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Computer Vision for Bioacoustics: Detection of

Bearded Seal Vocalizations in the Chukchi Shelf

Using YOLOV5
Christian Escobar-Amado , Mohsen Badiey , and Lin Wan

Abstract—Year-round recordings of bearded seal calls were col-
lected in the northeastern edge of the Chukchi Continental Slope
(Alaska, within the Arctic Circle) in 2016–2017, 2018–2019, and
2019–2020. While the underwater vocalizations of bearded seals are
often analyzed manually or using automatic detections manually
validated, in this article, a detection and classification system (DCS)
based on the You Only Look Once Version 5 (YOLOV5) algorithm
is proposed. With YOLOV5, the network learns how to detect
and classify these marine mammals’ calls using the principle of
computer vision for object detection in images where bounding
boxes enclose the objects of interest. During training, validation,
and testing, YOLOV5 achieved an accuracy of 96.54%, 93.36%,
and 93.87%, respectively. The DCS was applied to the three-year-
long dataset, and an analysis of the vocal behavior of the bearded
seals showed that there exists a geographical dependence where
this species prefers shallower water depths in the Chukchi Con-
tinental Slope. Another advantage of using YOLOV5 over other
typical DCS is that the predicted bounding boxes have embedded
statistical information about the vocalization, such as the duration,
bandwidth, and center frequency of the signals. This additional
information equips biologists with statistical data that facilitate the
analysis of animal vocal behavior.

Index Terms—Arctic, bearded seals, computer vision, deep
learning, marine mammals, You Only Look Once Version 5
(YOLOV5).

I. INTRODUCTION

T
HE Arctic Ocean is rapidly changing due to the climate

change that is making a big impact on the sea ice con-

ditions [1], [2], [3] with several ecological and economical

implications. For example, new commercial opportunities are

emerging, such as the potential for opening new trans-Arctic

shipping routes [3], [4], which can affect the marine life. On

the other hand, the sea ice decline is affecting the marine

mammal distributions [5]. With all of these factors, a renewed

interest in Arctic acoustics inspired the Canada Basin Acoustic
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Propagation Experiment (CANAPE) [6]. The CANAPE was

focused on investigating the spatial and temporal variability and

coherence of the acoustic environment and propagation in the

Arctic Ocean over one year from October 2016 until October

2017. The experiment was separated into two areas: 1) deep

water in the Canada Basin and 2) shallow water (SW) in the

Chukchi shelf. In the subsequent years, the Ocean Acoustics

and Engineering Laboratory (OAELAB) at the University of

Delaware (UD) deployed acoustic and environmental sensors

in the same SW area in September 2018–September 2019 and

November 2019–September 2020. Positions of the acoustic

arrays in the SW site are shown in Fig. 1.

During the data analysis of the Shallow Water Canada Basin

Acoustic Propagation Experiment (SW-CANAPE), it was found

that several marine mammal’s vocalizations were recorded.

Bearded seals, in particular, are one of the main contributors

to the marine soundscape in the Arctic [8], and their calls were

consistently found in the recordings during the months when

the ice was present. In the past few years, extensive studies of

these marine mammal’s vocalizations have been possible thanks

to the large acoustic datasets collected using passive acoustic

monitoring [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],

[18], [19]. These data allow researchers to analyze the spatial and

temporal behavior of marine mammal’s vocalizations, which are

indicatives of their presence, population, and distribution.

Commonly, for bearded seals, the calls are manually identi-

fied by trained analysts by visualizing the spectrograms of the

audio recordings. However, for large datasets, this laborious

task is not feasible, and automatic detection systems become

necessary [19]. Recently, detection and classification systems

(DCSs)—commonly based on spectrograms—have been imple-

mented using deep learning for identifying several species of

marine mammals, mainly for whale calls [20], [21], [22], [23],

[24], [25], [26].

In a previous work, we have proposed an automatic DCS of

bearded seal vocalizations in the Arctic Ocean [19]. This DCS

was a two-step process where regions of interest (ROIs) were

first detected by a spectrogram correlation method, and then,

convolutional neural networks (CNNs) were in charge of clas-

sifying the ROIs among several different classes. This method

was applied for detecting and classifying two well-known types

of vocalizations from the bearded seal’s repertoire using two

representative masks. Even though the algorithm proved to have
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Fig. 1. (a) Wide area map showing the locations of AMAR1 (A1), AMAR2 (A2), AMAR3 (A3), and AMAR4 (A4) deployed in 2016–2017, and AMAR18
(A18) and AMAR19 (A19) deployed in 2018–2019 and 2019–2020, respectively, in the Chukchi continental slope. (b) Close-up of the locations of the receivers
relative to the sound sources. Maps are overlaid on IBCAO v3.0 bathymetric data [7].

a precision above 89.2% in the generalization stage, its main

limitation is that the signals of interest are stereotypical, and

it is necessary to manually define the masks based on prior

knowledge. Now, we propose a methodology that uses only deep

learning techniques without the need for knowing specifics of

the signal, meaning that no ROIs or masks are required.

