This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434450

Modeling Bidirectional Switches
for Enabling Logic Equivalence Checking
in a Transistor-level Programmable Fabric

Apurva Jain, Thomas Broadfoot, Yiorgos Makris, Carl Sechen
Electrical and Computer Engineering Dept., The University of Texas at Dallas, Richardson, TX 75080, USA
{apurva.jain, thomas.broadfoot, yiorgos.makris, carl.sechen}@utdallas.edu

Abstract—We explore the challenges associated with developing
a verification solution for a TRAnsistor-level Programmable
fabric (TRAP). The TRAP architecture employs bidirectionally-
operated pass transistors to implement its logic and intercon-
nect network, aiming for high density. However, existing Logic
Equivalence Checking (LEC) methods and tools do not support
the primitives necessary to model such transistors in hardware
description languages (HDL). Consequently, verifying the func-
tionality programmed by a given bitstream on TRAP is not inher-
ently feasible. To overcome this limitation, we propose a method
that automates the determination of signal flow direction through
bidirectional pass transistors for a given bitstream. Subsequently,
we convert the HDL description of the programmed fabric to
exclusively utilize unidirectional transistors. This transformation
allows us to leverage commercial EDA tools for verifying logic
equivalence between the transistor-level HDL representation of
the programmed fabric and the post-synthesis gate-level netlist.
We have successfully applied the proposed method to verify
various benchmark circuits programmed on the TRAP fabric.

Index Terms—Transistor-Level Programming, Pass Transistor,
Verification, Logic Equivalence Checking

I. INTRODUCTION

TRAmsistor-Level Programmable fabric (TRAP) [1],

shown in Fig. 1, was developed for the purpose of
protecting hardware intellectual property (IP) from an un-
trusted foundry through integrated circuit (IC) redaction [2].
While traditional embedded Field Programmable Gate Arrays
(eFPGAs) rely on Look-Up Tables (LUTs) to implement logic
functions, TRAP pushes the granularity of post-fabrication
programmability down to the transistor level. Essentially,
TRAP can be seen as a sea of transistors whose programmable
interconnectivity can be used to realize logic functions. To
enable the use of conventional standard cell placement tools
for mapping logic functions on TRAP, a standard cell library
comprising cells of same height and variable width is utilized.
TRAP-specific routing and bitstream generation tools round
out the flow for implementing a circuit. TRAP has demon-
strated an order of magnitude reduction in area and power, as
well as significantly improved performance, as compared to
LUT-based eFPGA solutions, while also presenting formidable
obstacles to reverse engineering attacks [1].

However, for TRAP to gain widespread adoption and utility,
it requires support from commercial computer-aided design
(CAD) tools that encompass all design-related tasks, including
verification. This capability is particularly crucial for uncon-
ventional custom fabrics, such as TRAP, to ensure confidence
in the correctness of the circuit implementation. Although
industry-standard LEC tools possess the ability to comprehend

C1 C2 C3
L41 142143 L44 L45 L46 L47 148 L49

21 P22 Q23 Poz 121 Qo2 QiosTizz 121 Pz Tupafiz

P2 re4
i |Lss

TRAP fabric

w7 INTER-
L8 CONNECT

TRANSISTOR
ARRAY

Complete design with
redacted part replaced
with TRAP

Fig. 1. TRAP-based IC redaction & core TRAP components

and handle transistor-level constructs, this alone is insufficient
for verification of an entire design. Describing a design at
the switch level results in an enormous number of nodes
to compare, making it time-prohibitive. Instead, LEC tools
employ a transistor abstraction method that converts switch-
level designs into their gate-level equivalents. This conversion
assumes that the signal flow direction in MOS transistors is
resolved and known to the LEC tool. In TRAP, however,
where bidirectional pass transistors are used for high density,
determining the actual signal direction poses a significant
challenge, even if programming information is available [3].

