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Abstract

Vertical eddy diffusivity (VED) in the planetary boundary layer (PBL) has a significant impact on
forecasts of tropical cyclone (TC) structure and intensity. VED uncertainties in PBL parameterizations
can be partly attributed to the model’s inability to represent roll vortices (RV). In this study, RV effects
on turbulent fluxes derived from a large eddy simulation (LES) by Li and Pu (2021) are added to the
VED parameterization of the PBL scheme within the operational Hurricane Weather Research and
Forecasting (HWRF) model. RV contribution to VED is parameterized through a coefficient and varies
with the RV intensity and velocity scale. A modification over land has also been implemented. This
modified VED parameterization is compared with the original wind-speed-dependent VED scheme in
HWREF. Retrospective HWREF forecasts of Hurricanes Florence (2018) and Laura (2020) are analyzed
to evaluate the impacts of the modified VED scheme on landfalling hurricane forecasts.

Results show that the modified PBL scheme with the RV effect leads to an improvement in 10-m
maximum wind speed forecasts of 14%-31%, with a neutral to positive improvement for track
forecasts. Improved wind structure and precipitation forecasts against observations are also noted with
the modified PBL scheme. Further diagnoses indicate that the revised PBL scheme enhances moist
entropy in the boundary layer over land, leading to improved TC intensity prediction compared to the
original scheme.
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1 Introduction

Accurate prediction of the track and intensity of tropical cyclones (TCs), especially landfalling TCs,
can significantly reduce the casualties and economic loss induced by these severe meteorological
disasters. Vertical eddy diffusivity (VED) in the planetary boundary layer (PBL) scheme is a key
parameter for simulating and forecasting TC intensity (e.g., Smith 1968; Ooyama 1969; Emanuel 1986,
1995; Braun and Tao 2000; Chen et al. 2007; Van Sang et al. 2008; Smith and Thomsen 2010; Zhang
et al. 2011; Zhang and Pu 2017). Modification of VED based on aircraft observations over the ocean
significantly improved hurricane track and intensity forecasts (Zhang et al. 2011; Zhang and Drennan
2012; Tallapragada et al. 2014; Zhang et al. 2015, 2017). Improved VED parameterization can also
potentially lead to improved TC track, intensity, and structure forecasts during landfalls (Zhang and
Pu 2017).

Near-surface vertical mixing impacts flux and entropy distributions that affect TC intensity through
the energy balance argument (e.g., Zhu and Furst 2013; Doyle et al. 2014; Wing et al. 2019). Above
the surface layer, both the maximum value and vertical distribution of VED could affect the simulated
track, intensity, and structure of TCs (Gopalakrishnan et al. 2013; Zhu et al. 2014; Bu et al. 2017;
Gopalakrishnan et al. 2021; Kalina et al. 2021). Zhang and Rogers (2019) found that relatively low but
realistic values of VED in the Hurricane Weather Research and Forecasting (HWRF) model led to a
strong and deep forecasted hurricane vortex, which aligned faster in shear before and during rapid
intensification than large VED. Small VED also led to more symmetric distribution of deep convection
and enhanced PBL inflow over the ocean before TC intensification. On the other hand, in landfalling
TCs, the underlying surface roughness increases from ocean to land, which affects the VED in the PBL
(Yu et al. 2008; Zhang et al. 2011; Zhang and Pu 2017; Zhang et al. 2017). Based on fast-response
wind data collected during typhoons in 2010, Tang et al. (2018) found that VED is larger near the coast
when winds blow from land than from the ocean. Zhang and Pu (2017) and Zhang et al. (2017) found
that using different VED parameterizations over land and ocean in the PBL scheme resulted in more
realistic intensity forecasts of landfalling hurricanes by HWRF, especially during the wind decay stage
over land.

Furthermore, previous studies have found that roll vortices (RVs), a type of large turbulence eddy,
exist in the TC PBL (Wurman and Winslow 1998; Katsaros et al. 2000; Morrison et al. 2005; Huang
et al. 2018). Numerical simulations by Foster (2005), Gao and Ginis (2016), and Gao et al. (2017)
showed that these large-scale eddies could generate strong and counter-gradient flux, in contrast to that
predicted by the traditional down-gradient turbulence parameterizations in mesoscale numerical
models. Aircraft observations in TCs confirmed that counter-gradient turbulent transfer exists, leading
to large VEDs near the top of the boundary layer in the eyewall and outer-core regions (Zhang and
Drennan 2012; Zhao et al. 2020). Results from large eddy simulation (LES) are consistent with these
observations (Zhu 2008; Li et al. 2021). A laboratory study found that horizontal rolls could even
impact the intensification rate of TCs (Sukhanovskii and Popova, 2020). Therefore, the omission of
RVs in the PBL scheme could potentially lead to relatively poor TC intensity forecasts (Ernst et al.
2019).

