruna ef al. (2022) is that we choose
to work on a predefined mesh, which provides a simple
method to implement non-trivial boundary conditions nec-
essary for financial applications. The use of a mesh is not
mandatory, however, and this paper paves the way toward a
mesh-free generalization. Indeed, in the final stages of prepa-
ration of this article, Ref. Reh and Giirttner (2022) appeared,
which proposes a mesh-free flow-based solution of proba-
bilistic PDEs such as the Fokker-Planck equation. Unlike Reh
and Girttner (2022), however, our approach does not require
that the state variable of the underlying PDE corresponds to a
probability density.

The speedup obtainable by the approach advocated here
has practical applications in overcoming the curse-of-
dimensionality in high-dimensional PDEs, particularly in situ-
ations where fine-grained information about the state variable
is required, such as gradients with respect to the independent
variables. One such situation is quantum many-body physics,
where kinetic energy observables depend on second-order
spatial derivatives. Another example is the pricing and hedg-
ing of contingent claims in multi-asset financial markets. For
example, if a Financial institution writes a call contract val-
ued at V() on an underlying asset of value S(f) at time f, then
according to the Black-Scholes framework the firm can min-
imize their exposure by buying a number of shares equal to
A(t) =V /9S. The approach is applicable to general time-
dependent PDEs expressible in first-order form, although we
only consider the inhomogeneous linear case in the numerical

T VQAs for mult-asset financial derivative pricing have been subse-
quently explored in Kubo ef al. (2022).

experiments. Specifically, we chose to focus on the multi-asset
Black-Scholes PDE for pricing European contingent claims
because of its well-known relation with the time-dependent
Schrodinger equation (TDSE) as well as its importance in
computational finance. The techniques developed in this paper
are not limited to the Black-Scholes framework, however,
and can be straightforwardly generalized to pricing models
with stochastic volatility, for example. In addition, the tech-
nique generalizes to many other linear PDEs in which the state
variable does not admit a probabilistic interpretation.

The organization of the paper is as follows: In section 2
we generalize the McLachlan variational principle to general
time-dependent PDEs in a model-agnostic manner, which
is applicable in the purely classical or quantum setting. In
section 3 we describe the modeling assumptions involved in
the passage from a time-dependent PDE to an neural quantum
state-based solution of McLachlan’s variational principle. The
remainder of the paper is dedicated to numerical experiments,
focusing on the problem of financial derivative pricing, which
suffers from a curse-of-dimensionality. Section 4 in particular
provides numerical confirmation in the case of correlated dif-
fusions, and section 5 describes the application of these results
to option pricing in the Black-Scholes pricing framework.

2. Theory

2.1. Generalifies of McLachlan’s variational principle

McLachlan’s variational principle (McLachlan 1964) is an
example of a time-dependent variational principle (TDVP)
that approximates the solution of the TDSE by evolution
within a space of parametrized trial functions. TDVPs for the
TDSE have been devised for tensor network states (Haegeman
et al. 2011), neural-network quantum states (NQS) (Carleo
and Troyer 2017) and parametrized quantum circuits (Stokes
et al. 2020, Barison et al. 2021). Ref. Stokes ef al. (2022)
studied TDVPs through the lens of information geometry
providing a unified perspective applicable to variational quan-
tum algorithms (VQASs) and variational quantum Monte Carlo
with normalized neural-network quantum states. In the fol-
lowing section, we further generalize TDVPs to include gen-
eral time-dependent PDEs and establish additional connec-
tions with the VQA and numerical analysis literature. Given
a time-dependent PDE for the state variable u(f,x) € C with
(t,x) € [0,T] x L, together with a choice of parametrized
functions of the spatial variable {uy : @ —> C|8 € RP}, the
output of a TDVP is parametrized curve y : [0,T] — R”
in the space of variational parameters such that u, ) opti-
mally describes u(f,-) in some distance metric dist(-,-) for
all t € [0, T]. Consider the initial value problem for a general
time-dependent PDE of the form,

du(t,x) = F(t,x,u) (1
u(0,x) = ug € [*(Q;C), 2)

with prescribed boundary conditions on 9€2. In order to sim-
plify exposition, in this section we avoid complications of
boundary conditions by assuming either Q = R¢ with suit-
able decay at infinity or Q = T¢. In practice we replace the
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spatial domain by a mesh Qce, thereby approximating
square-integrable functions by square summable vectors. The
imposition of boundary conditions on the spatial mesh is then
achieved via the use of source functions. Let @} denote the
time evolution map for state variable such that @/, o ®¥ = ®!
and in particular u(t, -) = ®f(up). Given an initial parameter
vector fy € R” and a step size 8¢ > 0, define a sequence of
parameter vectors (6 )icy by the following iteration