The problem of resolving transistor-level signal flow direc-
tionality has been previously addressed in ASIC design by
extracting signal strength from layout [4] in order to deter-
mine the source and drain terminals. This method relies on
analysis of variable transistor sizes, rendering it unsuitable for
programmable transistor-level fabrics such as TRAP, where all
transistors have equal sizes. An informative discussion of the
challenges encountered when abstracting configurable logic in
FPGAs (i.e., at the MUX- and LUT-level) is provided in [5].
While it covers pass transistors used in the interconnect, it does
not address bidirectional pass transistors with undetermined
signal directionality. Lastly, high-level approaches to modeling
a reconfigurable architecture in HDL were proposed in [6],
[7]. The generated HDL can be simulated after programming
it with a bitstream for simulation-based functional validation.
However, the presence of thousands (or even millions) of
metal tracks and switches and the limited visibility into the
internal nodes of the programmed fabric make simulation-
based validation a rather inefficient option for transistor-level
programmable fabrics such as TRAP.

To address these limitations, we discuss a TRAP verification
framework, depicted in Fig. 2, which consists of the following:

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 26,2024 at 15:25:50 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434450

O Commercial Tool

OFrom Tools in Design Flow
OoOutput from Verification Model
O User Input

TRAP
Architectural details

Bitstream (Bitstream- Routing

Array Size |—»| HDLG a Generator) (Router)
Methodology l
¢ Directionality

| UNPROGRAMMED HDL —

Extraction
> ‘
o PROGRAMMED HDL [+— VO Fins
Simulation * (Placer)
Vector
LEC Golden
HDL

(a) Validation via simulation flow

(b) LEC-based verification flow

Fig. 2. Verification methodology framework for TRAP

HDL Modeling of Unprogrammed TRAP Fabric: We
derive a parameterized HDL model for an unprogrammed
TRAP fabric, which can be used with a programming bitstream
for simulation-based validation of TRAP designs.

Automated Signal Directionality Extraction: We intro-
duce algorithms which leverage the information produced by
the placer, router and bitstream generator when mapping a
design to a TRAP fabric, to generate a signal flow graph
and deduce direction across bidirectional pass transistors.
This information enables derivation of an HDL model for
a programmed TRAP fabric, which can be used by LEC
tools to mathematically assert that the Boolean expression
implemented by a transistor-level netlist of TRAP is the same
as the one implemented by the post-synthesis gate-level netlist.

II. TRAP ARCHITECTURE AND HDL MODELING

In the TRAP fabric of Fig. 1, programmable bidirectional
transistors are used in (i) the Transistor Array (TA), to form
logic gates and, (ii) the interconnect network, to stitch gates
into a circuit. Below, we derive an HDL description of TRAP.

A. Transistor Array (TA)

As shown in Fig. 1 identical sets of three columns of
transistors repeat along a TRAP row, where each set of three
columns (C1l, C2, and C3) comprises 24 transistors. Fig. 3
shows two of the columns, where each column contains three
pull-up PMOS transistors (P1 — P3) and three pull-down
NMOS transistors (N1 — N3). Additionally, in each column
(e.g., C1), there is an NMOS transistor that connects the output
to the corresponding interconnect track in the same column.
Finally, there are three horizontally-oriented MOS transistors
that connect the adjacent columns.

Fig. 3 shows transistor-level HDL code written for two
columns of the TA. The left side shows the code for switches in
column C1, while the right side shows the code for switches
in column C2. This code represents the actual topology of
the various transistors in a column and how they are inter-
connected with neighboring columns. In HDL, modeling with
built-in pmos/nmos primitives requires that we define the input
and output for a transistor, while a tranifO/tranifl construct,
which is a bidirectional PMOS/NMOS respectively, has no
such requirement. Thus, switches with known signal directions
(i.e., one node is clearly at a higher potential than the other)

'
i pmos clp3 (XP[0],VDD,C1P3); P3 Ci
'

i tranife clp2 (XP[1],XP[0],C1P2);P2

T X
pnos clpl (X[0].XP[e].C1P1); P1 ,q ,,,,, ﬂ: ,,,,,,, pros_c2pl (XI1LXPI1],C2PL): |

77777777777 MEM]0]

\-mnos_ c1z_(OUT1,X[O1,MEM[3]); _ ,z, I
Lomos cln1_(xe] Jre].cangy; N

_tranifl cln2 (XNILLXNIOLCIN2): N2 o ==
r EQ X

I
: nmos_cIn3 (XN[@],GND,CIN3) ; N3 | ‘

Tn[il)'Tﬂ 2 Iranifl _c2n2 (N[2] .XN[1].C2N2); 3

Fig. 3. HDL for two columns of an unprogrammed Transistor Array (TA)

are modeled as pmos/nmos, while switches for which signal
direction is not established are modeled as tranifO/tranifl.

