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TI A N C H E N   Z H A O,   C H U H A O  S U N,   A S A F   C O H E N * , J A M E S  S T O K E S a n d
S H R A V A N   V E E R A P A N E NI

D e p art m e nt  of   M at h e m ati cs,   U ni v ersit y of   Mi c hi g a n,   A n n   Ar b or,   MI 4 8 1 0 9,   U S A

(R e c ei v e d  2   A u g ust 2 0 2 2; a c c e pt e d  1 S e pt e m b er 2 0 2 3; p u blis h e d o nli n e 2 9 S e pt e m b er 2 0 2 3 )

Vari ati o n al  q u a nt u m   M o nt e   C arl o  ( V M C)  c o m bi n e d   wit h  n e ur al- n et w or k  q u a nt u m  st at es  off ers  a
n o v el a n gl e  of att a c k  o n t h e c urs e- of- di m e nsi o n alit y e n c o u nt er e d i n a  p arti c ul ar cl ass  of  p arti al  dif-
f er e nti al  e q u ati o ns ( P D Es);  n a m el y, t h e r e al-  a n d i m a gi n ar y ti m e- d e p e n d e nt  S c hr ö di n g er  e q u ati o n.
I n t his  p a p er,   w e  pr es e nt  a  si m pl e  g e n er ali z ati o n  of   V M C  a p pli c a bl e t o  ar bitr ar y ti m e- d e p e n d e nt
P D Es, s h o w c asi n g t h e t e c h ni q u e i n t h e   m ulti- ass et   Bl a c k- S c h ol es  P D E f or pri ci n g   E ur o p e a n o pti o ns
c o nti n g e nt o n   m a n y c orr el at e d u n d erl yi n g ass ets.

K e y w or ds :   Vari ati o n al  q u a nt u m  al g orit h ms;   Vari ati o n al  q u a nt u m   M o nt e   C arl o;   M ulti- ass et   Bl a c k-
S c h ol es  P D E

1.  I nt r o d u cti o n

T h e  fi el d  of  st o c h asti c  v ari ati o n al  al g orit h ms  h as  u n d er-
g o n e  dr a m ati c  r e c e nt  d e v el o p m e nts  b as e d  o n  t w o  r el ati v el y
r e c e nt,  al b eit i n d e p e n d e nt,  d e v el o p m e nts:  (i) t h e  a v ail a bilit y
of  n e ar-t er m  q u a nt u m  c o m p ut ers ( Pr es kill 2 0 1 8 )  a n d (ii) t h e
e xist e n c e  of  s c al a bl e  st o c h asti c  al g orit h ms  f or tr ai ni n g  d e e p
n e ur al  n et w or ks.   T h e  f or m er  d e v el o p m e nt  h as   m oti v at e d  a
n e w r es e ar c h  dir e cti o n c all e d  v ari ati o n al  q u a nt u m al g orit h ms
( V Q As)  ( C er e z o et  al. 2 0 2 1 ),  i n   w hi c h  t h e  st o c h asti c  v ari-
ati o n al  c h ar a ct er  of  t h e  al g orit h ms  r e n d er  t h e m  s uit a bl e  f or
n ois y i nt er m e di at e-s c al e  q u a nt u m  c o m p ut ers ( Pr es kill 2 0 1 8 ).
T h e  l att er  h ol ds  pr o mis e  t o  a c c el er at e  a  h ost  of  s ci e nti fi c
c o m p uti n g  pr o bl e ms  i n cl u di n g  g e n er al- p ur p os e  s ol v ers  of
p arti al  diff er e nti al  e q u ati o ns ( P D Es)  usi n g  p h ysi cs-i nf or m e d
n e ur al- n et w or ks ( PI N Ns) ( R aissi et  al. 2 0 1 9 ) a n d  h as alr e a d y
m a d e  s u bst a nti al  h e a d w a y i n  s ol vi n g t h e ti m e-(i n) d e p e n d e nt
S c hr ö di n g er  e q u ati o n  i n  hi g h  di m e nsi o ns  usi n g  v ari ati o n al

∗ C orr es p o n di n g a ut h or.   E m ail: s hl os hi m @ g m ail. c o m

q u a nt u m   M o nt e   C arl o ( V M C)   wit h  n e ur al- n et w or k  q u a nt u m
st at es  ( C arl e o  a n d   Tr o y er 2 0 1 7 ).  It  is  n ot e w ort h y  t h at  t h er e
e xist   m a n y s h ar e d p ar all els b et w e e n t h e fi el ds of   V Q As,   V M C
( St o k es et  al. 2 0 2 0 , 2 0 2 2 )  a n d  PI N Ns.  I n  p arti c ul ar,  b ot h
V M C  a n d   V Q As  hi n g e  o n t h e  c o n c e pt  of  a d a pti v e  st o c h as-
ti c  esti m ati o n  of  t h e  ti m e-i n d e p e n d e nt  a n d  ti m e- d e p e n d e nt
v ari ati o n al  pri n ci pl es  ori gi n all y  d u e  t o   R a yl ei g h- Rit z  a n d
M c L a c hl a n ( M c L a c hl a n 1 9 6 4 ), r es p e cti v el y.   V Q As a n d   V M C
diff er ess e nti all y i n t h e c h oi c e  of  p ar a m etri z e d  q u a nt u m st at e
a n d  t h e  ass o ci at e d  a d a pti v e  s a m pli n g  str at e g y  us e d  t o  esti-
m at e  q u a nt u m  e x p e ct ati o n  v al u es.  PI N Ns  c a n  b e  vi e w e d  as
a n alt er n ati v e a p pr o a c h t o   M c L a c hl a n’s  v ari ati o n al  pri n ci pl e.
T h e y  g ai n e d si g ni fi c a nt tr a cti o n  o utsi d e t h e  q u a nt u m  p h ysi cs
lit er at ur e  a n d  h a v e  b e e n  a d v o c at e d f or s ol vi n g  g e n er al  P D Es
t h at  a p p e ar  i n  ot h er  ar e as  of  s ci e n c e  a n d  e n gi n e eri n g.   T his
a p pr o a c h  i n v ol v es  s ol vi n g  a  n o n- c o n v e x  o pti mi z ati o n  pr o b-
l e m f or t h e  P D E r esi d u al i n or d er t o d et er mi n e t h e s p a c e-ti m e
d e v el o p m e nt  of t h e st at e  v ari a bl e.   A l ar g e  n u m b er  of  v ari a nts
of t his pr o p os al h a v e b e e n s u bs e q u e ntl y p ut f or w ar d t ar g eti n g
P D Es  eit h er  i n   m a n y  s p ati al  di m e nsi o ns  ( e. g. Siri g n a n o  a n d
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S pili o p o ul os 2 0 1 8 ,   Wa n g et  al. 2 0 2 1 )  or  p ar a m etri c  P D Es i n
l o w di m e nsi o ns ( e. g.   Li et al. 2 0 2 0 ).   D e e p  b a c k w ar d st o c h as-
ti c  diff er e nti al  e q u ati o n   m et h o ds  ( Wei n a n et  al. 2 0 1 7 , H a n
et  al. 2 0 1 8 ,   B e c k et  al. 2 0 1 9 , H ur é et  al. 2 0 2 0 )  ar e  a n ot h er
cl ass  of  d e e p l e ar ni n g  a p pr o a c h es t h at  h a v e  b e e n  a p pli e d t o
p ar a b oli c  P D Es t h at aris e i n   m at h e m ati c al  fi n a n c e.

I n t his p a p er,   w e i ntr o d u c e a g e n er ali z ati o n of   M c L a c hl a n’s
v ari ati o n al  pri n ci pl e  a p pli c a bl e  t o  a   wi d e  v ari et y  of  ti m e-
d e p e n d e nt  P D Es  a n d  pr o p os e  a  v ari ati o n al  q u a nt u m   M o nt e
C arl o ( V M C)  st o c h asti c  a p pr o xi m at e  s ol uti o n   m et h o d  utili z-
i n g  a ut or e gr essi v e  n e ur al- n et w or k  q u a nt u m  st at es.   A  cl os el y
r el at e d  al g orit h m  h as  b e e n  r e c e ntl y  i ntr o d u c e d  i n  t h e   V Q A
lit er at ur e† ( Al g h assi et al. 2 0 2 1 , F o nt a n el a et al. 2 0 2 1 ),   w hi c h
w as   m oti v at e d  b y t h e  pr o bl e m  of  s ol vi n g li n e ar  P D Es  usi n g
di git al  q u a nt u m  c o m p ut ers   wit h o ut  t h e  n e c essit y  of   H H L
li n e ar  s yst e m  s ol v es  ( H arr o w et  al. 2 0 0 9 ).   R ef.   Al g h assi
et  al. (2 0 2 1 )  ar g u e d  f or  a n  a p pr o xi m at e  s ol uti o n  c o n c e pt,
wit h r es p e ct t o   w hi c h e x p o n e nti al  q u a nt u m s p e e d u p c o ul d  b e
a c hi e v e d f or st at e  e v ol uti o n,   w hi c h  h o w e v er is  o v er w h el m e d
b y a u xili ar y c osts  of st at e  pr e p ar ati o n a n d e xtr a cti o n  of  pr o p-
erti es  of  t h e  st at e  (s e e   Al g h assi et  al. 2 0 2 1 ,  S e cti o n  III. C
f or  d et ails).   T h es e c o m pli c ati o ns  of r e a d- o ut  a n d st at e  pr e p a-
r ati o n  ar e  n ot  r el e v a nt  t o  t h e   V M C- b as e d  s ol v er,  h o w e v er,
si n c e  t h e   V M C  c o m p uti n g   m o d el  p er mits  ef fi ci e nt  q u eri es
t o  ar bitr ar y  pr o b a bilit y  a m plit u d es.  I nt er esti n gl y,  o ur  g e n-
er ali z ati o n  of   M c L a c hl a n’s  v ari ati o n al  pri n ci pl e  is  cl os el y
r el at e d  t o  t h e  n e ur al   G al er ki n   m et h o d  r e c e ntl y  p ut  f or w ar d
i n   Br u n a et  al. (2 0 2 2 ),   w hi c h  als o  i ntr o d u c e d  a  diff er e nt
n e ur al- n et w or k- b as e d  st o c h asti c  s ol uti o n   m et h o d.   O n e  s m all
diff er e n c e  c o m p ar e d t o   Br u n a et  al. (2 0 2 2 ) is t h at   w e  c h o os e
t o   w or k  o n  a  pr e d e fi n e d   m es h,   w hi c h  pr o vi d es  a  si m pl e
m et h o d  t o  i m pl e m e nt  n o n-tri vi al  b o u n d ar y  c o n diti o ns  n e c-
ess ar y  f or  fi n a n ci al  a p pli c ati o ns.   T h e  us e  of  a   m es h  is  n ot
m a n d at or y,  h o w e v er,  a n d t his  p a p er  p a v es t h e   w a y t o w ar d  a
m es h-fr e e  g e n er ali z ati o n. I n d e e d, i n t h e  fi n al st a g es  of  pr e p a-
r ati o n  of t his  arti cl e,   R ef.   R e h  a n d   G ärtt n er (2 0 2 2 )  a p p e ar e d,
w hi c h  pr o p os es  a   m es h-fr e e  fl o w- b as e d  s ol uti o n  of  pr o b a-
bilisti c  P D Es s u c h as t h e  F o k k er- Pl a n c k e q u ati o n.   U nli k e   R e h
a n d   G ärtt n er ( 2 0 2 2 ),  h o w e v er,  o ur  a p pr o a c h  d o es  n ot r e q uir e
t h at t h e st at e v ari a bl e of t h e u n d erl yi n g  P D E c orr es p o n ds t o a
pr o b a bilit y  d e nsit y.

