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ABSTRACT
Recently, researchers have proposed ML-driven traffic engineering
(TE) schemes where a neural network model is used to produce
TE decisions in lieu of conventional optimization solvers. Unfortu-
nately existing ML-based TE schemes are not explicitly designed
to be robust to topology changes that may occur due to WAN evo-
lution, failures or planned maintenance. In this paper, we present
HARP, a neural model for TE explicitly capable of handling varia-
tions in topology including those not observed in training. HARP is
designed with two principles in mind: (i) ensure invariances to nat-
ural input transformations (e.g., permutations of node ids, tunnel
reordering); and (ii) align neural architecture to the optimization
model. Evaluations on a multi-week dataset of a large private WAN
show HARP achieves an MLU at most 11% higher than optimal over
98% of the time despite encountering significantly different topolo-
gies in testing relative to training data. Further, comparisons with
state-of-the-art ML-based TE schemes indicate the importance of
the mechanisms introduced by HARP to handle topology variability.
Finally, when predicted traffic matrices are provided, HARP outper-
forms classic optimization solvers achieving a median reduction in
MLU of 5 to 10% on the true traffic matrix.

CCS CONCEPTS
• Networks→ Traffic engineering algorithms; • Computing
methodologies → Machine learning.
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1 INTRODUCTION
Cloud and Internet Service Providers (ISPs) must ensure their wide-
area networks are managed efficiently to meet the stringent band-
width and latency requirements of applications. A key component
of achieving these goals is to efficiently route traffic to meet desired
objectives. Over the last decade, it has increasingly become the
norm to use centralized controllers that make traffic engineering
(TE) decisions while optimizing network-wide objectives (e.g., mini-
mizing link utilizations, maximizing bandwidth served etc.) [24, 26].

Conventionally, controllers make routing decisions relying on
optimization techniques (e.g., linear programming). Unfortunately,
as the scale of network topologies increases, conventional optimiza-
tion methods are not responsive enough given the need to adapt
traffic at fine time-scales. Recently, researchers [48, 61] have argued
for an alternate approach that involves the use of neural models
to solve optimization problems. Not only is inference using neural
models much faster than traditional optimization models but also
they offer the potential to jointly perform prediction (e.g., of a future
traffic matrix) and optimization (of the predicted matrix) [48].

While ML-driven TE offers exciting potential, a central challenge
for ML driven approaches is their ability to handle scenarios beyond
what they are trained for. This is especially critical in the TE context
for two reasons. First, achieving high performance is critical, and
the consequences of a poor TE decision can lead to violations of
Service Level Objectives (SLOs). Second, WANs continually evolve
with the addition of new data-centers, nodes and links, as network
architects strive to keep upwith the demands on their infrastructure.
Further, failures are common in large-scale WANs owing both to
planned maintenance events and unplanned failures [17, 18, 40, 53].
Constant changes in topology also imply tunnels (to carry traffic)
change over time.

Existing ML-based TE approaches are not explicitly designed for
such changes in topology. DOTE [48] uses a neural architecture
that assumes the topology is fixed, and does not model changes
to nodes, edges, and tunnels, or changes to link capacity. While
TEAL [61] does allow for some topology changes, it is designed for
a fixed set of tunnels, and is sensitive to the order in which tunnels
are supplied as inputs.

In this paper, we present HARP, a first step towards designing
ML-based TE scheme that can better handle scenarios outside those
that it has been trained for. HARP is designed with two key ideas.
First, it is explicitly designed to ensure transferability through
natural invariances which ensure HARP’s outputs are robust to
reordering of nodes, the corresponding traffic demands and tunnels.
Second, HARP uses an architecture aligned to the optimization
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models as we believe doing so can better approximate the original
(slower) optimization model when encountering unseen conditions.
This leverages recent advances in neural algorithmic reasoning that
better align architectures and training objectives to obtain more
robust out-of-distribution predictions [5, 6].

To achieve these ideals, HARP’s architecture has three key com-
ponents: (i) a Graph Neural Network (GNN) to produce an invari-
ant embedding of nodes and edges; (ii) a transformer model that
produces an embedding of the edges of each tunnel in a manner
invariant to the order of edges in the tunnel; and (iii) a recurrent
unit to predict and iteratively improve the total traffic to be carried
on each tunnel. The recurrent unit models the iterative approach
used in optimization solvers starting with candidate solutions and
making incremental adjustments to improve the objective function.

We evaluate HARP using data from (i) a private WAN (AnonNet)
which includes a snapshot of the topology and traffic matrices over
a multi-week period; (ii) data from networks for which publically
available traffic matrices are available[1, 45, 46, 54]; and (iii) publi-
cally available larger scale topologies [33] using synthethic traffic
data. Our key results are:
• Our analysis of AnonNet indicates significant topology variation
(addition and removal of nodes and links, changes in edge nodes,
variations in link capacity, recomputation of tunnels) over time
owing to both natural topology evolution, as well as failures and
planned maintenance.
•HARP is effective at handling topology variations or the AnonNet
dataset. Even in the most challenging setting HARP achieves an
MLU at most 11% higher than optimal for 98% of the snapshots,
when trained on a small set of snapshots and tested on a wide range
of snapshots that contain noticeably different topologies and sets
of tunnels relative to the training data.
• The design elements HARP introduces are important to its perfor-
mance. HARP outperforms TEAL and DOTE (state-of-the-art ML-
based TE schemes) in environments where link capacities change,
and when unseen perturbations to topology are encountered in
the testing data (e.g., change of tunnels, unseen partial and full
link failures). For instance, under unseen failure HARP achieves a
99.9𝑡ℎ percentile MLU of at most 1.09 of the optimal for GEANT.
However, for DOTE and TEAL, only 63% and 50% of test cases re-
spectively are within 1.10 of the optimal. Further, an ablation study
confirms the importance of the recurrence unit in HARP which
ensures alignment to the optimization algorithm.
• HARP outperforms Gurobi [20], a widely used optimization
solver by (i) achieving lower MLU on the true traffic matrix when
both methods are provided predicted traffic matrices – for three
popular prediction methods, HARP achieves a median reduction
in MLU of 5 to 10% and (ii) reducing computation time, achieving
over an order of magnitude reduction for the KDL topology.

Overall, our results indicate the feasibility of designingML-based
TE schemes that can perform well despite topology variation, and
indicate the importance of the mechanisms introduced by HARP.

2 BACKGROUND AND MOTIVATION
2.1 Background: ML-Driven TE
Given a network topology, a traffic matrix, and a set of tunnels
(paths), traffic engineering schemes determine how traffic must be

routed on each tunnel while optimizing a desired objective of in-
terest. A common widely used metric is Maximum Link Utilization
(MLU) [30], or the utilization of the most congested link. Tradition-
ally, the allocation problem is solved using conventional optimiza-
tion solvers [20].

Recent work [48, 61] explores the use of neural networks to solve
optimization problems in the context of wide-area network traffic
engineering as we discuss below:

DOTE. Given a set of traffic matrices as input, DOTE determines
how traffic must be routed on pre-determined tunnels for a future
matrix. Thus, DOTE combines the task of predicting a future matrix,
and computing optimal routes for the predicted matrix. DOTE
achieves this goal using a simple feedforward deep neural network
(DNN), also known in ML terminology as a Multi-Layer Perceptron
(MLP). DOTE does not model nodes, edges, link capacities, tunnels
and the relevant associations.

TEAL. Given a traffic matrix, TEAL [61] determines how to
route traffic on tunnels for that matrix. TEAL represents topology
using alternating layers of a Graph Neural Network (GNN) and
a DNN. The GNN layer models the relations between edges and
tunnels using a bipartite graph, while the DNN layer captures the
interaction between tunnels associated with the same flow. Using
the resulting embeddings associated with each tunnel of every
flow, reinforcement learning is used to compute an allocation of
how much traffic goes on each tunnel. For scalability, TEAL only
takes the local information for each flow (i.e., the embeddings of the
tunnels of that flow), and generates the intended split ratios. It relies
on a final step which computes a global metric (e.g., link utilizations)
while considering the allocations across all flows, which is the
primary step where the interaction across flows is modeled.