In light of the linkage between VED and RV in the PBL scheme within the Weather Research and
Forecasting (WRF) model, Li and Pu (2021) improved the Yonsei University (YSU) PBL scheme
(Hong et al. 2006; Hong 2010) by adding RV effects based on the LES of landfalling Hurricane Harvey
(2017). Numerical experiments indicated that the revised YSU scheme produced better hurricane track,
intensity, and quantitative precipitation forecasts (QPF). The positive impacts of including RV effects
in the WRF model motivate us to further evaluate these effects and implement the findings in other
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models. Specifically, RV effects have not yet been included in the NCEP operational Hurricane WRF
(HWRF) regional model. The hybrid Global Forecast System (GFS) PBL scheme in the current version
of the HWRF model was previously modified based on observations (Bu et al. 2017; Wang et al. 2018;
Zhang et al. 2020) with a wind-speed-dependent VED parameterization, but no RV effect was
considered. Therefore, the purpose of this study is to improve the previous RV parameterization and
implement it into the PBL scheme of the HWRF model. We also aim to evaluate the effects of the RV
parameterization on hurricane prediction. We use the operational version of the HWRF model (version
2020, referred to as H220 hereafter). Specifically, considering the high impact of landfalling hurricanes
on our society, our focus is on improving forecasts of landfalling storms.

The development of the RV parameterization in the HWRF model is described in Section 2. The
forecast results and evaluations are discussed in Section 3. The influence of the modified PBL scheme
with RV effect on the hurricane intensity and structure are examined in Section 4. A summary and
concluding remarks are provided in Section 5.

2 Modifying the RV parameterization in the HWRF model

2.1 A brief description of the HWRF model and GFS PBL scheme

HWREF (Version 4) is a NOAA/NCEP regional operational hurricane models. It is composed of the
WRF (Weather Research and Forecasting) non-hydrostatic mesoscale model (NMM) on an E-grid
dynamic core (Janji¢ et al. 2010), the Message Passing Interface Princeton Ocean Model for Tropical
Cyclones (MPIPOM-TC) (Yablonsky et al. 2015), the NCEP coupler, and the GSI data assimilation
platform (Kleist, et al. 2009; Wang 2010). The HWRF model domains are configured to have a parent
domain and two storm-following moving nested domains, with resolutions of ~13.5 km, ~4.5 km, and
~1.5 km, respectively. The atmospheric model in the HWRF system employs a suite of advanced
physics developed for TC applications, such as the Ferrier-Aligo microphysics scheme (Ferrier et al.,
2002; Aligo et al., 2018), the simplified Arakawa-Schubert (SAS) deep convection scheme (Pan and
Wu, 1995; Hong and Pan, 1998), the Geophysical Fluid Dynamics Laboratory (GFDL) longwave and
shortwave radiation schemes (Schwarzkopf and Fels, 1991; Lacis and Hansen, 1974), the GFDL
surface layer scheme (Sirutis and Miyakoda, 1990; Kurihara and Tuleya, 1974), the Noah land surface
model (Ek et al. 2003), and the hybrid NCEP GFS or “GFS EDMF” PBL parameterization scheme
(Gopalakrishnan et al., 2013; Wang et al. 2018; Zhang et al. 2020; Kalina et al. 2021).

The “GFS” or “GFS EDMF” PBL scheme is essentially a first-order nonlocal scheme that originated
from the traditional NCEP Medium-Range Forecast (MRF) scheme (Troen and Mahrt 1986; Hong and
Pan 1996; Han and Bretherton 2019). In the latest operational version of the HWRF model (as of the
end of 2020), a wind-speed-dependent VED of momentum (Km) modification has been applied in the
GFS EDMF PBL scheme since 2015 (Bu et al. 2017; Wang et al. 2018):

h
K., = akwsh(1 — PBLH)Z (1)

where £=0.4 is the Von Karmén constant; w;, represents the mixed-layer velocity scale, and PBLH
represents the height of the planetary boundary layer (PBL). The coefficient a is computed based on
the diagnosed eddy diffusivity of momentum K, at a single level (h=500 m) based on observations
(Zhang et al. 2011) and then applied through the entire PBL within that model column for grid points
over the ocean.