T h e  s p e e d u p  o bt ai n a bl e  b y  t h e  a p pr o a c h  a d v o c at e d  h er e
h as  pr a cti c al  a p pli c ati o ns  i n  o v er c o mi n g  t h e  c urs e- of-
di m e nsi o n alit y i n hi g h- di m e nsi o n al P D Es, p arti c ul arl y i n sit u-
ati o ns   w h er e  fi n e- gr ai n e d i nf or m ati o n a b o ut t h e st at e v ari a bl e
is r e q uir e d, s u c h as  gr a di e nts   wit h r es p e ct t o t h e i n d e p e n d e nt
v ari a bl es.   O n e s u c h sit u ati o n is  q u a nt u m   m a n y- b o d y  p h ysi cs,
w h er e  ki n eti c  e n er g y  o bs er v a bl es  d e p e n d  o n  s e c o n d- or d er
s p ati al  d eri v ati v es.   A n ot h er  e x a m pl e is t h e  pri ci n g a n d  h e d g-
i n g  of c o nti n g e nt  cl ai ms i n   m ulti- ass et  fi n a n ci al   m ar k ets.  F or
e x a m pl e, if  a  Fi n a n ci al i nstit uti o n   writ es  a  c all  c o ntr a ct  v al-
u e d at V (t) o n a n u n d erl yi n g ass et of v al u e S (t) at ti m e t, t h e n
a c c or di n g t o t h e   Bl a c k- S c h ol es fr a m e w or k t h e  fir m  c a n   mi n-
i mi z e t h eir  e x p os ur e  b y  b u yi n g  a  n u m b er  of  s h ar es  e q u al t o

(t) = ∂ V / ∂ S .   T h e  a p pr o a c h is  a p pli c a bl e t o  g e n er al ti m e-
d e p e n d e nt  P D Es  e x pr essi bl e i n  first- or d er f or m,  alt h o u g h   w e
o nl y c o nsi d er t h e i n h o m o g e n e o us li n e ar c as e i n t h e n u m eri c al

†   V Q As f or   m ult- ass et  fi n a n ci al  d eri v ati v e  pri ci n g  h a v e  b e e n s u bs e-
q u e ntl y e x pl or e d i n   K u b o et al. (2 0 2 2 ).

e x p eri m e nts. S p e ci fi c all y,   w e c h os e t o f o c us o n t h e   m ulti- ass et
Bl a c k- S c h ol es  P D E  f or  pri ci n g   E ur o p e a n  c o nti n g e nt  cl ai ms
b e c a us e  of  its   w ell- k n o w n  r el ati o n   wit h  t h e  ti m e- d e p e n d e nt
S c hr ö di n g er  e q u ati o n  ( T D S E)  as   w ell  as  its  i m p ort a n c e  i n
c o m p ut ati o n al fi n a n c e.  T h e t e c h ni q u es d e v el o p e d i n t his p a p er
ar e  n ot  li mit e d  t o  t h e   Bl a c k- S c h ol es  fr a m e w or k,  h o w e v er,
a n d  c a n  b e  str ai g htf or w ar dl y  g e n er ali z e d  t o  pri ci n g   m o d els
wit h  st o c h asti c  v ol atilit y, f or  e x a m pl e.  I n  a d diti o n, t h e t e c h-
ni q u e g e n er ali z es t o   m a n y ot h er li n e ar P D Es i n   w hi c h t h e st at e
v ari a bl e d o es  n ot a d mit a pr o b a bilisti c i nt er pr et ati o n.

T h e  or g a ni z ati o n  of  t h e  p a p er  is  as  f oll o ws:  I n  s e cti o n 2
w e  g e n er ali z e t h e   M c L a c hl a n  v ari ati o n al  pri n ci pl e t o  g e n er al
ti m e- d e p e n d e nt  P D Es  i n  a   m o d el- a g n osti c   m a n n er,   w hi c h
is  a p pli c a bl e  i n  t h e  p ur el y  cl assi c al  or  q u a nt u m  s etti n g.  I n
s e cti o n 3 w e  d es cri b e t h e   m o d eli n g  ass u m pti o ns i n v ol v e d i n
t h e p ass a g e fr o m a ti m e- d e p e n d e nt  P D E t o a n n e ur al q u a nt u m
st at e- b as e d s ol uti o n of   M c L a c hl a n’s v ari ati o n al pri n ci pl e.   T h e
r e m ai n d er of t h e p a p er is d e di c at e d t o n u m eri c al e x p eri m e nts,
f o c usi n g o n t h e pr o bl e m of fi n a n ci al d eri v ati v e pri ci n g,   w hi c h
s uff ers fr o m a c urs e- of- di m e nsi o n alit y.  S e cti o n 4 i n p arti c ul ar
pr o vi d es  n u m eri c al c o n fir m ati o n i n t h e c as e  of c orr el at e d  dif-
f usi o ns, a n d s e cti o n 5 d es cri b es t h e a p pli c ati o n of t h es e r es ults
t o o pti o n pri ci n g i n t h e   Bl a c k- S c h ol es  pri ci n g fr a m e w or k.

2.   T h e o r y

2. 1.   G e n er aliti es of   M c L a c hl a n’s v ari ati o n al pri n ci pl e

M c L a c hl a n’s  v ari ati o n al  pri n ci pl e  ( M c L a c hl a n 1 9 6 4 ) is a n
e x a m pl e  of  a  ti m e- d e p e n d e nt  v ari ati o n al  pri n ci pl e  ( T D V P)
t h at  a p pr o xi m at es  t h e  s ol uti o n  of  t h e   T D S E  b y  e v ol uti o n
wit hi n a s p a c e  of  p ar a m etri z e d tri al f u n cti o ns.   T D V Ps f or t h e
T D S E h a v e b e e n d e vis e d f or t e ns or n et w or k st at es ( H a e g e m a n
et  al. 2 0 1 1 ),  n e ur al- n et w or k  q u a nt u m  st at es  ( N Q S)  ( C arl e o
a n d   Tr o y er 2 0 1 7 )  a n d  p ar a m etri z e d  q u a nt u m  cir c uits ( St o k es
et  al. 2 0 2 0 ,   B aris o n et  al. 2 0 2 1 ).   R ef.  St o k es et  al. (2 0 2 2 )
st u di e d   T D V Ps  t hr o u g h  t h e  l e ns  of  i nf or m ati o n  g e o m etr y
pr o vi di n g a u ni fi e d p ers p e cti v e a p pli c a bl e t o v ari ati o n al q u a n-
t u m al g orit h ms ( V Q As) a n d v ari ati o n al q u a nt u m   M o nt e   C arl o
wit h  n or m ali z e d  n e ur al- n et w or k  q u a nt u m  st at es.  I n  t h e  f ol-
l o wi n g s e cti o n,   w e f urt h er  g e n er ali z e   T D V Ps t o i n cl u d e  g e n-
er al  ti m e- d e p e n d e nt  P D Es  a n d  est a blis h  a d diti o n al  c o n n e c-
ti o ns   wit h t h e   V Q A  a n d  n u m eri c al  a n al ysis lit er at ur e.   Gi v e n
a ti m e- d e p e n d e nt  P D E f or t h e  st at e  v ari a bl e u (t, x ) ∈ C wit h
(t, x ) ∈ [ 0, T ] × ,  t o g et h er   wit h  a  c h oi c e  of  p ar a m etri z e d
f u n cti o ns  of t h e s p ati al  v ari a bl e {u θ : − → C | θ ∈ R p }, t h e
o ut p ut  of  a   T D V P  is  p ar a m etri z e d  c ur v e γ : [ 0, T ] − → R p

i n  t h e  s p a c e  of  v ari ati o n al  p ar a m et ers  s u c h  t h at u γ ( t) o pti-
m all y  d es cri b es u (t, ·) i n  s o m e  dist a n c e   m etri c  dist(·, ·) f or
all t ∈ [ 0, T ].   C o nsi d er t h e i niti al  v al u e  pr o bl e m f or a  g e n er al
ti m e- d e p e n d e nt  P D E of t h e f or m,

∂ tu (t, x ) = F (t, x , u ) ( 1)

u (0, x ) = u 0 ∈ L 2 ( ; C ), (2 )

wit h  pr es cri b e d  b o u n d ar y  c o n diti o ns  o n ∂ . I n  or d er t o si m-
plif y  e x p ositi o n,  i n  t his  s e cti o n   w e  a v oi d  c o m pli c ati o ns  of
b o u n d ar y  c o n diti o ns  b y  ass u mi n g  eit h er = R d wit h  s uit-
a bl e  d e c a y  at i n fi nit y  or = T d .  I n  pr a cti c e   w e  r e pl a c e t h e
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s p ati al  d o m ai n  b y  a   m es h ⊂ ,  t h er e b y  a p pr o xi m ati n g
s q u ar e-i nt e gr a bl e f u n cti o ns  b y s q u ar e s u m m a bl e  v e ct ors.   T h e
i m p ositi o n of b o u n d ar y c o n diti o ns o n t h e s p ati al   m es h is t h e n
a c hi e v e d  vi a t h e  us e  of  s o ur c e  f u n cti o ns.   L et t

s d e n ot e t h e
ti m e e v ol uti o n   m a p f or st at e v ari a bl e s u c h t h at t

u ◦ u
s = t

s

a n d i n  p arti c ul ar u (t, ·) = t
0 (u 0 ).   Gi v e n  a n i niti al  p ar a m et er

v e ct or θ 0 ∈ R p a n d  a  st e p  si z e δ t > 0,  d e fi n e  a  s e q u e n c e  of
p ar a m et er  v e ct ors ( θ k )k ∈ N b y t h e f oll o wi n g it er ati o n

θ k + 1 := ar g   mi n
θ ∈ R p

di st (k + 1 ) δ t
k δ t (u θ k

), u θ . ( 3)

I n  q u a nt u m  p h ysi cs a p pli c ati o ns, a s uit a bl e  dist a n c e   m etri c is
t h e  F u bi ni- St u d y   m etri c,  as  pr e vi o usl y  ar g u e d  b ot h i n   V M C
( C arl e o  a n d   Tr o y er 2 0 1 7 ,  St o k es et  al. 2 0 2 2 )  a n d  i n   V Q A
( St o k es et al. 2 0 2 0 ,   B aris o n et al. 2 0 2 1 ) lit er at ur e. I n t his   w or k
w e  c h o os e  dist (·, ·) t o  b e  t h e   E u cli d e a n  n or m.   R at h er  t h a n
s ol vi n g  t h e  dis cr et e-ti m e  d y n a mi c al  s yst e m  ( 3)  dir e ctl y,   w e
c o nsi d er t h e li mit  of i n fi nit esi m al st e p si z e δ t − → 0 i n w hi c h
it  r e d u c es  t o  t h e  f oll o wi n g  s yst e m  of  or di n ar y  diff er e nti al
e q u ati o ns ( O D Es) † wit h i niti al c o n diti o n γ ( 0 ) = θ 0 :

M ( γ (t)) γ (t) = V (t, γ ( t)) ( 4)

w h er e

M ij( θ ) := R e
∂ u θ

∂ θ i

∂ u θ

∂ θ j
,

V i(t, θ ) := R e
∂ u θ

∂ θ i
F (t, u θ ) ( 5)

a n d   w h er e ·|· , · 2 d e n ot e t h e  st a n d ar d i n n er  pr o d u ct  a n d
t h e  i n d u c e d  n or m  f or L 2 ( , C ),  r es p e cti v el y.   Alt h o u g h  t h e
m atri x M ij i s  n e c ess aril y  p ositi v e  s e mi- d e fi nit e,  it   m a y  b e
d e g e n er at e, r e fl e cti n g t h e p ossi bilit y of   m ulti pl e   mi ni m a i n t h e
o pti mi z ati o n pr o bl e m ( 3).   T h us, r e g ul ari z ati o n t e c h ni q u es ar e
g e n er all y r e q uir e d i n  or d er t o  o bt ai n  a   w ell- p os e d  s yst e m  of
O D Es.

