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Computer Vision for Bioacoustics: Detection of
Bearded Seal Vocalizations in the Chukchi Shelf
Using YOLOVS

Christian Escobar-Amado

Abstract—Year-round recordings of bearded seal calls were col-
lected in the northeastern edge of the Chukchi Continental Slope
(Alaska, within the Arctic Circle) in 2016-2017, 2018-2019, and
2019-2020. While the underwater vocalizations of bearded seals are
often analyzed manually or using automatic detections manually
validated, in this article, a detection and classification system (DCS)
based on the You Only Look Once Version 5 (YOLOVS) algorithm
is proposed. With YOLOVS, the network learns how to detect
and classify these marine mammals’ calls using the principle of
computer vision for object detection in images where bounding
boxes enclose the objects of interest. During training, validation,
and testing, YOLOVS5 achieved an accuracy of 96.54%, 93.36 %,
and 93.87 %, respectively. The DCS was applied to the three-year-
long dataset, and an analysis of the vocal behavior of the bearded
seals showed that there exists a geographical dependence where
this species prefers shallower water depths in the Chukchi Con-
tinental Slope. Another advantage of using YOLOVS over other
typical DCS is that the predicted bounding boxes have embedded
statistical information about the vocalization, such as the duration,
bandwidth, and center frequency of the signals. This additional
information equips biologists with statistical data that facilitate the
analysis of animal vocal behavior.

Index Terms—Arctic, bearded seals, computer vision, deep
learning, marine mammals, You Only Look Once Version 5
(YOLOVS).

1. INTRODUCTION

HE Arctic Ocean is rapidly changing due to the climate
T change that is making a big impact on the sea ice con-
ditions [1], [2], [3] with several ecological and economical
implications. For example, new commercial opportunities are
emerging, such as the potential for opening new trans-Arctic
shipping routes [3], [4], which can affect the marine life. On
the other hand, the sea ice decline is affecting the marine
mammal distributions [5]. With all of these factors, a renewed
interest in Arctic acoustics inspired the Canada Basin Acoustic
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Propagation Experiment (CANAPE) [6]. The CANAPE was
focused on investigating the spatial and temporal variability and
coherence of the acoustic environment and propagation in the
Arctic Ocean over one year from October 2016 until October
2017. The experiment was separated into two areas: 1) deep
water in the Canada Basin and 2) shallow water (SW) in the
Chukchi shelf. In the subsequent years, the Ocean Acoustics
and Engineering Laboratory (OAELAB) at the University of
Delaware (UD) deployed acoustic and environmental sensors
in the same SW area in September 2018-September 2019 and
November 2019-September 2020. Positions of the acoustic
arrays in the SW site are shown in Fig. 1.

During the data analysis of the Shallow Water Canada Basin
Acoustic Propagation Experiment (SW-CANAPE), it was found
that several marine mammal’s vocalizations were recorded.
Bearded seals, in particular, are one of the main contributors
to the marine soundscape in the Arctic [8], and their calls were
consistently found in the recordings during the months when
the ice was present. In the past few years, extensive studies of
these marine mammal’s vocalizations have been possible thanks
to the large acoustic datasets collected using passive acoustic
monitoring [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18],[19]. These data allow researchers to analyze the spatial and
temporal behavior of marine mammal’s vocalizations, which are
indicatives of their presence, population, and distribution.

Commonly, for bearded seals, the calls are manually identi-
fied by trained analysts by visualizing the spectrograms of the
audio recordings. However, for large datasets, this laborious
task is not feasible, and automatic detection systems become
necessary [19]. Recently, detection and classification systems
(DCSs)—commonly based on spectrograms—have been imple-
mented using deep learning for identifying several species of
marine mammals, mainly for whale calls [20], [21], [22], [23],
[24], [25], [26].

In a previous work, we have proposed an automatic DCS of
bearded seal vocalizations in the Arctic Ocean [19]. This DCS
was a two-step process where regions of interest (ROIs) were
first detected by a spectrogram correlation method, and then,
convolutional neural networks (CNNs) were in charge of clas-
sifying the ROIs among several different classes. This method
was applied for detecting and classifying two well-known types
of vocalizations from the bearded seal’s repertoire using two
representative masks. Even though the algorithm proved to have
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Fig. 1.