Depending on the logic being implemented on a set of
columns in the TA, the so-called horizontal transistors can
have a signal flow in either direction (highlighted in yellow in
Fig. 3). In each column, transistors P3 and P1 are defined as
unidirectional PMOS devices because the signal flow direction
through them is known. However, the specific signal direction
for transistor P2 will depend on how the transistor gates are
programmed in this column; therefore, P2 must be defined
as tranif0. Similarly, N1 and N3 are defined as unidirectional
NMOS devices in the pull-down network, while N2 is defined
through the tranifl construct. Transistor Y must similarly be
defined as tranifl since its signal direction depends on the
orientation of neighboring transistors. Meanwhile, transistor
Z can be defined as a conventional NMOS device since the
signal flow is always outwards to the interconnect network.
Gate inputs connected to MEM[n] are directly controlled by
the SRAM that holds the programming configuration of the
design being implemented.

B. Interconnect Network

Shown in Fig. 1, the TRAP interconnect network for three
columns (Cl, C2 and C3) consists of nine global hori-
zontal (1.3), nine global vertical (L4) and twelve local vertical
(L2) tracks. The global tracks connect to the corresponding
global tracks of a neighboring set of three columns via pass
transistors or bidirectional repeaters. Inside the set of three
columns, tracks (global or local) connect to various neighbor-
ing tracks through switches, implemented as pass transistors.

Fig. 4 shows the transistor-level HDL for one column of the
interconnect network of TRAP. Switches, shown as dots, are
NMOS pass transistors that connect orthogonal metals (i.e.,
(L3) and (L.4)) at multiple locations and also connect metal
layers (L2) and (1.4). When a switch is turned ON, the two
metal layers connected by the switch share the same signal.
The signal flow direction in the interconnect network depends
on the application mapped on it. Hence, the bidirectional
NMOS construct tranifl is used to represent each switch. Fig.
4 also shows the HDL for the interconnect network, where a
switch is modeled as a connection between two metal layers.
Switches are controlled by programming bits (MEM[n]),
which are stored in SRAM and configure the TRAP fabric.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 26,2024 at 15:25:50 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434450

C1
L41 L2 La3
o 0 0

L21 | 22 | L23 | outt

L31 ©
L32 ©
L33 O
L34 ©
L35 O
L36 O
L37 O
138 O
39 O—F—F—"F—T1+19%¢—
[

tranifl L31_1(L31,L41,MEM[O]);
trhnifl L32_1(L21,L32,MEM[2]);
tranifl L33_1(L21,L33,MEM[4]);
tranifl L34_1(L34,L41,MEM[6]);
tranifl L35_1(L35,L42,MEM[8]);
tranifl L36_1(L22,L36,MEM[10]);
tranifl L37_1(L37,L41,MEM[12]);
tranifl L38_1(L38,L42,MEM[14]);

tranifl L39_1(L39,L43,MEM[16]);
tranifl LB_1(L21,L41,MEM[18]);
tranifl
tranifl
— tranifl
e tranifl
tranifl

tranifl L31_2(outl,L31,MEM[1]);
tranifl L32_2(L32,L42,MEM[3]);
tranifl L33_2(L33,L43,MEM[5]);
tranifl L34_2(L22,L34,MEM[7]);
tranifl L35_2(outl,L35,MEM[9]);
tranifl L36_2(L36,L43,MEM[11]);
tranifl L37_2(L23,L37,MEM[13]);
tranifl L38_2(L23,L38,MEM[15]);
tranifl L39_2(outl,L39,MEM[17]);

LB_2(outl,L41,MEM[19]);
LB_3(L22,L42,MEM[20]);
LB 4(outl,L42,MEM[21]);
LB_5(L23,L43,MEM[22]);
LB 6(outl.L43.MEMI231):

Fig. 4. Unprogrammed interconnect network of TRAP

III. AUTOMATED DIRECTIONALITY EXTRACTION

The HDL model of the unprogrammed TRAP fabric can
be combined with a programming bitstream to perform
simulation-based validation. However, the use of the HDL con-
struct tranifl/tranif0 for modeling bidirectional pass transistors
is not supported by LEC tools. Therefore, these bidirectional
constructs must be converted into their equivalent pmos/nmos
form, which requires designation of the source and drain
terminals of these transistors. This, in turn, requires knowledge
of the signal flow direction through these bidirectional pass
transistors, which is unavailable until after the device is
programmed and, even then, it is not trivial to extract. We note
that an alternative approach could replace each bidirectional
pass transistor with a LEC-compatible propositional logic
clause describing the transistor operation as a switch. However,
additional challenges revolving around the notion of electrical
drive and the possible formation of cyclical structures arise
while seeking to faithfully model the electrical behavior of
the TRAP fabric in propositional logic. Addressing these chal-
lenges ultimately also requires modeling signal flow direction.