2.2 Challenges for ML-Driven TE
While these works open up an exciting line of inquiry, several
major open questions need to be addressed for ML-driven TE to be
a reality as we discuss below:

Handle changes to topology and tunnels is critical. Even in a
single WAN context, any ML model must inherently be designed to
capture the fact that the topology itself may vary over time. Figure 1
presents results showing the variation in the number of nodes and
the number of links over a 4 week period in AnonNet. The figure
shows a few key trends. First, the topology organically evolves
with the total number of nodes and links (Total Nodes and Total
Links) differing between the start and end of the time period. Such
organic growth may occur due to the creation of new data centers,
addition of new links and routers, or decommissioning links for
costs and efficiency. Second, owing to planned maintenance events,
or unplanned failures [17, 18, 40, 50, 53], the number ofActive Nodes
and Active Links is lower than the total and varies across time as
well. Third, the set of Edge Nodes (where traffic ingresses/egresses
the network) also varies across snapshots. Fourth, even when a
link is active its capacity could vary with time owing to partial
failures (e.g., a link may comprise multiple sub-links, only some of
which may fail), and we discuss this further in §5. Finally, many
of the above changes to topology necessitate the recomputation of
tunnels prior to ML-based routing decisions.
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(a) Variation in the number of nodes per snapshot (normalized
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(b) Variation in number of links per snapshot over time (normal-
ized to the maximum number of links across snapshots).

Figure 1: Changes in the network topology of a real WAN
over a 4-week period.

Handle topologies and tunnel configurations outside the
training set. An ML model may not have training data associated
with changes such as addition of new routers and links (and changes
to tunnels). Likewise dealing with failures poses challenges since it
may not be possible to anticipate and train for all possible failure
modes. Further, these changes may involve a recomputation of the
set of tunnels. Yet, there is significant training data with slightly
different topologies prior to the additions or failures that can be
leveraged. Thus, ideally, ML-driven TE must be able to handle
topologies (and the set of tunnels) different than those at training
and leverage data available with slightly different settings.

Invariant to common input transformations. A starting
point to ensure the learning algorithm can generalize across dif-
ferent topology and tunnel configurations, is to ensure the model
by design can handle simple input transformations. For example,
a model which encounters an identical network that it has been
trained on, but with nodes, links and tunnels relabeled, should by
design produce the same result. As another example, the objective
value for optimal TE does not typically change when given the
transpose of a traffic matrix. This is because network links often

have symmetric capacity in both directions, and tunnels for ( 𝑗, 𝑖)
source-destination pair are the reverse of those for (𝑖, 𝑗) pair. Thus,
a model for ML-based TE must by design guarantee that it produces
the same result for a matrix and its transpose.

2.3 Where existing solutions fall short?
Existing ML-based TE schemes fall short of the above desired re-
quirements as we elaborate below:

Some schemes are designed for a fixed topology. As men-
tioned earlier, DOTE does not model nodes, edges, link capacities
or associations between tunnels and edges. Its DNN (feedforward
network) could be viewed as a function that maps a traffic matrix
to how much traffic must be carried on each tunnel (i.e., split ra-
tios). In general, allocation should depend on capacities, specific
topology, choice of tunnels, and demands. Since DOTE’s DNN only
models demands, it is not clear how changes in other inputs can be
accommodated.

Do not guarantee invariance to input transformations.
DOTE’s DNN is sensitive to the order in which traffic matrix en-
tries are supplied. Even with the topology fixed, consider a scenario
where it has been trained on traffic matrices in the training set, but
provided the transpose of the matrices in the test phase. Such data
cannot be handled as the DNN treats matrix entries in a positional
manner. More generally, it is hard to predict the output under other
graph transformations (e.g., relabeling nodes, edges and tunnels)
making the scheme vulnerable to poor performance with unseen
topologies (§5).

TEAL has alternating GNN and DNN (feedforward network) lay-
ers as discussed earlier. While GNNs do ensure invariance to simple
topology transformations (e.g., relabeling of nodes), unfortunately,
its DNNs are not invariant to changes in the ordering of tunnels.
In particular, each DNN layer in TEAL concatenates embeddings
of tunnels associated with a given flow as input and generates
updated embeddings. Likewise, the RL module concatenates the
embeddings of tunnels associated with a flow and generates split
ratios. Doing so makes TEAL sensitive to the order in which the
tunnels are supplied as inputs. If a tunnel recomputation shuffles
the order in which this concatenation occurs (e.g., relabel tunnels
between training and testing), this creates an embedding that the
DNN layers as well as the RL module may not have seen in training.

Donotworkwell on topologies outside the training set.The
issues above are in part what makes existing schemes vulnerable
to poor performance when topologies outside the training set are
encountered. In §5, we present extensive results demonstrating
these issues.

3 HARP DESIGN
In this section, we present HARP, a novel algorithmic-aligned hyper-
graph neural network architecture for TE optimization. We present
the principles motivating HARP, and elaborate on its design.

3.1 HARP design principles
HARP is explicitly designed to allow for changes to topology, and
tunnels over time, rather than designed for a fixed topology. Further,
in designing HARP, we seek to ensure key invariances to better
allow the model to handle topologies outside the training set. To
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Invariant to

Models
topology

Node
relabeling

Tunnel
reordering

Aligned
ArchScheme

DOTE ✗ ✗ ✗ ✗

TEAL ✓ ✓ ✗ ✗

HARP ✓ ✓ ✓ ✓

Table 1: Comparing design elements of HARP with existing
approaches.

this end, HARP is characterized by two key design principles: (i)
ensure permutation invariance to topology and tunnel inputs; and
(ii) alignment with TE optimization models.

Principle 1 (Ensuring permutation invariances). HARP targets two
natural invariance properties: (a) permutation invariance to the
order that the tunnels are given as input; (b) permutation invariance
to joint permutations of node ids in the network topology and traf-
fic demands; (c) permutation invariance over the order of the edges
in the tunnel. The invariances ensure that HARP’s outputs are ro-
bust to the reordering of nodes, the corresponding traffic demands,
and tunnels, such that HARP’s predictions are provably based on
the structural and functional properties of the network, the traffic
demands, and the tunnels rather than on specific node and tunnel
identities. This makes the neural network output transferable across
varying topologies, traffic demands, and tunnel reconfigurations.

Principle 2 (Aligning neural architecture to optimization model).
The algorithmic alignment of HARP is rooted in neural algorithmic
reasoning [57], a paradigm that seeks to endow neural networks
with the ability to learn algorithmic patterns from examples. Our
algorithmic alignment allows HARP to understand when its outputs
must be adapted to conditions that could be evolving and do not
mirror the conditions observed in the training data. In our training
data, such adaptations happen to a lesser extent, which allows the
algorithm to learn the rules needed to adapt to new scenarios.

HARP vs existing approaches. Table 1 presents results com-
paring HARP with DOTE and TEAL. DOTE’s use of a simple DNN
does not model many key aspects of network topology as discussed
in §2. While TEAL does capture key features of topology, and its use
of a GNN ensures invariance to relabeling of nodes, it does not en-
sure invariances to tunnel ordering, or align its policy for deciding
split ratios with the optimization model. In contrast, HARP models
topology, handles key invariances, and uses an aligned architecture.