In recent years, deep learning algorithms, particularly

CNNs, have been utilized for vocalization event detection

in large audio datasets [19], [27], [28], [29]. However, in

this study, we have taken a different approach by using

a state-of-the-art object detection system algorithm called

“You Only Look Once (YOLO)” [30], [31], [32], [33] in

its fifth version, YOLOV5 [34]. While YOLO, a computer

vision method, was originally designed for object detection

in images using bounding boxes, we adapt it for our specific

task of detecting and classifying vocalizations by inputting

spectrogram representations of audio files instead of images.

One significant advantage of the YOLO approach, in compar-

ison to previous deep learning algorithms used for vocalization

event detection on bioacoustic datasets, is its ability to predict

bounding boxes of variable sizes around the sounds of interest.

This means that our system can not only detect and classify vo-

calizations but also provide valuable insights into the frequency,

bandwidth, and duration of the signals of interest. This additional

information equips biologists with statistical data that facilitate

the analysis of vocal behavior in animals.

The data used for this work were recorded in the northeastern

edge of the Chukchi Continental Slope in 2016–2017 during

the SW-CANAPE. Details about the position of the recorders

and whereabouts of the experiment can be found in [6], [35],

and [36]. The data collected by the OAELAB at the UD in the

two subsequent deployments in 2018–2020 are also used for

testing the algorithm.

II. METHODS

The DCS proposed for detecting and classifying bearded seal

vocalizations is inspired by the computer vision algorithms for

object detection on images. Audio recordings are treated as

images by converting them into their frequency versus time

representation—also known as spectrograms—because of their

2-D nature. In this case, the YOLOV5 [34] algorithm is applied

to the spectrograms to enclose bearded seal calls and classify

them among several classes. The general workflow of the im-

plemented methodology can be divided into three stages. First,

for the input data, a dataset is generated by extracting several

spectrograms, where the bearded seal vocalizations are labeled

by manually placing a bounding box around the sounds of inter-

est. For all the labeled bounding boxes (see Fig. 4), a K-mean

clustering technique is used for selecting several representative

boxes named “anchor boxes,” which will act as priors to simplify

the problem by making it easier for the networks to learn [31].

Then, a 76%/12%/12% split is used for training, validating, and

testing the YOLOV5 algorithm. Finally, in the inference stage,

nonlabeled spectrograms are passed to the trained YOLOV5

model to generate bounding boxes enclosing the bearded seal

vocalizations of interest.

A. Input Data

The data used in this article were collected in the North of

Alaska on the northeastern edge of the Chukchi Shelf. During the

SW-CANAPE in 2016–2017, the Defense Research and Devel-

opment Canada agency deployed four Autonomous Multichan-

nel Acoustic Recorder (AMAR) arrays at positions 72.566 ◦N

158.223 ◦W, 72.669 ◦N 159.122 ◦W, 72.779 ◦N 158.817 ◦W, and

72.788 ◦N 159.524 ◦W labeled as AMAR1, AMAR2, AMAR3,

and AMAR4, respectively. One year later, in 2018–2019, an

AMAR array (AMAR18) was deployed by the UD at 72.817 ◦N

158.703 ◦W close to the AMAR3 position (∼5.6 km away). In

continuation to this recordings, in 2019–2020, the UD deployed

the AMAR19 at 72.822 ◦N 158.685 ◦W.

On the other hand, during the SW-CANAPE, the Naval Re-

search Laboratory (NRL) deployed two sound sources: NRL-S1

and NRL-S2. The anthropogenic noise from these sources pos-

sesses a challenge for the DCS since it is present in most of the
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Fig. 2. Representative examples of bearded seal vocalization repertoire. Data measured on AMAR4 on April 25, 2017, from 20:08 until 20:13.

TABLE I
BEARDED SEAL VOCALIZATION CLASSES USED FOR TRAINING THE YOLOV5 ALGORITHM

2016–2017 recordings in the 1.5–4 kHz frequency band, where

the bearded seals generate several of their calls. Details about

the signals transmitted by NRL-S1 and NRL-S2 are explained in

more detail in [19]. Locations of the recorders and sound sources

overlaid on IBCAO v3.0 bathymetric data are shown in Fig. 1.