2. 2.   A n al o g y   wit h  fi nit e el e m e nt  a p pr o xi m ati o ns

B ef or e dis c ussi n g o ur a ut or e gr essi v e n e ur al- n et w or k q u a nt u m
st at e  i m pl e m e nt ati o n,  it  is  us ef ul  t o  ori e nt   wit hi n  s ci e nti fi c
c o m p uti n g  lit er at ur e  b y  s h o wi n g  t h at  t h e  f or m alis m  s h ar es
cl os e  p ar all els   wit h t h e  cl assi c  fi nit e  el e m e nt   m et h o d  a p pli e d
t o  t h e  li n e ar  i n h o m o g e n e o us  c as e F (t, x , u ) = L u (t, x ) +
f (t, x ).   Gi v e n  a  s et  of r e al  b asis f u n cti o ns {ϕ i}

m
i= 1 ,  d e fi n e t h e

v ari ati o n al f a mil y c o nsisti n g of a   w ei g ht e d s u p er p ositi o n,

u θ (x ) =

m

i= 1

θ iϕ i(x ), (6 )

w h er e θ ∈ R m i s ass u m e d h er e. S u bstit uti n g t h e a b o v e i nt o ( 4)
o n e  fi n ds t h e f oll o wi n g   O D E d et er mi ni n g t h e d y n a mi cs of t h e
w ei g hts,

M γ (t) = − K γ ( t) + f (t), M ij := ϕ i|ϕ j ,

† S e e  a p p e n di x  1  f or  a  d eri v ati o n.  Si mili ar   O D Es  h a v e  b e e n i ntr o-
d u c e d i n t h e n e ur al   G al er ki n   m et h o d ( Br u n a et al. 2 0 2 2 ).

K ij := − ϕ i|L u j , fi(t) := ϕ i|f (t) , ( 7)

w hi c h  c a n  b e r e c o g ni z e d  as t h e  st a n d ar d  dis cr et e li n e ar  s ys-
t e ms  arisi n g  i n  fi nit e  el e m e nt   m et h o ds,   wit h M a n d K t h e
m ass-  a n d  stiff n ess- m atri x,  r es p e cti v el y.   R e c all  t h at  si n c e
fi nit e  el e m e nt  t e c h ni q u es  us e  n o n- o v erl a p pi n g  el e m e nts  t o
dis cr eti z e t h e s p ati al d o m ai n a n d e m pl o y b asis f u n cti o ns   wit h
l o c ali z e d  s u p p ort,  t h e  pr o bl e m  si z e  s c al es  as m ∼ p d i n d
s p ati al  di m e nsi o ns,   w h er e p is  t h e  a v er a g e  n u m b er  of  el e-
m e nts p er di m e nsi o n.   T h us, t h e c urs e- of- di m e nsi o n alit y aris es
fr o m  n e e d  t o  p erf or m  i n cr e asi n gl y  hi g h- di m e nsi o n al,  al b eit
s p ars e, li n e ar  al g e br a i n  or d er t o  s ol v e t h e li n e ar  s yst e m ( 7).
T h e a p pr o a c h a d v o c at e d i n t h e f oll o wi n g s e cti o n, i n c o ntr ast,
o v er c o m es  t h e  c urs e- of- di m e nsi o n alit y  b y  r e pr es e nti n g  t h e
s ol uti o n  v e ct or i n t er ms  of  a n  a ut or e gr essi v e  n e ur al- n et w or k
q u a nt u m st at e.

2. 3.   N e ur al- n et w or k  q u a nt u m st at e i m pl e m e nt ati o n

I n or d er t o o v er c o m e t h e c urs e of di m e nsi o n alit y   wit h r es p e ct
t o  t h e  s p ati al  di m e nsi o n d ,   w hi c h  is  i n h er e nt  i n  t h e  uti-
li z ati o n  of  a d - di m e nsi o n al   m es h ⊂ ⊆ R d ,   w e  utili z e
st o c h asti c  esti m ati o n  c o m bi n e d   wit h  a ut or e gr essi v e  ass u m p-
ti o ns.  I n  p arti c ul ar,   w e t a k e i ns pir ati o n  fr o m  b ot h t h e  v ari a-
ti o n al q u a nt u m al g orit h m i ntr o d u c e d i n   Al g h assi et al. (2 0 2 1 )
as   w ell  v ari ati o n al  q u a nt u m   M o nt e   C arl o  usi n g  a ut or e gr es-
si v e   N Q S  ( Hi b at- All a h et  al. 2 0 2 0 ,  S h arir et  al. 2 0 2 0 ),  b y
p ar a m etri zi n g  t h e  s ol uti o n  of  t h e  P D E  as u θ = α ψ β w h er e
ψ β i s  a  u nit- n or m ali z e d   N Q S   wit h  v ari ati o n al  p ar a m et ers β
a n d α > 0  is  a  s c al e  f a ct or,   w h os e  ti m e- d e p e n d e n c e   m ust
b e  d et er mi n e d  fr o m  t h e  e v ol uti o n  e q u ati o ns  al o n g   wit h β .
T h e  v ari ati o n al  p ar a m et ers  t h us  c o nsist  of  t h e  a u g m e nt e d
p ar a m et er  v e ct or θ := (l o g α , β ) ∈ R p + 1 w h er e β ∈ R p i s  a n
u n c o nstr ai n e d  v e ct or  r e pr es e nti n g  t h e   w ei g hts  a n d  bi as es
of  t h e  n e ur al  n et w or k.  Pl u g gi n g  t h e  r es c al e d  a ns at z  i nt o
t h e  e v ol uti o n  e q u ati o ns  ( 4),  o n e  o bt ai ns  a n  a u g m e nt e d  s ys-
t e m  of  first- or d er,  n o n-li n e ar  or di n ar y  diff er e nti al  e q u ati o ns
d et er mi ni n g  t h e  ti m e- d e p e n d e n c e  of  t h e  a u g m e nt e d  v e ct or
θ .   T h e  o v erl a ps  d e fi ni n g M a n d V ar e  esti m at e d  usi n g  t h e
V M C i m p ort a n c e  s a m pli n g t e c h ni q u e,   w h er e t h e  pr o b a bilit y
d e nsit y  is  c h os e n  t o  b e  t h e   m o d ul us-s q u ar e d   w a v ef u n cti o n
|ψ β (x )|2 .

3.   N u m e ri c al i m pl e m e nt ati o n

I n  t his  s e cti o n,   w e  pr o vi d e  d et ail e d   m o d eli n g  ass u m pti o ns
r e q uir e d t o i m pl e m e nt t h e al g orit h m.   Aft er d es cri bi n g a   m es h-
b as e d  e n c o di n g  of t h e  st at e  v ari a bl e i nt o  a   m ulti- q u bit  st at e,
w e  t h e n  i ntr o d u c e  t h e   m o d el  ar c hit e ct ur e  a n d  c o m p ut ati o n
m e c h a nis ms  i n cl u di n g  t h e  f or w ar d  p ass  a n d  t h e  a ut or e gr es-
si v e  s a m pli n g  pr o c ess.  Pr e-tr ai ni n g  is  n e c ess ar y  i n  or d er  t o
s atisf y t h e i niti al c o n diti o n of t h e P D E, a n d   w e a d o pt t h e st a n-
d ar d  a p pr o a c h  ( Siri g n a n o  a n d  S pili o p o ul os 2 0 1 8 )  b y  u p d at-
i n g  t h e   m o d el  it er ati v el y  o n  b at c h es  of  r a n d o ml y  s el e ct e d
m es h  p oi nts.  Fi n all y,   w e  d es cri b e  t h e  st o c h asti c  esti m ati o n
pr o c e d ur e  us e d  t o  e v ol v e  t h e  v ari ati o n al  tri al  st at e  usi n g
M c L a c hl a n’s  v ari ati o n al pri n ci pl e.
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3. 1.   C o n v ersi o n t o   m es h e d f or m

R at h er t h a n   w or ki n g i n t h e c o nti n u u m,   w e ass u m e s p ati al dis-
cr eti z ati o n of t h e f u n cti o n u (t, ·) o n a r e g ul ar gri d e m b e d d e d
i n  t h e d - di m e nsi o n al  d o m ai n = [a 1 , b 1 ] × · · · × [a d , b d ]
wit h  a t ot al  of  2 n gri d  p oi nts.   Wit h o ut l oss  of  g e n er alit y,   w e
ass u m e is a r e g ul ar h y p er c u b e s atisf yi n g |b 1 − a 1 |   = · · ·   =
|b d − a d |,  a n d t h at t h e   m es h  si z e  al o n g  e a c h  a xis is  2n / d . I n
or d er t o r e pr es e nt t h e st at e  of t h e  dis cr eti z e d  fi el d i n t er ms  of
t h e st at e  of  a n n - q u bit s yst e m,   w e  assi g n  e a c h  c o m p ut ati o n al
b asis  st at e |k 1 , . . . , k n ∈ C 2 n

wit h (k 1 , . . . , k n ) ∈ { 0, 1 }
n t o  a

li n e ar  i n d e x  d e fi n e d  b y k = n
i= 1 k i2

i a n d  t h e n  u nr a v el  t h e
li n e ar i n d e x t o i n di c es al o n g e a c h of d a x es yi el di n g a d -t u pl e
( k̄ 1 , . . . , k̄ d ) ∈ { 0, . . . , n / d − 1 } d d e fi n e d  b y

n

i= 1

k̄ i(2
n
d ) i− 1 = k . ( 8)

T h e   m es h  p oi nt x k ∈ c orr es p o n di n g t o t h e li n e ar i n d e x k ∈
{0, 1, . . . , 2n − 1 } is t h us

x k = (a 1 + k̄ 1 x , . . . , a d + k̄ d x ) ( 9)

w h er e x = | b 1 − a 1 |/ 2
n
d .   H e n c ef ort h,   w e  d o  n ot  disti n g uis h

t h e i n d e x k , t h e  bi n ar y stri n g (k 1 , . . . , k n ) a n d t h e c orr es p o n d-
i n g  c o or di n at e x k ∈ .   T h e  di giti z e d  r e pr es e nt ati o n  of  t h e
st at e  of t h e  P D E at ti m e t is t h us t h e f oll o wi n g  u n n or m ali z e d
n - q u bit st at e

|u (t) =

k ∈

u (x k , t)|k 1 , . . . , k n ( 1 0)

a n d li k e wis e t h e  p ar a m etri z e d  a p pr o xi m ati o n |u θ of |u (t) is
gi v e n  b y,

|u θ =

k ∈

u θ (x k )|k 1 , . . . , k n ( 1 1)

w h er e u θ (·) is a f u n cti o n  d e fi n e d  o n ⊂ .

