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Abstract
We present an efficient numerical method to approximate

the flux variable for the Darcy flow model. An impor-

tant feature of our new method is that the approximate

solution for the flux variable is obtained without approxi-

mating the pressure at all. To accomplish this, we introduce

a user-defined parameter delta, which is typically chosen

to be small so that it minimizes the negative effect result-

ing from the absence of the pressure, such as inaccuracy

in both the flux approximation and the mass conservation.

The resulting algebraic system is of significantly smaller

degrees of freedom, compared to the one from the mixed

finite element methods or least-squares methods. We also

interpret the proposed method as a single step iterate of

the augmented Lagrangian Uzawa applied to solve the

mixed finite element in a special setting. Lastly, the pres-

sure recovery from the flux variable is discussed and an

optimal-order error estimate for the method is obtained.

Several examples are provided to verify the proposed the-

ory and algorithm, some of which are from more realistic

models such as SPE10.
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1 INTRODUCTION

Let Ω be a bounded open domain in R𝑑
, 𝑑 = 2, 3, with boundary Γ = ΓN ∪ ΓD. We are interested in

solving the following equation for u and p:

u = −K

𝜇
∇p in Ω, (1.1a)

∇ ⋅ u = f in Ω, (1.1b)

u ⋅ 𝝂 = g on ΓN , (1.1c)

p = gD on ΓD, (1.1d)

where 𝝂 denotes the unit outward normal vector to the boundary Γ, K and 𝜇 are the permeability

tensor of the medium and the viscosity of the fluid, respectively, and f , g and gD are the volumetric

flow rate source or sink, the prescribed normal flux and pressure on the boundary, respectively. The

Equation (1.1) arises in the single phase flows in porous media, Ω, governed by the Darcy flow model:

u = −K

𝜇
(∇p̃ + 𝜌g), and ∇ ⋅ u = f ,

subject to the boundary conditions:

u ⋅ 𝝂 = g, on ΓN and p̃ = g̃D, on ΓD,

where 𝜌 represents the density of the fluid, g is the gravity vector, g̃D is a modification of gD obtained

by interchanging between p̃ and p, and u and p̃ are the Darcy flow rate and the pressure in the fluid.

Note that the modified pressure given in (1.1) can be obtained through p = p̃ + 𝜌gcz, where gc and z
are the gravity scalar and the coordinate of gravitational direction, respectively.

The difficulty in the practical simulation of Darcy flow model arises from the irregularities of the

domain boundaries ΓD and ΓN and the permeability tensor K. We shall assume that Ω is Lipschitz and

its boundary parts ΓD and ΓN satisfy some regularity condition that will be specified later. We shall

only assume that K ∈ R𝑑×𝑑
is a 𝑑 × 𝑑 bounded, symmetric and uniformly positive definite matrix and

𝜇 ∈ L∞(Ω).
We shall attempt to solve the Equation (1.1) using the finite element methods. For the sake of

presentation of finite element methods, we shall use standard Sobolev spaces. For example, for region

K in R𝑑
, let (⋅, ⋅)K , ⟨⋅, ⋅⟩𝜕K , || ⋅ ||0,K , and | ⋅ |0,𝜕K denote the L2(K) and L2(𝜕K) inner products and norms,

respectively, and so on. In case K = Ω, the subindex may be omitted and furthermore the index 0 may

be dropped, too. We set the following Sobolev space:

V = HΓN ,0(div; Ω) = {v ∈ H(div; Ω) | 𝝂 ⋅ v = 0 on ΓN}, (1.2)

and W = L2(Ω). For the sake of simplicity in notations, we shall denote the norm on H(div; Ω) as

|| ⋅ ||V and the norm on L2
as || ⋅ ||W or simply || ⋅ ||, respectively. The symbol ||⋅, ⋅||V×W denotes the

product norm for the product space V × W.

