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Abstract—Test vector generation for a TRAnsistor-level Pro-
grammable (TRAP) fabric faces a number of feasibility and
efficiency challenges. The former are caused by (i) the use of
bi-directional pass transistors, which are beyond the capabilities
of commercial Automatic Test Pattern Generation (ATPG) tools,
and (ii) the design specifics of TRAP, which result in certain
stuck-at faults not being logically testable and calling for a
quiescent current-based test solution instead. The latter are
caused by the fact that ATPG tools are oblivious to (i) the
difference between programming bits and regular inputs, which
results in lengthy test application times, and (ii) the role that
different modules in the architecture of TRAP play in establishing
logic circuits, which results in lengthy unguided exploration of
a very large functional space to establish appropriate vector
justification and response propagation paths. To address these
challenges, we explore an array of solutions including (i) employ-
ing TRAP instances where bi-directional transistors are replaced
by uni-directional ones, (ii) generating custom IDDQ tests, (iii)
expressing test application time as the optimization objective of
an Integer Linear Program (ILP) formulation, and (iv) leveraging
design knowledge, resulting in perfect stuck-at fault coverage of
TRAP and an order-of-magnitude savings in test application time.

I. INTRODUCTION

Integrated Circuit (IC) redaction [1], [2], [3], [4] has been
recently proposed for protecting hardware Intellectual Property
(IP) from untrusted entities of the globalized semiconductor
manufacturing industry. In IC redaction, sensitive portions of a
design are replaced by configurable hardware and only instan-
tiated through post-manufacturing programming after the chips
are received. To contain the overhead incurred by IC redaction
solutions, most of which are based on eFPGAs, a TRAnsistor-
level Programmable (TRAP) fabric was introduced in [5].
By pushing programmability to the fine-grain transistor level,
TRAP not only drastically reduces overhead but also intro-
duces more formidable challenges for both brute-force and
intelligent search-based attacks to overcome. Adoption of this
novel fabric, however, requires an RTL-to-GDSII tool flow for
implementing hybrid ASIC/TRAP ICs [6], [7], [8], as well as
a solution for testing such chips for manufacturing defects.

Existing fault modeling and ATPG solutions for transistor-
level designs (e.g., [9], [10], [11], [12], [13]) rely on certain
predetermined signal direction to abstract functional logic.
TRAP, however, is a programmable fabric that can only be
abstracted after it has been programmed, yet must be tested
before it is programmed. FPGA test solutions (e.g., [14], [15],
[16], [17]) are also not directly applicable, as they explore
design-specific or application-specific configurations to reduce
test application time. Compounding these limitations, in order

Fig. 1. Architecture of core components in a TRAP unit

to protect the programming bitstream, TRAP does not have a
read-out circuit; hence, memory tests (e.g., [18], [19]) cannot
be directly applied to its SRAM. Also, while a method to test
logic elements by configuring them into inverter chains was
proposed in [20], it only covered a limited set of possible
faults in the fabric. To address these limitations, in this paper,
we discuss the challenges associated with testing the TRAP
fabric [21] and we develop a comprehensive solution.

II. TRAP ARCHITECTURE

As shown in Fig. 1, the TRAP fabric architecture consists
of three core components: (i) a programmable interconnect
network, (ii) a transistor array (TA), and (iii) an interface that
connects the interconnect network and the TA. These three
components are hierarchically arranged into a unit, which
is then replicated in a 2-dimensional array to produce a
continuous fabric. An array of memory cells (i.e., custom
SRAM, not shown in the figure) is inter-weaved with the
fabric to store the programming bits. TRAP has been designed,
fabricated, and demonstrated in a 12nm FinFET technology.

1) Transistor Array: The TA of a unit consists of 24
transistors organized into three columns (C1, C2, and C3),
as shown in the bottom right of Fig. 1. Each column contains
three pull-up pMOS transistors (P1 – P3) and three pull-down
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nMOS transistors (N1 – N3). Additionally, in each column
(e.g., C1), there is an nMOS transistor Y (controlled by a
programming bit) that connects the output to the corresponding
interconnect track in the same column (e.g., C1L2Z). Finally,
a connection between adjacent columns is established by
a horizontally-oriented nMOS transistor X (controlled by a
programming bit). In the TA, logic gates are implemented by
programming individual transistors through programming bits.