In total,∼ 8824 h were recorded on the six receivers. AMAR1,

AMAR2, AMAR3, and AMAR4 were on 3.58 h per day for ∼

356 days. AMAR18 was on 4.8 daily hours for ∼ 371 days,

and AMAR19 was on 6.47 daily hours for ∼ 300 days. These

data are represented in the form of 86.4 s-long spectrograms (in

dB re 1 µPa2/Hz) generated in the 0–4 kHz frequency band

with an 80 ms time spacing and a 3.9 Hz frequency step. The

whole dataset is normalized to have values in between 0 and

255 to be quantized to 8-bit integers. Each data sample, i.e., each

spectrogram, is reshaped to 640 × 640, which is a typical size

of images for object detection. To train the YOLOV5 algorithm,

several spectrograms recorded at AMAR4 and AMAR1 are

labeled by manually placing bounding boxes around bearded

seal vocalizations. AMAR4 and AMAR1 have been chosen

because they are the farthest and closest receivers to the anthro-

pogenic sound sources, respectively, providing a rich variety of

background noise (BN) signals.

1) Data Labeling: The vocal repertoire of bearded seals from

Alaska (AL) can be categorized into trills (T), moans (M), and

ascents (A), as explained in [9], [10], and [11]. An example

spectrogram of these calls is shown in Fig. 2, where most of the

vocalizations were found in a 5 min frame on April 25, 2017 on

AMAR4. For this work, the data have been labeled among the

eight classes shown in Table I. Short vocalizations corresponding

to AL3(M), AL4(T), and AL6(T) were omitted for this study

case due to the time-consuming task of labeling all of them. From

the bounding boxes (which represent each different call), some

statistics of the labeled signals can be obtained; for example,

the center frequency is computed as the center of the bounding

box height, while the bandwidth and duration correspond to the

height and width of the Bbox, respectively. The class with the

longer duration, bandwidth, and center frequency corresponds

to AL2(T), which can be as long as 80 s, approximately.
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Fig. 3. YOLOV5 architecture. Numbers in parenthesis on top of each block represent the (input and output) number of channels. The kernel size (k), stride
(s), and padding (p) are shown in the lower part of the CBS and Conv2d blocks. The green numbers in the upper left corner represent the layer number of their
corresponding block. Asterisk blocks represent a concatenation in the channels dimension.
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Since the AL1i(T) vocalizations—in the manually labeled

spectrograms—are clustered at distinct center frequencies sepa-

rated at 940 Hz, this class has been divided into AL1i(T)-H and

AL1i(T)-L. Similarly, the head of AL1i1(T) can be clustered

into two classes separated at 1200 Hz.

2) Anchor Boxes: In object detection, one approach to sim-

plify the target localization is to predict bounding boxes based

on priors. This way, the networks do not have to predict a specific

location or dimension of the bounding box; instead, the networks

predict offsets with respect to the priors, which are known as

anchor boxes. However, these anchor boxes need to be selected

such that they represent the entire dataset. In the most recent

YOLO algorithms [32], three different scales of outputs are

predicted at the end of the model. Each scale is in charge of

predicting bounding boxes for small-, medium-, and large-size

objects, and in this case, they have grid sizes of 80 × 80,

40 × 40, and 20 × 20, respectively. Therefore, a set of three

anchor boxes is proposed for each of the three scales for a total

of nine priors. For the small scale, the anchor boxes have pixel

sizes of 10 × 13, 16 × 30, and 33 × 23. For the medium scale,

the anchor boxes have sizes of 30 × 61, 62 × 45, and 59 × 119,

and for the large scale, the anchor boxes have sizes of 116 × 90,

156 × 198, and 373 × 326.

B. YOLOV5

The YOLO algorithm is a computer vision technique proposed

for one-stage object detection, which performs a one-pass

regression of target localization (bounding box position) and

classification. In YOLOV3 [32], three different scales are pre-

dicted to provide bounding boxes of different sizes. In this case,

for each scale, we predict three bounding boxes (corresponding

to the three anchor boxes per scale) per grid cell, as shown in the

prediction stage in Fig. 3. For each cell, the network will

output the vector: [(tx, ty, tw, th), (Po), (C1, C2, . . ., C8)]
for each of the three bounding boxes. Therefore, at

each scale (S = 80, S = 40, and S = 20), the network

predicts a tensor of size S × S × [3 ∗ (4 + 1 + 8)] for the

four bounding box offsets (tx, ty, tw, th), one objectness

prediction (Po), and eight class predictions (C1, C2, . . ., C8).
The output of the YOLO algorithm corresponds to the

offset and scaling of the bounding boxes, where the

set of coordinates (tx, ty, tw, th) can be converted to

(x, y, w, h) as x = σ(tx) ∗ 2− 0.5, y = σ(ty) ∗ 2− 0.5,

w = Pw ∗ (σ(tw) ∗ 2)
2, and h = Ph ∗ (σ(th) ∗ 2)

2, where σ(.)
is a sigmoid function and Ph and Wh correspond to the height

and the weight, respectively, of the corresponding anchor box.