3. 2.   A ut or e gr essi v e ass u m pti o n a n d s a m pli n g

I n  or d er t o  o bt ai n  a n  e x pr essi v e f a mil y  of tri al f u n cti o ns u θ :
− → C w hi c h  f urt h er m or e  a d mits  a n  ef fi ci e nt  st o c h asti c

esti m ati o n  pr o c e d ur e,   w e  e x pr ess u θ a s   m ulti pl e  of  a  u nit-
n or m ali z e d n e ur al- n et w or k q u a nt u m st at e ψ β : − → C wit h
v ari ati o n al  p ar a m et ers β ∈ R p ,

u θ (x k ) = α ψ β (k 1 , . . . , k n ), ψ β = 1.  ( 1 2)

A  si m pl e   m et h o d  t o  e ns ur e  u nit- n or m ali z ati o n  a n d  ef fi-
ci e nt  s a m pli n g  is  t o  f oll o w  t h e   w or k  of   M A D E  ( G er m ai n
et  al. 2 0 1 5 )   w hi c h e x pl oit e d a   m as k e d  v ersi o n  of a f ull y c o n-
n e ct e d  l a y er,   w h er e  s o m e  c o n n e cti o ns  i n  t h e  c o m p ut ati o n al
p at h  ar e r e m o v e d i n  or d er t o s atisf y t h e  a ut or e gr essi v e  pr o p-
erti es, I n  p arti c ul ar, if   w e  ass u m e  a  c h oi c e  of  v ari a bl es  s u c h

t h at  t h e  st at e  v ari a bl e  is  stri ctl y  p ositi v e† u θ (x ) > 0,  t h e n  a
s uit a bl e c h oi c e  of u nit- n or m ali z e d f u n cti o n is

ψ β (k 1 , . . . , k n ) =

n

i= 1

p β ,i(k i|k i− 1 , . . . , k 1 ),  ( 1 3)

w h er e p β ,i(·|k i− 1 , . . . , k 1 ) is  t h e  p ar a m etri z e d  c o n diti o n al
pr o b a bilit y distri b uti o n f or t h e it h bit.

3. 3.   Pr e-tr ai ni n g

B ef or e   w e  p erf or m  t h e  ti m e  e v ol uti o n,  i niti al  v ari ati o n al
p ar a m et ers θ 0 m ust  b e  s el e ct e d i n  or d er t o   m at c h t h e  v ari a-
ti o n al f u n cti o n u θ 0

(x ) wit h t h e c h oi c e of i niti al c o n diti o n u 0 (x )
f or x ∈ i n t h e s p ati al d o m ai n.   T his c a n b e a c hi e v e d vi a o pti-
mi z ati o n  of t h e f oll o wi n g  o bj e cti v e f u n cti o n  usi n g st o c h asti c
gr a di e nt d es c e nt,

J ( α0 , β 0 ) = α 0 |ψ β 0
− | u 0

2
.  ( 1 4)

3. 4.   E v ol uti o n

I n t his s e cti o n   w e  dis c uss t h e  d et ails  of t h e st o c h asti c esti m a-
ti o n of M a n d V n e c ess ar y t o e v ol v e t h e a u g m e nt e d p ar a m et er
v e ct or θ = (l o g α , β ) ∈ R p + 1 .  F or  si m pli cit y  of  pr es e nt ati o n
w e  c o nsi d er t h e  af fi n e  c as e, i n   w hi c h F s e p ar at es i nt o  a li n-
e ar  p arti al  diff er e nti al  o p er at or L pl us  a  s o ur c e  f u n cti o n f
i n d e p e n d e nt  of t h e st at e v ari a bl e

F (t, x , u ) = L u (t, x ) + f (t, x ).  ( 1 5)

C o nsi d er t h e d e c o m p ositi o n,

M =
M 0 0 M 0, 1: p

M 1: p , 0 M 1: p , 1:p
, V =

V 0

V 1: p
.  ( 1 6)

It is  c o n v e ni e nt t o i ntr o d u c e t h e  f oll o wi n g  h el p er  f u n cti o ns.
I n  p arti c ul ar,  d e fi n e t h e   B or n  pr o b a bilit y  distri b uti o n ρ β (x ) ∈
[ 0, ∞ ),  t h e   w a v ef u n cti o n  s c or e σ β (x ) ∈ C n a n d  t h e  l o c al
e n er g y lθ (t, x ) ∈ C as f oll o ws,

ρ β (x ) := | ψ β (x )|2 , σ β (x ) :=
∇ β ψ β (x )

ψ β (x )
,

lθ (t, x ) :=
(L ψ β )(x )

ψ β (x )
+

f (t, x )

α
. ( 1 7)

B y str ai g htf or w ar d c al c ul us,   w e o bt ai n

M 0 0 = α 2 , M 1: p , 0 = M 0, 1: p = α 2 R e E
x ∼ ρ β

σ β (x ) ,

M 1: p , 1:p = α 2 R e E
x ∼ ρ β

σ β (x ) σβ (x )T , ( 1 8)

†  T his c a n b e c o nsi d er e d as a s p e ci al c as e of t h e c o m pl e x- v al u e d c as e
( Hi b at- All a h et al. 2 0 2 0 , S h arir et al. 2 0 2 0 ).



F e at ur e 5

a n d

V 0 = α 2 R e E
x ∼ ρ β

lθ (t, x ) ,

V 1: p = α 2 R e E
x ∼ ρ β

σ β (x ) lθ (t, x ) .  ( 1 9)

T h e e x p e ct ati o n  v al u es  o v er x ar e a p pr o xi m at e d  usi n g   M o nt e
C arl o s a m pli n g. I n  pr a cti c e, t h e  b at c h  of r a n d o ml y  g e n er at e d
s a m pl es  is  r e pr es e nt e d  i n  t h e  f or m  of  a  b uff er B = { x i}

B
i= 1

t h at  st or es  t h e  u ni q u e  s a m pl es  i n  t h e  b at c h  a n d  a  c o u nt er
C = { c i}

B
i= 1 t h at  r e c or ds  t h e  n u m b er  of  o c c urr e n c es  of  e a c h

of  t h e  c orr es p o n di n g  s a m pl es.   E x p e ct ati o n  v al u es  ar e  t h e n
a p pr o xi m at e d  b y s u ms of t h e f oll o wi n g f or m,

E
x ∼ ρ β

[g (x )] ≈
1

B
i= 1 c i

B

i= 1

c ig (x i).  ( 2 0)

C o m p ut ati o n  of  p er-s a m pl e  gr a di e nt. I n  or d er t o c o m p ut e t h e
d e ns e  r e pr es e nt ati o n  of M ef fi ci e ntl y, it is  d esir a bl e t o  h a v e
a c c ess  t o  t h e  p er-s a m pl e  gr a di e nts { ∇ β ψ β (x i)}

B
i= 1 ,   w hi c h  is

t y pi c all y  n ot  dir e ctl y  a c c essi bl e  d uri n g  a  tr a diti o n al  b a c k-
w ar d  p ass  b y s o m e  d e e p l e ar ni n g s oft w ar e. I n  or d er t o  a v oi d
i n ef fi ci e nt  f or w ar d  a n d  b a c k w ar d  p ass es  f or  e a c h  of  t h e B
s a m pl es,   w e  utili z e B a c k P a c k w hi c h  c oll e cts  t h e  q u a nti-
ti es  n e c ess ar y t o c o m p ut e t h e i n di vi d u al  gr a di e nts a n d r e us es
t h e m t o  c o m p ut e t h e  p er-s a m pl e  gr a di e nt   wit h o ut  si g ni fi c a nt
c o m p ut ati o n al  o v er h e a d.

P ar all el  e xtr a cti o n  of   m atri x  el e m e nts. Gi v e n  a  s a m pl e
x ∈ , c orr es p o n di n g t o a p arti c ul ar r o w-i n d e x of t h e o p er at or
L ∈ C 2 n × 2 n

, t h e c al c ul ati o n of t h e l o c al e n er g y lθ (t, x ) d e fi n e d
i n ( 1 7) i n v ol v es  d et er mi ni n g t h e  n o n z er o  e ntri es  of L i n t h at
r o w.  F ort u n at el y,  t h e  str u ct ur e  of  t h e  P D E  pr o bl e m  e ns ur es
t h at t h e l o c ati o n a n d v al u es of t h es e e ntri es c a n b e d et er mi n e d
i n O (p ol y (n )) ti m e.   We  e x pl oit   C P U  p ar all eli z ati o n t o  d et er-
mi n e  t h e  n o n z er o  r o w  e ntri es  f or  e a c h  s a m pl e  i n  t h e  b at c h.
N ot e  t h at  t h e   m a xi m al  n u m b er  of  n o n z er o  e ntri es  p er  r o w
is  d et er mi n e d i n  a d v a n c e;  e. g.  2n 2 + 1 f or  diff usi o n  o p er at or
wit h   Diri c hl et b o u n d ar y c o n diti o ns.

B o u n d ar y   C o n diti o ns. B o u n d ar y  c o n diti o ns  ar e  i m pl e-
m e nt e d  o n  t h e  gri d  usi n g  a n  a p pr o pri at e  c h oi c e  of  s o ur c e
f u n cti o n. I n t h e c as e  of   Diri c hl et c o n diti o ns, f or e x a m pl e,   w e
c h o os e t h e s o ur c e f u n cti o n as f oll o ws

f (t, x ) = u (t, x )1 ∂ (x ) ( 2 1)

w h er e 1 ∂ d e n ot es t h e i n di c at or f u n cti o n f or t h e s et ∂ . T his
c h oi c e  of  s o ur c e  f u n cti o n  c orr es p o n ds  t o  i m p osi n g   Diri c h-
l et  b o u n d ar y  c o n diti o ns  o n t h e  gri d   wit h  s p e ci fi e d  b o u n d ar y
b e h a vi or u (t, x ) f or x ∈ ∂ .

P ar a m et er  u p d at e. T h e  n et w or k  c a n  b e  tr ai n e d  b y  i n cr e-
m e nti n g  t h e  p ar a m et ers  usi n g  a   E ul er  s c h e m e  i n  t h e  dir e c-
ti o n δ θ ∈ R p + 1 gi v e n  b y t h e  s ol uti o n  of t h e f oll o wi n g li n e ar
s yst e m

M δ θ = V δ t, ( 2 2)

w h er e M , V ar e c o m p ut e d as  dis c uss e d  b ef or e. I n  pr a cti c e, M
is  us u all y ill- c o n diti o n e d  d u e t o t h e f a ct t h at it’s ess e nti all y a
s u m of B r a n k o n e   m atri c es.   T o st a bili z e t h e i n v ers e o p er ati o n,
w e  c o nsi d er t h e  si n g ul ar  v al u e  d e c o m p ositi o n M = U W T ,

a n d  r e m o v e  t h e  di a g o n al  v al u es  of s m all er  t h a n  a  s m all
t hr es h ol d = 1 0 − 1 2 t o  o bt ai n r of  si z e r × r , as w ell as
U r , W r of  si z e (p + 1 ) × r .   T h e  dir e cti o n  v e ct or is t h er ef or e
a p pr o xi m at e d  b y W r

− 1
r U T

r V δ t.