— _WSso00
0.5K:m500

2)
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where WS denotes the wind speed and the subscript 500 stands for the variable collection height of
500 m.

2.2 RV parameterization

In Li and Pu (2021), the large eddy simulation (LES) of landfalling Hurricane Harvey (2017) was used
to parameterize RV and its effect was added to the YSU PBL scheme in the WRF model. Figure 1
shows the azimuthally averaged Km (shading) from the simulations with the WRF YSU PBL scheme
(Figure la) and LES (Figure 1b), and their difference (Figure 1c) at 17 UTC 25 August 2017 for
Hurricane Harvey. The simulations indicated that RV always contributed to VED at distances less than
100 km from the hurricane center. The RV intensity, /v =w'-w’, is shown as a contour line to
distinguish the RV’s contribution. Figure 1 also indicated that Km from the YSU scheme was weak,
with a maximum of less than 90 m?s!, while the area with solid RV (intensity over 0.5 m’s?) always
had larger Km in the LES, with a maximum of over 210 m?s™'. This large Km implies a strong vertical
mixing effect led by the RV at 100-3000 m in LES. Therefore, based on the significant relationship
between the large Km and RV intensity shown in Figure 1, Li and Pu (2021) regard the VED difference
between the simulation with WRF and WRF-LES as the contribution from RV to the total VED. The
RV intensity was first related to the horizontal divergence in the PBL and then used to quantify the
VED contribution from RV.

Li and Pu (2023) found that the inflow transports the rolls in the entire storm boundary layer and
accumulates near the eyewall to support the intense rolls there. Specifically, in Li and Pu (2021), RV
intensity, /v = w'-w’', is linked to horizontal convergence (negative divergence) where w' is the
vertical component of the RV turbulence. Based on dimensional analysis, the maximum /v (wm) 1
proportional to the square of the mean horizontal divergence (div) in a vertical column of the PBL
below 400 height:

I, = a-div? (3)

The coefficient a is 1.97 based on LES data following Li and Pu (2021). Note that below 400 m altitude,
divergence is mostly negative, indicating convergence in the PBL.

To generate the vertical profile of I, the height of Iwm (H.) 1s represented by the height of the minimum
wind shear (du/dz). Then, with H,, and l,n, Iw normalized by 1., (g) in each vertical column is described
by an adjusted gamma distribution function f as follows:

f(h) = (Fho)ﬂm/soo . @—1/300 ()
__fiy
(h) = ©)

where 4 is the height above the ground and g(%) is the normalized I profile distribution function.
Finally, the /i profile in a single column is derived:

I,(h) = I, - g(h) (6)

As in the setup of the YSU PBL scheme, Li and Pu (2021) used a velocity scale wg, for RV to
determine the RV-induced VED of momentum, that is, Kuy, in the form of:
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h
Ky =wg -h(1— H_t)z (7

where H; is the height of the top of RV, which is assumed to be above H,,, and I, = 0.05 Iym. A height
of 3000 m is used as the H maximum. According to the dimensional analysis, wg, is proportional to
the square root of /. A linear fitting method is applied as follows:

We =b- (Iw)l/Z )

where b, the linear coefficient, is equal to 0.08 in the PBL and 0.20 in the free atmosphere from Li and
Pu (2021). Then, Ky is determined through Equation (7) in the modified PBL scheme.

Since the vertical eddy diffusivity of heat (Kxr) and moisture (Kq) produced by RV is weak, a fixed
ratio for Ki/Kmr and Kq/Kny is set to the mean value of 4.79x1072 in LES for the RV parameterization
in Li and Pu (2021). Finally, RV-induced K, Knr, and Kqr are added to the original Km, Kn, and Kq of
the PBL scheme. Further details can be found in Li and Pu (2021).

In the present study, we modify the RV parameterization of Li and Pu (2021) and apply it to the HWRF
PBL scheme. The different horizontal grid spacings of WRF (coarse grid) and HWRF (fine grid) could
lead to different values of coefficient b in Equation (8), so a sensitivity test based on the WRF-LES
simulation results was conducted with different horizontal grid spacings. Figure 2 shows the variation
of b with the horizontal grid spacing, suggesting that b is not sensitive to the horizontal grid resolution,
with a variance of less than 10%. This result also confirms that » = 0.20 for the free atmosphere and b
= 0.08 for the PBL in equation (8) work best for the HWRF model with the horizontal grid spacing of
~0.033° for domain 2 and 0.011° for domain 3.