1) YOLOV5 Architecture: The YOLOV5 architecture is di-

vided in three main sections: the backbone, the neck, and

the head of the network, as shown in Fig. 3. The backbone

is in charge of feature extraction, and it is composed of

cross-stage partial network (CSPNet) [37] blocks to form the

CSPDarkNet53 [33]. The backbone and the neck are connected

through a spatial pyramid pooling (SPP) [38] block to improve

the receptive field of the network. For getting the semantic rep-

resentation of extracted features, the neck is a path aggregation

network [39] with CSP2 blocks [40], [41]. Finally, the head has

the same structure as YOLOV3 [32] to predict bounding boxes

at three different scales.

In the architecture shown in Fig. 3, the CBS (Convolution +

Batch Normalization + SiLu activation function [42]) block is

the smallest and most used unit throughout the network. The

structure of the CBS is shown in Fig. 3, where x and y represent

the input and output of the unit, respectively.

The residual CSP1_n blocks are used in the backbone stage

as the main component of the CSPDarknet53 for improving the

feature extraction. Inspired on the CSPNet, the CSP1_n divides

the input in two branches that are concatenated at the end, as

shown in Fig. 3. The first part is composed of a CBS block

followed by n Resblocks (Residual network blocks) to extract

deeper features. The second part is a CBS block of the input. The

concatenated branches are then passed to another CBS module.

To connect the backbone and the neck of the network, an

SPP block is implemented, as shown in Fig. 3. In the SPP

block, first, a CBS unit is applied to the input followed by

three stacked maximum pooling operations. The output of these

four components is then concatenated and passed to a CBS

block. With this procedure, the receptive field of the network

is significantly enhanced.

The CSP2_n block follows the same principle of CSP1_n,

but CBS blocks are replacing the Resblocks to help enhancing

and speeding up the flow of feature information [40] in the neck

stage.

In the prediction stage, the bounding boxes with objectness

prediction higher than a given threshold are filtered by the

nonmaximum suppression postprocessing algorithm to provide

the final predictions. These object detections contain the location

of the selected bounding boxes along with a confidence value

computed as

CPred = Pr(Object) ∗ Pr(Class) (1)

where Pr(Object) is the probability that an object exists in the

bounding box, and Pr(Class) is the probability of the class

with the maximum score.

2) Cost Function: For bounding box regression, the inter-

section over union (IoU) is used for measuring the similarity

between the ground truth bounding box (Bgt) and the predicted

bounding box (BP ), and it is computed as

IoU =
Bgt

∩BP

Bgt ∪BP
. (2)

The issue with this method is that the IoU only considers

the overlap of the bounding boxes. To also penalize the aspect

ratio and center point distance between the bounding boxes, the

complete intersection over union (CIoU) is used instead. This

measure was defined in [43] as

CIoU = IoU −
ρ2(Cgt, CP )

c2
− αν (3)

whereCgt andCP correspond to the center points ofBgt andBP ,

respectively, as shown in Fig. 4, ρ(.) is the Euclidean distance,

c is the diagonal of Bs, α is the positive tradeoff parameter

defined in (4), and ν measures the consistency of aspect ratio
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Fig. 4. Dimensions of ground truth and predicted bounding boxes.

defined as (5)

α =
ν

(1− IoU) + ν
(4)

ν =
4

π3

(

arctan

(

wgt

hgt

)

− arctan

(

wP

hP

)

)2

. (5)

The loss function of the YOLO algorithm is composed of three

error components to penalize the main aspects of the predictions

L = LCIoU + Lobj + Lclass. (6)

Here, the CIoU loss (or box loss) is defined as

LCIoU =

Os
∑

k=0

S2

k
∑

i=0

B
∑

j=0

I
obj

i,j,k

[

1− CIoUi,j,k

]

(7)

where Os denotes the number of output scales (Os = 3), S2

k

denotes the number of cells in the grid of the kth scale

(S1 = 80, S2 = 40, and S3 = 20), B denotes the number of

bounding boxes in each cell (B = 3), and CIoUi,j,k represents

the CIoU of the jth bounding box in the ith grid cell of the kth

output scale. I
obj

i,j,k is 1 when there is an object in the Bbox and

0, otherwise.