4.   Diff usi o n   wit h   G a ussi a n i niti ali z ati o ns

I n  t his  s e cti o n,   w e  s h o w  v ari o us  n u m eri c al  e x p eri m e nts
d e m o nstr ati n g t h e  c o n v er g e n c e  a n d r u n ti m e  a n al ysis  of  o ur
pr o p os e d a p pr o a c h.   H er e,   w e c o nsi d er t h e d - di m e nsi o n al h e at
e q u ati o n f or   w hi c h L = D ∇ · ∇ i n ( 1 5) ( diff usi o n c o nst a nt s et
t o D = 0. 1)   wit h eit h er  p eri o di c  or   Diri c hl et  b o u n d ar y c o n di-
ti o ns  o n ∂ .  F or  b e n c h m ar ki n g  p ur p os es,   w e e m pl o y a  fi nit e
diff er e n c e   m et h o d   wit h t h e st a n d ar d c e ntr al diff er e n c e s c h e m e
t o  dis cr eti z e L (f or m ul as  gi v e n i n   A p p e n di x  2)  a n d  f or w ar d
E ul er f or ti m e-st e p pi n g.

4. 1.   E x p eri m e nt al s et u p

F or  i niti ali z ati o n   w e  c h os e  a  dis cr et e  is otr o pi c   G a ussi a n,
e x pr ess e d  i n  t er ms  of  t h e   m o di fi e d   B ess el  f u n cti o n Ix (t) of
i nt e g er  or d er x ,

u 0 (x ) =

d

i= 1

e − tIx i
(t), ( 2 3)

w h er e t > 0 is  a  p ar a m et er  c o ntr olli n g t h e   wi dt h  of t h e   G a us-
si a n,  a n d x r a n g es  fr o m  0  t o  2n − 1 .  Pr e-tr ai ni n g   w as  p er-
f or m e d  usi n g   A d a m  o pti mi z er  ( Ki n g m a  a n d   B a 2 0 1 5 ) f or
5 0 k it er ati o ns   wit h  b at c h si z e  1 2 8, β 1 = 0. 9, β 2 = 0. 9 9 9, a n d

= 1 0 − 8 .   T h e  l e ar ni n g  r at e   w as   w ar m-st art e d  f or  t h e  first
1/ 1 0 t ot al tr ai ni n g it er ati o ns, t h e n  d e c a y e d  b y  a f a ct or  of  1 0
at 3 / 7, 5 / 7  of t h e t ot al tr ai ni n g it er ati o ns.

Aft er c o m pl eti o n of pr e-tr ai ni n g, t h e st at e   w as e v ol v e d f or a
t ot al e v ol uti o n ti m e T = 1 usi n g a st e p si z e of δ t = 5 × 1 0 − 5

a n d  a  b at c h  si z e  of B = 1 0 2 4  f or   M o nt e   C arl o  esti m ati o n
o n  e a c h  it er ati o n.   T h e  ti m e  d e v el o p m e nt  of  t h e  st at e   w as
c o m p ar e d t o t h e r es ult  of   E ul er ti m e-st e p pi n g t h e i niti al  c o n-
diti o n  ( 2 3)  usi n g t h e  s a m e  st e p-si z e.   D u e t o t h e  e x p o n e nti al
s c ali n g of t h e   m atri x L ,   w e o nl y est a blis h t his b as eli n e f or t h e
n u m b er  of  q u bits n ≤ 1 6.   All  r e p ort e d  n u m eri c al  r es ults  ar e
a v er a g e d a cr oss e x a ctl y  5 s e e ds, e a c h tr ai n e d f or 2 0 k st e ps.

Ta bl e 1 r e p orts t h e r el ati v e  err or  b et w e e n  o ur   m et h o d  a n d
f or w ar d   E ul er   m et h o d  o v er  2 0 k it er ati o ns, f or  diff usi o n  pr o b-
l e m   wit h   Diri c hl et  b o u n d ar y  c o n diti o ns.   T h e r el ati v e err or  of
t h e  o bt ai n e d s ol uti o n is  c o m p ut e d  b y  c o m p ari n g t h e  n or m  of
t h e  s p a c e-ti m e  hist or y  of t h e  v ari ati o n al  st at e   wit h t h e r es ult
of   E ul er  d e v el o p m e nt,

err or : =
1

T
t∈ T

|u (t) − | u γ ( t)

|u (t)
.  ( 2 4)

I n  g e n er al,  t h e  o v er all  s ol uti o n  o bt ai n e d  usi n g  o ur   m et h o d
m at c h es   w ell   wit h t h at  o bt ai n e d  usi n g f or w ar d   E ul er   m et h o d.
T h eir dis cr e p a n c y i n cr e as es as t h e di m e nsi o n alit y of t h e pr o b-
l e m i n cr e as es;  n o n et h el ess,   wit hi n  a t ol er a bl e t hr es h ol d ( e. g.
l ess t h a n  1 0 %).   O n e  r e m e d y is t o  si m pl y i n cr e as e t h e  b at c h
si z e,  f or  e x a m pl e,   w e  s h o w  i n  S e cti o n 4. 4 t h at  t h e  r el ati v e
err or i m pr o v es fr o m  1 5 % t o ar o u n d  3 %   wit h a  b at c h si z e t h at
is t e n ti m es l ar g er.



6 F e at ur e

4. 2.   R u n ni n g ti m e a n al ysis

Si n c e   w e  dis cr eti z e t h e  d o m ai n usi n g a gri d of si z e | | =
2 n , t h e ti m e  c o m pl e xit y  of f or w ar d   E ul er   m et h o d,  e x pr ess e d
i n t er ms  of n is O (T × 2 2 n ),   w h er e T is t h e  n u m b er  of it er-
ati o ns.   T h e  pr o p os e d   V M C  al g orit h m, i n  c o ntr ast,  s c al es  as
O (T B p ol y (n )),   w h er e B is t h e  b at c h si z e. I n   m or e  d et ail, t h e
f or w ar d p ass s c al es as O (T B n 2 ), a n d t h e s a m pli n g is O (T B n 3 ),
d u e t o t h e  s e q u e nti al  n at ur e  of t h e  a ut o-r e gr essi v e  s a m pli n g
pr o c ess.   T his  p ol y n o mi al  s c ali n g  c o m es  at  a  pri c e  of  t h e
a p pr o xi m at e n at ur e of t h e ti m e e v ol uti o n st e p, a n d t h e i m pli cit
a c c ess t o  e ntri es  of t h e  st at e  v e ct or  c o m p ar e d t o t h e f or w ar d
E ul er   m et h o d   w hi c h off ers O (1 ) l o o k u p t o e ntri es of t h e st at e.

I n  t a bl e 2 ,   w e  r e p ort  t h e  a v er a g e  r u n ni n g  ti m e  of  b ot h
f or w ar d   E ul er   m et h o d  a n d  o ur   m et h o d  f or  2 k  it er ati o ns
( o n e-t e nt h  of  t h e  t ot al  r u n ni n g  ti m e).   T h e  b at c h  si z e B of
o ur   m et h o d  is  fi x e d  t o  b e  5 0 0.   N ot e  t h at   w e  c a n n ot  a p pl y
E ul er  f or  hi g h er  di m e nsi o ns  d u e  t o  t h e   m e m or y  c o nstr ai nt.
Alt h o u g h  f or w ar d   E ul er   m et h o d  is  eff e cti v e  f or  s m all-s c al e
pr o bl e ms, its c o m pl e xit y s uff ers fr o m t h e e x p o n e nti al  gr o wt h
wit h  r es p e ct  t o  di m e nsi o n d .   T h e  c o m p ut ati o n al  c ost  of
o ur   m et h o d  ori gi n at es fr o m f o ur  s o ur c es:  s a m pli n g, f or w ar d
p ass,  p er-s a m pl e  gr a di e nt  c o m p ut ati o n ( b a c k w ar d  p ass),  a n d
e xtr a cti o n  of   m atri x  el e m e nt  i nf or m ati o n.   All  t h es e  s o ur c es
c o ntri b ut e t o t h e  o v er h e a d ti m e t h at c a us es  o ur   m et h o d t o r u n
sl o w er i n  c o m p aris o n   wit h  r es p e ct t o  f or w ar d   E ul er   m et h o d
f or  pr o bl e ms  i n  l o w er  di m e nsi o ns.   H o w e v er,  as  t h e  di m e n-
si o n alit y  i n cr e as es,  t h e  r u n  ti m e  of  o ur   m et h o d  gr o ws  o nl y
at  a  p ol y n o mi al  r at e.  It  c a n  b e  s e e n  fr o m  t a bl e 2 t h at  o ur
m et h o d is alr e a d y f ast er t h a n f or w ar d   E ul er f or pr o bl e m si z es
c h ar a ct eri z e d  b y n = 1 6 q u bits.

4. 3.   C o n v er g e n c e vis u aliz ati o n

We  pr o vi d e  s n a ps h ots  of  o ur   m et h o d  f or  2 D  diff usi o n  pr o b-
l e ms   wit h  p eri o di c  b o u n d ar y  c o n diti o ns  o v er  2 0 k it er ati o ns.
We  r u n  o ur  al g orit h m   wit h  fi v e  disti n ct  i niti ali z ati o ns  a n d
r e c or d  t h e  s n a ps h ot  e v er y  2 k  it er ati o ns.  I n  p arti c ul ar   w e  d o

n ot  e m pl o y  a n y r e g ul ari z ati o n t e c h ni q u es t o  e nf or c e t h at t h e
s ol uti o n  s atis fi es t h e  b o u n d ar y  c o n diti o n. It  c a n  b e  o bs er v e d
i n  fi g ur e 1 t h at  o ur   m et h o d  s u c c essf ull y  o b e ys  t h e  p eri o di c
b o u n d ar y c o n diti o ns.