Throughout this article, for the sake of simplicity, we shall assume that g = 0 on ΓN for the

Equation (1.1). If it is not the case, we can introduce u0 ∈ H(div; Ω) such that u0 ⋅ 𝝂 = g and write

the Equation (1.1) in terms of ũ = u − u0. This shall result in the modified right hand sides for (1.1a)

and (1.1b). Note that this modification does not change p or its boundary condition gD. We also further
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assume that ΓD ≠ ∅. This is because the case ΓD = ∅ leads us to discuss some additional constraints

for the well-posedness of the problem. More precisely, if the Neumann condition is prescribed in the

entire boundary, Γ, that is, ΓN = Γ, then the compatibility condition must be given as follows:

∫Ω f𝑑x = ∫Γ g 𝑑s, (1.3)

for a unique existence of solution p ∈ H1(Ω)∕R. Lastly, we shall use a standard Sobolev space

notation, that is, La(Ω) with 1 ≤ a ≤ ∞ denotes the space of functions whose ath
power is integrable

over the domain Ω and Wk,a(Ω) for 1 ≤ a ≤ ∞ denotes the space of functions in La(Ω) whose first

k derivatives are in La
space. Now for f ∈ L2(Ω), the standard mixed weak formulation of (1.1) is to

find (u, p) ∈ HΓN ,0(div; Ω) × L2(Ω) such that

(Au, v) − (p,∇ ⋅ v) = −⟨gD, 𝝂 ⋅ v⟩ΓD
, ∀ v ∈ HΓN ,0(div; Ω), (1.4a)

(∇ ⋅ u, q) = (f , q), ∀ q ∈ L2(Ω), (1.4b)

where A =
(

K

𝜇

)−1

. We note that the system (1.4) can be cast into the following operator form to find

(u, p) ∈ HΓN ,0(div; Ω) × L2(Ω) such that for G ∈ HΓN ,0(div; Ω)′ and F ∈ L2(Ω),
(
∗

0

)(
u
p

)

=

(
G
F

)

, (1.5)

where  ∶ H(div; Ω) → HΓN ,0(div; Ω)′,  ∶= ∇⋅ ∶ H(div; Ω) → L2(Ω) and ∗
is its adjoint operator

of .

Our error analysis in Theorem 4 exploits the regularity estimate of weak solution of the Laplace

operator with mixed boundary conditions. For non-smooth domains, while the estimate for a Dirichlet

or a Neumann boundary condition is well-known, much less has been done for a mixed boundary

condition. For this reason, we will make the following regularity assumptions on Γ. We let that ΓD has

a positive measure, and that ΓN satisfies the following conditions with B = B(0; 1) denoting the unit

ball in R𝑑
:

1. there exists a family (U0,U1, … ,UJ) of open sets of R𝑑
such that

Ω ⊂ ∪k
j=0

Uj, U0 ⊂ Ω;

2. there exists a corresponding family of functions (𝜙1, … , 𝜙J) such that 𝜙j ∶ Uj → B is

one-to-one and 𝜙j and 𝜙
−1

j are Lipschitz-continuous fulfilling one of the following conditions:

a. Uj ∩ ΓN = Uj ∩ Γ and 𝜙j satisfies

𝜙j(Uj ∩ Ω) = B ∩ R
𝑑
+( with x𝑑 > 0) ∶= B+, (1.6a)

𝜙j(Uj ∩ Γ) = B ∩ R
𝑑−1( with x𝑑 = 0) ∶= B𝑑−1; (1.6b)

b. Uj ∩ ΓN = ∅ and 𝜙j satisfies (1.6a);

c.

{
𝜙j(Uj ∩ Ω) = {x ∈ B | x𝑑 > 0, x𝑑−1 > 0} =∶ B++,
𝜙j(Uj ∩ ΓD) = {x ∈ B | x𝑑 = 0, x𝑑−1 > 0},
𝜙j(Uj ∩ ΓN) = {x ∈ B | x𝑑 > 0, x𝑑−1 = 0}.