The object loss is computed using the binary cross-entropy

loss with a sigmoid layer as

Lobj = −

Os
∑

k=0

S2

k
∑

i=0

B
∑

j=0

Ci,j,k log

(

σ

(

Ĉi,j,k

)

)

+

(

1− Ci,j,k

)

log

(

1− σ

(

Ĉi,j,k

)

)

. (8)

Here, Ĉi,j,k is the predicted confidence score, and Ci,j,k is

the true confidence of the prediction determined by the CIoU as

Ci,j,k = I
obj

i,j,k ∗ CIoUi,j,k. (9)

Finally, the classification error is also computed with the

binary cross-entropy loss as

Lclass= −

Os
∑

k=0

S2

k
∑

i=0

B
∑

j=0

I
obj

i,j,k

∑

cεclasses

Pi,j,k(c)log

(

σ

(

P̂i,j,k(c)

)

)

+

(

1− Pi,j,k(c)

)

log

(

1− σ

(

P̂i,j,k(c)

)

)

(10)

where Pi,j,k(c) is the true probability of class c and P̂i,j,k(c) is

the predicted probability score.

III. RESULTS

The metrics used for evaluating the performance of the net-

works during the training/validation stage are accuracy, preci-

sion, recall, and mean average precision (mAP). Accuracy is

calculated by counting the number of times the CNN predicted

the correct class. Precision is the ratio between correctly pre-

dicted observations for a given class and the total of predicted

observations for that class, and it is defined as

Precision =
#True positives

#True positives +#False positives
. (11)

Recall is the ratio between correctly predicted observations and

the total number of observations of a given class, and it is defined

as

Recall =
#True positives

#True positives +#False negatives
. (12)

The mAP metric is computed based on the IoU between the

predicted and true bounding boxes [see (2)]. The mAP is the area

under the curve of the precision versus recall curve. mAP@0.5

means that a prediction is considered correct if the IoU is greater

than 0.5. mAP@0.5: 0.95 is the mean mAP computed for IoU

thresholds in between 0.5 and 0.95, i.e., mean of mAP@0.5,

mAP@0.55,..., mAP@0.95.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on August 26,2024 at 15:14:05 UTC from IEEE Xplore.  Restrictions apply. 



ESCOBAR-AMADO et al.: COMPUTER VISION FOR BIOACOUSTICS: DETECTION OF BEARDED SEAL VOCALIZATIONS 139

Fig. 5. Training and validation errors and metrics during training per epoch. Red star marker represents the best epoch, i.e., point at which the network achieved
the lowest validation error.

Fig. 6. Training, validation, and testing confusion matrices for eight classes and BN.

A. Training, Validation, and Testing results

The YOLOV5 algorithm described in the previous section

was trained on 6400 labeled spectrograms with 500 epochs. An

early stopping technique with a patience of 100 epochs was used.

The error metrics during training and validation are shown in

Fig. 5. The CIoU, object, and class losses are shown individually

for training and validation. The best network performance was

obtained at epoch number 163, point at which the network

started to overfit, as shown in the validation plots where the

error started to increase (see red star marker in Fig. 5). The best

metrics at this point were precision = 0.9832, recall = 0.9762,

mAP@0.5 = 0.9831, and mAP@0.5: 0.95 = 0.8982.

The confusion matrices with the predicted bounding

boxes versus the true bounding boxes for the training and

validation stages are shown in Fig. 6. During training, the

network achieved a precision and recall above 98.8% and 91.3%,

respectively, for all the classes. When validating, all the classes

achieved a precision and recall above 96.2% and 91.3%, re-

spectively. These validation results show that the YOLOV5

algorithm has learned representative patterns to simultaneously

detect and classify the eight classes of bearded seal vocaliza-

tions using the spectrogram representation of these acoustic

signals.

Furthermore, the trained network was applied to several spec-

trograms that were not used during training to test how well

the algorithm generalizes on new data samples. The confusion

matrix with these predictions is shown in Fig. 6, where an

accuracy of 93.87% is achieved. For all the classes, the precision

and recall were above 94.9% and 90.6%, respectively. This
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Fig. 7. Number of bearded seal vocalizations recorded by (a)–(d) DRDC AMARs deployed in the SW-CANAPE in 2016–2017, (e) AMAR18 in 2018–2019,
and (f) AMAR19 in 2019–2020. Red lines indicate the sea ice concentration. Shadow areas correspond to the days where no recordings are available. (g) Envelop
of the bearded seal vocalizations using a median moving window of three days for the four DRDC AMARs deployed in the SW-CANAPE in 2016–2017. Ice
concentration is depicted by the red line. (h) Envelop of the bearded seal vocalizations using a median moving window of three days for AMAR3, AMAR18, and
AMAR19. Ice concentration is depicted by the dashed line with the same color as the detections.

indicates that the YOLOV5 algorithm is generalizing well on

data not seen by the network. The main advantage with respect

to other DCSs is that, with YOLOV5, flexible bounding boxes

are automatically placed around each detection, which allows

researchers to analyze the statistics of the predicted signals in

large datasets.