3.2 HARP design overview
We next present a high level overview of HARP’s design shown in
Figure 2. We summarize the key components of HARP below, and
elaborate in the following sections.
1. Network topology embedding for invariant embedding
of edges (§3.3). HARP starts with a small GNN module (using
a standard GNN [32, 42, 52, 59]) that takes the topology – nodes
(routers), edges (links) and link capacities as inputs, and generates
initial embeddings of all edges.
2. Invariant embedding of tunnels through a position-free
transformer (§3.4). Next, HARP uses a set transformer module

denoted SETTRANS, where the input is a tunnel represented by a
set of edge embeddings derived from the GNN edge embeddings.
The set transformer is crucial to modeling the invariant embeddings
of tunnels as we elaborate later.
3. Tunnel initial split rate predictor.Next, a DNNmodule (MLP1)
takes the output of the tunnel embedding and its associated demand
and produces a guess of the initial split ratios. The same MLP1 is
applied to each tunnel separately, complying with Principle 1(a).
4. Recurrent adjustment unit (RAU) to iteratively improve
the optimization objective (§3.5). Finally, Figure 2 illustrates
the RAU module of HARP that strives to meet Principle 2. Much
like traditional optimization solvers iteratively improve a candidate
solution, the recurrent adjustment unit (RAU) takes the embeddings
of tunnels along with traffic matrices, and iteratively refines the
split ratios (i.e., how much traffic is carried on each tunnel of every
flow) while optimizing a desired objective. The key advantage over
a standard optimization solver is the RAU’s ability to make large
adjustments in a single step.

We close with two comments. First, the architecture of our neu-
ral network, while it appears large, is efficiently structured around
only four core modules that are repetitively applied over the data:
1×GNN, 1×SETTRANS, 1×MLP1, and 1×RAU. In fact, in our Anon-
Net experiments, the model selected in validation for HARP has
21K parameters, while DOTE’s best model has 1M parameters. This
is because the same four modules described above are the only
modules used throughout HARP’s computations.

Second, while HARP’s overall architecture is general, the details
of the RAU module must be tailored to the specific objective being
optimized. In this paper, we focus on Maximum Link Utilization
(MLU), a widely used TE metric, for concreteness. However, we
believe the recurrent unit can be adapted in future studies to incor-
porate other metrics described in the literature [10, 16, 24, 26, 34]).

3.3 Invariant embedding of edges
In what follows, we detail how the Graph Neural Network (GNN)
module in Figure 2 obtains edge embeddings. Let 𝑨 ∈ {0, 1} |𝑉 |× |𝑉 |

be the adjacency matrix of the topology. The GNN module first cre-
ates node embeddings from 𝑨 and the link capacities 𝑪 ∈ R |𝑉 |× |𝑉 | ,
where 𝑪𝑖 𝑗 ≥ 0 for all 𝑖, 𝑗 ∈ 𝑉 s.t. 𝐴𝑖 𝑗 = 1.

We create features for each node 𝑖 ∈ 𝑉 which are the total
capacity of edges connected to the node

∑
𝑗 :𝑨𝑖 𝑗>0 𝑪𝑖 𝑗 , and its degree.

The embedding of an edge𝑨𝑖 𝑗 = 1, denoted ℎ𝑖 𝑗 ∈ R𝑟 , where 𝑟 ≥4 is
a hyperparameter, is the sum of the GNN node embeddings of 𝑖 and
𝑗 , concatenated with the capacity 𝑪𝑖 𝑗 . The node embedding sum
ensures an extra invariance, such that the embeddings of ℎ𝑖 𝑗 ∈ R𝑟
and ℎ 𝑗𝑖 ∈ R𝑟 are different only if 𝑪𝑖 𝑗 ≠ 𝑪 𝑗𝑖 , else they are the same.

The resulting GNN edge-embedding architecture is equivariant.
Define GNN(𝑨, 𝑪) ∈ R |𝑉 |× |𝑉 |×𝑟 to be the sparse tensor output of
our edge-embedding module. Equivariance here means that if 𝑨 is
the adjacency matrix of the topology and 𝜋 ◦ 𝑨 is a matrix with
jointly reordered rows and columns by an arbitrary permutation
𝜋 of the nodes (i.e., the graphs represented by 𝑨 and 𝜋 ◦ 𝑨 are
isomorphic), then GNN(𝜋 ◦ 𝑨, 𝜋 ◦ 𝑪) = 𝜋 ◦ GNN(𝑨, 𝑪), that is,
the embedding of each edge is not affected by the node reorder-
ing, where 𝜋 ◦ GNN(𝑨, 𝑪) is the equivalent reordering over the
sparse edge-embedding tensor. The GNN equivariance and our edge
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Figure 2: Tunnel’s point of view of HARP’s neural network archiecture. The figure assumes 4 tunnels per pair, and is illustrated
with tunnels 𝑠𝑡1 (the first tunnel from 𝑠 to 𝑡 ), and 𝑡𝑠4 (fourth tunnel from 𝑡 to 𝑠) as examples. All modules with the same labels
(RAU, SETTRANS, MLP1) share the same parameters. Figure 13 shows a simplified version

embedding procedure guarantees compliance with the invariance in
Principle 1(b).

We encode the topology into edge embeddings to take advantage
of potential associations between TE and topology. For instance,
edges with high capacity and high betweeness centrality—i.e., a
good fraction of all shortest paths pass through that edge—are likely
to share their capacity among many routes in the final TE solution
and, hence, can aid HARP obtain good initial tunnel split ratios.

3.4 Invariant embedding of tunnels and
tunnel-edge tuples

(a) Modeling the invariances in tunnels. In the TE context, the
𝑘-th tunnel for the flow 𝑠 → 𝑡 is a type of hyperedge in the network
topology, defined through a set of directed edges, defined as 𝛾𝑠𝑡𝑘 ⊆
𝐸. Hyperedges extend traditional definition edges to encompass
multiple nodes and edges. The network topology at the left of
Figure 2 shows two tunnels overlayed over the network topology
and their corresponding hyperedges as two sets of edge embeddings,
respectively. More precisely, the sets are actually multisets, since
edges are allowed to have the same embeddings and we want to
keep the repetitions. We will refer to the multisets as sets to use a
more familiar notation.

Hyperedge embeddings. The hyperedge𝛾𝑠𝑡𝑘 representing the 𝑘-th
tunnel is embedded through a set transformer [36] (SETTRANS)
over the embeddings of the edges in 𝛾𝑠𝑡𝑘 given by the GNN module
in Figure 2. The set transformer can also be replaced by a standard
transformer model [56] without positional encodings. The same
SETTRANS module in Figure 2 is applied to all tunnels.

A set transformer [36] is a neural network that takes a set as input
and outputs an embedding for each element of the set. By describ-
ing tunnel 𝛾𝑠𝑡𝑘 as a set of (directed) edge embeddings, as shown
in Figure 2 (Hyperedge input), the set transformer is equivariant to
permutations of the edges in the tunnel. That is, if the tunnel 𝛾𝑠𝑡1 in
Figure 2 is described as amatrix𝑯𝑠𝑡1 = [[CLS], ℎ𝑠𝑑 , ℎ𝑑𝑒 , ℎ𝑒 𝑓 , ℎ𝑓 𝑡 ] ∈
R5×𝑟 , where ℎ∗∗, [CLS] ∈ R𝑟 is the edge embedding of each of

the four edges, and CLS is a special vector, then SETTRANS(𝜋 ′ ◦
𝑯𝑠𝑡1) = 𝜋 ′ ◦ SETTRANS(𝑯𝑠𝑡1) for any permutation 𝜋 ′ acting on
the rows of 𝑯𝑠𝑡1 (i.e., a reordering of the edges in the tunnel). This
equivariance complies with Principle 1(c) as SETTRANS generates
equivariant embeddings for each edge conditioned on tunnel 𝛾𝑠𝑡1
(denoted edge-tunnel embeddings henceforth) and the correspond-
ing BOS1 (CLS token) embedding is the embedding of tunnel 𝛾𝑠𝑡1
itself.

As Figure 2 shows, the same SETTRANS is applied to all tunnels,
complying with Principle 1(a). For instance, as tunnels 𝛾𝑠𝑡1 and
𝛾𝑡𝑠3 in Figure 2 have the same set of edge embeddings that will
be the input to SETTRANS (same matrices 𝑯𝑠𝑡1 and 𝑯𝑡𝑠4 up to
a permutation of their columns), then these tunnels get the same
corresponding edge-tunnel and tunnel embeddings as outputs of
SETTRANS.