In the LES simulation of Hurricane Harvey (2017) by Li et al. (2021) and Li and Pu (2021), the LES
domain covers only the hurricane inner-core region (within a radius of less than 150 km from the
hurricane center). Figure 1 shows that RV always contributes to VED at distances less than 100 km
from the hurricane center. Therefore, an inner-core distance limitation, namely, 100 km, should be
added to the HWREF system to avoid the RV contribution through the RV parameterization outside the
inner core. To ensure that this hurricane’s inner-core region is covered by all three domains with their
own grid spacings, distance limitations of 150 km for domain 1, 115 km for domain 2, and 101 km for
domain 3 are used when modifying the HWRF PBL scheme to include the RV effect.

2.3 Improvement of RV parameterization over land

From Equation (8), the relation of wy, and Iy differs only in the PBL and free atmosphere. Since this
study emphasizes landfalling hurricanes, the different underlying surfaces of the land and ocean should
be considered since they could lead to different VED (Tang et al. 2018; Zhang et al. 2017) and thus
different values of b in Equation (8). From Li and Pu (2021), coefficient » in Equation (8) is determined
mainly by the hurricane simulation results over the ocean. Therefore, for the inland configuration,
coefficient b in Equation (8) needs to be adjusted. Figure 3 shows the fitting relationship of wg, and
the mean root of /i, for the TC inland case based on additional LES simulations. Results show that b =
0.04 in the PBL and » = 0.06 in the free atmosphere should be used over land; these values are
significantly different from the values of b over the ocean from Li and Pu (2021). This adjusted
coefficient b in the RV parameterization over land is used in the modified HWRF PBL scheme.

3 HWREF experiments and forecast impacts
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3.1 Experiment configurations

Following the modification of the PBL scheme with the RV parameterization in the HWRF model as
described in the previous section, the impacts of the modified PBL scheme on TC forecasts are
examined with the operational HWRF model (version H220). Considering the tuning coefficient a in
the PBL scheme as mentioned above, the following three experiments are configured. Note that two of
the experiments combine the a effect with RV parameterization in the PBL scheme.

1) Control: no change in the HWRF model, where K, is parameterized using Egs. (1) and (2).

2) RV-A-a: in the hurricane inner-core region, the first guess of K is modified by including the
RV parameterizations (Kum,) first, and then it is adjusted by o to generate the final Ky, as follows:

h
K = a[kw,h(1 = 202 + Ky | )

Outside the inner-core region, there is no change from Control.

3) RV-C-a: in the hurricane inner-core region, when Ky, is not equal to zero, the first-guess K, is
modified only by adding the above RV parameterizations without a adjustment, namely:

h
PBLH

K., = kwsh(1 — )2 + K, (10)
Otherwise, when Ky is equal to zero, the first-guess K is adjusted only by a as defined in the
current HWRF to generate the final Ky, as described in Egs. (1-2). Outside the inner-core
region, there is no change from Control.

In the modified PBL scheme, a interacts with the added RV parameterization. In RV-A-a, the RV
parameterization is added to the HWRF PBL while retaining the effect of coefficient a. In RV-C-a,
adding the RV parameterization is an option to replace coefficient a conditionally.

With the above configurations, HWRF forecasts are conducted for Hurricane Florence (2018), with
cycled forecasts (equivalent to the procedure of operational runs in 6 hourly analysis and forecast
cycles) from 18 UTC 13 to 18 UTC 14 September 2018, and for Hurricane Laura (2020), with cycled
forecasts from 00 UTC 25 to 00 UTC 27 August 2020. The forecast case is spun up at 00 UTC 13
September 2018 for Hurricane Florence, and at 06 UTC 24 August 2020 for Hurricane Laura with the
cycled run. A total of 14 cases, 5 for Florence and 9 for Laura, are analyzed to evaluate the impacts of
the revised PBL scheme on track, intensity, and structure forecasts compared to the original scheme.

To assess the quantitative precipitation forecasting (QPF), observations from NCEP stage IV
precipitation data (Lin and Mitchell, 2005) are used compute the threat score:

correct

Threat score = (11)

forecast+observation—correct

where forecast is the point number of the simulated QPF with special threshold precipitation, and
observation is the point number of the QPF from the stage IV data. Correct is the point number of the
correct forecast that agrees with the observation.