2) Interface: The term ‘interface’ refers to the transistor-
level multiplexer logic that links the interconnect to the column
of transistors in the TA. The bottom left of Fig. 1 shows the
interface structure for column C1. The pMOS transistors in
that TA column can receive at their gate either (i) a signal, (ii)
the complement of a signal, or (iii) the value of an SRAM
bit. This is achieved by controlling the gate of transistors
in the top portion of the interface using programming bits.
Similarly, by controlling the bottom portion of the interface
through programming bits, each of the three nMOS transistors
in column C1 of the TA can receive one of the three signals
from the pMOS interface in that column or can be programmed
through a bit stored in SRAM. The interface structure is
similar for the other two columns (C2 and C3) of the TA.

3) Interconnect Network: The top of Fig. 1 also shows the
interconnect network of TRAP. Switches, shown as dots, are
nMOS pass transistors that connect orthogonal metals (e.g., L3
and L4) at multiple locations and also connect metal layers
L2 and L4. The TRAP interconnect network consists of nine
global horizontal (L3), nine global vertical (L4), and twelve
local vertical (L2) tracks. The global tracks (i.e., L3, L4)
can connect to either a primary I/O or to the corresponding
global tracks of a neighboring unit via pass transistors or bi-
directional repeaters. When switches are turned ON, the two
metal layers connected by the switch share the same signal.

III. HDL DESCRIPTION & FAULT MODEL

Using existing ATPG tools for generating test vectors for
TRAP requires an HDL representation of the fabric and an ap-
propriate fault model. Recall that TRAP is a custom-designed
transistor-level fabric, wherein transistors are programmed to
form logic elements, and custom SRAM cells are used to
hold the fabric configuration. Therefore, faithfully capturing
the fabric structure in an HDL requires the use of transistor-
level constructs (e.g., pmos and nmos primitives in Verilog).
In fact, since TRAP employs bi-directional pass-transistors,
complex constructs (e.g., tran, tranif0 and tranif1
primitives in Verilog) are required. A TRAP HDL model for
simulation-based verification can be found in [8]. Herein, we
use that same model to enable the use of ATPG.

Considering the transistor-level nature of TRAP, our fault
model includes single stuck-at faults at each of the three
terminals (i.e., gate, drain, and source) of each transistor in the
TA, interface, and interconnect. In addition, it includes single
stuck-at faults in the SRAM cells, on the metal tracks of the
interconnect network, and on the circuitry used for loading and
shifting in the programming bits. These faults are equivalent to
and manifest as a transistor gate input being stuck at a value.

In this work, we focus on understanding and overcoming
the challenges of testing a single TRAP unit. Therefore, we
consider as primary inputs the nine global vertical tracks (i.e.,
L41 – L49) and as primary outputs the three global horizontal
tracks that connect the interconnect of a unit to its adjacent
unit. For ATPG purposes, the SRAM cells that are used for
programming a unit are also considered primary inputs.