We use the notation Wk,a
ΓD,0

(Ω) to represent the set of functions in Wk,a(Ω) whose trace on ΓD is

zero, and use the shorthand Hk(Ω) for Wk,2(Ω). The dual spaces of H1

ΓD,0
(Ω) and W1,a

ΓD,0
(Ω) are denoted
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by H−1

ΓD
(Ω) and W−1,a

ΓD
(Ω), respectively. Additionally, we define

2
∗ =

{
2𝑑

𝑑−2
if 𝑑 > 2,

∞ if 𝑑 ≤ 2,

that is, 2
∗ =

{
6 if 𝑑 = 3,

∞ if 𝑑 ≤ 2.

The following theorem, which corresponds to Theorem 4 in [14], is included here for completeness.

Theorem 1. There exists 𝓁0 with 2 < 𝓁0 ≤ 2
∗ such that whenever p ∈ H1

ΓD,0
(Ω) is a weak

solution of
(A∇p,∇q) = ⟨f , q⟩W−1,𝓁

ΓD
(Ω), H1

ΓD ,0
(Ω) ∀ q ∈ H1

ΓD,0
(Ω) (1.7)

for some 2 ≤ 𝓁 < 𝓁0 and f ∈ W−1,𝓁
ΓD

(Ω), then p ∈ W1,𝓁
ΓD,0

(Ω) and

||p||W1,𝓁
ΓD ,0

(Ω) ≤ C(𝓁)||f ||W−1,𝓁
ΓD

(Ω). (1.8)

For smooth domains, the following stronger result is found to be established by using the notion

of fractional order Sobolev spaces:

||p||H1+s
ΓD ,0

(Ω) ≤ C||f ||H−1+s
ΓD

(Ω), for some s > 0. (1.9)

We refer our readers to (e.g., [6, 31]) for the estimate (1.9) and to (e.g., [12]) for the fractional order

Sobolev spaces.

The standard technique to solve the system (1.4) is the mixed finite element method. We point out

that the mixed finite element is in general difficult to formulate since it requires certain cares to adopt

a suitable stable pair of finite element spaces for u and p, as well as to design a fast solver. Our motiva-

tion in this article is that typical application areas of fluid mechanics such as subsurface flow modeling,

do not require calculations of pressure while accurate and efficient approximations of flux is crucial.

Namely, the use of standard mixed finite element methods devoted to approximate both flux and pres-

sure as accurate as possible simultaneously by distributing computational efforts to the approximation

of both flux and pressure variables can be overkill in practice. In this spirit, we have introduced a new

light scheme to compute the flux variable, that is, a parameter-dependent hybrid two-step method in

our prior work [24]. In this scheme, a pressure is approximated very roughly in a very coarse mesh by

using a standard Galerkin scheme, or its variant; then, a parameter-dependent H(div)-variational form

with appropriate right hand side is set and solved in a finer mesh. This technique is shown to give an

optimal order flux approximation.

In the current paper, we improve the hybrid two-step method, [24]. That is, we show that the

H(div)-variational form is the only equation needed to be solved, that is, the first step to obtain rough

approximate pressure can be skipped to obtain the desired flux variable of optimal accuracy. This shall

therefore lead us to obtain a single-step method. The advantage of the proposed approach is that the

bilinear equation is H(div)-elliptic, and it is free from the restriction of discrete inf-sup condition, since

it employs only the H(div) vector part of mixed finite element space pairs for which there have been

several efficient preconditioners for H(div)-bilinear form equation, just to cite a few, [3, 4, 16, 18, 19,

22]. Additionally, we provide a new interpretation of the single step flux approximation as a single

step iterate of augmented Lagrangian Uzawa applied to solve the mixed finite element in a special

setting. Lastly, although it is not our primary interest to approximate the pressure variable accurately,

we provide a scheme to compute the pressure based on the flux approximation as well.