(a) Wide area map showing the locations of AMARI1 (A1), AMAR2 (A2), AMAR3 (A3), and AMAR4 (A4) deployed in 2016-2017, and AMARI18

(A18) and AMAR19 (A19) deployed in 2018-2019 and 2019-2020, respectively, in the Chukchi continental slope. (b) Close-up of the locations of the receivers
relative to the sound sources. Maps are overlaid on IBCAO v3.0 bathymetric data [7].

a precision above 89.2% in the generalization stage, its main
limitation is that the signals of interest are stereotypical, and
it is necessary to manually define the masks based on prior
knowledge. Now, we propose a methodology that uses only deep
learning techniques without the need for knowing specifics of
the signal, meaning that no ROIs or masks are required.

In recent years, deep learning algorithms, particularly
CNNs, have been utilized for vocalization event detection
in large audio datasets [19], [27], [28], [29]. However, in
this study, we have taken a different approach by using
a state-of-the-art object detection system algorithm called
“You Only Look Once (YOLO)” [30], [31], [32], [33] in
its fifth version, YOLOVS [34]. While YOLO, a computer
vision method, was originally designed for object detection
in images using bounding boxes, we adapt it for our specific
task of detecting and classifying vocalizations by inputting
spectrogram representations of audio files instead of images.

One significant advantage of the YOLO approach, in compar-
ison to previous deep learning algorithms used for vocalization
event detection on bioacoustic datasets, is its ability to predict
bounding boxes of variable sizes around the sounds of interest.
This means that our system can not only detect and classify vo-
calizations but also provide valuable insights into the frequency,
bandwidth, and duration of the signals of interest. This additional
information equips biologists with statistical data that facilitate
the analysis of vocal behavior in animals.

The data used for this work were recorded in the northeastern
edge of the Chukchi Continental Slope in 2016-2017 during
the SW-CANAPE. Details about the position of the recorders
and whereabouts of the experiment can be found in [6], [35],
and [36]. The data collected by the OAELAB at the UD in the
two subsequent deployments in 2018-2020 are also used for
testing the algorithm.

II. METHODS

The DCS proposed for detecting and classifying bearded seal
vocalizations is inspired by the computer vision algorithms for

object detection on images. Audio recordings are treated as
images by converting them into their frequency versus time
representation—also known as spectrograms—because of their
2-D nature. In this case, the YOLOVS [34] algorithm is applied
to the spectrograms to enclose bearded seal calls and classify
them among several classes. The general workflow of the im-
plemented methodology can be divided into three stages. First,
for the input data, a dataset is generated by extracting several
spectrograms, where the bearded seal vocalizations are labeled
by manually placing a bounding box around the sounds of inter-
est. For all the labeled bounding boxes (see Fig. 4), a K-mean
clustering technique is used for selecting several representative
boxes named “anchor boxes,” which will act as priors to simplify
the problem by making it easier for the networks to learn [31].
Then, a 76%/12%/12% split is used for training, validating, and
testing the YOLOVS algorithm. Finally, in the inference stage,
nonlabeled spectrograms are passed to the trained YOLOVS
model to generate bounding boxes enclosing the bearded seal
vocalizations of interest.

A. Input Data

The data used in this article were collected in the North of
Alaska on the northeastern edge of the Chukchi Shelf. During the
SW-CANAPE in 20162017, the Defense Research and Devel-
opment Canada agency deployed four Autonomous Multichan-
nel Acoustic Recorder (AMAR) arrays at positions 72.566 °N
158.223°W, 72.669 °N 159.122 °W, 72.779 °N 158.817 °W, and
72.788 °N 159.524 °W labeled as AMAR1, AMAR2, AMAR3,
and AMARA4, respectively. One year later, in 2018-2019, an
AMAR array (AMAR18) was deployed by the UD at 72.817 °N
158.703 °W close to the AMAR3 position (~5.6 km away). In
continuation to this recordings, in 2019-2020, the UD deployed
the AMARI19 at 72.822 °N 158.685 °W.

On the other hand, during the SW-CANAPE, the Naval Re-
search Laboratory (NRL) deployed two sound sources: NRL-S1
and NRL-S2. The anthropogenic noise from these sources pos-
sesses a challenge for the DCS since it is present in most of the
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Fig. 2.

Representative examples of bearded seal vocalization repertoire. Data measured on AMAR4 on April 25, 2017, from 20:08 until 20:13.