3.2 Track, intensity, and precipitation forecasts
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3.2.1 Hurricane Florence

Figure 4 shows the forecast tracks of Hurricane Florence from the three experiments at different
forecast times. The hurricane tracks of RV-A-a and RV-C-a are different from that of Control, with a
slower-moving TC through the revised PBL scheme. Compared to the NHC best-track data, the
simulated storms in these three experiments move slightly faster after landfall. The storm in RV-C-a
is the slowest and is closest to the best track. Then, to quantify the forecast skill, the track and intensity
errors are computed as shown in Figure 5. The track error of RV-C-a is smaller than that of Control,
with a mean error reduction of 6.02 km. The mean track error of RV-A-a is 65.13 km, which is slightly
larger than that of Control. For the maximum surface wind (MSW) error, RV-C-a also produces a mean
error of -4.42 kt, which is smaller than that of Control (-6.44 kt). RV-A-a produces an MSW error
similar to that of Control, with a mean error of -6.21 kt. When the hurricane decays over land, the
MSW error of RV-C-a decreases with time and is smaller than those of the other two experiments. The
most significant intensity forecast improvement is at 12 UTC 14 September 2018, at hurricane landfall.
For the minimum sea level pressure (MSLP) forecast, the improvement in RV-C-a is not consistent, in
that the MSLP error is smaller than that in Control in the first 24 h but larger at 30-66 h. Finally, the
mean MSLP error is -4.62 hPa for RV-C-a, close to the mean error of -4.02 hPa for Control. RV-A-a
has an MSLP error similar to that of Control, with a mean error of -4.03 hPa. Overall, RV-C-a produces
the best hurricane track and MSW forecasts against the best track from the NHC report. Note that the
MSLP forecast reduction by RV-C-a compared to Control is smaller (15%) than the MSW forecast
improvement (> 31%),).

Accurate precipitation forecasts near hurricane landfall time are essential for public warnings. The 12
h accumulated precipitation forecast, initialized at 06 UTC 14 September 2018, is compared with the
NOAA Stage IV precipitation analysis (Lin and Mitchell, 2005) during Hurricane Florence’s landfall
between 06 and 18 UTC 14 September 2018 (Figure 6). RV-C-a performs better than Control, which
underestimates the rainfall over the ocean. RV-C-a has an even larger precipitation maximum (160
mm) than RV-A-a (120 mm) close to the hurricane eye and eyewall regions over the ocean. Overall,
RV-C-a provides the best rainfall forecast for Florence, consistent with the result of Li and Pu (2021).
To further examine the improvement in the precipitation of Florence, the mean threat score (TS) of the
QPF based on the NOAA Stage IV data for 12h, 24h, 36h, and 48h accumulated precipitation is
analyzed (figures not shown). The results show a strong increase in the mean TS for heavy rainfall
(over 160 mm) in RV-C-a, with a TS increase of over 0.1 from Control. The increased mean TS
indicates that RV-C-a significantly improves the rainstorm forecast, which is important for public
warnings. The slightly reduced (less than 0.04) or similar mean TS for the smaller rainfall (<160 mm)
reflects a similar QPF ability for RV-C-a and Control at these precipitation thresholds. RV-A-a shows
poor QPF with a gradually smaller mean TS than Control and RV-C-a.

3.2.2 Hurricane Laura

Figure 7 shows the forecast storm tracks from the three experiments at different forecast times for
Hurricane Laura. The storm tracks in these forecasts are all close to the NHC best track, with a
maximum error of less than 100 km. Figure 8 shows the forecast track and intensity errors from these
experiments. Compared to Control, RV-C-a provides a comparable track forecast. The absolute track
error is 36.29 km for Control, 40.48 km for RV-A-a, and 37.04 km for RV-C-a. For the MSW error,
RV-C-a again provides a smaller error, -10.51 knot, compared to the -12.16 knot from Control. The
MSW error reduction by RV-C-a, compared to Control, increases and then decreases with time. RV-
A-o provides a slightly worse MSW forecast than the other two experiments, with a mean error of -
13.34 knot. RV-C-a also provides a better MSLP forecast in the first 42h than Control, with the mean
error reducing in magnitude from -1.29 hPa (Control) to -0.83 hPa. Overall, RV-C-a performs the best,
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with a 14% reduction in the MSW forecast error and a 36% reduction in the MSLP forecast error
compared to Control and best track. Furthermore, the track error increment is less than 2% for RV-C-
a.