The rest of our article is organized as follows. In Section 2, preliminaries results concerning the

mixed finite element methods for second order elliptic equations with mixed boundary conditions are

presented. A single step flux approximate scheme is then presented in Section 3 and error estimates
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are provided in Section 4. Confirming numerical results for the theoretical development are presented

in Section 5.

2 PRELIMINARIES ON THE MIXED FINITE ELEMENT METHOD AND
THE HYBRID TWO-STEP METHOD

In this section, we review the classical mixed finite element spaces, but point out some recent result

as presented in [26] that is needed to understand and solve the mixed finite element for second order

elliptic equations with mixed boundary conditions (1.4).

2.1 Mixed finite element method for second order elliptic problem

To obtain approximate solutions for (1.4), let h be a family of shape regular triangulation of Ω, where

h = maxK∈h hK , hK = diam(K), see [9]. First, we briefly review some of the properties of the classical

mixed finite element spaces. Denote by RT
(k)
h and BDM

(k)
h the Raviart–Thomas–Nédélec space [27,

29] and the Brezzi-Douglas-Marini or Brezzi-Douglas-Duran-Fortin space of index k ≥ 1 [10, 11]

defined as follows:

{
RT

(k)
h ∶= {v ∈ H(div; Ω) ∶ v|K ∈ [Pk(K)]𝑑 ⊕ Span{xP̃k(K)}, K ∈ 𝒯h},

BDM
(k)
h ∶= {v ∈ H(div; Ω) ∶ v|K ∈ [Pk(K)]𝑑, K ∈ 𝒯h},

where Pk(K) denotes the space of all polynomials up to degree k defined on K, and P̃k(K) the space

of all homogeneous polynomials of degree k. Denote by C0(P(k)
h ) the standard C0

-conforming finite

element spaces of piecewise polynomials of degree ≤ k on mesh 𝒯h. By C−1(P(k)
h ) we also designate

the space of piecewise polynomials of degree ≤ k on mesh 𝒯h, namely, C−1(P(k)
h ) = {q ∈ L2(Ω) ∶

q|K ∈ Pk(K), K ∈ 𝒯h}. We set

RT
(k)
0,h = RT

(k)
h ∩ HΓN ,0(div; Ω), BDM

(k)
0,h = BDM

(k)
h ∩ HΓN ,0(div; Ω).

Next, we define the family of RTN/BDM-BDDF mixed finite element spaces of index k, k = 0, 1, … ,

by

M
(k)
0,h ∶= V(k)

0,h × W (k)
h ∶=

{
RT

𝜄(k)
0,h × C−1(P(k)

h ),
BDM

𝜄(k)
0,h × C−1(P(k)

h ),

where

𝜄(k) =

{
k, if V(k)

0,h = RT
𝜄(k)
0,h ,

k + 1, if V(k)
0,h = BDM

𝜄(k)
0,h .

Denote by N
(k)
0,h the space C0(P(k+1)

h )∩H1

ΓN
(Ω) in 2D and the Nédélec element of degree k as a subspace

of H0(curl; Ω) in 3D, respectively: that is,

N
(k)
0,h ∶= {v ∈ HΓN ,0(curl; Ω) ∶ v|K ∈ [Pk(K)]3 ⊕ Span{q ∈ [P̃k+1(K)]3 ∶ x ⋅ q = 0, K ∈ 𝒯h}.

The key to prove the well-posedness of the above mixed formulation (1.4) and other related finite

element theory is at the (partial) de Rham complex [2, 5, 8, 17] (in two and three space dimensions)

with mixed boundary conditions with the bounded interpolation operator. This has been established in
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[26], which can be stated as follows:

(2.1)

Namely, we have that

∇ ⋅ Πdiv

h u = Π0

h∇ ⋅ u, ∀u ∈ HΓN ,0(div; Ω). (2.2)

Let ∇h be the discrete gradient operator ∇h ∶ W (k)
0,h → V(k)

0,h or the adjoint operator with respect to L2

inner product, defined as follows: for qh ∈ W (k)
0,h,

(∇hqh, vh) = −(qh,∇ ⋅ vh), ∀vh ∈ V(k)
0,h. (2.3)

Then, we have the (discrete) Helmholtz decomposition via the closed range theory (see also [3], [20,

Lemmas 2.5 and 2.6]), that is,

V(k)
0,h = ∇ × N

(k)
0,h ⊕ ∇hW (k)

0,h =  (div)⊕(div
∗). (2.4)

Note that the orthogonality holds both in L2(Ω) and in H(div; Ω) inner product.