01 = arg min [ dist (05 wg),w) | 3)
feRP

In quantum physics applications, a suitable distance metric is
the Fubini-Study metric, as previously argued both in VMC
(Carleo and Troyer 2017, Stokes ef al. 2022) and in VQA
(Stokes et al. 2020, Barison ef al. 2021) literature. In this work
we choose dist(-,-) to be the Euclidean norm. Rather than
solving the discrete-time dynamical system (3) directly, we
consider the limit of infinitesimal step size §f — 0 in which
it reduces to the following system of ordinary differential
equations (ODEs)7 with initial condition y (0) = 6y:

My ®)y' @) =Vy®) Q)
where
o= e (52551
Vi(t,0) :=Re [(aﬂ F, HQ)):I &)
a6;
and where (-|-), || - || denote the standard inner product and

the induced norm for L2($2, C), respectively. Although the
matrix Mj; is necessarily positive semi-definite, it may be
degenerate, reflecting the possibility of multiple minima in the
optimization problem (3). Thus, regularization techniques are
generally required in order to obtain a well-posed system of
ODEs.

2.2. Analogy with finite element approximations

Before discussing our autoregressive neural-network quantum
state implementation, it is useful to orient within scientific
computing literature by showing that the formalism shares
close parallels with the classic finite element method applied
to the linear inhomogeneous case F(f,x,u) = Lu(t,x) +
f(t,x). Given a set of real basis functions {g;}}",, define the
variational family consisting of a weighted superposition,

g (x) = Z 0;0;(x), (6)
i=1

where & € R™ is assumed here. Substituting the above into (4)
one finds the following ODE determining the dynamics of the
weights,

My'(t) = —Ky (@) +f (), Mj;:= (pilg;),

T See appendix 1 for a derivation. Similiar ODEs have been intro-
duced in the neural Galerkin method (Bruna ef al. 2022).

Kij == —(@ilLuj), fi(®) := (@ilf (D), )

which can be recognized as the standard discrete linear sys-
tems arising in finite element methods, with M and K the
mass- and stiffness-matrix, respectively. Recall that since
finite element techniques use non-overlapping elements to
discretize the spatial domain and employ basis functions with
localized support, the problem size scales as m ~ p? in d
spatial dimensions, where p is the average number of ele-
ments per dimension. Thus, the curse-of-dimensionality arises
from need to perform increasingly high-dimensional, albeit
sparse, linear algebra in order to solve the linear system (7).
The approach advocated in the following section, in contrast,
overcomes the curse-of-dimensionality by representing the
solution vector in terms of an autoregressive neural-network
quantum state.

2.3. Neural-network quantum state implementation

In order to overcome the curse of dimensionality with respect
to the spatial dimension d, which is inherent in the uti-
lization of a d-dimensional mesh Q C Q c R4, we utilize
stochastic estimation combined with autoregressive assump-
tions. In particular, we take inspiration from both the varia-
tional quantum algorithm introduced in Alghassi ef al. (2021)
as well variational quantum Monte Carlo using autoregres-
sive NQS (Hibat-Allah ef al. 2020, Sharir et al. 2020), by
parametrizing the solution of the PDE as uy = « g where
Y¥p is a unit-normalized NQS with variational parameters £
and o > 0 is a scale factor, whose time-dependence must
be determined from the evolution equations along with f.
The variational parameters thus consist of the augmented
parameter vector 6 := (loga, ) € RP+! where 8 € R” is an
unconstrained vector representing the weights and biases
of the neural network. Plugging the rescaled ansatz into
the evolution equations (4), one obtains an augmented sys-
tem of first-order, non-linear ordinary differential equations
determining the time-dependence of the augmented vector
6. The overlaps defining M and V are estimated using the
VMC importance sampling technique, where the probability
density is chosen to be the modulus-squared wavefunction

[¥p ).