IV. ATPG CHALLENGES FOR TRAP

A. Representing Bi-directional Transistors for ATPG

Challenge: While contemporary ATPG tools can handle
transistor-level constructs, this ability is limited to designs
employing strictly uni-directional transistors. TRAP, however,
employs bi-directional transistors in the routing network of the
interconnect and in the implementation of logic elements in
the TA. While bi-directionality enables a large set of config-
urations that would otherwise not be possible, it prohibits the
use of ATPG on TRAP. Converting the bi-directional transistor
primitives to uni-directional ones can solve the problem.
However, fixing the direction of these transistors restricts the
functionality of the fabric since certain nodes may become
redundant or unreachable. This, in turn, leads to untestable
faults in the uni-directional version that would otherwise be
testable in the original fabric version.
Solution: To overcome this problem, we curate multiple
distinct versions of the TRAP HDL, each of which has
only uni-directional transistors. The original version with bi-
directional transistors and each of these multiple versions with
uni-directional transistors have the exact same fault list, as the
only difference is the primitive used for a transistor (i.e., pmos
or nmos, vs. tranif0 or tranif1). While applying ATPG
on any one of these versions cannot generate a complete set of
vectors to cover all faults, the union of vectors generated across
all of these versions can achieve complete fault coverage.
The direction chosen for replacing bi-directional transistors
in these versions, however, has to be judiciously selected. For
example, in order to test faults in the TA, the transistors should
be oriented to pass the unit inputs (via the interface) to the
gates of the TA, while the output of the TA (routed via the
interconnect) should terminate at the unit outputs. Similarly,
to target faults in the interconnect, the transistors should be
oriented such that the signal from the unit inputs can be routed
through as many transistors in the interconnect, and finally
ends at the unit outputs. Collectively, as we discuss later in
the experimental results section, a total of five versions suffice
to achieve complete fault coverage on a TRAP unit. ATPG-
generated vectors across these versions produce a complete
baseline test solution for a TRAP unit.

B. Need for IDDQ Testing

Challenge: To achieve high density, the TRAP interface
employs pass transistors to implement multiplexer logic. The
resulting circuit, however, has paths that, under faulty condi-
tions, would conduct both a logic value and its complement.
This makes logic-based testing of such faults impossible, as a
transistor driven by such a path behaves unpredictably.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 26,2024 at 15:38:46 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 2. pMOS interface showing different operational paths

Fig. 3. Comparison of supply current under fault-free/faulty conditions

Solution: To address this challenge, we used a current-based
solution akin to IDDQ testing. Fig. 2 shows the pMOS
interface connecting the L21 routing track to pmos P1 via
four possible paths passing a signal (1), the complement of
the signal (2), SRAM logic ‘0’ (3) and SRAM logic ‘1’ (4).
Fig. 3 shows the SPICE simulation under faulty and fault-free
conditions. The first waveform is a pulsating L21 signal. The
next three waveforms show the supply current under fault-free
conditions, when paths 2, 3, or 4 are individually conducting.
The current averages near zero. A stuck-at-1 fault at the gate
of transistor T1 cannot be logically detected in a single stuck-
at fault model. Under fault-free conditions, with M1 set to
0, transistors T1 and T2 will be OFF and ON, respectively.
The expected machine response will be L21 following path
1. However, under these faulty conditions (M1 stuck-at-1),
again with the M1 value set to 0, both transistors T1 and
T2 are ON. This leads to a faulty machine response where
both signal L21 and its complement ∼L21 propagate along
paths 1 and 2, respectively. The logic value of this signal,
when connected to the gate of a transistor in the TA, becomes
unpredictable. However, as shown by the 5th waveform, the
supply current under these circumstances rises to 100uA,
irrespective of the L21 value, which makes the M1 stuck-at-1
fault testable through IDDQ testing. Also, the 6th waveform
shows the current when M2 is stuck-at-1. This causes two paths
(3,4 or 1,2) to simultaneously write on P1. To detect this
fault using IDDQ, we set those paths to conflicting values. The
waveform is captured when ∼M3 is set to 1, causing a high
current to be detected when L21 is low. The same conflict
occurs with a stuck-at-0 fault at the gate of T2 and T4.

Fig. 4. Heuristic process for generating test vectors that maximize test
coverage for each TRAP configuration required by the ATPG-based test set