The mixed finite element approximation for (1.4) is then to find (uM
h , pM

h ) ∈ V(k)
0,h × W (k)

0,h such that

(AuM
h , vh) − (pM

h ,∇ ⋅ vh) = −⟨gD, 𝝂 ⋅ vh⟩ΓD
, ∀ vh ∈ V(k)

0,h, (2.5a)

(∇ ⋅ uM
h , qh) = (f , qh), ∀ qh ∈ W (k)

0,h. (2.5b)

For fixed k and boundary conditions, we shall simply put Vh ∶= V(k)
0,h and Wh ∶= W (k)

0,h for simplicity.

In deriving error estimates, we will take advantage of the well-known mixed finite element method

error estimates: we refer the reader to [7, 10, 11, 13, 15, 23] and references therein.

Theorem 2. The Equation (2.5) produces the approximate solution (uM
h , pM

h ) ∈ Vh × Wh
to Darcy law (1.1) such that the following error estimates hold true:

||(u − uh, p − ph)||V×W ≲ inf
vh,qh∈Vh×Wh

||(u − vh, p − qh)||V×W . (2.6)

Proof. We note that it is standard to show that the Darcy law is well-posed. On the other

hand, this is true as well that

(Avh, vh) ≳ ||vh||
2

V , ∀vh ∈ Zh = {vh ∈ Vh ∶ b(v, 𝜓) = 0, ∀𝜓 ∈ Wh}. (2.7)

From the de Rham complex, we have that

b(v − Πdiv

h v, 𝜓) = 0, ∀v ∈ Vh, 𝜓 ∈ Wh. (2.8)

Furthermore, it holds that Πdiv

h is stable. Namely, it is a Fortin operator. This establishes

the discrete inf-sup condition. The quasi-optimality is then standard. This completes the

proof. ▪

2.2 The hybrid two-step approximations

In this section, we shall review the hybrid two-step method introduced in [24]. We shall begin with a

simple but important lemma:
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Algorithm 1. Hybrid two-step scheme [24]

For a fixed 𝓁 ≥ 1 and 𝛿>0, we perform:Find pG
H ∈ C0(P(𝓁)

H ) such that

(A−1∇pG
H ,∇qH) = (f , qH), ∀ qH ∈ C0(P(𝓁)

H ). (2.13)

Use pG
H to find uh ∈ Vh such that

(∇ ⋅ uh,∇ ⋅ vh) + 𝛿(Auh, vh) = (f + 𝛿pG
H ,∇ ⋅ vh) − 𝛿 ⟨gD, 𝝂 ⋅ vh⟩ΓD

, ∀vh ∈ Vh. (2.14)

Lemma 1. Let 𝛿 > 0 be a parameter and (u, p) be the solution of mixed weak form (1.4).
Assume that u𝛿 ∈ HΓN ,0(div; Ω) solves

(∇ ⋅ u𝛿
,∇ ⋅ v) + 𝛿(Au𝛿

, v) = (f + 𝛿p,∇ ⋅ v) − 𝛿⟨gD, 𝝂 ⋅ v⟩ΓD
, ∀v ∈ HΓN ,0(div; Ω). (2.9)

Then u = u𝛿 for all 𝛿 > 0.