Finally, the demandmatrix is a separate weight matrix {𝑑𝑠𝑡 }𝑠,𝑡 ∈𝑉 .
Here, the neural module in Figure 2, a DNN denoted MLP1, takes
the embedding of each tunnel 𝛾𝑠𝑡𝑘 and the demand of the relevant
flow 𝑑𝑠𝑡 and outputs a proposed (unscaled) split ratio (𝑢𝑠𝑡𝑘 ) for that
tunnel. Each tunnel is individually considered at this point, and we
consider multiple tunnels of the same flow together later.

3.5 Recurrent Adjustment Units: aligning to the
optimization algorithm

TE optimization algorithms typically involve an iterative refine-
ment of TE solutions. To ensure better alignment, HARP uses a
neural network architecture with recurrent processes that mimic
this iterative procedure.

The Recurrent Adjustment Units (RAU) in Figure 2 illustrates
HARP’s architecture alignment. The RAU module is employed re-
cursively and can be thought as a specialized Recurrent Neural
Network (RNN) for TE optimization, where the number of recur-
sions is a hyperparameter of HARP (our experiments use between
3 and 14 RAU recursions). The recursion ensures that RAU learns

1beginning of set/sequence in ML-terminology
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how to iteratively improve a proposed solution. This aligns with
how TE optimization algorithms interate over solutions, with the
main difference being that RAU requires very few iterations. As we
show in our ablation study (Figure 6), the RAU algorithmic-aligned
recursion is key to HARP’s ability to transfer what it has learned
in training scenarios to significantly different test scenarios. RAU
starts with the𝑢 variables output by MLP1 (the initial unnormalized
split ratios) described earlier. A subsequent softmax layer takes the
relevant 𝑢 variables for all the tunnels from 𝑠 to 𝑡 and normalizes
them to produce 𝑤 variables. This ensures the sum of the appro-
priate𝑤 variables for each pair of endpoints 𝑠 and 𝑡 adds to 1 The
𝑤 variables determine how much traffic go on each tunnel, but
the cumulative traffic across all tunnels on any given edge may
exceed the capacity of an edge. To address this, a sequence of RAUs
penalizes capacity overruns and promotes better link utilization for
underutilized links (given our focus on the MLU metric).

After the softmax is executed for all s-t pairs, the system com-
putes (i) the Maximum Link Utilization (MLU) of the entire network;
and (ii) for every tunnel𝛾𝑠𝑡𝑘 , the bottleneck link of that tunnel (𝑙𝑠𝑡𝑘 ),
and its associated utilization 𝑈 (𝑙𝑠𝑡𝑘 ). The bottleneck link of a tun-
nel is simply the link in the tunnel with the highest utilization.
For every tunnel 𝛾𝑠𝑡𝑘 , we feed (i) the network-wide MLU; (ii) the
tunnel-edge embedding of the bottleneck link 𝑙𝑠𝑡𝑘 ; (iii)𝑈 (𝑙𝑠𝑡𝑘 ), and
(iv) the demand 𝑑𝑠𝑡 into another DNN (RAU) individually. This
step is pivotal: feeding bottleneck link embeddings allows RAU to
discern which edge in the tunnel is most utilized and understand
its capacity limits. Furthermore, RAU compares the network-wide
MLU with𝑈 (𝑙𝑠𝑡𝑘 ). If these values are equal, the split ratio of this
tunnel should be reduced as it impacts the network-wide MLU.
Conversely, if the network-wide MLU exceeds 𝑈 (𝑙𝑠𝑡𝑘 ), then the
tunnel does not currently impact the network-wide MLU and its
traffic allocation can be increased.

Subsequently, RAU proposes split ratio adjustments that supple-
ment the existing ratios, resulting in updated split ratios at the end
of each RAU. The architecture leverages a common RAU function
across all tunnels, fostering a policy invariant to tunnel IDs and
adaptable to demand changes. The adjustment of a previous RAU is
added to the current split ratios and then fed into the next RAU or,
if at the last RAU, to the final softmax, giving the final split ratios
of HARP.

4 EVALUATION METHODOLOGY
Our evaluation is driven by the following goals:
•What kind of topology changes occur in real-world environments
that are important for TE schemes to consider?
• Is it feasible for an ML-driven TE scheme to perform well in a
dynamically evolving topology environment (§2), where the set of
nodes, links and tunnels change with time, and the capacities of
links also change?
• How important are the new design mechanisms introduced by
HARP in ensuring ML-based TE schemes can work well in real-
world environments where topologies vary over time?
•What advantages does HARP provide relative to traditional op-
timization solvers from the perspective of (i) computation costs;
and (ii) performance on a future traffic matrix when only traffic
matrices of the recent past are available?

We explore these questions by evaluating HARP using real-world
datasets, and through comparisons with state-of-the-art ML-based
TE schemes.

Datasets. Our experiments are conducted using a dataset from
AnonNet, a large private WAN (§2) with several tens of nodes and
several hundred edges. The data includes snapshots at 1 second
intervals over a multi-week period of the topology and the traffic
matrices for each snapshot. As shown in §2, the topology con-
tinually evolves during the dataset (owing to natural growth and
failures) with noticeable variation in the total and active nodes and
links over time. We complement data from AnonNet with publically
available real-world datasets for GEANT and Abilene [1, 45, 46, 54]
which include traffic matrices at different snapshots (the topology
is unchanged throughout the entire period). To evaluate HARP’s
ability to scale to larger topologies, we conduct experiments on
the KDL topology [33] and synthethic traffic data. To evaluate
HARP’s ability to handle topology variations in these datasets, we
perturb the topology in multiple ways – e.g., reordering tunnels,
and through different failures not seen in training (§5.5).

Metrics.We focus on MLU, a widely studied metric for TE. Since
our focus is on evaluating how close to optimal different ML-driven
TE schemes perform, we present Normalized MLU in all our plots
(henceforth abbreviated as NormMLU) which is the ratio of the
MLU with a ML-driven TE scheme to the MLU of optimal (obtained
using the Gurobi optimization solver).

HARP. We used PyTorch[47] and PyTorch Geometric[13] to
build HARP following Figure 2 and Section 3, and present details in
the Appendix (Appendix A.1). We used a standard transformer [56]
without positional encoding to implement SETTRANS. We also
employed the Adam optimizer [31] for training. HARP recomputes
split ratios for each snapshot. Our experiments indicate that in the
case of link failure, HARP automatically ensures no traffic is carried
on unavailable tunnels owing to the recurrent unit (§5.3) which
iteratively adjusts split ratios. Hence, we did not employ rescaling
in our experiments with HARP.

Schemes compared: To highlight the importance of HARP’s
design mechanisms to handle topology variations, we compare
HARP with DOTE and TEAL, which are representative of state-of-
the-art in ML-based TE using the code provided by the authors for
both systems.

DOTE. DOTE is originally designed to take a series of TMs at
time steps 𝑡0, 𝑡0 + 1, . . . 𝑡0 +ℎ− 1, and predict the routing for a TM at
time step 𝑡0+ℎ. We instead modify it to take a single TM and predict
the routing for that TM given our focus is on how effectively ML
approaches can handle variations in topologies. DOTE is designed
for a fixed topology, and does not explicitly recompute split ratios
when a link fails. Consequently, the split ratio predictions from
DOTE may result in traffic traversing the tunnels that traverse the
failed link. To remedy this, all our results with DOTE are presented
assuming a local rescaling approach when dealing with a complete
link failure following the author recommendations [48]. That is, for
any flow, traffic on unavailable tunnels is rerouted on the surviv-
ing tunnels in a manner proportional to traffic distribution in the
absence of link failure.