TABLE I
BEARDED SEAL VOCALIZATION CLASSES USED FOR TRAINING THE YOLOVS ALGORITHM

Class Vocalization Description
Vocalization with ascend and descend components
1 ALI(T)
in the higher frequency, AL1(T)
2 AL1i(T)-H AL1i(T) with center frequency higher than 940 Hz
3 AL1i(T)-L AL1i(T) with center frequency lower than 940 Hz

4 AL2(T) & ALS5i(T)

Long downsweeps. Both have similar behavior

but different duration.

AL7(A)

Ascend plume

Head of ALI(T)

Head of ALI(T) vocalization

Head of AL1i(T)-H

Head of AL1i(T) with center frequency higher than 1200 Hz

0| || W

Head of ALIi(T)-L

Head of AL1i(T) with center frequency lower than 1200 Hz

2016-2017 recordings in the 1.5-4 kHz frequency band, where
the bearded seals generate several of their calls. Details about
the signals transmitted by NRL-S1 and NRL-S2 are explained in
more detail in [19]. Locations of the recorders and sound sources
overlaid on IBCAO v3.0 bathymetric data are shown in Fig. 1.

In total, ~ 8824 h were recorded on the six receivers. AMARI,
AMAR?2, AMAR3, and AMAR4 were on 3.58 h per day for ~
356 days. AMARI18 was on 4.8 daily hours for ~ 371 days,
and AMAR19 was on 6.47 daily hours for ~ 300 days. These
data are represented in the form of 86.4 s-long spectrograms (in
dB re 1 pPa?/Hz) generated in the 0—4 kHz frequency band
with an 80ms time spacing and a 3.9Hz frequency step. The
whole dataset is normalized to have values in between 0 and
255 to be quantized to 8-bit integers. Each data sample, i.e., each
spectrogram, is reshaped to 640 x 640, which is a typical size
of images for object detection. To train the YOLOVS algorithm,
several spectrograms recorded at AMAR4 and AMARI are
labeled by manually placing bounding boxes around bearded
seal vocalizations. AMAR4 and AMARI have been chosen

because they are the farthest and closest receivers to the anthro-
pogenic sound sources, respectively, providing a rich variety of
background noise (BN) signals.

1) Data Labeling: The vocal repertoire of bearded seals from
Alaska (AL) can be categorized into trills (T), moans (M), and
ascents (A), as explained in [9], [10], and [11]. An example
spectrogram of these calls is shown in Fig. 2, where most of the
vocalizations were found in a 5 min frame on April 25, 2017 on
AMARA4. For this work, the data have been labeled among the
eight classes shown in Table I. Short vocalizations corresponding
to AL3(M), AL4(T), and AL6(T) were omitted for this study
case due to the time-consuming task of labeling all of them. From
the bounding boxes (which represent each different call), some
statistics of the labeled signals can be obtained; for example,
the center frequency is computed as the center of the bounding
box height, while the bandwidth and duration correspond to the
height and width of the Bbox, respectively. The class with the
longer duration, bandwidth, and center frequency corresponds
to AL2(T), which can be as long as 80 s, approximately.
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Since the AL1i(T) vocalizations—in the manually labeled
spectrograms—are clustered at distinct center frequencies sepa-
rated at 940 Hz, this class has been divided into AL1i(T)-H and
ALTi(T)-L. Similarly, the head of AL1i1(T) can be clustered
into two classes separated at 1200 Hz.

2) Anchor Boxes: In object detection, one approach to sim-
plify the target localization is to predict bounding boxes based
on priors. This way, the networks do not have to predict a specific
location or dimension of the bounding box; instead, the networks
predict offsets with respect to the priors, which are known as
anchor boxes. However, these anchor boxes need to be selected
such that they represent the entire dataset. In the most recent
YOLO algorithms [32], three different scales of outputs are
predicted at the end of the model. Each scale is in charge of
predicting bounding boxes for small-, medium-, and large-size
objects, and in this case, they have grid sizes of 80 x 80,
40 x 40, and 20 x 20, respectively. Therefore, a set of three
anchor boxes is proposed for each of the three scales for a total
of nine priors. For the small scale, the anchor boxes have pixel
sizes of 10 x 13, 16 x 30, and 33 x 23. For the medium scale,
the anchor boxes have sizes of 30 x 61, 62 x 45, and 59 x 119,
and for the large scale, the anchor boxes have sizes of 116 x 90,
156 x 198, and 373 x 326.