Proof. Take q = ∇ ⋅ v in (1.4b) to get

(∇ ⋅ u,∇ ⋅ v) = (f ,∇ ⋅ v), ∀ v ∈ HΓN ,0(div; Ω), (2.10)

which is then added to (1.4a) multiplied by 𝛿 to obtain

(∇ ⋅ u,∇ ⋅ v) + 𝛿(Au, v) = (f + 𝛿p,∇ ⋅ v) − 𝛿⟨gD, 𝝂 ⋅ v⟩ΓD
, ∀ v ∈ HΓN ,0(div; Ω). (2.11)

We now subtract (2.11) from (2.9) to we have

(∇ ⋅ (u𝛿 − u),∇ ⋅ v) + 𝛿(A(u𝛿 − u), v) = 0, ∀ v ∈ HΓN ,0(div; Ω). (2.12)

Therefore, by choosing v = u − u𝛿
in (2.12), we arrive at u𝛿 = u if 𝛿 > 0. This completes

the proof. ▪

The two-step hybrid method obtains the approximation of pressure and then obtain the flux by

solving (2.9) as described as in Algorithm 1. Recall that the two step solvers rely on two meshes,

which is allowed to be independent, one for approximating the primary variable, and the other for flux

variable and such an independent nature is compensated for by an appropriate choice of the parameter

𝛿 to arrive at an optimal accuracy of the flux variable via an appropriate transfer of the primary variable

for the discrete equation of (2.9). We also note that the problem (2.14) can be understood as solving a

bilinear form equation: find uh ∈ Vh such that

Λh(uh, vh) = (f + 𝛿pG
H ,∇ ⋅ vh) − 𝛿⟨gD, 𝝂 ⋅ vh⟩ΓD

, vh ∈ Vh, (2.15)

where Λh(uh, vh) = (∇ ⋅uh,∇ ⋅ vh)+ 𝛿(Auh, vh). For an appropriate solution technique for Λh, we refer

to works by Arnold et al. [3, 4] and also Hiptmair and Xu in [19].

3 SIMPLE PARAMETER-DEPENDENT APPROXIMATION OF FLUX
VARIABLE AND PRESSURE RECOVERY

It was shown that in [24], the Algorithm 1 can obtain an optimally accurate flux approximation using

an approximate solution pG
H for p on a coarse mesh of size H if 𝛿 is appropriately chosen. In this section,

we shall show that it is really not necessary to construct an approximate solution pG
H at all. Thus, in order
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8 of 22 ADHIKARI ET AL.

Algorithm 2. Single step scheme for flux approximation

For a fixed 𝛿>0, we perform:Find uh ∈ Vh such that

(∇ ⋅ uh,∇ ⋅ vh) + 𝛿(Auh, vh) = (f ,∇ ⋅ vh) − 𝛿 ⟨gD, 𝝂 ⋅ vh⟩ΓD
, ∀vh ∈ Vh. (3.1)

Algorithm 3. Pressure recovery Scheme 1

Given uh ∈ Vh, find ph ∈ Wh such that

(ph,∇ ⋅ vh) = (Auh, vh) + ⟨gD, 𝝂 ⋅ vh⟩ΓD
, ∀ vh ∈ Vh. (3.2)

to obtain a good flux approximation uh, it is unnecessary to consider two hybrid grids, but we may take

into account a finer grid only. Furthermore, we shall interpret both the hybrid two step method and

the newly proposed single step method in a unified framework. This is based on an insight on how to

interpret the parameter-dependent flux approximation. In fact, we show that the parameter-dependent

flux approximation can be viewed as a single step iterative solution via augmented Lagrangian Uzawa

applied to the mixed finite element formulation. On a separate issue, although it is not our primary

interest to approximate the primary variable p, it can be approximated from the flux uh as indicated in

(2.5). We provide two algorithms to recover the pressure approximation as accurate as the one from

the standard mixed finite element method.