4. 4.   A bl ati o n st u d y o n b at c h siz e

R e c all  t h at M a n d V ar e  a p pr o xi m at e d   wit h   M o nt e   C arl o
s a m pli n g  usi n g  b at c h es  of  u ni q u e  s a m pl es.  I nt uiti v el y,  a
l ar g er  b at c h  si z e  yi el ds  a  b ett er  a p pr o xi m ati o n  t o  t h e  e x a ct
e x p e ct ati o n  v al u e,  t h er e b y  pr o vi di n g   m or e  a c c ur at e   m o d el
u p d at es.  I n  t his  s e cti o n,   w e  st u d y  t h e  eff e ct  of  b at c h  si z e
o n  t h e  p erf or m a n c e  of  o ur   m et h o d.  I n  t h e   L H S  of  fi g ur e 2 ,
t h e  r u n ni n g  ti m e  of  o ur  al g orit h m  i n cr e as es  f or  b ot h  l ar g er
pr o bl e m  si z es  a n d  b at c h  si z es.   N ot e  t h at  t h e  a ct u al  r u n ni n g
ti m e  d o es  n ot  gr o w  li n e arl y   wit h  r es p e ct  t o  t h e  b at c h  si z e
i n t h e  pl ot  d u e t o t h e  c a c h e  a n d  p ar all eli z ati o n.  I n t h e   R H S
of  fi g ur e 2 ,   w e r e p ort t h e  a v er a g e r el ati v e  err or  b et w e e n t h e
f or w ar d   E ul er   m et h o d  a n d  t h e   V M C   m et h o d   wit h  v ari o us
b at c h  si z es.   Gi v e n  a  fi x e d  pr o bl e m  si z e  ( e. g.  4  di m e nsi o ns
wit h  4  q u bits  p er  di m e nsi o n),   w e  o bs er v e  a  p erf or m a n c e
i m pr o v e m e nt  b y  i n cr e asi n g  t h e  b at c h  si z e,   w hi c h  v eri fi es
o ur  h y p ot h esis  t h at  i n cr e asi n g  t h e  b at c h  si z e  d o es  eff e c-
ti v el y i m pr o v e t h e p erf or m a n c e.   Gi v e n a  fi x e d  b at c h si z e, o ur
m et h o d  p erf or ms   w ors e  as  t h e  di m e nsi o n alit y  of  t h e  pr o b-
l e m i n cr e as es.   T his r es ult i m pli es t h at   w e  n e e d a l ar g er  b at c h
si z e  t o  g u ar a nt e e  g o o d  p erf or m a n c e  f or  pr o bl e ms  i n  hi g h er
di m e nsi o ns.

5.   O pti o n  p ri ci n g

I n t his s e cti o n,   w e e x pl ai n h o w t h e n u m eri c al r es ults o bt ai n e d
i n  S e cti o n 4 c a n  b e  a p pli e d t o t h e   m ulti- di m e nsi o n al   Bl a c k-
S c h ol es   m o d el. I n  S e cti o n 5. 1 w e  pr es e nt t h e   Bl a c k- S c h ol es
st o c h asti c   m o d el  a n d  pr o vi d e  t h e   Bl a c k- S c h ol es  P D E  f or
a  g e n er al   E ur o p e a n  o pti o n  i n  t his   m o d el.   We  r e d u c e  t h e

Ta bl e  1.   A v er a g e r el ati v e err or of o ur   m et h o d i n c o m p aris o n   wit h f or w ar d   E ul er   m et h o d o v er 2 0 k it er ati o ns.

# of   Di m e nsi o ns d

O p er at or   B o u n d ar y   C o n diti o n n /d 1 2 3 4

Diff usi o n Diri c hl et 4  5. 1 3 × 1 0 − 3 7. 9 2 × 1 0 − 3 3. 1 2 × 1 0 − 2 1. 4 7 × 1 0 − 1

Diff usi o n Diri c hl et 5  2. 9 1 × 1 0 − 3 9. 9 1 × 1 0 − 3 7. 2 4 × 1 0 − 2 –

N ot e:   T h e pr o p os e d al g orit h m s ol uti o n is c o m p ar e d   wit h a   E ul er f or w ar d   m et h o d f or t h e diff usi o n e q u ati o n  o v er 2 0 k it er ati o ns.  F or f or w ar d

E ul er   m et h o d, t h e ti m e st e p is 5 × 1 0 − 5 wit h a t ot al ti m e of 1.   T h e r el ati v e err or is c o m p ut e d as 1
T

T
t= 1

u (t,x )− f (x ;θ t)
u (t,x ) .

Ta bl e  2.   A v er a g e r u n ni n g ti m e o v er 2 k it er ati o ns.

# of   Di m e nsi o ns d

O p er at or   M et h o d n /d 1 2 3   4 5 6   7   8   9

Diff usi o n   E ul er  4  0. 0 2 4  0. 1 3 7  1. 5 5 9  3 0 5. 9 2  –  –  –  –  –
Diff usi o n   E ul er  5  0. 0 3 1  0. 2 2 5  6 8. 8 2 7  –  –  –  –  –  –
Diff usi o n   O urs  4  2 9. 5 2  5 5. 7 6  1 3 8. 8 8  2 3 0. 0 2  3 6 0. 8 0  5 1 8. 0 0  7 9 2. 6 3  1 2 1 4. 0 9  1 8 1 2. 9 4
Diff usi o n   O urs  5  3 2. 5 3  8 8. 7 5  1 7 3. 4 3  3 1 1. 8 2  5 0 7. 9 3  8 4 7. 8 5  1 3 5 5. 1 6  2 3 7 9. 8 6  4 1 2 3. 6 1

N ot es:   T h e b at c h si z e us e d h er e is 5 0 0.  F or w ar d   E ul er   m et h o d s uff ers fr o m t h e e x p o n e nti al c o m pl e xit y,   w h er e as o ur   m et h o d, d es pit e h a vi n g
a n o v er h e a d r u n ni n g ti m e, e nj o ys a p ol y n o mi al s c ali n g.   N ot e t h at   w e c a n n ot a p pl y   E ul er f or hi g h er di m e nsi o ns d u e t o t h e   m e m or y c o nstr ai nt.
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Fi g ur e  1.  S n a ps h ots  of t h e  e v ol uti o n  o bt ai n e d  usi n g  o ur  al g orit h m f or  diff usi o n  e q u ati o n   wit h   Diri c hl et  a n d  p eri o di c  b o u n d ar y  c o n diti o ns
a n d diff er e nt c h oi c es of i niti ali z ati o n.

Fi g ur e  2.   We r e p ort t h e r u n ni n g ti m e a n d t h e a v er a g e r el ati v e err or   wit h t h e f or w ar d   E ul er   m et h o d  o v er  v ari o us  b at c h si z es, f or  q u bit si z es
n = d × n

d , w h er e d is t h e  di m e nsi o n alit y  of t h e  pr o bl e m.   T h e r u n ni n g ti m e  gr o ws   wit h r es p e ct t o t h e  b at c h si z e  a n d t h e  pr o bl e m si z e.   O n
t h e ot h er h a n d, t h e p erf or m a n c e is gr e atl y i m pr o v e d   w h e n tr ai ni n g   wit h l ar g er b at c h si z es.

m ulti- di m e nsi o n al  P D E t o t h e  st a n d ar d  h e at  e q u ati o n.   T h e n,
i n  S e cti o n 5. 2 ,   w e  a p pl y  o ur  al g orit h m t o t h e  h e at  e q u ati o n
a n d tr a nsl at e it b a c k t o t h e   Bl a c k- S c h ol es e q u ati o n.

5. 1.   O pti o n pri ci n g i n   Bl a c k- S c h ol es   m o d el

F or t his   w e c o nsi d er t h e   Bl a c k- S c h ol es   m o d el t h at c o nsists of
a  ris k-fr e e  ass et   wit h  a  c o nst a nt  ris k-fr e e  r et ur n r > 0  a n d d
ris k y ass ets   w h os e d y n a mi cs ar e gi v e n  b y

d S i
t = μ iS

i
td t + σ iS

i
t d W i

t , i = 1, . . . , d .

T h e  p ar a m et ers μ i a n d σ i, i = 1, . . . , d ,  ar e  c o nst a nts,
a n d {W i}d

i= 1 ar e   Wi e n er  pr o c ess es   wit h  q u a dr ati c  c o v ari-

ati o n  [ W i
t , W

j
t ] = ρ ijt.   C o nsi d er  f urt h er  a   E ur o p e a n  o pti o n,

w h os e  p a y m e nt  at  (t h e  pr e d et er mi n e d)  e x pir y  ti m e T > 0 is

(S 1
T , . . . , S d

T ), f or s o m e   m e as ur a bl e f u n cti o n . L et V b e t h e
c o n diti o n al pri c e of t his o pti o n, i. e. V (t, x 1 , . . . , x d ) is t h e pri c e
f or t h e o pti o n at ti m e t, gi v e n t h at S i

t = x i f or i = 1, . . . , d . It is
w ell- k n o w n t h at V s atis fi es t h e f oll o wi n g   Bl a c k- S c h ol es P D E:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ V

∂ t
+

d

i= 1

r x i
∂ V

∂ x i
+

1

2

d

i= 1

σ 2
i x 2

i

∂ 2 V

∂ x 2
i

+
i= j

1

2
ρ ijσ iσ jx ix j

∂ 2 V

∂ x i∂ x j
− r V = 0, (t, x ) ∈ [ 0, T ]

× (0, ∞ ) d ,

V (T , x 1 , . . . , x d ) = (x 1 , . . . , x d ).

F oll o wi n g   G uill a u m e  ( 2 0 1 9 ),   w e   m a y  r e d u c e  t his n -
di m e nsi o n al  e q u ati o n  t o  t h e n - di m e nsi o n al  st a n d ar d  h e at
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Fi g ur e  3.   A bl ati o n  st u d y  o n  v ol atilit y σ ,  i nt er est  r at e r,  stri k e  pri c e K a n d  i niti al  pri c e.   We  fi x  a  b as e  s etti n g   wit h  h y p er- p ar a m et ers
σ = 0. 3, r = 0. 0 3, K = 1. 2 5,  a n d r u n  o ur  al g orit h m  o n  e a c h s etti n g   wit h  o nl y  o n e  h y p er- p ar a m et er  d e vi at e d fr o m t h e  b as e s etti n g. I n  a d di-
ti o n,   w e  pl ot t h e   w a v e f u n cti o n  u n d er t h e  b as e s etti n g.   We  c o m p ar e  o ur s ol uti o n  at t h e  e x e c uti o n ti m e T v ers us f or w ar d   E ul er   m et h o d  a n d
t h e c orr es p o n di n g a n al yti c gr o u n d tr ut h.   O ur   m et h o d is r o b ust u n d er all s etti n gs a n d a c hi e v es s atisf a ct or y p erf or m a n c e.

e q u ati o n.   T o t his e n d, s et

u (t, y 1 , . . . , y n ) = V (T − t, e σ 1 y 1 , . . . , e σ n y n )e
n
i= 1 − a iσ iy i− bt ,

w h er e a i a n d b s atisf y t h e f oll o wi n g s yst e m of e q u ati o ns:

d

i= 1

a i r −
σ 2

i

2
+

1

2

d

i= 1

a 2
i σ

2
i

+
i= j

1

2
ρ ijσ iσ ja ia j − r − b = 0,

r −
σ 2

i

2
+ a iσ

2
i +

j= i

ρ ijσ iσ ja j = 0, i = 1, . . . , d .

T h e n, u s atis fi es t h e f oll o wi n g h e at e q u ati o n

⎧
⎪⎪⎨

⎪⎪⎩

∂ u

∂ t
=

1

2

d

i= 1

∂ 2 u

∂ y 2
i

+
i= j

1

2
ρ ij

∂ 2 u

∂ y i∂ y j
, (t, y ) ∈ [ 0, T ] × R d ,

u (0 ) = (e σ 1 y 1 , . . . , e σ d y d )e − a iσ iy i .

wit h u (0 ) = (e σ 1 y 1 , . . . , e σ d y d )e − a iσ iy i .