The 12h accumulated precipitation forecasts, initialized at 18 UTC 25 August 2020, for Hurricane
Laura from 00 to 12 UTC 27 August 2020 are compared with the NCEP Stage IV precipitation analysis
(Figure 9). RV-C-a reduces the overestimated rainfall over the ocean in Control and RV-A-a. Control
strongly overestimates the rainfall, especially near the coastline, with a maximum of ~280 mm
compared to observations, while RV-A-a reduces this overestimation to some degree and RV-C-a
significantly reduces the precipitation forecast error with a precipitation maximum of ~160 mm.

As with Florence, the mean threat score (TS) of the QPF of Laura against the NOAA Stage IV data for
12h, 24h, and 36h accumulated precipitation is analyzed (Figure not shown). Because of the relatively
weak precipitation from Laura, the mean TS is small and often less than 0.4 for threshold precipitation
over 80 mm. For precipitation less than 80 mm, the revised PBL scheme in RV-A-a and RV-C-a
provides a neutral impact on the QPF, with mean TS reduction and increment both less than 0.04
against Control. The revised HWRF PBL scheme improves the 24h and 36h QPF. Due to its quick
decay and relatively weak rainfall, the improvement from RV-C-a is somewhat weaker for Laura than
for Florence.

3.3 Inner-core horizontal and vertical winds

To evaluate whether the modified PBL scheme improved the hurricane inner-core representation, we
compared the HWRF wind fields with available NOAA airborne Doppler radar observations. Figure
10 shows the winds at 1500 m from the three experiments, initialized at 18 UTC 26 August 2020, and
NOAA radar for Hurricane Laura at 00 UTC 27 August 2020 during landfall. Compared to the radar
data, Control overestimates the inner-core winds with a larger area of strong winds (over 50 ms™). RV-
A-a only slightly reduces the high winds in the northern portion of the inner-core region. RV-C-a
reproduces an asymmetric pattern similar to the radar observations and has a small high wind (over 50
ms™') area around the eyewall.

Vertical wind profiles at 00 UTC 27 August 2020 from the NOAA P3 Doppler radar along the flight
line (black line in Figure 10) are used to evaluate the forecasts of Hurricane Laura, initialized at 18
UTC 26 August 2020, shown in Figure 11. From the western portion of Laura, RV-C-a provides a high
wind (>55 ms™") region closer to the radar observations, with high wind extending just to 7 km. Control
and RV-A-a have too large an area with high wind (>55 ms™'), extending to nearly 10 km. Compared
to the eastern observations, RV-C-a provides a vertical structure similar to the radar data, with a
separate high wind at ~7 km and a small area with over 55 ms™! wind below 2 km altitude. Overall,
RV-C-a shows a better wind speed pattern both in east and west parts of hurricane with most shrinking
area of strong winds. Control and RV-A-a still have stronger low-level and high-level wind.

The above results indicate that adding the RV effect into the HWRF PBL scheme can improve the
representation of hurricane inner-core wind profiles. The result here is quantitatively consistent with
the findings of Zhang et al. (2015), who adjusted the VED to obtain better wind structure forecasts of
TCs over the ocean, although they did not include the RV effect.

4 Influence of RV parameterization on the evolution of hurricane inner core

The evolution of the hurricane inner-core structure is essential for hurricane track and intensity
changes. In this section, we further examine the effects of the modified PBL scheme on the evolution
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of hurricane inner-core structure, especially for the period near landfall. We will show Hurricane
Florence case as an example. Specifically, we analyze the forecasts initialized at 06 UTC 14 September
2018, when Florence is close to land.

Figure 12 shows the evolution of azimuthally averaged surface wind speed from Control (Figure 12a),
RV-A-a (Figure 12b), and RV-C-a (Figure 12¢) during the 60h forecast. The maximum azimuthally
averaged surface wind in RV-C-a is higher than that in Control and RV-A-a. The radius of MSW is
smaller in RV-C-a in the first 12h than in the other two experiments. After 24h, the azimuthally
averaged surface wind speed in RV-C-a maintains a maximum wind of greater than 34 ms™'. After this
time, the maximum winds decay more slowly with time in RV-C-a than in the other two experiments.
Through the intensity forecast analysis in Figure 5b, the simulated hurricane in Control and RV-A- a
decays more quickly than the best track. The evolution of maximum wind here supports a much better
intensity forecast of RV-C-a compared to Control (c.f., Figure 5).