3. Numerical implementation

In this section, we provide detailed modeling assumptions
required to implement the algorithm. After describing a mesh-
based encoding of the state variable into a multi-qubit state,
we then introduce the model architecture and computation
mechanisms including the forward pass and the autoregres-
sive sampling process. Pre-training is necessary in order to
satisfy the initial condition of the PDE, and we adopt the stan-
dard approach (Sirignano and Spiliopoulos 2018) by updat-
ing the model iteratively on batches of randomly selected
mesh points. Finally, we describe the stochastic estimation
procedure used to evolve the variational trial state using
McLachlan’s variational principle.
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3.1. Conversion to meshed form

Rather than working in the continuum, we assume spatial dis-
cretization of the function u(f, -) on a regular grid Q embedded
in the d-dimensional domain £ = [ai,bq] x --- x [a4, b4l
with a total of 2" grid points. Without loss of generality, we
assume 2 is a regular hypercube satisfying [b; —a;|=--- =
|bs — aq|, and that the mesh size along each axis is 2"/, In
order to represent the state of the discretized field in terms of
the state of an n-qubit system, we assign each computational
basis state |k;,...,k,) € C*" with (k;,...,k,) € {0,1})" to a
linear index defined by k = ) 7 | k;2' and then unravel the
linear index to indices along each of d axes yielding a d-tuple
(k1,....kg) €{0,...,n/d — 1}¢ defined by

Z ki(2i)y ! = k. (8)
i=1

The mesh point x* € Q corresponding to the linear index k €
{0,1,...,2" — 1} is thus

= (a1 +kAx, ... a4 + ks Ax) 9)

where Ax = |b; — a,|/2%. Henceforth, we do not distinguish
the index k, the binary string (ki, ..., k,) and the correspond-
ing coordinate x* € Q. The digitized representation of the
state of the PDE at time ¢ is thus the following unnormalized
n-qubit state

u@®) =Y uck, ki, ...

kel

sKkn) (10)

and likewise the parametrized approximation |up) of |u(f)) is
given by,

lug) = Y ug(F)lki, . ..

kel

+kn) (an

where ug(-) is a function defined on Qcoa.

3.2. Autoregressive assumption and sampling

In order to obtain an expressive family of trial functions u, :
Q —> C which furthermore admits an efficient stochastic
estimation procedure, we express ug as multiple of a unit-
normalized neural-network quantum state ¥ : 2 — C with
variational parameters € RP,

ug (%) = a Yk, ... ky), l¥gllg =1 (12)

A simple method to ensure unit-normalization and effi-
cient sampling is to follow the work of MADE (Germain
et al. 2015) which exploited a masked version of a fully con-
nected layer, where some connections in the computational
path are removed in order to satisfy the autoregressive prop-
erties, In particular, if we assume a choice of variables such

that the state variable is strictly positivef ug(x) > 0, then a
suitable choice of unit-normalized function is

n

Ypki,. .. k) = ]_[ Vppitkilki_y,. ..

i=1

k), (13)

where pg;(-|ki—1,...,k1) is the parametrized conditional
probability distribution for the ith bit.

3.3. Pre-training

Before we perform the time evolution, initial variational
parameters 6y must be selected in order to match the varia-
tional flElCliOll Ug, (x) with the choice of initial condition uq(x)
for x e €2 in the spatial domain. This can be achieved via opti-
mization of the following objective function using stochastic
gradient descent,

J (@0, Bo) = |l ra) — o) | 3- (14)

3.4. Evolution

In this section we discuss the details of the stochastic estima-
tion of M and V necessary to evolve the augmented parameter
vector @ = (loga, B) € RP*!. For simplicity of presentation
we consider the affine case, in which J separates into a lin-
ear partial differential operator £ plus a source function f
independent of the state variable

F(t,x,u) = Lu(t,x) + f(t,%). 15)
Consider the decomposition,
My | Mo, Vo
M= P, V= . 16
[ Ml:p,ﬂ Ml:p,l:p ] [ Vl:p ] ( )

It is convenient to introduce the following helper functions.
In particular, define the Born probability distribution pg(x)
[0,00), the wavefunction score og(x) € C" and the local
energy lp(f,x) € C as follows,

Ve g (x)
pp(®) = Y@ op(x) = %,
(Lyp)®)  f(t,%)
l = . 17
o (t,X) V2 = a7

By straightforward calculus, we obtain

My =a?, Mpo=M,;, =c’Re [ E dﬁ(x):l ,
x~pg
Mipip =’ Re[ E op(x) ag(x)T], (18)

x~pp

T This can be considered as a special case of the complex-valued case
(Hibat-Allah ef al. 2020, Sharir et al. 2020).
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and