TEAL. Although TEAL [61] directly recomputes routes instead
of rescaling, our experiments with the author-provided TEAL code
indicated that it was not always able to move traffic away from



Transferable Neural WAN TE for Changing Topologies ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

1 2 3 4 5 6 7
Number of Unique Capacity Values

0.00

0.25

0.50

0.75

1.00

CD
F
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Figure 3: Variation of link capacities for one of the larger clusters of the AnonNet dataset.

a failed link resulting in an MLU of∞ under link failure in many
cases.2 Consequently, we applied a similar rescaling adjustment on
complete link failure - for all flows, we ensured all trafficwas carried
on surviving tunnels with the proportion of traffic on tunnels being
maintained the same.

Hyperparameter search. On every dataset and for each system,
we conducted an extensive grid search to tune hyperparameters.
For HARP we searched for the number of GNN layers, the number
of SETTRANS layers, the number of RAU iterations, the batch size,
and the learning rate. For TEAL, we tuned the batch size, learning
rate, the number of samples to estimate the reward, the pseudoran-
dom number generator seed (important for DeepRL [9, 21]), and the
number of FlowGNN (GNN-DNN) layers. For DOTE, we tuned the
learning rate and the batch size. For each hyperparameter setting,
(i) we trained for sufficient epochs until the systems converged
or stopped; and (ii) saved the model after every epoch. Given 𝑁

combinations of hyperparameters and𝑀 epochs, this resulted in
upto 𝑁𝑀 models totally of which we picked the best on the val-
idation set. For example, for the GEANT dataset, we explored 72
different sets of hyperparameters for TEAL, 24 for HARP, and 6 for
DOTE due to its simplicity and the little effect they had in DOTE’s
results. For each system, and each dataset, we did a grid search for
every set of hyperparameters. Appendix A.2 shows a full list of
hyperparameters we searched.

5 RESULTS
We begin by characterizing the topology dynamics of the AnonNet
dataset (§5.1). We next evaluate HARP using the AnonNet dataset
(§5.2) to explore the viability of ML-based TE in such settings. We
evaluate the importance of the new mechanisms introduced by
HARP to handle topology variations through comparisons with
existing ML-based TE schemes (§5.2, §5.4, and §5.5), and an ablation
study(§5.3). We evaluate HARP’s ability to handle perturbations
in topology outside training data for a large scale topology (§5.4)
and using datasets with real traffic matrices (§5.5), and report on
computation times(§5.6). Finally, we evaluate HARP when provided
predictions of future traffic matrices (§5.7).

2The TEAL [61] implementation is extensively optimized for the Maximum Flow
metric for which it includes adjustments to ensure link capacity constraints are not
violated. These optimizations were not implemented for the MLU metric, which is our
focus.

Tunneling scheme. Our experiments with AnonNet used 15
shortest paths to ensure i) the graph remained connected when
considering complete link failures and ii) the optimal MLU is not
much higher than 1. We used 4 shortest paths for experiments on
KDL following prior work [61], and used 8 shortest paths by default
for all other topologies, in line with prior work [48].

5.1 Nature of real-world topology changes
We start by presenting more analysis of the AnonNet dataset to
discuss the types of topology changes that ML-based TE must
handle in practice. Recall that each topology snapshot includes
(i) the set of total nodes and links; (ii) the set of active nodes and
links at that snapshot; and (iii) capacities of the links. We group
contiguous snapshots into clusters based on the nature of topology
variation across the snapshots as we discuss below.

Topology variations across clusters. A snapshot is assigned
to a new cluster when there is a change in the set of Active Nodes,
when a new link is added, or when there is a change in the set
of Edge Nodes (which correspond to nodes where data ingresses
or egresses the network). A snapshot is otherwise assigned to the
same cluster. While all snapshots in the same cluster have the same
set of tunnels, it is natural to recompute tunnels across clusters
given the addition of nodes and links, and changes in the set of
edge nodes. Overall, we grouped all snapshots in the dataset into
78 clusters. Figure 3c compares the set of tunnels of the first cluster
(FirstCluster) and last cluster (LastCluster). The results show that
20% of tunnels in LastCluster were added and not present in First-
Cluster, and 8% of tunnels in FirstCluster were no longer present
in LastCluster.

Topology variation within a cluster. We note that the capac-
ities of links may still show significant variation within a cluster.
Figure 3 illustrates this variation in capacity within one of the
largest clusters. For each link, we compute (i) the number of differ-
ent capacity values observed over the cluster; and (ii) the capacity
variation ratio, i.e., the ratio of the minimum to maximum capacity
for that link across snapshots in that cluster. Note that we do not
create a new cluster for a snapshot with a complete link failure.

Figure 3(a) shows that 40% of the links in the cluster exhibit
multiple capacity values, with some links showing as many as
7 different capacity values in the same cluster. Variation in link
capacity may occur because a link between nodes 𝑖 and 𝑗 may
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comprise multiple sub-links, a subset of which may be temporarily
inactive (planned maintenance or failures). Further, each sub-link in
turn is an aggregation of multiple physical circuits, and the capacity
could reduce if some of the physical circuits fail. Figure 3(b) shows
that 20% of the links have a capacity variation ratio of 0.8 or less,
with about 5% of the links having snapshots with zero capacity
(the link is fully inactive owing to failure or maintenance). Note
that for zero capacity links we we assign a small value of 1e-4
(significantly smaller than the capacity of other links) to allow flow
of gradients when training ML-based TE schemes. The cluster had
over 250 capacity configurations, where two configurations differ
in the capacity of at least one link.

In the Appendix, we present the variation in link capacity over
the complete dataset (Figure 15). 80% of links witness more than one
capacity value with some links having 33 unique values. Further,
20% of links have at least one snapshot where they are completely
unavailable, and 60% of links have a min-to-max ratio of 0.8 or less.
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Figure 4: HARP performance in the most challenging setting
where it is trained on three clusters and tested on 72 other
clusters spanning the entire AnonNet dataset. The inner fig-
ure is a zoomed version truncated at the 98th percentile.

5.2 Can HARP handle topology changes?
We next evaluate whether it is feasible for ML-based TE to perform
well in real-world environments where topologies change over
time using the AnonNet dataset. To this end, we train HARP on
samples from the first three clusters, validate it on the next three
clusters, and test it on over 20K snapshots belonging to all remaining
72 clusters. Figure 4 presents a CDF that shows the NormMLU
achieved by HARP across snapshots. HARP performs well – 98% of
the snapshots achieve a NormMLU of under 1.11, while even the
most challenging snapshots out of 20K test cases have a NormMLU
of 1.86 or less.

We have further stressed HARP through experiments where
HARP is trained (and validated) on each of the first three clusters
separately and tested on the same 20k snapshot test set. HARP
continues to perform well with only a slight degradation. In all
cases, when training with a single cluster and testing on the rest,
95% of the snapshots see an MLU of under 1.12 (compared to more

than 98% when training with three clusters together) although the
maximum degrades more (see Appendix for details).

Overall, the results highlight HARP’s transferability, and its
ability to work well on topology variants that it has not seen in
training data. That is, HARP can generalize to other clusters even
when trained with data from a very small number of clusters, and its
performance gracefully improves as training data of more clusters
is provided.

Benefits of explicitly modeling topology.We next explore
the importance of the new design elements introduced by HARP
in achieving the above performance by comparing it with DOTE.
We also tried evaluating TEAL on the AnonNet dataset but despite
an extensive hyper-parameter search, we were unable to get the
training process to converge (we elaborate further in the Appendix).

While HARP explicitly models the network topology and link
capacities, DOTE is designed for a fixed topology, a fixed-sized
traffic matrix, and a fixed set of tunnels. DOTE does not model link
capacities, and produces split ratios that are only a function of traffic
demands. To illustrate the benefits of explicitly modeling topology,
we compare HARP and DOTE in a more constrained setting where
the systems are trained and tested on snapshots within the same
cluster. We focus on single cluster settings since it is unclear how
to easily adapt DOTE to settings involving multiple clusters (since
the set of nodes, links, and tunnels, and the size of the traffic matrix
vary across clusters).