C. ATPG is Agnostic to Test Application Time in TRAP

Challenge: Since TRAP is a programmable fabric, the ap-
plication of test patterns involves two types of inputs: (i)
configuration bits, which program a specific function on the
fabric, and (ii) primary input bits, which assess whether the
programmed function is affected by any faults in the fabric.
While applying a different set of input bits for a given
configuration of the fabric only requires one clock cycle,
shifting in a new configuration is a lengthy serial process.
Therefore, with respect to test application time, changing
configurations should be done sparingly. From the point of
view of ATPG however, while generating test vectors for
a TRAP unit, configuration bits and primary input bits are
treated in a similar fashion, leading to a generated set of test
vectors with high test application time. This problem is further
compounded by the multiple versions of the TRAP HDL that
ATPG must be conducted on in order to deal with the bi-
directional transistors, as explained earlier.
Solution: To minimize test application time, we devise a
two-step approach: First, for each configuration that ATPG
generates, we use it to model a programmed version and
reinvoke ATPG to generate vectors that detect all testable faults
for that programmed version. Then, after fault-simulating
test vectors across all versions of the HDL, we compact
the test set through an Integer Linear Programming (ILP)
formulation that sets test application time as its optimiza-
tion objective. Specifically, as highlighted in Fig. 4, we
initially program the HDL (TRAP_UNIT_V1.v) using a
configuration C1. Executing ATPG on this programmed HDL
(TRAP_UNIT_V1[C1].v) restricts the tool from changing
the configuration and forces it to detect faults by only changing
the primary inputs. The process is repeated for every config-
uration (C1, C2, . . . , Ca) in this HDL version and vectors in
each configuration (V11, V12, . . . , Vana

) are tabulated. We then
fault simulate the vectors generated from the current version
on the other HDL versions. Any fault detected during fault
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simulation (Detected faults fs1) is removed before
running ATPG on the next version. The same procedure is fol-
lowed for the next HDL version (TRAP_UNIT_V2.v) for the
remaining faults (Remaining faults fs1) and the pro-
cess iterates until all testable faults are detected. This generates
the highlighted configuration list C1, C2, . . . , Cm and vectors
within each configuration highlighted as V11, V12, . . . , Vmnm

.
Next, taking into account the fault coverage of each test vector
and the time to load a configuration in TRAP, we formulate
test application time minimization as an ILP problem [22].
ILP formulation: Let F be a finite set containing all k ATPG
testable faults (f1,...,fk) and Ci (i ∈ (1,m)) be the
list of m configurations required to test these faults. Also, let
(Vi1,Vi2,...,Vini

) be the ni ATPG generated vectors for
the TRAP HDL programmed with configuration Ci, or Ci =
{Vil}ni

l=1. Our approach starts by creating an [N x k] matrix
A, where N =

∑m
i=1 ni. Each matrix element is denoted as

ACi

xl , for x ∈ (1, k), l ∈ (1, ni) and i ∈ (1,m). Element
ACi

xl = 1 if and only if fault fx is detected by vector {Vil}.
Also, let decision variable vCi

l = 1, if the vector Vil in Ci

is selected for l ∈ (1, ni), and let decision variable ci = 1,
if configuration Ci is selected. Furthermore, let wc and wv

be the weights (i.e., test application times) associated with
selecting a configuration and a vector, respectively. Evidently,
selecting a new configuration is more expensive than selecting
a vector from an existing configuration. Our goal is to select
configurations and vectors within these configurations such
that each fault is covered at least once and total test application
time is minimized. Thus, our objective function is modeled in
Eq. (1). Ensuring that each fault is covered at least once is
achieved by the constraint of Eq. (2). Similarly, ensuring that,
if a vector is selected, its corresponding configuration is also
selected is achieved by the constraint of Eq. (3). Finally, Eq.
(4) and Eq. (5) restrict the decision variables to binary integers.

Minimize:
m∑
i=1

ni∑
l=1

wv · vCi

l +
m∑
i=1

wc · ci (1)

Subject to: ∀x = 1 . . . k
m∑
i=1

ni∑
l=1

ACi

xl · v
Ci

l ≥ 1 (2)

Subject to: ∀i = 1 . . .m, l = 1 . . . ni

(
ci − vCi

l ≥ 0
)

(3)

Variable: 0 ≤ ci ≤ 1, ∀i =∈ 1 . . .m (4)

Variable: 0 ≤ vCi

l ≤ 1, ∀i =∈ 1 . . .m, l = 1 . . . ni (5)

V. DESIGN-AWARE TEST GENERATION FOR TRAP

Challenge: ATPG is unaware of the distinctive architectural
features and the role played by the various modules within the
TRAP fabric in constructing logic circuits. This results in sub-
optimal test configurations due to the unguided exploration
of the extensive functional space stemming from the large
number of programming bits available as inputs to ATPG.
Solution: We leverage our knowledge of functional capabili-
ties of core components of TRAP architecture to craft custom
combinations of configurations and input vectors to efficiently
detect all the faults in a TRAP unit. For the interconnect

Fig. 5. Testing interconnect transistors with gate (a) Stuck-at-0, (b) Stuck-at-1

network, which is designed for dense net routing, we employ a
path-based test approach. For the interface and the TA, which
are designed for implementing a variety of logic functions with
high utilization, we employ a program-based test approach.