Vo = o Re[ E le(f,x):l )

x~pp

Vip = a’Re [ E os() ls(t, x)] . (19)

x~pp

The expectation values over x are approximated using Monte
Carlo sampling. In practice, the batch of randomly generated
samples is represented in the form of a buffer B = {xi}?: 1
that stores the unique samples in the batch and a counter
C = {¢;}&, that records the number of occurrences of each
of the corresponding samples. Expectation values are then
approximated by sums of the following form,

1 B
E [g)] ~ 5 > cigx). (20)

Pe i=1 Ci =
Computation of per-sample gradient. In order to compute the
dense representation of M efficiently, it is desirable to have
access to the per-sample gradients {ng’fg(x,-)};-i,, which is
typically not directly accessible during a traditional back-
ward pass by some deep learning software. In order to avoid
inefficient forward and backward passes for each of the B
samples, we utilize BackPack which collects the quanti-
ties necessary to compute the individual gradients and reuses
them to compute the per-sample gradient without significant
computational overhead.

Parallel extraction of matrix elements. Given a sample
xeQ, corresponding to a particular row-index of the operator
L e C¥*?", the calculation of the local energy [, (f,x) defined
in (17) involves determining the nonzero entries of L in that
row. Fortunately, the structure of the PDE problem ensures
that the location and values of these entries can be determined
in O(poly(n)) time. We exploit CPU parallelization to deter-
mine the nonzero row entries for each sample in the batch.
Note that the maximal number of nonzero entries per row
is determined in advance; e.g. 2n% + 1 for diffusion operator
with Dirichlet boundary conditions.

Boundary Conditions. Boundary conditions are imple-
mented on the grid using an appropriate choice of source
function. In the case of Dirichlet conditions, for example, we
choose the source function as follows

F&,x) = u(t,x)Lzn(x) (21)
where 13 denotes the indicator function for the set 9€2. This
choice of source function corresponds to imposing Dirich-
let boundary conditions on the grid with specified boundary
behavior u(t, x) for x € 982.

Parameter update. The network can be trained by incre-
menting the parameters using a Euler scheme in the direc-
tion 80 € RP! given by the solution of the following linear
system

Ms6 = Vst, (22)

where M, V are computed as discussed before. In practice, M
is usually ill-conditioned due to the fact that it’s essentially a
sum of B rank one matrices. To stabilize the inverse operation,
we consider the singular value decomposition M = USW7,

and remove the diagonal values of X smaller than a small
threshold € = 10~'2 to obtain X, of size r x r, as well as
U,, W, of size (p + 1) x r. The direction vector is therefore
approximated by W, 1UTV 1.

4. Diffusion with Gaussian initializations

In this section, we show various numerical experiments
demonstrating the convergence and run time analysis of our
proposed approach. Here, we consider the d-dimensional heat
equation for which £ = D'V . V in (15) (diffusion constant set
to D = 0.1) with either periodic or Dirichlet boundary condi-
tions on 9€2. For benchmarking purposes, we employ a finite
difference method with the standard central difference scheme
to discretize £ (formulas given in Appendix 2) and forward
Euler for time-stepping.

4.1. Experimental setup

For initialization we chose a discrete isotropic Gaussian,
expressed in terms of the modified Bessel function I(f) of
integer order x,

d

@) = [Te 'L, @), 23)

i=l
where f > 0 is a parameter controlling the width of the Gaus-
sian, and x ranges from O to 2"~!. Pre-training was per-
formed using Adam optimizer (Kingma and Ba 2015) for
50k iterations with batch size 128, g; = 0.9, 8, = 0.999, and
€ = 1078, The learning rate was warm-started for the first
1/10 total training iterations, then decayed by a factor of 10
at 3/7,5/7 of the total training iterations.

After completion of pre-training, the state was evolved for a
total evolution time T = 1 using a step size of 8t = 5 x 107>
and a batch size of B = 1024 for Monte Carlo estimation
on each iteration. The time development of the state was
compared to the result of Euler time-stepping the initial con-
dition (23) using the same step-size. Due to the exponential
scaling of the matrix L, we only establish this baseline for the
number of qubits n < 16. All reported numerical results are
averaged across exactly 5 seeds, each trained for 20k steps.