Figure 5 compares HARP with DOTE for three of the largest
clusters in the AnonNet dataset. In every experiment, 75% of the
snapshots were assigned for training, 12.5% for validation, and 12.5%
for testing. Each figure corresponds to a cluster and shows a CDF
of the NormMLU obtained with each of the schemes. The figure
shows that HARP performs very well with a maximum NormMLU
of only 1.13, 1.02, and 1.07 for the three clusters respectively. In
contrast, DOTE does not generalize as well. With DOTE, even the
median NormMLU across snapshots is 1.12, 2.12 and 2.79 for the
three clusters, with the maximum values being 2.03, 4.02 and 3.35.

The results stem from the fact that although link capacities vary
across snapshots, the DOTE model is constrained to learning a
single set of split ratios that work reasonably well for multiple
capacity configurations for a fixed traffic demand. In contrast, HARP
can adapt split ratios based on the capacity configuration. Second,
DOTE is not designed to handle capacity configurations outside
the training set unlike HARP which seeks to do so by meeting key
invariances (Sections 3.3 and 3.4), and using an aligned architecture
(Section 3.5). Finally, the NormMLU with DOTE is higher for the
two clusters on the right – we hypothesize this is because these
clusters had relatively few snapshots with complete failure in the
training set, while the training data for the left most cluster had
more of a balance of snapshots with and without complete link
failure scenarios.

5.3 Benefits of HARP’s aligned architecture
The marked effectiveness of HARP can be, in part, attributed to
its architecture’s alignment with TE optimization algorithm (Sec-
tion 3.5). This alignment is evident in HARP’s RAU (recurrent
adjustment unit), which parallels the iterative refinement process
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Figure 5: Comparing HARP and DOTE in settings where link capacities vary across snapshots but topologies are otherwise the
same. Results are presented when training and testing on the same cluster for three different AnonNet clusters.
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Figure 6: Ablation comparing HARP and HARP-NoRAU.

of TE optimization solvers, where an initial solution is progres-
sively enhanced through a series of iterations that systematically
converges towards an optimal or near-optimal solution by improv-
ing upon the initial solution. To evaluate the importance of RAU,
we conduct an ablation study that compares HARP with a variant
(HARP-NoRAU) that does not involve a recurrence unit.

Recall from §4 that HARP does not employ a local rescaling
mechanism. However, we found that a noticeable tail with high
MLU in our experiments with HARP-NoRAU in the absence of
rescaling. To handle this, we report results with HARP-NoRAUwith
a rescaling policy (similar to DOTE and TEAL). Figure 6 compares
HARP and HARP-NoRAUwhen training and testing with one of the
largest clusters in the AnonNet dataset. HARP improves the median
NormMLU from 1.56 to 1.01. This significant improvement indicates
the importance of the recurrence unit in improving the optimization
objective. The fact that HARP does not require rescaling also results
from the effectiveness of its RAU unit in moving traffic away from
a failed link. Overall, the results highlight the benefits of HARP’s
aligned architecture.

5.4 Handling perturbations on a large topology
While our results so far have focused on AnonNet given access to
real topology evolution and traffic matrix data, we next present ad-
ditional results on KDL [33], a large scale topology. We evaluate the
ability of HARP, DOTE and TEAL to generalize from small topology
changes by training on the original topology but perturbing the
topology in the testing phase in two ways: (i) using a different set of

tunnels than used in training; and (ii) creating partial failure scenar-
ios where the capacity of some links is reduced relative to training.
We generated 278 synthetic traffic matrices using the code provided
by [48], of which 170 were used for training, 30 for validation, and
the rest for testing.

Invariance to tunnel ordering. HARP has been explicitly
designed to be invariant to the order in which tunnels are provided
by input, a necessary condition to ensure the model can transfer
to testing data that involves a different set of tunnels that seen in
training. To evaluate this, we conduct an experiment where in the
testing phase, we shuffle the order of the tunnels for each source
destination pair using a different order from the one used during
training. Figure 7 (right group of bars) show the performance of
different schemes when tunnels are shuffled in such a manner. For
comparison, the left group of bars presents the performance of
schemes when the tunnels are provided in the same order in both
training and testing for all schemes.

We make two observations from Figure 7. First, when the order-
ing of tunnels is preserved (left), all schemes performwell achieving
almost ideal MLU across all matrices in the testing set. However,
when tunnel order is shuffled (right), HARP retains its performance
while both TEAL and DOTE degrade. This result stems from the
fact that HARP is intrinsically designed to ensure invariance to
tunnel ordering.

Handling partial failures Next, we train each ML-based TE
scheme on the original topology, but test them on topologies with
partial failure scenarios. Each partial failure scenario involves se-
lecting a single link at random, and reducing its capacity by a value
selected randomly between 50% and 90%. We generate 40 such
partial failure scenarios, and test across all combinations of traffic
matrices in the testing set and the 40 scenarios. Figure 8 shows a
CDF of the NormMLU across the different combinations. Across
all cases, HARP achieves NormMLU of less than 1.09, while the
75th percentile of DOTE and TEAL are 1.46 and 1.48 respectively. A
key reason for the out-performance is that HARP can move traffic
away from tunnels that traverse links with lower capacity owing
to its RAU unit. In contrast, DOTE and TEAL are unable to do so.
The performance degradation is especially severe when a link with
higher utilization experiences partial failure and as the degree of
failure increases.
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Figure 7: Comparing ML-based TE schemes for KDL topology
when (a) tunnels in training and testing are in the same order
(left group); and (b) when the order of tunnels is shuffled in
testing relative to the order used in training (right group).
Each bar shows the average NormMLU across the testing
set, and errors bars show the standard deviation. Note the
variance is low for all schemes
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Figure 8: Comparing ML-based TE schemes trained on the
original KDL topology and tested under partial failures

5.5 Performance on other datasets
Wenext present results on the GEANT andAbilene, for which traffic
matrix data is publicly available. Here we evaluate the ability of
HARP, DOTE and TEAL to generalize from small topology changes
by training on the original topology (without failure) but testing
the topology under different single link failure scenarios.

We train all systems on the original topology (without failures)
using 75% of the traffic matrices over a two week period for GEANT
and an eight week period for Abilene. The remaining 25% was split
evenly between validation and testing sets. For each matrix in the
testing set, we evaluated each system on every possible scenario
involving the complete failure of a single link.

The top figure shows the performance of HARP. Each point on
the 𝑥-axis corresponds to a particular link which failed, and the
corresponding boxplot shows the NormMLU obtained with HARP
for that failure scenario. Each boxplot shows the distribution of Nor-
mMLU across traffic matrices. Across all failure scenarios, HARP’s
median NormMLU ranges from 1.0 to 1.02, while its maximum
NormMLU ranges from 1.0 to 1.17.
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Figure 9: NormMLU of HARP, DOTE and TEAL under dif-
ferent link failure scenarios for GEANT where each boxplot
represents distinct single-link failure. The top whisker goes
up to the maximum, while the dashed lines show the 90th
percentile.

Figure 9(b) (the middle figure) shows the results with DOTE. The
performance is clearly not as effective under link failures because
rescaling is not as effective as recomputing routes. DOTE’s median
NormMLU ranges from 1.0 to 1.48 across failure scenarios, while
its worst case NormMLU ranges from 1.0 to 2.126 across failure
scenarios. Figure 9(c) (lowest figure) presents results with TEAL.
We use rescaling with TEAL as well as we found it resulted in an
MLU of ∞ without rescaling for reasons outlined in §4. The results
show TEAL’s MLU computations do not perform as well under
failures (as discussed in §42).