In this section, we describe a methodology for automatically
extracting directionality of bidirectional pass transistors and
generating an HDL description of the programmed TRAP
fabric which can be used by LEC tools for verification. To
this end, our method requires (i) the HDL description of
the unprogrammed TRAP fabric, (ii) the typical information
generated by commonly used placement and routing tools,
when mapping a circuit onto the TRAP fabric and (iii) the
programming bitstream itself. Such information reflects the
location of primary 1/Os, as well as the routing path for each
net, which we use to extract signal directionality. First, we
describe how to determine signal-flow direction in the TA,
which determines the logic gates implemented thereon. Then,
we describe how to determine the signal-flow direction of pass
transistors in the interconnect network, which determines the
connections between these logic gates.

A. Resolving Signal Direction in the Transistor Array

Bidirectional pass transistors in the TA provide flexibility
for implementing any standard logic gate on the array by
enabling signal paths within and across multiple columns
of transistors. Evidently, depending on how such transistors
are programmed (and therefore also connected together), not
only is the logic being programmed on the fabric different,

Algorithm 1: Signal Direction Extraction in TRAP TA

1 PT : Pass Transistor; N;,N;+1 : Nodes of PT

2 Input: Prog. Bitstream; Unprogrammed TA HDL

3 for each bidirectional PT in sub-column C; of
unprogrammed TA HDL do

4 if Gate port of PT is connected to 1/0) then

L “remove” PT from TA /+ Case-A */
6 else if Gate port of PT is connected to 0/1) then
| “replace” PT with tran /+ Case-B */
8 else if Gate port of PT is connected to signal then
“replace” PT with nmos/pmos /» Case-C x/
10 if PT has either N;/N;+1 connected to
power/[output] via ON transistor then
/* Case-Ca */
11 Source = N;/Niy1/ [Ni41/Ns]
12 | Drain = Ni+1/Ni/ [Ni/Ni+1]
13 else if PT has either N;/N;+1 connected to

power/[output] via transistor with signal then
/* Case—-Cb: find complete path «/
14 if N;11/N; connected to output/[power] then
15 Source = Ni/Ni+1/[Ni+1/Ni]
16 L Drain = Ni+1/Ni/[Ni/Ni+1]
17 else

18 | repeat (Case-Cb for i=i+1)

but also the direction of how signals flow across each pass
transistor is different. While prior work exists in assessing
signal flow direction in CMOS circuits [8], resolving signal
directionality in TRAP solely by analyzing the TA is rather
challenging. Indeed, a key issue encountered is that, in addition
to the transistors implementing the functionality, additional
permanently turned ON or OFF transistors are used in order to
stitch together the logic functionality and to delineate/isolate
logic gates from the rest of the array, respectively. In TRAP,
for example, while extracting signal-flow direction for the
vertically-oriented transistors irrespective of the bitstream is
reasonably straightforward, as explained in Section II, doing
so for the horizontally-oriented pass transistors is not possible.

To handle the latter, we developed a method summarized
in Algorithm 1, which uses the programming bitstream along
with two important observations regarding the TRAP archi-
tecture. First, for signal integrity, the maximum number of
NMOS or PMOS transistors that can be stitched in series is
small (i.e., three). Second, the location of the output nodes
in each column of the TA is pre-determined. Our algorithm
categorizes horizontal bidirectional pass transistors based on
the signal that drives their gate and accordingly acts as follows:
If gate input is OFF: When bidirectional pass transistors are
programmed to receive a gate input of logic O (for NMOS) or
logic 1 (for PMOS), they are permanently turned off. In this
case (Case-A), we model the transistor as an open circuit and
remove the corresponding tranif0/tranif]l HDL code construct.
If gate input is ON: When bidirectional pass transistors are
programmed to receive a gate input of logic 1 (for NMOS)
or logic 0 (for PMOS), they are permanently turned on.
In this case (Case-B), the nodes connecting the source and
drain are shorted. Therefore, we replace the corresponding