B. YOLOVS

The YOLO algorithm is acomputer vision technique proposed
for one-stage object detection, which performs a one-pass
regression of target localization (bounding box position) and
classification. In YOLOV3 [32], three different scales are pre-
dicted to provide bounding boxes of different sizes. In this case,
for each scale, we predict three bounding boxes (corresponding
to the three anchor boxes per scale) per grid cell, as shown in the
prediction stage in Fig. 3. For each cell, the network will
output the vector: [(t,ty,tw,tn), (P), (C1,Ca,...,Cy)]
for each of the three bounding boxes. Therefore, at
each scale (S =80, S =40, and S = 20), the network
predicts a tensor of size S x S x [3%(4+ 1+ 8)] for the
four bounding box offsets (¢,%,,tw,ts), one objectness
prediction (FP,), and eight class predictions (C1,Co,...,Csg).
The output of the YOLO algorithm corresponds to the
offset and scaling of the bounding boxes, where the
set of coordinates (tg,t,,ty,t,) can be converted to
(x,y,w,h) as z=o0(ty)*2—-05, y=o(t,)*2—0.5
w= Py (0(tw) *2)%,and h = Pj, x (o(ts) * 2)2, where o (.)
is a sigmoid function and P, and W)}, correspond to the height
and the weight, respectively, of the corresponding anchor box.

1) YOLOVS Architecture: The YOLOVS architecture is di-
vided in three main sections: the backbone, the neck, and
the head of the network, as shown in Fig. 3. The backbone
is in charge of feature extraction, and it is composed of
cross-stage partial network (CSPNet) [37] blocks to form the
CSPDarkNet53 [33]. The backbone and the neck are connected
through a spatial pyramid pooling (SPP) [38] block to improve
the receptive field of the network. For getting the semantic rep-
resentation of extracted features, the neck is a path aggregation
network [39] with CSP2 blocks [40], [41]. Finally, the head has

the same structure as YOLOV3 [32] to predict bounding boxes
at three different scales.

In the architecture shown in Fig. 3, the CBS (Convolution +
Batch Normalization + SilLu activation function [42]) block is
the smallest and most used unit throughout the network. The
structure of the CBS is shown in Fig. 3, where x and y represent
the input and output of the unit, respectively.

The residual CSP1_n blocks are used in the backbone stage
as the main component of the CSPDarknet53 for improving the
feature extraction. Inspired on the CSPNet, the CSP1_n divides
the input in two branches that are concatenated at the end, as
shown in Fig. 3. The first part is composed of a CBS block
followed by n Resblocks (Residual network blocks) to extract
deeper features. The second part is a CBS block of the input. The
concatenated branches are then passed to another CBS module.

To connect the backbone and the neck of the network, an
SPP block is implemented, as shown in Fig. 3. In the SPP
block, first, a CBS unit is applied to the input followed by
three stacked maximum pooling operations. The output of these
four components is then concatenated and passed to a CBS
block. With this procedure, the receptive field of the network
is significantly enhanced.

The CSP2_n block follows the same principle of CSP1_n,
but CBS blocks are replacing the Resblocks to help enhancing
and speeding up the flow of feature information [40] in the neck
stage.

In the prediction stage, the bounding boxes with objectness
prediction higher than a given threshold are filtered by the
nonmaximum suppression postprocessing algorithm to provide
the final predictions. These object detections contain the location
of the selected bounding boxes along with a confidence value
computed as

Cprea = Pr(Object) x Pr(Class) 1)

where Pr(Object) is the probability that an object exists in the
bounding box, and Pr(Class) is the probability of the class
with the maximum score.

2) Cost Function: For bounding box regression, the inter-
section over union (IoU) is used for measuring the similarity
between the ground truth bounding box (B¢') and the predicted
bounding box (BP), and it is computed as

BN BP
IoU = 2 @)

The issue with this method is that the IoU only considers
the overlap of the bounding boxes. To also penalize the aspect
ratio and center point distance between the bounding boxes, the
complete intersection over union (CIoU) is used instead. This
measure was defined in [43] as

2(Cgt, CP)

CloU = ToU — 22— —av 3)

c
where C€ and C'*’ correspond to the center points of B¢ and B,
respectively, as shown in Fig. 4, p(.) is the Euclidean distance,
c is the diagonal of B®, « is the positive tradeoff parameter
defined in (4), and v measures the consistency of aspect ratio
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defined as (5)
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4 we
V= = arctan(h t) —
The loss function of the YOLO algorithm is composed of three
error components to penalize the main aspects of the predictions