Figure 10 presents a similar comparison of the three systems
for Abilene. Again, we trained on the original topology without
failures and considered all combinations of traffic matrices and
single link failure scenarios in the testing phase. The graph shows
that HARP significantly outperforms DOTE and TEAL, achieving
a median and worst-case NormMLU of 1.0 and 1.33 respectively.
Overall these results confirm HARP’s ability to effectively handle
topology perturbations not observed in the training data.

5.6 Computation Time
Figure 11 compares the computation time for HARP with other ML-
based systems and Gurobi [20]. The time for all ML-based systems
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Figure 10: Comparing HARP with DOTE and TEAL on Abi-
lene when training without failures, and testing on failure
scenarios. Each CDF shows performance over all combina-
tions of matrices in the testing set and single link failure
scenarios. See Appendix (Figure 17) for boxplots showing
breakdown per failure scenario.

was obtained over an NVIDIAA100 80GB PCIe GPU. For Gurobi, the
runtime was obtained with an AMD EPYC 7763 64-Core processor
with 128GB RAM, a more powerful configuration than previously
reported in the literature [2, 61]. Besides the earlier datasets, we
test HARP’s ability to scale using additional large topologies from
the Internet Topology Zoo [33] with synthetic traffic data. Like
earlier, our timing experiments assumed 8 tunnels per flow for all
topologies, except AnonNet which used 15, and KDL which used 4.

The results show HARP achieves significant improvements over
Gurobi. For the largest KDL topology, Gurobi sees a reduction of
runtime that is more than an order of magnitude. While TEAL and
DOTE see even lower computation times, we believe the recompu-
tation times of HARP are acceptable in practice. Further, the much
better MLU achieved by HARP, and its more robust performance
to topology variations, make HARP a good design point when bal-
ancing accuracy and computation times. Finally, we note that the
HARP code is not optimized for computation times, and a variety
of optimizations can be implemented in the future such as using a
set transformer[36] instead of a regular transformer[56], replacing
the standard transformer attention mechanism with the accelerated
flash attention mechanism[19], and 8-bit quantization, pruning, and
distillation of the neural networks [11, 23, 41].

5.7 HARP with predicted traffic matrices
Our results so far have evaluated schemes with exact traffic matri-
ces. However, in practice, both optimization solvers and ML based
techniques work on predicted traffic matrices (TMs), and their ef-
fectiveness is impacted by the accuracy of the predictions.

We next evaluate HARP when given predicted matrices using the
AnonNet dataset. We use the HARP architecture as such except that
it is fed a predicted matrix. In the training phase, the split ratios are
generated using the predicted matrix but the loss is computed using
the true matrix. Note that in the inference phase, only the predicted
matrix is available to HARP. We emphasize that this is a quick
adaptation (whichwe refer to asHARP-Pred) to show the potential
of HARP with predicted matrices - more general adaptations are
possible in the future.
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Figure 11: Comparison of computation times

We evaluate HARP-Pred with multiple commonly used methods
for predicting TMs. Specifically, we consider (i)MovAvg: for each
cell, the predicted value is the average of the corresponding cells in
the last 12 TMs; (ii) ExpSmooth: for each cell, the predicted value is
obtained using an exponential smoothing scheme with a smoothing
factor of 0.5; and (iii) LinReg: for each cell, the predicted value is
based on a linear regression of the cell values in the last 12 TMs.

The LinReg parameters for each cluster were learnt using data
from all previous clusters. We did not use the first cluster when
training HARP-Pred since that was used for training LinReg pa-
rameters. We trained and validated HARP-Pred on the next few
clusters, and tested on the rest.

We refer to Gurobi-Pred as a scheme that uses Gurobi on a
predicted matrix. Note that Gurobi-Pred is optimal for the predicted
matrix, but not for the true matrix. Figure 12 compares HARP-
Pred and Gurobi-Pred for the three different predictors over the
different snapshots. For both schemes, NormMLU represents the
MLU normalized with respect to the MLU obtained on the true
matrix for each snapshot.

The figure shows that HARP-Pred outperforms Gurobi-Pred for
all three predictors. For instance, for LinReg (the best predictor), the
median and 90%ile NormMLU achieved by Gurobi-Pred is 1.08 and
1.17 respectively. In contrast, the corresponding values with HARP-
Pred are 1.02 and 1.07. The benefits are even more significant with
other predictors. For instance, for MovAvg, HARP-Pred achieves a
median NormMLU of 1.05 while the corresponding performance
for Gurobi-Pred is 1.16.

An interesting open question is why an ML-based TE scheme
such as HARP outperforms Gurobi when given predicted matrices.
Our hypothesis and initial investigations suggest that the bene-
fits accrue since HARP-Pred learns to be robust against prediction
errors, although we defer a more systematic investigation to the
future. Another open question is how the quality of predictor im-
pacts the relative performance of Gurobi-Pred and HARP-Pred. Our
preliminary experiments suggest that as the predictor gets weaker,
while the performance of both degrade, HARP-Pred still outper-
forms. At the extreme, with an extremely weak predictor (e.g., one
that predicts noise), HARP-Pred learns to ignore the predictor and
develop a routing that performs not too poorly for any matrix in
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Figure 12: Comparing HARP and Gurobi when given predicted traffic matrices on AnonNet for different predictors. The MLU is
normalized with the optimal MLU on the true matrix.

the training set. In contrast, the routing that Gurobi-Pred produces
with such a predictor effectively has no relation to the true matrix.
At the other extreme, Gurobi does outperform for an ideal predic-
tor. Here though, HARP performs close to optimal and can provide
computation time benefits as our experiments with KDL show. That
said, an interesting question is what the "crossover" point is – that is,
at what levels of prediction accuracy does an ML-based TE scheme
start providing benefits over classic optimization.

6 RELATEDWORK
There is a rich history of work related to wide-area TE in general [3,
14, 49], and in the context of SDNs in particular [24–26] which have
relied on classical optimization techniques. There has been much
recent interest in using ML techniques for TE [38, 48, 55, 61] includ-
ing works which use reinforcement learning for TE [15, 62, 63], and
network planning [64]. Our focus is on neural approaches which
can handle topology variants outside the training data through
architectures that are invariant to common input transformations,
and aligned with the optimization model.

Recent works estimate trafficmatrices from link loads using deep
learning techniques [29, 44, 60] including GNNs [39]. Others have
used GNNs [51] to predict delay and jitter given topology, routing
and traffic matrix. In contrast, we use GNNs to embed edges and
ultimately tunnels in a network invariant fashion when solving
optimization problems for TE.

There are many ongoing efforts to accelerate the solving of
optimization problems. Researchers have attempted to scale opti-
mization techniques [2, 16, 27] through decomposition techniques
in the context of TE. However, the task remains challenging, and
ML inference offers an alternative. First order methods [4] scale
better but do not yield as accurate solutions and are still an active
area of research [12]. Recent work [43] reduces the number of LPs
that need to be solved to obtain fair solutions. However, it still uses
Gurobi as the LP solver.

Many TE schemes handle transient failures by local rescaling,
and proactively guarantee the network remains congestion-free
over all failure scenarios in a specified set [28, 37, 58], or over
sufficient scenarios to meet a desired percentile target [7, 8] by
conservatively allocating bandwidth. Others [2, 27, 35] have argued

for explicit recomputation. While local rescaling helps in the tran-
sient phase, it is not as performant as recomputing routes. More
generally, recomputation may be required when the set of tunnels
change, or when link capacities change.

7 CONCLUSION
In this paper, we havemade two contributions. First, we have shown
that it is feasible to design an ML-based TE scheme that can handle
variations in topology that may be encountered in the real-world.
Second, we have presented HARP 3, a neural model that achieves
this goal. HARP ensures invariances to natural input transforma-
tions (e.g., permutations of node ids, tunnel reordering), and has a
neural architecture aligned to the optimization model. Evaluations
on the AnonNet dataset show HARP achieves an MLU at most
11% higher than optimal in over 98% of topology snapshots despite
encountering significantly different topologies in testing relative to
training data. Experiments on larger scale topologies show HARP
provides computation benefits over Gurobi while being better able
to handle topology perturbations not seen in training data relative
to existing ML-based TE schemes. Finally, when predicted traf-
fic matrices are provided, HARP outperforms Gurobi achieving a
median reduction in MLU of 5 to 10% on the true traffic matrix.