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 26,2024 at 15:25:50 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434450

Fig. 5. Signal flow deduction in logic programmed on Transistor Array

SUMMARY OF TRANSISTOR ORIENTATION FOR CASES IN FIGURE 5

TABLE 1

Trans. | Case

HDL (unprogrammed) \ HDL (programmed)

C1P2 Case-Cb | tranifO (xp[2].xp[1],C); pmos (xp[1],xp[2],C);
Cly Case-B tranifl (x[2],x[1],MEM); | tran (x[1],x[2]);
CIN2 Case-Ca | tranifl (xn[2],xn[1],C); nmos (xn[2],xn[1],C);
C3P2 Case-Ca | tranifO (xp[4],xp[3],B); pmos (xp[4],xp[3],B);
C3Y Case-B tranifl (x[4],x[3],MEM); tran (x[3],x[4]);
C3N2 Case-Cb | tranifl (xn[4],xn[3],B); nmos (xn[3],xn[4],B);
C5P2 Case-Ca | tranifO (xp[6],xp[5],C); pmos (xp[6],xp[5],C);
C5Y Case-B tranif1 (x[6],x[S],MEM); tran (x[5],x[6]);
C5N2 Case-Cb | tranifl (xn[6],xn[5],C); nmos (xn[5],xn[6],C);
Co6P2 Case-B tranifO (xp[7],xp[6],B); tran (xp[6].xp[7]);
C6N2 Case-Cb | tranifl (xn[7],xn[6],D); nmos (xn[6],xn[7],D);
C6Y Case-A tranifl (x[7],x[6],MEM); N/A

tranifO/tranifl HDL code construct with the primitive tran,
which permanently shorts the two nodes in its arguments.
If gate input is a signal: In this case (Case-C), we convert
tranifO/tranifl to a directional pmos/nmos construct by resolv-
ing the two remaining ports as source and drain, based on their
proximity to power/output ports to which they are connected
through conducting transistors. For example, a node connected
to a power port through an ON transistor is classified as source.
Fig. 5 shows the implementation of an OAOI211 =
' (((A+B)C)+D) in columns C1-C2, NAND3 = ! (ABC)
in columns C3-C4, and AOAAI2111 = ! ((AB+C)DE) in
columns C5-C6-C7 of the TA, with outputs at outl, out2, and
out3, respectively. The horizontally-oriented bidirectional pass
transistors (receiving input C in CI1, input B in C3, input C
in C5, and input D in C6) receive a signal as the gate input,
while those shown in bold are permanently ON (to establish
inter-column connections) and those in grey are permanently
OFF (to isolate adjacent columns). Arrows show the signal
flow direction through the bidirectional pass transistors in
Fig. 5, as determined by Algorithm 1. Table 1 lists the
bidirectional transistors (in columns C1, C3, C5, and C6) from
the example in Fig. 5, along with their configuration and the
HDL representation in the unprogrammed and programmed
fabric. For example, transistor C1P2 in the first column of
Table I represents Case-Cb in Algorithm 1, as transistors with
signals B and D establish a path from the power net to the
gate output. Thus, C1P2 is defined as a pmos (drain, source,
gate) with drain as xp[1] and source as xp[2].

B. Resolving Signal Direction in the Interconnect Network

The regular interconnect architecture in TRAP has orthogo-
nal metal lines connected via bidirectional NMOS pass transis-

Algorithm 2: Signal Direction Extraction in TRAP
Interconnect Network

1 Input: Routing path, Unprogrammed Interconnect HDL

2 inactive_trans = Total transistors in interconnect

3 for each net do

Initialize: src_list = origin;

5 tran_list = active transistors on net

6 inactive_trans < inactive_trans - {tran_list}

7 for each active transistor (T) on net do
8

9

IS

while tran_list # null do
if (Ni/Ni41 in src_list) then

10 Drain = N;41/N; ; Source = N;/N;4+1

1 Replace T “tranifl” in HDL with “nmos”
12 sre_list < src_list + {N;11/N; }

13 tran_list < tran_list - {T}

L4l L42 L43
o 0 0

L21 L22 L23 outl

L31 & nmos L31_1(L41,L31,MEM[O]);
L32 O — _
L33 O — -
L34 O — _
L35 O nmos L35_1(L42,L35,MEM[8]
136 O nmos LB_2(L35, outl,MEM[9
L37 O
L38 O
L39 &