A. Path-based test approach for interconnect network
The interconnect network of a single unit consists of 72 bi-

directional nMOS switches. Stuck-at faults at the gate of these
switches will result in them being permanently ON or OFF,
while stuck-at faults at the source or drain will result in one
of the two possible logic values not being attainable in paths
that include that switch. Our path-based approach leverages
the observation that multiple switches that are expected to be
ON can be tested simultaneously by connecting them in series,
while multiple switches that are expected to be OFF can be
tested simultaneously through connection in parallel.
Paths for in-series testing of interconnect faults: Testing
a stuck-at-0 fault at the gate of an nMOS transistor requires
the transistor to be turned ON so that a specific logic value
can pass through it. This specific logic value remains a
differentiator between fault-free and faulty circuits even when
multiple transistors-under-test are connected in series in a path.
In addition to testing for stuck-at-0 faults at the gates of these
transistors, such a path can also test for stuck-at faults in the
source and drain ports of these transistors.

For example, a test route starting at input track L41,
traversing through multiple tracks, and ending at output track
L33 is shown in Fig. 5(a). The configuration enabling this
route tests the 7 highlighted switches for the above-mentioned
faults. When the highlighted switches are turned ON and the
rest are turned OFF, a logic ‘1’ vector at input L41 tests for
stuck-at-0 faults on the source and drain terminals of switches
and tracks on this route. Similarly, a logic ‘0’ vector tests
for stuck-at-1 faults. Either one of these values also tests for
stuck-at-0 faults on the gate terminals of these 7 switches.

For effective testing, the path should utilize each track
exactly once. Any overlap of tracks within a path could mask
faults, rendering them undetectable. This constraint imposes a
limit of up to two switches on a track being tested within a
single path. However, when the selected path terminates at an
output track, only one switch on that horizontal track can be
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Fig. 6. Programming paths through (a) pMOS interface (b) nMOS interface

tested. Since there are a total of six switches on each horizontal
track, a minimum of 4 configurations with 2 vectors each are
needed in order to comprehensively test all single stuck-at-0
faults on interconnect transistor gate terminals. For each of
them, both logic ‘1’ and logic ‘0’ must be propagated through
the corresponding paths to test source and drain terminals for
stuck-at-0 and stuck-at-1 faults, respectively.
Paths for parallel testing of interconnect faults: Testing a
stuck-at-1 fault at the gate of an nMOS transistor requires the
transistor to be turned OFF. In this case, we cannot connect
turned OFF transistors in series to concurrently test whether
any one of them conducts, since subsequent ones will mask the
fault. Instead, we need an individual path for each transistor
under test. Nevertheless, we can establish multiple such paths
in a single fabric configuration to test transistors in parallel.

For example, Fig. 5(b) shows three transistors-under-test
(in circles) along with interconnect transistors (highlighted)
that are turned ON to create unique paths to outputs. For
instance, the switch circled in yellow is tested through the
path marked as 1. Here, the input on track L41 connects to
track L34 through the transistor-under-test (which is turned
OFF), the path then continues through L22 and L42 and ends
on output track L32. Under fault-free conditions, the output
remains in a high-impedance state. However, if and only if the
transistor-under-test is stuck-at-1, then a value will be observed
at the output. Similarly, switches encircled in blue and green
are concurrently tested in the same configuration through the
matching colored paths. Considering the limitations imposed
by the number of outputs and the specific switches required
to create a path from every transistor to an output, a minimum
of 4 configurations with 1 vector each are needed to test for
stuck-at-1 faults in all 72 switches in the interconnect network.