While promising, the results are a start. HARP has focused on
the MLU metric, and future work must investigate its applicability
to other metrics such as MaxFlow, and fairness related metrics.
Further, while we have focused on topology variations, the ability
to handle significant changes in demand distribution is another area
that requires investigation. Finally, investigating and improving tail
performance of ML-based TE schemes including HARP is another
interesting area for further exploration.

This work does not raise any ethical issues.
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𝑇 Total number of tunnels per flow
Assumes 𝑇 is same for all tunnels.

𝑑𝑠𝑡 Demand from s to t
𝛾𝑠𝑡𝑘 𝑘𝑡ℎ tunnel from s to t
𝑢𝑠𝑡𝑘 Unnormalized traffic on 𝑘𝑡ℎ tunnel from s to t
𝑤𝑠𝑡𝑘 The fraction of traffic from s to t that goes on

its 𝑘𝑡ℎ tunnel.
∑𝑇
𝑘=1𝑤𝑠𝑡𝑘 = 1

𝑙𝑠𝑡𝑘 Bottleneck link of the 𝑘𝑡ℎ tunnel from s to t
𝑈 (𝑒) Utilization of link e
𝑀𝐿𝑈 MLU of the network (i.e. utilization of

most congested link in entire network)

Table 2: Notation Table.

A APPENDIX A
Appendices are supportingmaterial that has not been peer-reviewed.

A.1 HARP implementation details
Figure 14 depicts our implementation for the GNN in Figure 2. We
start by feeding the network topology and capacities to 𝐿 GCN-
Conv [32] layers where the node features are: i) summation of the
capacities of all links connected to that node ii) degree of that node.
After 𝐿 GNN layers, the node embeddings of node 𝑖 , 𝑁𝐸𝑖 are the
concatenation of the node embeddings generated by every single
layer. Then, the edge embeddings of edge𝑖 𝑗 , ℎ𝑖 𝑗 are as described in
Section 3.3. For the next modules, the implementation uses standard
layers for SETTRANS (TransformerEncoder) and MLPs as imple-
mented by PyTorch[47]. However, PyTorch advanced/sophisticated
indexing is needed to capture the inputs required by MLP2. Us-
ing PyTorch indexing is necessary to avoid for-loops which will
significantly impact the speed of HARP.

A.2 Hyperparameter Search
As mentioned before in Section 4, we did a grid search for every set
of hyperparameters. For each hyperparameter setting, (i) we trained
for sufficient epochs until the systems converged or stopped; and
(ii) saved the model after every epoch. Given 𝑁 combinations of
hyperparameters and𝑀 epochs, this resulted in upto 𝑁𝑀 models
totally of which we picked the best on the validation set.

DOTE. For DOTE, the hyperparameters (and the correspond-
ing values) that we searched by default for all datasets included:
(i) learning rate (1e-3, 3e-3, 5e-3); and (ii) batch size (32,256). For
AnonNet, we found the performance greatly improved with even
lower learning rates, and we additionally searched the following
values (2e-5, 5e-5, 5e-4).

For TEAL, the hyperparameters (and corresponding values)
searched were (i) learning rate (1e-4, 5e-4, 1e-3); (ii) batch size (32,
256); (iii) the number of samples to estimate the reward (5, 10); (iv)
the number of FlowGNN layers (6, 8); and (v) multiple pseudoran-
dom number generator seeds as recommended in training DeepRL
models [9, 21]. In addition, we tried additional values beyond those
listed above for each hyperparameter using a random search. We
also found in our experiments that the performance of TEAL was
sensitive to the units in which the traffic matrix and link capacities
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Figure 13: Simplified schematic diagram of HARP
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Figure 14: GNN Implementation of HARP

were supplied. For each dataset, we renormalized matrix values
and capacity entries, tried multiple renormalization factors, and
reported the best.

For HARP, the hyperparameters (and corresponding values)
searched were (i) number of GNN layers (2, 3, 6); (ii) number of
SETTRANS layers (2, 3); (iii) number of RAU units (3, 7, 14); (iv)
learning rate (1e-3, 2e-3, 4e-3, 7e-3); (v) batch size (32, 256).

A.3 HARP’s transferability
We expand on our discussion in §5.2. Using the data from the
first three clusters (Clusters A, B, and C), we trained four different
models (i) train_A; (ii) train_B; (iii) train_C; and (iv) train_ABC. The
first three models were trained and validated using snapshots from
a single cluster (A or B or C), while the fourth model was trained on
snapshots of the three clusters cumulatively (and validated on three
other clusters). We tested all four models on over 20K snapshots
belonging to the remaining 72 clusters which were outside the
training and validation sets of all four models.

Figure 16 (top) presents a CDF of the NormMLU achieved by
HARP across the snapshots in the testing set for each of the four
models above. The graph is truncated at the 95%ile for clarity. While
all models perform relatively well, the 95%ile for train_ABC is only
1.058, while the corresponding value for train_A (the worst per-
forming of the three models trained on a single cluster) is slightly
worse (1.12). Figure 16 (bottom) shows the full CDF of train_ABC
and train_A (the other curves are omitted for clarity). Clearly,
train_ABC improves the tail. The maximum is reduced to 1.86 from
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Figure 15: Variation of link capacities over entire AnonNet
dataset. See 5.1 for discussion.

2.33. The results overall show that HARP can generalize to other
clusters even when trained with data from a very small number of
clusters, and also indicate that its tail performance can be further
improved by training on more clusters.

A.4 TEAL Convergence
In the AnonNet dataset we do not report results for TEAL as we
were unable to get the training process to converge despite ex-
tensive hyperparameter search as described above. Figure 18(b)
illustrates this by presenting the performance of TEAL during the
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Figure 16: Comparing HARP’s performance when trained
on three clusters with its performance when trained on a
single cluster. Top plot shows up to 95th percentile, bottom
plot shows the entire CDF. Only results from the worst of
three models trained on a single cluster each are shown in
the bottom graph for clarity.

training process for multiple example models (corresponding to dif-
ferent hyperparameter settings) including the one that performed
the best on validation data. The results are shown for training on
examples of the same AnonNet cluster (note that within a cluster
there is significant variation in capacities of links owing to both par-
tial and full failures as discussed earlier). The X-Axis corresponds
to the training epoch, and the Y-Axis shows the the median Nor-
mMLU of the entire training set achieved during that epoch. Note
that each epoch involves multiple mini-batches, and the MLU for
training examples in subsequent mini-batches of an epoch may
benefit by model updates made in prior mini-batches of that epoch.
In all cases, the median of NormMLU remains high indicating the
training process does not converge. While the models above are
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Figure 17: NormMLU of HARP, DOTE and TEAL under dif-
ferent link failure scenarios for Abilene. The top whisker
goes up to the maximum, while dashed lines show the 90th
percentile.

shown for illustrative purposes, we observed similar trends for
training with other hyperparmeter settings as well.

Figure 18(a) presents training convergence results with TEAL
for the KDL topology where the link capacities remain the same
across all training examples. In clear contrast to AnonNet, the
training process clearly converges for KDL. Note that the results
in [61] are reported for settings with static link capacities, and our
results for these settings are consistent with [61]. Investigating the
convergence of the training process with TEAL in settings such as
AnonNet which exhibits significant variability in link capacity (not
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Figure 18: TEAL’s learning curves on AnonNet and KDL topologies

the primary target of TEAL) requires further investigation which
we defer to future work.

More generally, it is not uncommon to have this behavior of
convergence for some datasets and not for others with methods that,
like TEAL, use deep reinforcement learning [22, 48]. Addressing
questions around training sensitivity with DeepRL techniques is
an active area of research in the ML community [22].
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