)
1)

os LB_2(outl,L41,MEM[19]);

ENER

Fig. 6. Programmed Verilog code for the column C1 of the interconnect

tors. The orientation of these pass transistors varies with each
design mapped on the fabric. To resolve their directionality and
develop the HDL that describes the programmed interconnect,
we rely on the path generated by the router for each net,
a list of active switches and a graph of the unprogrammed
TRAP interconnect architecture (see Fig. 4). Specifically, as
summarized in Algorithm 2, to generate the HDL of the
interconnect of the programmed fabric, our algorithm selects a
routing path at a time and traverses it starting from the origin
of the net until it encounters the first active switch. Then, it
determines that the origin of the net is the driving net for
the next segment. It then continues traversing the routing path
and every time it encounters an active switch, the previous net
becomes the driving net, eventually determining independently
the signal flow path through each active pass transistor in
each branch of the path. Once the source and drain terminals
of each active switch are determined by this traversal, our
algorithm generates the HDL for the programmed intercon-
nect by replacing each encountered ftranifi construct of the
unprogrammed fabric with an appropriately directed nmos. We
clarify that Algorithm 2 only considers active switches, i.e.,
those chosen by the router to be turned ON. All other switches
are removed from the graph of the unprogrammed architecture
when formulating the HDL of the programmed fabric.

As an example, Fig. 6 shows the routing and the HDL of
a partial net on the interconnect network. This net originates
at horizontal track L31 and ends at vertical track L42. The
placement provides the origin and destination of the net. As
shown, the router generates the path of the net (highlighted)

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 26,2024 at 15:25:50 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3434450

and identifies every active transistor (in red). For example,
the switch at the junction of wire L31 and L41 is controlled
by gate bit MEMJ0], receives a signal from L31 (i.e., net
origin) and delivers an output to net L41. Hence, this switch
is represented by nmos (L41,L31,MEM[0]), indicating
that L31 (source) is the input and L41 (drain) is the output.
Following this, net L41 becomes the input for the next active
transistor, which is found at the junction of L41 and outl, and
which is controlled by gate bit MEM[19]. Consequently, this
switch is represented by nmos (outl,L41,MEM[19]).

IV. SCOPE OF VERIFICATION FRAMEWORK

With all tranifl/tranif0 statements removed, the resulting
HDL expressing the programmed transistor-level fabric be-
comes compatible with commercial LEC tools and can be used
for verification against the synthesized netlist. However, while
our approach readily accommodates combinational circuits,
additional provisions are needed to support sequential circuits.

Sequential equivalence checking is, generally, challenging
because of the state space explosion arising when comparing
functionality across clock cycles. As a result, it is typically
limited to cases where a correspondence between the state-
holding elements is already established across the two com-
pared models. This is often the case for common uses of
LEC tools, such as proving that optimization or flattening
of a circuit has not altered its functionality. In such cases,
signal/instance names are usually preserved across the two
models and, thus, name matching can establish state element
correspondence. When mapping sequential designs on TRAP,
however, the synthesized netlist and the unprogrammed TRAP
fabric are very different structures. Hence, name matching is
ineffective and LEC tools require additional guidance, which
in our case is provided by the placement output.

Specifically, TRAP has a built-in flip-flop placed in every
third column of the transistor array, which can be connected to
the transistor array through a programming bit. The placement
algorithm selects which of these flip-flops to use and what flip-
flop in the synthesized Verilog netlist to map to each of them.
Knowledge of this state-element correspondence partitions
sequential equivalence checking into equivalence checking of
combinational circuits surrounded by I/Os or flip-flops.