L = Lciou + Lobj + Lelass- (6)

Here, the CloU loss (or box loss) is defined as

0. St B
Letoy = Z Z Z ;’?k {1 — CIOUZ,J,,C} (7
k=0 t=0 j=0

where O, denotes the number of output scales (O, = 3), S,%
denotes the number of cells in the grid of the kth scale
(S1 =80, S5 =40, and S3 = 20), B denotes the number of
bounding boxes in each cell (B = 3), and CloU; ; ;. represents
the CloU of the jth bounding box in the ith grid cell of the kth
output scale. I ) j.k 1s 1 when there is an object in the Bbox and
0, otherwise.

The object loss is computed using the binary cross-entropy
loss with a sigmoid layer as

ob] -

Z Z Z Cy i log ( <C]k>>

k=0 1=0 j=0

+ (1 — Ci,j,k:) log (1 — O’(C’i’j’k>> . (8)

Here, CA'Uk is the predicted confidence score, and Cj ; 1. is
the true confidence of the prediction determined by the CIoU as

Ci,j,k If]']k * CIOUi,jJC. (9)

Finally, the classification error is also computed with the
binary cross-entropy loss as

O, St B

SN ST Pjs(e)log <a (Piyj,k(c)»

k=01=035=0 ceclasses

+ (1 - Pi7j,k(c)>log (1 - o(ﬁi,j,k(c)» (10)

where P, j 1.(c) is the true probability of class ¢ and P; j 1 (c) is
the predicted probability score.

Cldbb

III. RESULTS

The metrics used for evaluating the performance of the net-
works during the training/validation stage are accuracy, preci-
sion, recall, and mean average precision (mAP). Accuracy is
calculated by counting the number of times the CNN predicted
the correct class. Precision is the ratio between correctly pre-
dicted observations for a given class and the total of predicted
observations for that class, and it is defined as

#True positives
#True positives + #False positives

Precision =

(1)

Recall is the ratio between correctly predicted observations and
the total number of observations of a given class, and it is defined
as

#True positives
#True positives + #False negatives

Recall = (12)

The mAP metric is computed based on the IoU between the
predicted and true bounding boxes [see (2)]. The mAP is the area
under the curve of the precision versus recall curve. mAP@0.5
means that a prediction is considered correct if the IoU is greater
than 0.5. mAP@0.5: 0.95 is the mean mAP computed for IoU
thresholds in between 0.5 and 0.95, i.e., mean of mAP@0.5,
mAP@0.55,..., mnAP@0.95.
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A. Training, Validation, and Testing results

The YOLOVS algorithm described in the previous section
was trained on 6400 labeled spectrograms with 500 epochs. An
early stopping technique with a patience of 100 epochs was used.
The error metrics during training and validation are shown in
Fig. 5. The CloU, object, and class losses are shown individually
for training and validation. The best network performance was
obtained at epoch number 163, point at which the network
started to overfit, as shown in the validation plots where the
error started to increase (see red star marker in Fig. 5). The best
metrics at this point were precision = 0.9832, recall = 0.9762,
mAP@0.5 = 0.9831, and mAP@0.5: 0.95 = 0.8982.

The confusion matrices with the predicted bounding
boxes versus the true bounding boxes for the training and

Predicted Class

Predicted Class

Training, validation, and testing confusion matrices for eight classes and BN.

validation stages are shown in Fig. 6. During training, the
network achieved a precision and recall above 98.8% and 91.3%,
respectively, for all the classes. When validating, all the classes
achieved a precision and recall above 96.2% and 91.3%, re-
spectively. These validation results show that the YOLOVS
algorithm has learned representative patterns to simultaneously
detect and classify the eight classes of bearded seal vocaliza-
tions using the spectrogram representation of these acoustic
signals.