Table 1 reports the relative error between our method and
forward Euler method over 20k iterations, for diffusion prob-
lem with Dirichlet boundary conditions. The relative error of
the obtained solution is computed by comparing the norm of
the space-time history of the variational state with the result
of Euler development,

1 @) = lw,0) |5
error = > : @4

Al (O P

In general, the overall solution obtained using our method
matches well with that obtained using forward Euler method.
Their discrepancy increases as the dimensionality of the prob-
lem increases; nonetheless, within a tolerable threshold (e.g.
less than 10%). One remedy is to simply increase the batch
size, for example, we show in Section 4.4 that the relative
error improves from 15% to around 3% with a batch size that
is ten times larger.
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4.2. Running time analysis

Since we discretize the domain €2 using a grid of size |§| =
2", the time complexity of forward Euler method, expressed
in terms of n is (T x 2**), where T is the number of iter-
ations. The proposed VMC algorithm, in contrast, scales as
O(TB poly(n)), where B is the batch size. In more detail, the
forward pass scales as O(TBn?), and the sampling is O(TBn?),
due to the sequential nature of the auto-regressive sampling
process. This polynomial scaling comes at a price of the
approximate nature of the time evolution step, and the implicit
access to entries of the state vector compared to the forward
Euler method which offers O(1) lookup to entries of the state.

In table 2, we report the average running time of both
forward Euler method and our method for 2k iterations
(one-tenth of the total running time). The batch size B of
our method is fixed to be 500. Note that we cannot apply
Euler for higher dimensions due to the memory constraint.
Although forward Euler method is effective for small-scale
problems, its complexity suffers from the exponential growth
with respect to dimension d. The computational cost of
our method originates from four sources: sampling, forward
pass, per-sample gradient computation (backward pass), and
extraction of matrix element information. All these sources
contribute to the overhead time that causes our method to run
slower in comparison with respect to forward Euler method
for problems in lower dimensions. However, as the dimen-
sionality increases, the run time of our method grows only
at a polynomial rate. It can be seen from table 2 that our
method is already faster than forward Euler for problem sizes
characterized by n = 16 qubits.

4.3. Convergence visualization

We provide snapshots of our method for 2D diffusion prob-
lems with periodic boundary conditions over 20k iterations.
We run our algorithm with five distinct initializations and
record the snapshot every 2k iterations. In particular we do

not employ any regularization techniques to enforce that the
solution satisfies the boundary condition. It can be observed
in figure 1 that our method successfully obeys the periodic
boundary conditions.

4.4. Ablation study on batch size

Recall that M and V are approximated with Monte Carlo
sampling using batches of unique samples. Intuitively, a
larger batch size yields a better approximation to the exact
expectation value, thereby providing more accurate model
updates. In this section, we study the effect of batch size
on the performance of our method. In the LHS of figure 2,
the running time of our algorithm increases for both larger
problem sizes and batch sizes. Note that the actual running
time does not grow linearly with respect to the batch size
in the plot due to the cache and parallelization. In the RHS
of figure 2, we report the average relative error between the
forward Euler method and the VMC method with various
batch sizes. Given a fixed problem size (e.g. 4 dimensions
with 4 qubits per dimension), we observe a performance
improvement by increasing the batch size, which verifies
our hypothesis that increasing the batch size does effec-
tively improve the performance. Given a fixed batch size, our
method performs worse as the dimensionality of the prob-
lem increases. This result implies that we need a larger batch
size to guarantee good performance for problems in higher
dimensions.

5. Option pricing

In this section, we explain how the numerical results obtained
in Section 4 can be applied to the multi-dimensional Black-
Scholes model. In Section 5.1 we present the Black-Scholes
stochastic model and provide the Black-Scholes PDE for
a general European option in this model. We reduce the

Table 1. Average relative error of our method in comparison with forward Euler method over 20k iterations.

# of Dimensions d

Operator Boundary Condition nld 1 2 3 4
Diffusion Dirichlet 4 5.13 x 1073 7.92 x 1073 3.12 x 1072 1.47 x 107!
Diffusion Dirichlet 5 2.91 x 1073 991 x 1073 7.24 x 1072 -

Note: The proposed algorithm solution is compared with a Euler forward method for the diffusion equation over 20k iterations. For forward

Euler method, the time step is 5 x 10> with a total time of 1. The relative error is computed as -}- ZLI ”“(r’?{_t J(r’g‘)”.
Table 2. Average running time over 2k iterations.
# of Dimensions d