To further examine the reason why RV-C-a leads to a better intensity forecast, Figure 13 shows the
azimuthally averaged momentum VED from Control (Figure 13a), RV-A-a (Figure 13b), and RV-C-
o (Figure 13c¢) at the 12h, 24h, and 36h forecast times. The maximum azimuthally averaged VED in
RV-C-a is higher than that in Control and RV-A-a at the 24h and 36h forecasts. Previous studies have
indicated that RV can enhance the vertical mixing effect near the TC eyewall region (Zhu 2008; Zhang
and Drennan 2012; Zhao et al. 2020; Li et al. 2021), thus influencing hurricane intensity and evolution.
Therefore, the larger VED in RV-C-a implies a larger vertical mixing effect on the wind speed. With
the decay of the hurricane, the hurricane eye enlarges, and the RV effects extend from the hurricane
center to its vicinity. Consequently, RV-C-a results in a largest VED within a radius of 100-150 km at
the 36h forecast among all three experiments.

Figure 14 shows the azimuthally averaged wind speed from the three experiments at the 12h, 24h, and
36h forecast times. The maximum azimuthally averaged wind speed, which is typically located at 850-
900 hPa, is the same in Control as in RV-A-a, with a value of 42 ms™!' at 12h, 33 ms™' at 24h, and 30
ms™!' at 36h, respectively. In contrast, RV-C-a provides stronger azimuthally averaged wind speeds,
with a maximum of 42 ms™' at 12h, 36 ms™! at 24h, and 33 ms™! at 36h, respectively. The larger VED
(as shown in Figure 13g-1) indicates that adding the RV parameterization in RV-C-a causes a stronger
mixing of high wind downward from levels above 900 hPa to the boundary layer that acts to increase
the surface wind speed (near the 1000 hPa level) by offsetting the surface friction effect, and maintain
the hurricane intensity over land (as shown in Figure 3c).

Although the above analysis indicates that the higher surface wind is associated with the vertical
mixing in RV-C-q, the reason for the stronger high-level (above 900 hPa) winds in RV-C-« still needs
to be clarified. According to Persing and Montgomery (2003) and Montgomery et al. (2006), the high-
entropy air in a hurricane eye can lead to a stronger hurricane through eye-eyewall mixing. Therefore,
the strong hurricane in the RV-C-a could be associated with the high-entropy air and eye-eyewall
mixing process. To test this hypothesis, Figure 15 shows the equivalent potential temperature (6.)
difference between RV-A-a and RV-C-a as well as Control at 12h, 24h, and 36h. There is a large area
of positive @, difference (> 0.6 K) close to the storm center between RV-C-a and Control. This positive
difference is generally smaller between RV-A-a and Control, indicating stronger eye-eyewall mixing
with the RV effect. Wang and Xu (2010) found that higher entropy in the boundary layer inflow can
significantly enhance hurricane development through an energy budget argument. Since the RV effect
in RV-C-a provides stronger mixing near the surface (Figure 13 g-1), the increase in boundary layer
entropy is associated with stronger mixing. This high-entropy air helps offset the downdrafts induced
by low-entropy air into the boundary layer in sheared TCs and helps maintain convective activity in
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combination with the strong inflow. Overall, the RV effect enhances the simulated hurricane intensity
and reduces the intensity forecast error in RV-C-a. Of note, the wind-speed-dependent VED in RV-A-
o offsets the RV contribution to VED, leading to a weaker storm compared to that in RV-C-a, but the
RV effect still helps improve the intensity forecast in RV-A-a compared to Control.

5 Summary

In this study, the parameterization of roll vortices (RV), a type of large turbulence eddy in the TC
boundary layer, was added into the PBL scheme of the NCEP HWRF model. The RV parameterization
scheme that was originally developed by Li and Pu (2021) based on WRF-LES runs was adjusted to
fit into the GFS PBL scheme within the HWRF model. Improvement was also made to the RV
parametrization over land. Based on additional WRF-LES sensitivity experiments of landfalling storms
beyond previous work, the coefficient that connects the RV intensity, velocity scale, and VED was
modified from 0.20 to 0.06 for the free atmosphere and from 0.08 to 0.04 for the PBL in HWREF, taking
into account differences in both grid spacing and land versus ocean. The new VED parameterization
with the RV effect was compared with the original wind-speed-dependent VED parameterization in
HWRF (Control) to evaluate their impacts on hurricane forecasts. Cycled HWRF forecasts are
performed for Hurricanes Florence (2018) and Laura (2020), with a total of 14 cases during the analysis
and forecast cycles of the two storms.

Results showed a better surface MSW forecast with a 14%-31% improvement in the experiment with
the modified PBL scheme with the RV effect, compared with the original PBL scheme. The improved
performance of the revised scheme on track and SLP forecasts were significant, with an increment of
-2% to 9% for track and -15% to 36% for SLP forecasts.