B. Program-based test approach for Interface and TA

Faults in the interface and the TA can be tested by under-
standing the choices offered by the fabric and selecting a small
subset that exposes the difference between fault-free and faulty
circuits. Fig. 6(a) shows two possible options for programming
the TA pull-up network via the pMOS interface, which include
(i) a signal path from the interconnect (1-2), or (ii) a memory
path from the SRAM (3-4). The paths marked in yellow (1-
3) are tested by passing a logic ‘0’ while the paths marked in
green (2-4) are tested by passing a logic ‘1’.

The remaining paths are assessed through the nMOS in-
terface of Fig. 6(b). Options for programming the pull-down
network of the TA via the nMOS interface include (i) a signal
path from the interconnect (1-6), or (ii) a memory path from

the SRAM (7-8). We note that since the pull-down network has
more paths than the pull-up portion, testing it requires more
configurations. To cover all stuck-at faults, we need to program
the fabric so that each path is included in a configuration. Paths
in the interface connect to TA transistor gates and become
observable by programming appropriate logic on the TA.

The 9 pMOS and 9 nMOS transistors in the TA need to be
tested for 4 and 8 interface paths, respectively. Additionally,
the middle 6 nMOS transistors (X and Y) must be tested for
both ON and OFF paths. Thus, a total of 120 paths need to
be tested in a unit. Our objective is to program the TA in a
minimal number of configurations such that all of these paths
are established in at least one configuration and all faulty
responses remain observable through these paths. Evidently,
there exist four options for establishing paths through the
interface, as summarized in Fig. 7 for the pull-up network.
1) ON signal path testing: When transistors are turned ON,
they can be stitched in series and tested together. In this
configuration, the pMOS transistors are programmed through
path 1. Fig. 7(a) shows an example where pMOS P3 and P1
are connected in series in each column and tested together.
The fault-free output is logic 1, while a fault results in high
impedance. When programmed through a signal, the pull-up
and pull-down networks can be tested with the same configu-
ration by varying the input vector. Fig. 8 shows a configuration
where the nMOS transistors are programmed through path 2.
Vector0 tests the pMOS P1 and P3. Vector1 tests the nMOS N1
and N3. Vector2 and Vector3 test P2 and N2, respectively. The
interface allows the nMOS transistors to be programmed via 2
additional paths (4-6), thus requiring another 2 configurations
with 2 vectors each. Collectively, testing ON signal paths
requires 3 configurations and 8 vectors.
2) ON memory path testing: When the interface passes a
value stored in SRAM, the TA transistors can, again, be tested
in series. In this case, however, we can only test either the
pull-up or the pull-down network in a single configuration.
Indeed, allowing both networks to simultaneously pass their
output leads to an undefined state. Fig. 7(b) shows the pMOS
transistors of the TA being tested via an ON memory path.
Two additional configurations are required to test transistors
N1-N3 and transistors P2 and N2, respectively. In total, testing
ON memory paths requires 3 configurations and 3 vectors.
3) OFF signal path testing: Only one transistor can be tested
in its OFF state, while others have to be ON to create a path
to the output. Fig. 7(c) shows a test for transistor P1 turned
OFF. P3 is turned ON to create a path to the output. Another
2 vectors are required to test P2 and P3 in a similar fashion.
The same set of vectors can also test that the nMOS tran-
sistors in the pull-down network are turned OFF. The nMOS
transistors require additional configurations to test the multiple
programming paths through the interface. Collectively, testing
OFF signal paths requires 3 configurations and 9 vectors.
4) OFF memory path testing: Similar to the previous case,
Fig. 7(d) shows a test for P1 turned OFF through a memory
bit. P3 is, again, turned ON to create a path to the output.
We can test the pull-up and pull-down network in the same
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Fig. 7. Testing configurations for the pull-up network in the transistor array

Fig. 8. Four vectors required to test the ON signal path

configuration by varying the input vector value of the ON
transistor. Transistors P3 and N3 can be tested using a similar
configuration and vector. Transistors P2-N2 can be tested in
another configuration. Finally, 2 more configurations with 1
vector each are needed to test that the middle nMOS transistors
(X and Y) are turned OFF. In total, testing OFF memory paths
requires 5 configurations and 7 vectors.