Operator Method nld 1 2 3 4 5 6 7 8 9
Diffusion Euler 4 0.024  0.137 1.559 305.92 - - - - -
Diffusion Euler 5 0.031 0.225 68.827 = = = = = =
Diffusion Ours 4 2952 55.76 138.88 230.02 360.80 518.00 792.63 1214.09 1812.94
Diffusion Ours 5 3253 88.75 173.43 311.82 507.93 84785 1355.16 2379.86 4123.61

Notes: The batch size used here is 500. Forward Euler method suffers from the exponential complexity, whereas our method, despite having
an overhead running time, enjoys a polynomial scaling. Note that we cannot apply Euler for higher dimensions due to the memory constraint.
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Figure 1. Snapshots of the evolution obtained using our algorithm for diffusion equation with Dirichlet and periodic boundary conditions

and different choices of initialization.
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Figure 2. We report the running time and the average relative error with the forward Euler method over various batch sizes, for qubit sizes
n=d x %, where d is the dimensionality of the problem. The running time grows with respect to the batch size and the problem size. On
the other hand, the performance is greatly improved when training with larger batch sizes.

multi-dimensional PDE to the standard heat equation. Then,
in Section 5.2, we apply our algorithm to the heat equation
and translate it back to the Black-Scholes equation.

5.1. Option pricing in Black-Scholes model

For this we consider the Black-Scholes model that consists of
a risk-free asset with a constant risk-free return r >0 and d
risky assets whose dynamics are given by
ds! = p;Sldt + o, SHdW, i=1,....d.

The parameters wp; and oy, i=1,...,d, are constants,
and {W}L, are Wiener processes with quadratic covari-
ation [W}, W/] = p;t. Consider further a European option,
whose payment at (the predetermined) expiry time T > 0 is

W(S},...,5%), for some measurable function W. Let V be the
conditional price of this option, i.e. V (£, xy, ..., xg) is the price
for the option at time #, given that Sf =xfori=1,...,d.Itis
well-known that V satisfies the following Black-Scholes PDE:

d d

av v 1 , 2%V
— mi— + =Y o’xr’—
at +‘,:] ‘8):,'+2§ T ax?
1 a’v
] +,X: Eﬂyﬁfﬁjxwm —rV =0, (t,x) €[0,T]
i#j
x (0, 00)?,
VT, x1,...,xq) =W (xq,...,X5).

Following Guillaume (2019), we may reduce this n-
dimensional equation to the n-dimensional standard heat
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Figure 3. Ablation study on volatility o, interest rate r, strike price K and initial price. We fix a base setting with hyper-parameters
o =0.3,r=0.03,K = 1.25, and run our algorithm on each setting with only one hyper-parameter deviated from the base setting. In addi-
tion, we plot the wave function under the base setting. We compare our solution at the execution time T versus forward Euler method and
the corresponding analytic ground truth. Our method is robust under all settings and achieves satisfactory performance.

equation. To this end, set

Ut y1,. - yn) = V(T —1,e, .., ¢r)ekim —aomibl,

where g; and b satisfy the following system of equations:

Za, (r__) Za

+ Z Ep,;agaja;-aj —r—b=0,
i#
2

L

i=1,...
2 =5

+ a;diz —+ Z pijoioja; =0, ,d.

J#i

Then, u satisfies the following heat equation

Z U ) € [0.7] x B
-_— = s ) € ) X )
a7 | p Tayiay, Y

u(0) = \11(301}1 ey eod}'d)e_zai oY,
with u(0) = W (e, . . ., e¥)g™ Laomi,

5.2. Numerical experiments

In this section, we apply our algorithm to option pricing
in Black-Scholes model across different settings using the
numerical solution to the heat equation and the translation
from the heat equation to the Black-Scholes equation from the
previous subsection. We test the performance of our algorithm
as well as show a calculation of the option price for higher
dimensions.

In figure 3 and table 3 we provide examples to test the per-
formance of our algorithm. In both we include 1D examples
for the price of a European call option, whose value at the
expiry time T is V(T 5) = W(s) = max{s — K, 0}, where X is
a predetermined constant, called the strike price. We vary the
volatility o, strike price K, interest rate r, expiry time 7, and
initial price of the stock S. In figure 3, we compare against the
forward Euler method and the ground truth Black-Scholes for-
mula, which admits an analytical solution in 1D. Specifically,

0.12 4

Option Price
o o o =}
g & 8 =&

0.02 A

0.00 o

1.1 1.2 1.3 1.4 15

K

Figure 4. Ablation study on dimensionality, following the base
settings in figure 3, 0 = 0.3,r = 0.03,K = 1.25.