Furthermore, the trained network was applied to several spec-
trograms that were not used during training to test how well
the algorithm generalizes on new data samples. The confusion
matrix with these predictions is shown in Fig. 6, where an
accuracy of 93.87% is achieved. For all the classes, the precision
and recall were above 94.9% and 90.6%, respectively. This
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Fig. 7. Number of bearded seal vocalizations recorded by (a)-(d) DRDC AMARs deployed in the SW-CANAPE in 2016-2017, (e) AMARI18 in 2018-2019,
and (f) AMAR19 in 2019-2020. Red lines indicate the sea ice concentration. Shadow areas correspond to the days where no recordings are available. (g) Envelop
of the bearded seal vocalizations using a median moving window of three days for the four DRDC AMARs deployed in the SW-CANAPE in 2016-2017. Ice
concentration is depicted by the red line. (h) Envelop of the bearded seal vocalizations using a median moving window of three days for AMAR3, AMARIS, and
AMARI09. Ice concentration is depicted by the dashed line with the same color as the detections.

indicates that the YOLOVS5 algorithm is generalizing well on
data not seen by the network. The main advantage with respect
to other DCSs is that, with YOLOVS, flexible bounding boxes
are automatically placed around each detection, which allows
researchers to analyze the statistics of the predicted signals in
large datasets.

B. Bearded Seal’s Vocal Activity and Geographical/Temporal
Variations

Now that we have shown that the network is performing
well, we apply the algorithm to the full dataset recorded on the
six arrays. The YOLOVS algorithm was trained on 86.4 s-long
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Fig. 8.
algorithm in the six recorders.

spectrograms (or 1080 samples in the time domain); however,
the recordings are much longer than that. To solve this issue, a
moving window of 8s (or 100 samples) steps is applied. With
this method, there is an overlap of 92.6% in the input spectro-
grams, which allows the network to detect the bearded seal calls
from different parts of the spectrogram. This will yield several
predictions for the same signal when the long spectrograms
are passed to the network. At the end, using nonmax suppres-
sion, only the bounding boxes with the highest confidence are
considered.

With the YOLOVS algorithm, eight classes of vocalizations
from bearded seals were detected and classified at six recorders,
where the center of the arrays was located approximately 175 km
to the northwest of Barrow, AK at the northeastern edge of the
Chukchi Shelf. To assess the spatial dependence of the bearded
seals in the Chukchi continental slope, the detections for the four
DRDC AMARs deployed in the SW-CANAPE in 2016-2017
are used. For evaluating the temporal fluctuations of their vocal
behavior, we use the arrays that were located at similar positions
during the three years, i.e., AMAR3 and the recorders from the
two subsequent deployments, AMAR18, and AMARI19.

12 01 02 03 04 05 06 07

Month, 2016 - 2017 Month, 2018 - 2019 Month, 2019 - 2020

Violin plots with inserted box plots for the time duration (width of the Bbox) in seconds for the eight classes of vocalizations detected by the YOLOVS

To analyze the spatial and temporal dependence of the bearded
seal’s vocal behavior across the Chukchi continental slope, a
summary of the detections is shown in Fig. 7(a)—(f) for the eight
types of vocalizations of interest shown in Table I. The classes
that were separated in the frequency components for training are
now combined again, i.e., classes 1 and 2 and classes 6 and 7 are
merged. Each bin in the histograms represents the daily count of
the sounds of interest. Given that the vocal presence of bearded
seals is directly correlated with the formation of pack ice, the sea
ice concentration is shown on top of the detections. Ice data were
collected from the European Organization for the Exploitation of
Meteorological Satellites Ocean and Sea Ice Satellite Applica-
tion Facility and were reported daily with a 10 x 10 km spacing
resolution [44]. Daily mean sea ice concentration values were
extracted for an area that covers all the arrays.

At all the stations, the bearded seals were highly vocally
active in late June coinciding with detections reported by
Frouin-Mouy et al. [9] and Hannay et al. [16] for the Chukchi
Sea in 2007-2010. This timing corresponds to the breeding
season [13], [45] when the males vocalize louder and longer
trills [9], [13], [16], which explains the increase in the count of
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long downsweep calls represented by the blue bars in Fig. 7.
The envelop of the detections for the DRDC AMARSs shown
in Fig. 7(g) shows the spatial dependence of the bearded seals
in the Chukchi continental slope, where the recorders located at
deeper water depths (WDs) exhibit lower vocalization densities.
One possible reason for this is that bearded seals prefer depths
below 100 m on the continental slope [11], [46]. The larger vo-
calization count occurs at AMAR2 (WD = 106 m) followed by
AMAR4 (WD = 123 m), AMAR1 (WD = 149 m), and AMAR3
(WD = 224 m), which have a distance to Barrow, AK of 169.3,
187.7, 144.5, and 174.5 km, respectively.