V. EVALUATION

To assess effectiveness of our approach in generating ap-
propriate HDL (i.e., Verilog) models for both simulation and
verification of a circuit implemented on TRAP, we applied
it on the benchmarks shown in Table II. The various TRAP
fabric sizes required were designed and laid out using a Global
Foundries 12nm process (GF12LP). In all cases, we were able
to successfully use simulation tools (e.g., Modelsim) and LEC
tools (e.g., Synopsys’ Formality) to prove correctness of the
TRAP implementation vis-a-vis the synthesized netlist. The
first two columns show the name and the number of logic
gates in the synthesized benchmark. The third column lists
the size of the TRAP fabric required, expressed in number
of sets of three columns by the number rows. The fourth
and fifth columns show the computation time required by

5
TABLE II
SUMMARY OF VERIFICATION METHOD EVALUATION

Circuit | Logic Fabric | Algl Alg2 HDL LEC Prog. Code
Name Gates Size (sec) (sec) (sec) (sec) Bits Lines
C17 8 8x16 | 0.013 | 0.008 0.088 1.51 21096 5678
C432 122 8x16 | 0.12 0.38 542 5.38 21096 6528
C499 306 32x8 | 0.46 1.25 1.8 10.83 42768 12757

[C880 240 24x8 | 0.26 1.12 1.54 8.24 32040 10030
C1355 313 32x8 | 0.436 1.8 2.5 113 42768 13051
C1908 296 24x8 0.25 1.28 1.71 8.5 32040 10338
C2670 400 8x22 | 0.22 5.76 6.7 9.21 29268 10778
C3540 637 32x16 1.75 7.73 9.89 24.4 85824 26576
C5315 860 16x24 | 0.96 13.29 15.93 22.73 64224 23265
C7552 1177 16x28 1.33 18.2 21.1 28.24 74952 27028

[| C6288 1906 48x24 | 8.715 | 44.06 532 62.59 193536 61178
B21 15236 | 180x40 | 322.3 | 2330.6 | 2654.6 | 862.07 | 1212660 | 511146

Algorithms 1 and 2, which were implemented in Python 3.1.
The sixth column shows the total time required to execute
the two algorithms, pre-process I/O and write out the HDL.
The seventh column lists the computation time required by the
LEC tool. Computation times (in seconds) are for execution
on a 3.7 GHz AMD EPYC 8-Core processor running a Linux
OS. Lastly, the eighth and ninth columns list the number
of programming bits required for each fabric size and the
number of code lines in the Verilog model of TRAP wherein
the directions of all transistors have been determined, with
the latter corresponding roughly to the number of transistors
that need to be reasoned upon by the LEC tools. The results
corroborate feasibility of using commercial LEC tools for
verifying the functionality of a design implemented on the
TRAP fabric for the purpose of IC redaction.

VI. CONCLUSION

In order to maximize flexibility in implementing logic
functions, transistor-level programmable fabrics such as TRAP
often incorporate bidirectional pass transistors. However, these
transistors pose challenges when it comes to modeling them
in HDL and verifying the functionality of the programmed
fabric. The unknown signal directionality of these transistors
prevents them from being handled by LEC tools. To address
this limitation, the presented algorithms automatically extract
signal directionality of bidirectional pass transistors in TRAP.
Moreover, they generate an HDL representation of the pro-
grammed fabric that can be accepted by LEC, thereby enabling
formal verification between a synthesized gate-level netlist
and its actual transistor-level implementation on the fabric.
Effectiveness of our approach was successfully demonstrated
through its application to various benchmark circuits.

REFERENCES

[1] J. Tian et al., “Field programmable transistor array featuring single-cycle
partial/full dynamic reconfiguration,” in DATE, 2017, pp. 1336-1341.

[2] M. Shihab et al., “Design obfuscation through selective post-fabrication
transistor-level programming,” in DATE, 2019, pp. 528-533.

[3] A. Jain et al., “Quo vadis signal? automated directionality extraction for
post-programming verification of a transistor-level programmable fabric,”
in DATE, 2023, pp. 1-2.

[4] D. Blaauw et al., “Derivation of signal flow for switch-level simulation,”
in EDAC, 1990, pp. 301-305.

[5] G. Dupenloup et al., “Transistor abstraction for the functional verification
of FPGAs,” in DAC, 2006, pp. 1069-1072.

[6] X. Chen et al., “High-level modeling and synthesis for embedded FP-
GAs,” in DATE, 2013, pp. 1565-1570.

[7]1 S. Chaudhuri et al., “Efficient modeling and floorplanning of embedded-
FPGA fabric,” in FPL, 2007, pp. 665-669.

[8] A. Baba-Ali and A. Farah, “An efficient algorithm for signal flow
determination in digital CMOS VLSL” in ED&TC, 1996, pp. 288-293.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 26,2024 at 15:25:50 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