5. 2.   N u m eri c al e x p eri m e nts

I n  t his  s e cti o n,   w e  a p pl y  o ur  al g orit h m  t o  o pti o n  pri ci n g
i n   Bl a c k- S c h ol es   m o d el  a cr oss  diff er e nt  s etti n gs  usi n g  t h e
n u m eri c al  s ol uti o n  t o  t h e  h e at  e q u ati o n  a n d  t h e  tr a nsl ati o n
fr o m t h e h e at e q u ati o n t o t h e   Bl a c k- S c h ol es e q u ati o n fr o m t h e
pr e vi o us s u bs e cti o n.   We t est t h e p erf or m a n c e of o ur al g orit h m
as   w ell  as  s h o w  a  c al c ul ati o n  of t h e  o pti o n  pri c e  f or  hi g h er
di m e nsi o ns.

I n  fi g ur e 3 a n d t a bl e 3 w e  pr o vi d e e x a m pl es t o t est t h e  p er-
f or m a n c e  of  o ur  al g orit h m. I n  b ot h   w e i n cl u d e  1 D  e x a m pl es
f or  t h e  pri c e  of  a   E ur o p e a n  c all  o pti o n,   w h os e  v al u e  at  t h e
e x pir y ti m e T is V (T , s) = (s) = m a x {s − K , 0},   w h er e K is
a  pr e d et er mi n e d c o nst a nt, c all e d t h e stri k e  pri c e.   We  v ar y t h e
v ol atilit y σ , stri k e  pri c e K , i nt er est r at e r,  e x pir y ti m e T ,  a n d
i niti al pri c e of t h e st o c k S . I n  fi g ur e 3 ,   w e c o m p ar e a g ai nst t h e
f or w ar d   E ul er   m et h o d a n d t h e gr o u n d tr ut h Bl a c k- S c h ol es f or-
m ul a ,   w hi c h a d mits a n a n al yti c al s ol uti o n i n 1 D.  S p e ci fi c all y,

Fi g ur e  4.   A bl ati o n  st u d y  o n  di m e nsi o n alit y,  f oll o wi n g  t h e  b as e
s etti n gs i n  fi g ur e 3 , σ = 0. 3, r = 0. 0 3, K = 1. 2 5.

it is gi v e n b y

V (t, s) = N (d + )s − N (d − )K e − r (T − t) ,  ( 2 5)

w h er e N is t h e  c u m ul ati v e  distri b uti o n  f u n cti o n  of t h e  st a n-
d ar d n or m al distri b uti o n a n d

d ± =
l n s

K
+ (r ± σ 2

2
)(T − t)

σ
√

T − t
.

O ur   m et h o d is r o b ust  u n d er all s etti n gs a n d a c hi e v es s atisf a c-
t or y p erf or m a n c e. I n t a bl e 3 w e c o m p ar e o ur a c c ur a c y a g ai nst
t h e f or w ar d   E ul er   m et h o d,   w h er e   w e  us e t h e s a m e  a n al yti c al
s ol uti o n.   Alt h o u g h t h e  p erf or m a n c e  of  o ur  al g orit h m is i nf e-
ri or t o t h at  of   E ul er, it  still  a c hi e v es  g o o d  a c c ur a c y  a n d t h e
m ar gi n c a n  b e tr e at e d as a  pri c e t o  p a y f or r e d u ci n g t h e e x p o-
n e nti al  s c ali n g  d o w n  t o  a  p ol y n o mi al  o n e.   O ur  a p pr o a c h  is
v al u a bl e f or  hi g h  di m e nsi o ns,   w h er e  ot h er   m et h o ds,  s u c h  as
t h e f or w ar d   E ul er   m et h o d, s uff er fr o m t h e c urs e of di m e nsi o n-
alit y.   Ta bl e 3 als o i n cl u d es  2 D  e x a m pl es   wit h  f o ur  diff er e nt
o pti o ns: B as k et   E ur o p e a n  c all a n d p ut , r ai n b o w   m a x   E ur o-
p e a n c all , a n d s pr e a d   E ur o p e a n  p ut ,   w h os e  p a y offs ar e list e d
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Ta bl e  3.   List of e x p eri m e nts f or t h e a p pli c ati o n of o ur al g orit h m t o   Bl a c k – S c h ol es e q u ati o n.

Pr o bl e m I niti al   &   B o u n d ar y   C o n d. d D   T   r   K σ O urs   E ul er

Bl a c k – S c h ol es 1 D 1 D   C A L L 1  –  1  0. 0 3  1. 2 5  0. 3  0. 0 1 1 7 8 1  0. 0 0 2 4 9 4
Bl a c k – S c h ol es 1 D 1 D   C A L L 1  –  1  0. 0 3  1. 2 5  0. 1  0. 0 3 2 7 9 2  0. 0 0 0 9 3 0
Bl a c k – S c h ol es 1 D 1 D   C A L L 1  –  1  0. 0 3  1. 2 5  0. 2  0. 0 1 7 2 7 2  0. 0 0 2 3 8 9
Bl a c k – S c h ol es 1 D 1 D   C A L L 1  –  1  0. 0 3  1. 2 5  0. 4  0. 0 1 1 5 6 0  0. 0 0 1 3 9 2
Bl a c k – S c h ol es 1 D 1 D   C A L L 1  –  1  0. 0 3  1. 0 5  0. 3  0. 0 8 6 7 6 4  0. 0 0 1 7 5 0
Bl a c k – S c h ol es 1 D 1 D   C A L L 1  –  1  0. 0 3  1. 1 5  0. 3  0. 0 1 3 3 6 5  0. 0 0 2 5 2 1
Bl a c k – S c h ol es 1 D 1 D   C A L L 1  –  1  0. 0 3  1. 3 5  0. 3  0. 0 1 2 2 6 0  0. 0 0 0 3 2 8
Bl a c k – S c h ol es 1 D 1 D   C A L L 1  –  1  0. 0 3  1. 4 5  0. 3  0. 0 1 2 6 2 6  0. 0 0 0 8 4 5
Bl a c k – S c h ol es 1 D 1 D   C A L L 1  –  1  0. 0 1  1. 2 5  0. 3  0. 0 1 0 4 3 6  0. 0 0 2 5 3 8
Bl a c k – S c h ol es 1 D 1 D   C A L L 1  –  1  0. 0 2  1. 2 5  0. 3  0. 0 1 0 5 9 9  0. 0 0 2 5 1 5
Bl a c k – S c h ol es 1 D 1 D   C A L L 1  –  1  0. 0 4  1. 2 5  0. 3  0. 0 1 4 1 9 2  0. 0 0 2 4 7 7
Bl a c k – S c h ol es 1 D 1 D   C A L L 1  –  1  0. 0 5  1. 2 5  0. 3  0. 0 1 7 4 2 3  0. 0 0 2 4 6 3
Bl a c k – S c h ol es 1 D 1 D   C A L L 1  –  0. 5  0. 0 3  1. 2 5  0. 3  0. 0 2 2 4 8 1  0. 0 1 8 3 8 5
Bl a c k – S c h ol es 1 D 1 D   C A L L 1  –  1. 5  0. 0 3  1. 2 5  0. 3  0. 0 1 2 0 4 9  0. 0 1 4 8 8 1
Bl a c k – S c h ol es 2 D  2 D   B A S K E T   C A L L  2  0. 1  1  0. 0 3  1. 2 5  0. 3  0. 0 5 3 4 7 7  –
Bl a c k – S c h ol es 2 D  2 D   B A S K E T  P U T  2  0. 1  1  0. 0 3  1. 2 5  0. 3  0. 0 4 3 9 2 6  –
Bl a c k – S c h ol es 2 D  2 D   R AI N B O W   M A X   C A L L  2  0. 1  1  0. 0 3  1. 2 5  0. 3  0. 0 5 7 9 4 9  –
Bl a c k – S c h ol es 2 D  2 D  S P R E A D  P U T  2  0. 1  1  0. 0 3  1. 2 5  0. 3  0. 0 3 1 5 7 4  –

N ot es:   T h e  h y p er- p ar a m et ers f or t h e  e x p eri m e nts  ar e list e d.   We  c o m p ut e t h e r el ati v e  err or  of  o ur   m et h o d ( O u rs )  at  e x pir ati o n ti m e T wit h
a n al yti c al gr o u n d tr ut h i n t h e 1 D c as e a n d   E ul er s ol uti o n i n t h e 2 D c as e, r es p e cti v el y.  F or 1 D,   w e als o r e p ort t h e r el ati v e err or of t h e f or w ar d
E ul er   m et h o d   wit h r es p e ct t o t h e a n al yti c al  gr o u n d tr ut h ( E ul e r ) f or c o m p aris o n.   O ur al g orit h m a c hi e v es r o b ust  p erf or m a n c e a cr oss  v ari o us
s etti n gs.

Ta bl e  4.  P a y off f u n cti o ns f or o ur e x p eri m e nts.

O pti o n   T y p e  P a y off  F u n cti o n at e x pir y (s)

1 D   C all m a x (s − K , 0)

B as k et   C all m a x ( w is i − K , 0)
B as k et  P ut  m a x (K − w is i, 0)
R ai n b o w   M a x   C all   m a x (m a x s i − K , 0)
2 D  S pr e a d  P ut m a x (K − (s 1 − s 2 ), 0)

N ot es:   We c o nsi d er  b as k et c all a n d  p ut,   R ai n b o w   m a x
c all, a n d s pr e a d p ut o pti o ns.

i n t a bl e 4 .   N ot e t h at  as   w e  d o n’t  h a v e  a n  a n al yti c al  s ol uti o n
f or t his c as e, t h e r el ati v e err ors   wit h r es p e ct t o   E ul er s ol uti o ns
ar e  r e p ort e d i nst e a d.  I n  fi g ur e 4 ,   w e  pr o vi d e  a  gr a p h  f or t h e
pri c e of a b as k et   E ur o p e a n c all o pti o n   wit h u p t o  fi v e u n d erl y-
i n g st o c ks as a f u n cti o n  of t h e stri k e  pri c e K .   As e x p e ct e d t h e
pri c es ar e c o n v e x   wit h K .

N ot e  t h at  t h e   Bl a c k- S c h ol es  P D E  li v es  o n  t h e  p ositi v e
ort h a nt  of R d w hil e its tr a nsl ati o n t o t h e  h e at  e q u ati o n li v es
o n R d .   T h er e b y,  all  n u m eri c al  al g orit h ms,  i n cl u di n g  o urs,
r e q uir e  arti fi ci al  tr u n c ati o n  of  t h e  d o m ai n.   We  c h o os e  t h e

h y p er c u b e d o m ai n t o b e [ s l, s u ]
d = [K e − 3 σ i

√
T , K e 3 σ i

√
T ]d . T his

c h oi c e  i m pli es  t h at s l i s  s m all  ( cl os e  t o  0+ ) a n d s u i s
l ar g e  ( cl os e + ∞ ).   O n  t h e  f a c es  of  t h e  h y p er c u b e,   w e  us e
t h e ti m e- dis c o u nt e d  p a y off f u n cti o ns,  as t h e y  ar e r e as o n a bl y
a c c ur at e  a p pr o xi m ati o ns  of  b o u n d ar y  v al u es  of  t h e  o pti o ns
c o nsi d er e d.   Gi v e n  t h e  n u m b er  of  q u bits n a n d  t h e  h y p er-
c u b e  i n p ut  d o m ai n  f or  t h e  h e at  e q u ati o n  [ L l, L u ]

d ,   w hi c h
is  a p pr o xi m at el y  [− 5, 5] d ,  t h e   m es h  si z e  of  e a c h  a xis  is
(L u − L l) /(2

n / d + 1 ).