B. Bearded Seal’s Vocal Activity and Geographical/Temporal

Variations

Now that we have shown that the network is performing

well, we apply the algorithm to the full dataset recorded on the

six arrays. The YOLOV5 algorithm was trained on 86.4 s-long
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Fig. 8. Violin plots with inserted box plots for the time duration (width of the Bbox) in seconds for the eight classes of vocalizations detected by the YOLOV5
algorithm in the six recorders.

spectrograms (or 1080 samples in the time domain); however,

the recordings are much longer than that. To solve this issue, a

moving window of 8 s (or 100 samples) steps is applied. With

this method, there is an overlap of 92.6% in the input spectro-

grams, which allows the network to detect the bearded seal calls

from different parts of the spectrogram. This will yield several

predictions for the same signal when the long spectrograms

are passed to the network. At the end, using nonmax suppres-

sion, only the bounding boxes with the highest confidence are

considered.

With the YOLOV5 algorithm, eight classes of vocalizations

from bearded seals were detected and classified at six recorders,

where the center of the arrays was located approximately 175 km

to the northwest of Barrow, AK at the northeastern edge of the

Chukchi Shelf. To assess the spatial dependence of the bearded

seals in the Chukchi continental slope, the detections for the four

DRDC AMARs deployed in the SW-CANAPE in 2016–2017

are used. For evaluating the temporal fluctuations of their vocal

behavior, we use the arrays that were located at similar positions

during the three years, i.e., AMAR3 and the recorders from the

two subsequent deployments, AMAR18, and AMAR19.

To analyze the spatial and temporal dependence of the bearded

seal’s vocal behavior across the Chukchi continental slope, a

summary of the detections is shown in Fig. 7(a)–(f) for the eight

types of vocalizations of interest shown in Table I. The classes

that were separated in the frequency components for training are

now combined again, i.e., classes 1 and 2 and classes 6 and 7 are

merged. Each bin in the histograms represents the daily count of

the sounds of interest. Given that the vocal presence of bearded

seals is directly correlated with the formation of pack ice, the sea

ice concentration is shown on top of the detections. Ice data were

collected from the European Organization for the Exploitation of

Meteorological Satellites Ocean and Sea Ice Satellite Applica-

tion Facility and were reported daily with a 10 × 10 km spacing

resolution [44]. Daily mean sea ice concentration values were

extracted for an area that covers all the arrays.

At all the stations, the bearded seals were highly vocally

active in late June coinciding with detections reported by

Frouin-Mouy et al. [9] and Hannay et al. [16] for the Chukchi

Sea in 2007–2010. This timing corresponds to the breeding

season [13], [45] when the males vocalize louder and longer

trills [9], [13], [16], which explains the increase in the count of
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long downsweep calls represented by the blue bars in Fig. 7.

The envelop of the detections for the DRDC AMARs shown

in Fig. 7(g) shows the spatial dependence of the bearded seals

in the Chukchi continental slope, where the recorders located at

deeper water depths (WDs) exhibit lower vocalization densities.

One possible reason for this is that bearded seals prefer depths

below 100 m on the continental slope [11], [46]. The larger vo-

calization count occurs at AMAR2 (WD = 106 m) followed by

AMAR4 (WD= 123 m), AMAR1 (WD= 149 m), and AMAR3

(WD = 224 m), which have a distance to Barrow, AK of 169.3,

187.7, 144.5, and 174.5 km, respectively.

To analyze the temporal variation of bearded seal

vocalizations, the detections in 2016–2017 (AMAR3,

WD = 224 m), 2018–2019 (AMAR18, WD = 301 m),

and 2019–2020 (AMAR19, WD = 316 m) are presented in

Fig. 7(c), (e), and (f), respectively. These arrays were located

at deeper WDs and exhibit lower vocal activity. The envelop

of the detections for the three-year-long recordings is shown

in Fig. 7(h). In general, very few vocalizations are detected

in 2018–2019 by AMAR18. However, at the end of June, the

number of calls detected in AMAR18 was higher than in the

other years. In addition, the periods of time where there is a larger

count of vocalizations are consistent for AMAR3 (2016–2017)

and AMAR19 (2019–2020), and they also match the small peaks

of AMAR18 (2018–2019). Furthermore, it can be observed that

the vocal behavior of the bearded seals is strongly related with

the ice concentration, which is represented by the dashed lines

of the same color as the detections. For the three years of

recordings, as soon as the ice concentration starts decreasing,

the number of calls increases and goes to zero right before the

ice is completely melted. When the ice is not present, no vocal

activity is recorded in the receivers.