Further diagnoses showed that the vertical turbulent mixing adjustment due to the RV effect in the
revised scheme leads to a better wind structure forecast than the original scheme compared to NOAA
airborne Doppler radar observations. The RV effect also modulates the moisture structure by enhancing
f. in the boundary layer. The enhanced €. lead to a stronger storm during landfall in the HWRF forecast
with the RV parameterization. The overall intensity forecast performance is better using the scheme
with the RV effect according to the retrospective forecast. Overall, the modified PBL scheme with the
RV effect could potentially be applied in the HWRF model for real-time TC forecasts. More cases will
be performed in future work.
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Figure captions

FIGURE 1. Azimuthally averaged vertical eddy diffusivity of momentum (shading) from the WRF
simulations with (A) YSU PBL scheme, (B) LES, and (C) their difference (Kwr) at 17 UTC 25 August
2017 for Hurricane Harvey. The black contour line stands for the RV’s intensity at the same time.

FIGURE 2. Coefficient b in equation (8) as a function of horizontal grid spacing. The dashed line
represents coefficient b from LES in Li and Pu (2021).

FIGURE 3. Plot of w,, as a funcion of the mean root of Iy over land. The least square best fit lines
for free atmosphere (blue) and PBL (black) are also shown.

FIGURE 4. Comparison of forecast track with the best-track data for Hurricane Florence at (A) 18
UTC 13, (B) 00 UTC 14, (C) 06 UTC 14, (D) 12 UTC 14, and (E) 18 UTC 14 September 2018.
Control, RV-A-a, RV-C-a, and best track are represented by the blue, red, green, and black lines,
respectively.

FIGURE 5. Mean forecast errors against the best-track data for Hurricane Florence (A) track, (B)
maximum surface wind (MSW), and (C) minimum sea level pressure (SLP). The black lines in (A)
and (C) denote the best-track MSW and minimum SLP, respectively. The dashed line in (A) denotes
the landfall time.

FIGURE 6. The 12h accumulated precipitation from (A) Stage IV, (B) Control, (C) RV-A-a, and (D)
RV-C-a during Hurricane Florence’s landfall at 06-18 UTC 14 September 2018.

FIGURE 7. Comparison of forecast track with the best-track data for Hurricane Laura at (A) 00 UTC
25, (B) 06 UTC 25, (C) 12 UTC 25, (D) 18 UTC 25, (E) 00 UTC 26, (F) 06 UTC 26, (G) 12 UTC 26,
(H) 18 UTC 26, and (I) 00 UTC 27 August 2020.

FIGURE 8. Same as Figure 5, except for Hurricane Laura.

FIGURE 9. The 12h accumulated precipitation from (A) Stage IV, (B) Control, (C) RV-A-a, and (D)
RV-C-a during Hurricane Laura’s landfall at 00-12 UTC 27 August 2020.

FIGURE 10. The 1500 m wind from (A) NOAA Doppler radar, (B) Control, (C) RV-A-a, and (D)
RV-C-a for Hurricane Laura near landfall time at 00 UTC 27 August 2020. The white contour line
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stands for wind over 50 ms™' for observations and simulations. The black line represents the cross-
section in Figure 12.

FIGURE 11. Wind field of vertical cross section for Laura at 00 UTC 27 August 2020, from (A)
NOAA P3 TDR radar, (B) Control, (C) RV-A-a, and (D) RV-C-a.

FIGURE 12. Evolution of azimuthally averaged surface maximum wind of Hurricane Florence
initialized at 06 UTC 14 September 2018, from (A) Control, (B) RV-A-a, and (C) RV-C-a. The radius
of MSW is represented by the black line.

FIGURE 13. Azimuthally averaged momentum vertical eddy diffusivity (VED) of Hurricane Florence
initialized at 06 UTC 14 September 2018, from (A-C) Control, (D-F) RV-A-a, and (G-I) RV-C-a at
(A, D, and G) 12h, (B, E, and H) 24h, and (C, F, and I) 36h.

FIGURE 14. Same as Figure 13, except for azimuthally averaged wind speed of Hurricane Florence.

FIGURE 15. Difference in azimuthally averaged equivalent potential temperature of Hurricane
Florence, initialized at 06 UTC 14 September 2018, between Control and (A-C) RV-A-a and (D-F)
RV-C-a at (A and D) 12h, (B and E) 24h, and (C and F) 36h.
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