it is given by

V(t,s) = N(dy)s — N(d_)Ke "7, (25)

where N is the cumulative distribution function of the stan-
dard normal distribution and

LY S CNT —1)
= o JT —1 '

Our method is robust under all settings and achieves satisfac-
tory performance. In table 3 we compare our accuracy against
the forward Euler method, where we use the same analytical
solution. Although the performance of our algorithm is infe-
rior to that of Euler, it still achieves good accuracy and the
margin can be treated as a price to pay for reducing the expo-
nential scaling down to a polynomial one. Our approach is
valuable for high dimensions, where other methods, such as
the forward Euler method, suffer from the curse of dimension-
ality. Table 3 also includes 2D examples with four different
options: Basket European call and put, rainbow max Euro-
pean call, and spread European put, whose payoffs are listed
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Table 3. List of experiments for the application of our algorithm to Black—Scholes equation.

Problem Initial & Boundary Cond. d D T r K o Ours Euler
Black—Scholes 1D 1D CALL 1 - 1 0.03 1.25 03 0.011781 0.002494
Black—Scholes 1D 1D CALL 1 - 1 0.03 1.25 0.1 0.032792 0.000930
Black—Scholes 1D 1D CALL 1 - 1 0.03 1.25 0.2 0.017272 0.002389
Black—Scholes 1D 1D CALL 1 - 1 0.03 1.25 0.4 0.011560 0.001392
Black—Scholes 1D 1D CALL 1 - 1 0.03 1.05 03 0.086764 0.001750
Black—Scholes 1D 1D CALL 1 - 1 0.03 1.15 03 0.013365 0.002521
Black—Scholes 1D 1D CALL 1 - 1 0.03 1.35 03 0.012260 0.000328
Black—Scholes 1D 1D CALL 1 - 1 0.03 1.45 03 0.012626 0.000845
Black—Scholes 1D 1D CALL 1 - 1 0.01 1.25 03 0.010436 0.002538
Black—Scholes 1D 1D CALL 1 - 1 0.02 1.25 0.3 0.010599 0.002515
Black—Scholes 1D 1D CALL 1 - 1 0.04 1.25 0.3 0.014192 0.002477
Black—Scholes 1D 1D CALL 1 - 1 0.05 1.25 03 0.017423 0.002463
Black—Scholes 1D 1D CALL 1 - 0.5 0.03 1.25 03 0.022481 0.018385
Black—Scholes 1D 1D CALL 1 - 1.5 0.03 1.25 0.3 0.012049 0.014881
Black—Scholes 2D 2D BASKET CALL 2 0.1 1 0.03 1.25 03 0.053477 -
Black—Scholes 2D 2D BASKET PUT 2 0.1 1 0.03 1.25 0.3 0.043926 -
Black—Scholes 2D 2D RAINBOW MAX CALL 2 0.1 1 0.03 1.25 0.3 0.057949 =
Black—Scholes 2D 2D SPREAD PUT 2 0.1 1 0.03 1.25 03 0.031574 -

Notes: The hyper-parameters for the experiments are listed. We compute the relative error of our method (Ours) at expiration time 7 with
analytical ground truth in the 1D case and Euler solution in the 2D case, respectively. For 1D, we also report the relative error of the forward
Euler method with respect to the analytical ground truth (Euler) for comparison. Our algorithm achieves robust performance across various

settings.
Table 4. Payoff functions for our experiments.

Option Type Payoff Function at expiry W (s)
1D Call max(s — K,0)
Basket Call max(}_ w;s; — K,0)
Basket Put max(K — ) w;si, 0)
Rainbow Max Call max(max s; — K, 0)
2D Spread Put max(K — (s — 52),0)

Notes: We consider basket call and put, Rainbow max
call, and spread put options.

in table 4. Note that as we don’t have an analytical solution
for this case, the relative errors with respect to Euler solutions
are reported instead. In figure 4, we provide a graph for the
price of a basket European call option with up to five underly-
ing stocks as a function of the strike price K. As expected the
prices are convex with K.

Note that the Black-Scholes PDE lives on the positive
orthant of R while its translation to the heat equation lives
on R4, Thereby, all numerical algorithms, including ours,
require artificial truncation of the domain. We choose the
hypercube domain to be [s, 5,19 = [Ke—3~T, Ke**¥T]4_ This
choice implies that s; is small (close to 04) and s, is
large (close +00). On the faces of the hypercube, we use
the time-discounted payoff functions, as they are reasonably
accurate approximations of boundary values of the options
considered. Given the number of qubits n and the hyper-
cube input domain for the heat equation [L;, L,,]d, which
is approximately [—5, 514, the mesh size of each axis is
(L — L)/ "4 +1).