In a previous study conducted by Jones et al. [11] on acoustic

data recorded in 2006–2009 at the Chukchi shelf break, 120 km

northwest of Barrow, AK, it was hypothesized that the recorder

deployed at a WD of 240 m may have been located on the

edge of bearded seal habitat due to the low-intensity levels

of the vocalizations and the few detected calls. The combined

observations at different years and locations, presented in this

article, support the hypothesis that the edge of the bearded seal

habitat is possibly located somewhere between 100 and 400 m

isobath in the Chukchi continental slope.

Another advantage of using the YOLOV5 algorithm is that the

predicted bounding boxes have embedded statistical information

about the vocalizations. The width of the box represents the dura-

tion of the signals, the height corresponds to the bandwidth, and

the center of the bounding box indicates the center frequency.

The availability of this additional information equips biologists

with statistical data that greatly facilitate the analysis of vocal

behavior in animals. As an example, violin plots with inserted

box plots for the duration of all the signals are shown in Fig. 8.

Each panel contains the statistical distribution of every class for

each of the six receivers.

When comparing the duration of the vocalizations throughout

the year, AL1(T) calls (class 1) and long downsweeps (class 4)

have an increase in duration in May, June, and July when the

ice starts breaking. This has been observed in previous works,

where Frouin-Mouy et al. [9] hypothesized that AL1(T) and

AL2(T) calls are used to advertise their breeding condition and

can be used as an indicator of the mating period based on their

fluctuations in duration. Van Parijs et al. [47] also suggested that

the trill duration may be a useful indicator of male “quality.” This

type of behavior is observed in the data where only the signals

containing long downsweeps present strong fluctuations not only

in duration but also in bandwidth. The rest of the classes have a

similar statistical distributions throughout the year. Bearded seal

vocalizations recorded from 2018–2019 in AMAR18 exhibit

a short duration behavior, which is an indicator that mostly

roaming males were present in the area during that period [47].

IV. CONCLUSION

In this article, we showed the potential of computer vision

for detecting and classifying marine mammal’s vocalizations

recorded in large databases. We showed that by using the

principles of object detection in computer vision, we can find

acoustic signals of interest by treating the spectrogram rep-

resentation of the sound as an image. For this purpose, we

used the object detection algorithm YOLOV5 [34], where we

detected and classified eight different types of bearded seal

vocalizations without the need for using handpicked features,

such as representative masks, frequencies, or contours. With this

method, as long as we have enough labeled data of well-known

stereotypical vocalizations, the YOLOV5 algorithm will be able

to learn representative features about the signals of interest. It is

important to mention that in the deep learning stage, the training

data must have enough information content for the networks

to learn how to distinguish the signals of interest from other

possible signals that might be present in the testing scenarios.

Another advantage of using YOLOV5 over other typical DCS

is that we not only detect and classify the signals of interest

but also extract statistical information of the sound. This way,

researchers can quickly analyze the vocal behavior of marine

mammals in the ocean without the tedious task of visually

assessing the spectrograms of large acoustic datasets.

Furthermore, an analysis of the spatial and temporal de-

pendence of the bearded seal vocalizations showed that this

species seems to prefer shallower WDs in the Chukchi Con-

tinental Slope. In addition, it was found that one common factor

across all the receivers was the increase of vocalizations in

late June during the breeding season when the ice is breaking

and the trills are louder and longer, possibly, for fitness display

purposes [13], [48].
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in deep convolutional networks for automatic tuberculosis diagnosis,”
Traitement du Signal, vol. 37, no. 6, pp. 1075–1084, 2020.

[39] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “PANet: Path aggregation network
for instance segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern

Recognit., 2018, pp. 8759–8768.
[40] J. Yu and W. Zhang, “Face mask wearing detection algorithm based on

improved YOLO-v4,” Sensors, vol. 21, no. 9, 2021, Art. no. 3263.
[41] Q. Song et al., “Object detection method for grasping robot based on

improved YOLOV5,” Micromachines, vol. 12, no. 11, 2021, Art. no. 1273.
[42] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units for

neural network function approximation in reinforcement learning,” Neural

Netw., vol. 107, no. 2015, pp. 3–11, 2018.
[43] Z. Zheng, P. Wang, W. Liu, J. Li, R. Ye, and D. Ren, “Distance-IoU loss:

Faster and better learning for bounding box regression,” in Proc. 34th AAAI

Conf. Artif. Intell., 2020, no. 2, pp. 12993–13000.
[44] Global Sea Ice Concentration (SSMIS), EUMESAT OSI SAF. Accessed:

Aug. 29, 2023. [Online]. Available: https://osi-saf.eumetsat.int/products/
osi-401-d

[45] I. A. McLaren, “Some aspects of growth and reproduction of the bearded
seal, Erignathus barbatus (Erxleben),” J. Fisheries Res. Board Canada,
vol. 15, no. 2, pp. 219–227, 1958.