To analyze the temporal variation of bearded seal
vocalizations, the detections in 2016-2017 (AMAR3,
WD = 224 m), 2018-2019 (AMARI1S, WD = 301 m),
and 2019-2020 (AMAR19, WD = 316 m) are presented in
Fig. 7(c), (e), and (f), respectively. These arrays were located
at deeper WDs and exhibit lower vocal activity. The envelop
of the detections for the three-year-long recordings is shown
in Fig. 7(h). In general, very few vocalizations are detected
in 2018-2019 by AMARI18. However, at the end of June, the
number of calls detected in AMARI18 was higher than in the
other years. In addition, the periods of time where there is a larger
count of vocalizations are consistent for AMAR3 (2016-2017)
and AMARI19 (2019-2020), and they also match the small peaks
of AMARI18 (2018-2019). Furthermore, it can be observed that
the vocal behavior of the bearded seals is strongly related with
the ice concentration, which is represented by the dashed lines
of the same color as the detections. For the three years of
recordings, as soon as the ice concentration starts decreasing,
the number of calls increases and goes to zero right before the
ice is completely melted. When the ice is not present, no vocal
activity is recorded in the receivers.

In a previous study conducted by Jones et al. [11] on acoustic
data recorded in 2006-2009 at the Chukchi shelf break, 120km
northwest of Barrow, AK, it was hypothesized that the recorder
deployed at a WD of 240m may have been located on the
edge of bearded seal habitat due to the low-intensity levels
of the vocalizations and the few detected calls. The combined
observations at different years and locations, presented in this
article, support the hypothesis that the edge of the bearded seal
habitat is possibly located somewhere between 100 and 400 m
isobath in the Chukchi continental slope.

Another advantage of using the YOLOVS5 algorithm is that the
predicted bounding boxes have embedded statistical information
about the vocalizations. The width of the box represents the dura-
tion of the signals, the height corresponds to the bandwidth, and
the center of the bounding box indicates the center frequency.
The availability of this additional information equips biologists
with statistical data that greatly facilitate the analysis of vocal
behavior in animals. As an example, violin plots with inserted
box plots for the duration of all the signals are shown in Fig. 8.
Each panel contains the statistical distribution of every class for
each of the six receivers.

When comparing the duration of the vocalizations throughout
the year, AL1(T) calls (class 1) and long downsweeps (class 4)
have an increase in duration in May, June, and July when the
ice starts breaking. This has been observed in previous works,
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where Frouin-Mouy et al. [9] hypothesized that AL1(T) and
AL2(T) calls are used to advertise their breeding condition and
can be used as an indicator of the mating period based on their
fluctuations in duration. Van Parijs et al. [47] also suggested that
the trill duration may be a useful indicator of male “quality.” This
type of behavior is observed in the data where only the signals
containing long downsweeps present strong fluctuations not only
in duration but also in bandwidth. The rest of the classes have a
similar statistical distributions throughout the year. Bearded seal
vocalizations recorded from 2018-2019 in AMARIS exhibit
a short duration behavior, which is an indicator that mostly
roaming males were present in the area during that period [47].

IV. CONCLUSION

In this article, we showed the potential of computer vision
for detecting and classifying marine mammal’s vocalizations
recorded in large databases. We showed that by using the
principles of object detection in computer vision, we can find
acoustic signals of interest by treating the spectrogram rep-
resentation of the sound as an image. For this purpose, we
used the object detection algorithm YOLOVS [34], where we
detected and classified eight different types of bearded seal
vocalizations without the need for using handpicked features,
such as representative masks, frequencies, or contours. With this
method, as long as we have enough labeled data of well-known
stereotypical vocalizations, the YOLOVS algorithm will be able
to learn representative features about the signals of interest. It is
important to mention that in the deep learning stage, the training
data must have enough information content for the networks
to learn how to distinguish the signals of interest from other
possible signals that might be present in the testing scenarios.

Another advantage of using YOLOVS over other typical DCS
is that we not only detect and classify the signals of interest
but also extract statistical information of the sound. This way,
researchers can quickly analyze the vocal behavior of marine
mammals in the ocean without the tedious task of visually
assessing the spectrograms of large acoustic datasets.

Furthermore, an analysis of the spatial and temporal de-
pendence of the bearded seal vocalizations showed that this
species seems to prefer shallower WDs in the Chukchi Con-
tinental Slope. In addition, it was found that one common factor
across all the receivers was the increase of vocalizations in
late June during the breeding season when the ice is breaking
and the trills are louder and longer, possibly, for fitness display
purposes [13], [48].
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