6. Conclusions

In summary, we introduced a generalization of McLachlan’s
variational principle applicable to generic time-dependent

PDE:s as well as a quantum-inspired training algorithm based
on neural-network quantum states which can be used to
perform approximate time evolution in high dimensions, over-
coming the curse-of-dimensionality. Although we focused on
a mesh-based formulation in which the quantum state vec-
tor is represented by n qubits, it is clear that the mesh is not
mandated by the formulation and it would be very interest-
ing to pursue meshless variants based on continuous-variable
neural-network quantum states including normalizing flows
(Stokes et al. 2022) and to address non-trivial boundary con-
ditions. There exist a number of directions in which the results
of this paper can be potentially improved. Since we only
considered a first-order Euler approximation of the ODE (4)
it would be natural to incorporate high-order time stepping
schemes (e.g.Runge-Kutte methods). As an alternative, it
would be interesting to pursue a direct solution of the discrete-
time dynamical system (3) which has proven successful in
both the VMC (Gutiérrez and Mendl 2022) and VQA (Barison
et al. 2021) literature.
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Appendices

Appendix 1. Derivation of evolution equations

Assume that the time evolution map and the variational trial function
admit Taylor expansions of the form

O (u) = u+ F (t,u)5t + OG2), (AD

P
aug 2
= —86; + OS67). A2
ug+50 u9+£1 3, i + O(867) (A2)
Then

2
ot -
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36;
g
—|F(t, 85186; +---
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(A3)

where in the last line we used the conjugate-symmetry of (-|-) and
we have neglected df-independent terms and terms higher than
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quadratic order in the multi-variable Taylor expansion in §¢ and &f.
The first-order optimality condition 0 = 3'3&' ||<[>f+‘5t(ug} — UY+50 ||%,

gives, at lowest order in §6 and 4t,

P
0=2) My(©)36; — 2Vi(1,0)8t + - --
j=1

(A4)

and thus taking the limit §f — 0 gives the result.

Appendix 2. Matrix representation of £

In d spatial dimensions and multi-index i = {i1,i2,...,ig}, let i+
e :{fl,fg,...,fk:l: 1,...,.fd} and i:I:ek:I:ekr = {f],fg,...,fk:l:
L,...,igr £1,...,ig}. Notice we do not allow +1 if i = 3 or —1
if iy = 1. Then the elements of the matrix is given by:

=9

Appendix 3. Additional numerical details

The network architecture was chosen to be MADE (Germain
et al. 2015), taking the one-dimensional state as input and outputing
the logarithmic probability amplitudes {log pg ;(kilki_1,...,k1)}}_,
as described in (13). Note that both input and output are vectors of
the same size. The structure of MADE is as follows
[B.n] [B.h]
Input — MaskedFCp; —— ReLU

[B.h] [B.n] . .  [Ban]

—— MaskedFCj, — LogSigmoid —— Output,
Here B is the batch size and n is the number of qubits. MaskedFCgp
is a masked fully connected layer with input size a and output size b,
removing the connections in the computational path of MADE. We
chose the latent size h to scale with the input size as h = 2n. The
depth of our model is 2 throughout all experiments in this paper.

a2 J=L
1 ..
Az, J =1 T e,
a D
[Llij = Ta i=itecter, (A35)
-D T
TAZ° j=ite Fep,
0, otherwise.
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Figure Al. The relative error in the VMC approximate solution as a function of step size compared to the Euler method for each experiments

shown in figure 1.



	1. Introduction
	2. Theory
	2.1. Generalities of McLachlan's variational principle
	2.2. Analogy with finite element approximations
	2.3. Neural-network quantum state implementation

	3. Numerical implementation
	3.1. Conversion to meshed form
	3.2. Autoregressive assumption and sampling
	3.3. Pre-training
	3.4. Evolution

	4. Diffusion with Gaussian initializations
	4.1. Experimental setup
	4.2. Running time analysis
	4.3. Convergence visualization
	4.4. Ablation study on batch size

	5. Option pricing
	5.1. Option pricing in Black-Scholes model
	5.2. Numerical experiments

	6. Conclusions
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References