[46] M. C. Kingsley, I. Stirling, and W. Calvert, “The distribution and abun-
dance of seals in the Canadian High Arctic, 1980–1982,” Can. J. Fisheries

Aquatic Sci., vol. 42, pp. 1189–1210, 1983.
[47] S. M. Van Parijs, C. Lydersen, and K. M. Kovacs, “Vocalizations and

movements suggest alternative mating tactics in male bearded seals,”
Animal Behav., vol. 65, no. 2, pp. 273–283, 2003.

[48] S. M. V. Parijs, “Aquatic mating strategies of male bearded seals. I,” 2000.
[Online]. Available: https://www.researchgate.net/profile/Sofie-Van-
Parijs/publication/242424514_AQUATIC_MATING_STRATEGIES_
OF_MALE_BEARDED_SEALSi/links/00b49535ae1e356e89000000/
AQUATIC-MATING-STRATEGIES-OF-MALE-BEARDED-SEALSi.
pdf

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on August 26,2024 at 15:14:05 UTC from IEEE Xplore.  Restrictions apply. 



144 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 49, NO. 1, JANUARY 2024

Christian Escobar-Amado received the Bachelor
of Science degree in electronics engineering from
the Francisco de Paula Santander University, Cúcuta,
Colombia, in 2016, and the M.Sc. degree in elec-
trical and computer engineering in 2022 from the
University of Delaware, Newark, DE, USA, where
he is currently working toward the Ph.D. degree in
electrical and computer engineering.

From 2017 to 2018, he was a Junior Researcher
with the Administrative Department of Science, Tech-
nology, and Innovation, also known as Colciencias,

Bogotá, Colombia. He was an intern with the Ocean Acoustic Engineering
Laboratory, University of Delaware. His research interests include shallow water
acoustics, Bayesian optimization methods, and physics-based deep learning
techniques applied to ocean acoustics.

Mr. Escobar-Amado is a Member of the Acoustical Society of America.

Mohsen Badiey received the Ph.D. degree in ap-
plied marine physics and ocean engineering from the
Rosenstiel School of Marine and Atmospheric Sci-
ence, University of Miami, Coral Gables, FL, USA,
in 1988.

From 1988 to 1990, he was a Postdoctoral Fellow
with the Port and Harbour Research Institute, Min-
istry of Transport, Yokosuka, Japan. After his post-
doctoral research, he became a Faculty Member with
the University of Delaware, Newark, DE, USA, where
he is currently a Professor of Electrical and Computer

Engineering and a joint Professor in Physical Ocean Science and Engineering.
From 1992 to 1995, he was a Program Director and a Scientific Officer with the
Office of Naval Research, Arlington, VA, USA, where he was the team leader
to formulate long-term naval research in the field of Acoustical Oceanography.
His research interests include physics of sound and vibration, shallow water
acoustics and oceanography, underwater acoustic communications, acoustic
signal processing and machine learning, seabed acoustics, and geophysics.

Dr. Badiey is a Fellow of the Acoustical Society of America.

Lin Wan received the Ph.D. degree in mechanical
engineering from the Georgia Institute of Technol-
ogy (Georgia Tech), Atlanta, GA, USA, in 2010.

He was a Postdoctoral Fellow with the School
of Mechanical Engineering, Georgia Tech. After
his postdoctoral research with Georgia Tech, he
joined the Ocean Acoustics Laboratory, University of
Delaware, Newark, DE, USA, where he is currently
a Faculty Member with the Department of Electri-
cal and Computer Engineering. He conducts exper-
imental and theoretical research in ocean acoustics,

acoustical oceanography, and acoustic signal processing. He is the Principal
Investigator of various Office of Naval Research (ONR) grants to study the
geoacoustic properties in marine sediments using broadband acoustic signals.
His research interests include geoacoustic inversion, internal wave effects on
3-D sound propagation, and Arctic acoustics.

Dr. Wan was a recipient of the U.S. Navy ONR Graduate Traineeship Award
supported by the special research award from the Ocean Acoustics program. He
is a Member of the Acoustical Society of America.

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on August 26,2024 at 15:14:05 UTC from IEEE Xplore.  Restrictions apply. 