VI. EXPERIMENTAL EVALUATION

A TRAP unit has a total of 1360 uncollapsed faults. Among
them, 196 can only be detected using IDDQ testing, as
explained in Section IV-B. In addition, there are 6 faults on the
source terminals that connect transistors of the TA to power
and ground, which are redundant (i.e., stuck-at-1 fault on a
line connected to power, or stuck-at-0 fault on a line connected
to ground) and 14 faults that are associated with the floating
nodes that connect a unit to its adjacent unit in the fabric,
which are untestable when testing a single unit. The remaining
1144 faults, which are testable by ATPG, require five HDL
versions wherein bi-directional transistors are converted in
different combinations to uni-directional ones, as explained
in Section IV-A. Collectively, as summarized in Table I, the
baseline approach of running ATPG (i.e., Synopsys TestMax)
on these five versions, each time removing from the fault-list
the faults that were detected in the previous versions, generates
a total of 253 patterns, each consisting of 9 primary input
bits and 141 configuration bits. Since ATPG is oblivious to
the difference between inputs and configuration bits, it ends
up generating 253 distinct configurations, resulting in a test
application time of ∼36K clock cycles.

Table II summarizes the results of the ILP-based test com-
paction approach of Section IV-C. The Python PuLP library
was used to formulate the ILP and CPLEX was used to solve
it. The solution of the ILP-based test compaction yields 131

TABLE I
BASELINE ATPG APPROACH

HDL ATPG Generated Detected
Version Configurations Faults
V1 109 813
V2 57 107
V3 52 152
V4 18 23
V5 17 49
Total 253 1144

Test Application Time 35,926 Cycles

TABLE II
ILP APPROACH

ILP Selected ILP Selected
Configurations Vectors

47 56
21 29
18 24
3 5
12 17

101 131
14,372 Cycles

TABLE III
DESIGN-AWARE TEST GENERATION APPROACH

Target Manually Selected Manually Selected
Tests Configurations Vectors

Interconnect Faults
In-series testing 4 8
Parallel testing 4 4

Interface and TA Faults
ON signal path 3 8
ON memory path 3 3
OFF signal path 3 9
OFF memory path 5 7
Total 22 39

Test Application Time 3,141 Cycles

test vectors in 101 configurations to detect all 1144 faults. This
translates to a test application time of ∼14K clock cycles, or
a ∼2.5x reduction over the baseline approach.

Lastly, as shown in Table III the design-aware test gener-
ation method of Section V requires only 39 test vectors in
a total of 22 configurations to cover all 1144 faults. This, in
turn, translates to a test application time of ∼3K clock cycles,
or more than an 11x reduction over the baseline approach.

VII. CONCLUSION & FUTURE DIRECTIONS

We discussed the limitations and challenges commercial
ATPG encounters while generating test vectors for a transistor-
level programmable fabric. To overcome the inability of ATPG
to handle bi-directional pass transistors, we curated multiple
versions of the fabric HDL having the same fault list and
differing only in transistor orientation. To detect faults in
custom transistor-level structures of the fabric, which do not
result in a logically detectable discrepancy, we employed an
IDDQ-based test solution that exposes the presence of such
faults through high steady-state current values. To surmount
the fact that ATPG is oblivious to the difference between
programming bits and primary input bits, we developed an
ILP-based test compaction solution that considers the relative
cost of reconfiguring the fabric vis-a-vis running more test
vectors for existing configurations, seeking to optimize test
application time. Lastly, to further improve test efficiency,
we leveraged our knowledge of the TRAP fabric architecture
and devised design-aware test configurations that maximize
the excitation and propagation of faults. Collectively, these
solutions resulted in an order of magnitude improvement in
test application time for a complete unit of the TRAP fabric.
Future efforts will focus on extending and parallelizing our
test solution to an entire TRAP fabric, which consists of a
two-dimensional array of units with limited I/O connectivity.
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