6.   C o n cl usi o ns

I n  s u m m ar y,   w e i ntr o d u c e d  a  g e n er ali z ati o n  of   M c L a c hl a n’s
v ari ati o n al  pri n ci pl e  a p pli c a bl e  t o  g e n eri c  ti m e- d e p e n d e nt

P D Es as   w ell as a  q u a nt u m-i ns pir e d tr ai ni n g al g orit h m  b as e d
o n  n e ur al- n et w or k  q u a nt u m  st at es   w hi c h  c a n  b e  us e d  t o
p erf or m a p pr o xi m at e ti m e e v ol uti o n i n hi g h di m e nsi o ns, o v er-
c o mi n g t h e c urs e- of- di m e nsi o n alit y.   Alt h o u g h   w e f o c us e d  o n
a   m es h- b as e d  f or m ul ati o n  i n   w hi c h  t h e  q u a nt u m  st at e  v e c-
t or is r e pr es e nt e d  b y n q u bits, it is  cl e ar t h at t h e   m es h is  n ot
m a n d at e d  b y t h e  f or m ul ati o n  a n d  it   w o ul d  b e  v er y i nt er est-
i n g t o  p urs u e   m es hl ess  v ari a nts  b as e d  o n c o nti n u o us- v ari a bl e
n e ur al- n et w or k  q u a nt u m  st at es  i n cl u di n g  n or m ali zi n g  fl o ws
( St o k es et  al. 2 0 2 2 )  a n d t o  a d dr ess  n o n-tri vi al  b o u n d ar y  c o n-
diti o ns.   T h er e e xist a n u m b er of dir e cti o ns i n   w hi c h t h e r es ults
of  t his  p a p er  c a n  b e  p ot e nti all y  i m pr o v e d.  Si n c e   w e  o nl y
c o nsi d er e d  a  first- or d er   E ul er  a p pr o xi m ati o n  of t h e   O D E ( 4)
it   w o ul d  b e  n at ur al  t o  i n c or p or at e  hi g h- or d er  ti m e  st e p pi n g
s c h e m es  ( e. g. R u n g e- K utt e   m et h o ds).   As  a n  alt er n ati v e,  it
w o ul d b e i nt er esti n g t o p urs u e a dir e ct s ol uti o n of t h e dis cr et e-
ti m e  d y n a mi c al  s yst e m  ( 3)   w hi c h  h as  pr o v e n  s u c c essf ul  i n
b ot h t h e   V M C ( G uti érr e z a n d   M e n dl 2 0 2 2 ) a n d   V Q A ( B aris o n
et al. 2 0 2 1 ) lit er at ur e.

A c k n o wl e d g m e nts

T h e   A ut h ors  t h a n k  t h e  a n o n y m o us   A E  a n d  t h e  r ef er e es  f or
t h eir s u g g esti o ns,   w hi c h h el p e d t o i m pr o v e o ur p a p er.

Dis cl os u r e st at e m e nt

N o p ot e nti al c o n fli ct of i nt er est   w as r e p ort e d b y t h e a ut h or(s).

F u n di n g

A ut h ors  gr at ef ull y  a c k n o wl e d g e  s u p p ort  fr o m   N S F  u n d er
gr a nts   D M S- 2 0 3 8 0 3 0  a n d   D M S- 2 0 0 6 3 0 5.   T his r es e ar c h   w as
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s u p p ort e d  i n  p art  t hr o u g h  c o m p ut ati o n al  r es o ur c es  a n d  s er-
vi c es  pr o vi d e d  b y t h e   A d v a n c e d   R es e ar c h   C o m p uti n g ( A R C)
at t h e   U ni v ersit y of   Mi c hi g a n.

O R CI D

As af   C o h e n htt p:// or ci d. or g/ 0 0 0 0- 0 0 0 2- 9 2 1 1- 7 9 5 6
S hr a v a n   Ve er a p a n e ni htt p:// or ci d. or g/ 0 0 0 0- 0 0 0 2- 2 2 9 4-
7 2 3 3

R ef e r e n c es

Al g h assi,   H.,   D es h m u k h,   A.,  I br a hi m,   N.,   R o bl es,   N.,   W o er n er,  S.
a n d   Z o uf al,   C.,   A v ari ati o n al q u a nt u m al g orit h m f or t h e F e y n m a n-
K a c f or m ul a. ar Xi v pr e pri nt ar Xi v: 2 1 0 8. 1 0 8 4 6,  2 0 2 1.

B aris o n,  S.,   Vi c e nti ni,  F.  a n d   C arl e o,   G.,   A n  ef fi ci e nt  q u a nt u m
al g orit h m f or t h e ti m e  e v ol uti o n  of  p ar a m et eri z e d  cir c uits. Q u a n-
t u m, 2 0 2 1, 5 , 5 1 2. htt p:// d x. d oi. or g/ 1 0. 2 2 3 3 1/ q- 2 0 2 1- 0 7- 2 8- 5 1 2

B e c k,   C.,   Wei n a n,   E  a n d  J e nt z e n,   A.,   M a c hi n e  l e ar ni n g  a p pr o x-
i m ati o n  al g orit h ms  f or  hi g h- di m e nsi o n al  f ull y  n o nli n e ar  p arti al
diff er e nti al  e q u ati o ns  a n d  s e c o n d- or d er  b a c k w ar d  st o c h asti c  dif-
f er e nti al  e q u ati o ns. J.   N o nli n e ar  S ci. ,  2 0 1 9, 2 9 ( 4),  1 5 6 3 – 1 6 1 9.
htt p:// d x. d oi. or g/ 1 0. 1 0 0 7/s 0 0 3 3 2- 0 1 8- 9 5 2 5- 3

Br u n a, J.,  P e h erst orf er,   B.  a n d   Va n d e n- Eij n d e n,   E.,   N e ur al   G al er ki n
s c h e m e   wit h a cti v e l e ar ni n g f or hi g h- di m e nsi o n al e v ol uti o n e q u a-
ti o ns. ar Xi v pr e pri nt ar Xi v: 2 2 0 3. 0 1 3 6 0,  2 0 2 2.
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A p p e n di c es

A p p e n di x  1.   D e ri v ati o n  of e v ol uti o n e q u ati o ns

Ass u m e t h at t h e ti m e e v ol uti o n   m a p a n d t h e v ari ati o n al tri al f u n cti o n
a d mit   Ta yl or e x p a nsi o ns of t h e f or m

t+ δ t
t u = u + F t, u δ t + O ( δ t2 ), (A 1 )

u θ + δ θ = u θ +

p

i= 1

∂ u θ

∂ θ i
δ θ i + O ( δ θ 2 ). ( A 2)

T h e n

t+ δ t
t (u θ ) − u θ + δ θ

2

2

=

p

i,j= 1

∂ u θ

∂ θ i

∂ u θ

∂ θ j
δ θ iδ θ j −

p

i= 1

F (t, u θ )
∂ u θ

∂ θ i

+
∂ u θ

∂ θ i
F (t, u θ ) δ t δ θ i + · · ·

=

p

i,j= 1

1

2

∂ u θ

∂ θ i

∂ u θ

∂ θ j
+

∂ u θ

∂ θ j

∂ u θ

∂ θ i
δ θ iδ θ j

−

p

i= 1

F (t, u θ )
∂ u θ

∂ θ i
+

∂ u θ

∂ θ i
F (t, u θ ) δ t δ θ i + · · ·

=

p

i,j= 1

M ij( θ ) δ θiδ θ j − 2 δ t

p

i= 1

δ θ iV i(t, θ ) + · · · ( A 3)

w h er e i n t h e l ast li n e   w e  us e d t h e  c o nj u g at e-s y m m etr y  of ·|· a n d
w e  h a v e  n e gl e ct e d δ θ -i n d e p e n d e nt  t er ms  a n d  t er ms  hi g h er  t h a n
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F e at ur e 1 1

q u a dr ati c  or d er i n t h e   m ulti- v ari a bl e   Ta yl or  e x p a nsi o n i n δ θ a n d δ t.

T h e  first- or d er  o pti m alit y  c o n diti o n  0 = ∂
∂ δ θ i

t+ δ t
t (u θ ) − u θ + δ θ

2
2 ,

gi v es, at l o w est or d er i n δ θ a n d δ t,

0 = 2

p

j= 1

M ij( θ ) δ θj − 2 V i(t, θ ) δ t + · · · ( A 4)

a n d t h us t a ki n g t h e li mit δ t − → 0 gi v es t h e r es ult.

A p p e n di x  2.   M at ri x r e p r es e nt ati o n  of L

I n d s p ati al  di m e nsi o ns  a n d   m ulti-i n d e x i = { i1 , i2 , . . . , id }, l et i ±
e k = { i1 , i2 , . . . , ik ± 1, . . . , id } a n d i ± e k ± e k = { i1 , i2 , . . . , ik ±
1, . . . , ik ± 1, . . . , id }.   N oti c e   w e  d o  n ot  all o w + 1 if ik = n

d or − 1
if ik = 1.   T h e n t h e el e m e nts of t h e   m atri x is gi v e n b y:

[L ]i,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− d
2 , j = i,

1
2 2 , j = i ± e k ,

D
4 2 , j = i ± e k ± e k ,

− D
4 2 , j = i ± e k ∓ e k ,

0,  ot h er wis e.

( A 5)

A p p e n di x  3.   A d diti o n al  n u m e ri c al  d et ails

T h e  n et w or k  ar c hit e ct ur e   w as  c h os e n  t o  b e   M A D E  ( G er m ai n
et  al. 2 0 1 5 ), t a ki n g t h e  o n e- di m e nsi o n al st at e as i n p ut a n d  o ut p uti n g
t h e l o g arit h mi c  pr o b a bilit y  a m plit u d es {l o g p β ,i(k i|k i− 1 , . . . , k 1 )}n

i= 1
a s  d es cri b e d i n ( 1 3).   N ot e t h at  b ot h i n p ut  a n d  o ut p ut  ar e  v e ct ors  of
t h e s a m e si z e.   T h e str u ct ur e of   M A D E is as f oll o ws

I n p ut
[B ,n ]
− − → M a s k e d F C n ,h

[B ,h ]
− − → R e L U

[B ,h ]
− − → M a s k e d F C h ,n

[B ,n ]
− − → L o g S i g m o i d

[B ,n ]
− − → O ut p ut ,

H er e B is t h e b at c h si z e a n d n is t h e n u m b er of q u bits. M a s k e d F C a ,b
i s a   m as k e d f ull y c o n n e ct e d l a y er   wit h i n p ut si z e a a n d o ut p ut si z e b ,
r e m o vi n g t h e  c o n n e cti o ns i n t h e  c o m p ut ati o n al  p at h  of   M A D E.   We
c h os e t h e l at e nt  si z e h t o  s c al e   wit h t h e i n p ut  si z e  as h = 2 n . T h e
d e pt h of o ur   m o d el is 2 t hr o u g h o ut all e x p eri m e nts i n t his p a p er.

Fi g ur e   A 1.   T h e r el ati v e err or i n t h e   V M C a p pr o xi m at e s ol uti o n as a f u n cti o n of st e p si z e c o m p ar e d t o t h e   E ul er   m et h o d f or e a c h e x p eri m e nts
s h o w n i n  fi g ur e 1 .
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