3.1 The single step flux approximation

We shall begin with a simple scheme for the approximation of the flux variable u in (1.1). We drop

the term 𝛿(pG
H ,∇ ⋅ vh) in (2.14) and propose a new simpler scheme Algorithm 2 to approximate u

by uh ∈ Vh. We then propose the Algorithm 3 below to recover an accurate pressure approximation

ph ∈ Wh from the flux uh obtained in Algorithm 2. It is easy to observe that the unique existence of

uh solving(3.1) and ph solving (3.2) follows directly from the Lax-Milgram lemma and the discrete de

Rham sequence (2.1), respectively.

Before passing to the next subsection, we observe that the following error equation can be obtained

immediately from (1.4) and (3.1):

(∇ ⋅ (u − uh),∇ ⋅ vh) + 𝛿(A(u − uh), vh) = 𝛿(p,∇ ⋅ vh), ∀vh ∈ Vh, (3.3)

where (u, p) ∈ HΓN ,0(div; Ω) × L2(Ω) and uh ∈ Vh are the solutions satisfying (1.4) and (3.1),

respectively. The equation will be useful in our error analysis to follow.

3.2 The single-step and hybrid two-step methods and the augmented Lagrangian Uzawa
method

In this section, we shall provide a view of both the proposed single step and hybrid two-step method

for flux approximation, as a single step iterate of the augmented Lagrangian Uzawa method for the

mixed method. This view provides an alternative way to recover the pressure from the flux as well. We

begin our discussion by casting the mixed finite element formulation (2.5) as the operator equation to

 10982426, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23120 by O
klahom

a State U
niversity, W

iley O
nline Library on [26/08/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



ADHIKARI ET AL. 9 of 22

Algorithm 4. Augmented Lagrangian Uzawa iterative method [25]

Set 𝓁 = 0 and for a given p𝓁 ∈ Wh and we perform:Find u𝓁+1
by solving the following equation:

(
h +

1

𝛿
∗

hh

)
u𝓁+1 + ∗

hp𝓁 = Gh +
1

𝛿
∗

hFh. (3.6)

Update the pressure to obtain p𝓁+1
as follows:

p𝓁+1 = p𝓁 + 1

𝛿
(Fh − hu𝓁+1). (3.7)

Go to Step 1 if (u𝓁+1
, p𝓁+1) is not a desired solution pair.

find (uM
h , pM

h ) ∈ Vh × Wh as follows:

(
h

∗
h

h0

)(
uM

h

pM
h

)

=

(
Gh

Fh

)

, (3.4)

where h,h,
∗
h, Gh and Fh are discrete version of ,,∗

,G and F. The augmented Lagrangian

Uzawa begins with the stabilization by ∗
hh of the above equation as follows:

⎛
⎜
⎜
⎝

h +
1

𝛿
∗

hh
∗
h

h0

⎞
⎟
⎟
⎠

(
uM

h

pM
h

)

=

(
Gh + 1

𝛿
∗

hFh

Fh

)

. (3.5)

The augmented Lagrangian Uzawa iterative method applied for the mixed formulation (3.5) can then

read as follows: given an approximate pressure pG
H , the flux approximation u𝛿

h = uh, the solution to the

system (2.14) can be shown to satisfy the following equation in an operator form:

(
h +

1

𝛿
∗

hh

)
uh + ∗

hQW
h pG

H = 1

𝛿
∗

hQW
h Fh + Gh, (3.8)

where QW
h is the L2

projection onto the space Wh. Equivalently, we have the following formulae for uh
given as follows:

uh =
(
h +

1

𝛿
∗

hh

)−1(
1

𝛿
∗

hQW
h Fh + Gh − ∗

hQW
h pG

H

)
. (3.9)

This is exactly the single iterate from the augmented Lagrangian Uzawa method introduced in

Algorithm 4. We further note that the reference solution uh defined with exact pressure p, is given as

follows:

uh =
(
h +

1

𝛿
∗

hh

)−1(
1

𝛿
∗

hQW
h Fh + Gh − ∗

hQW
h p

)
. (3.10)

Set eu = uh − uh and ep = pG
H − p. Then the error equation is given as follows:

eu = uh − uh =
(
h +

1

𝛿
∗

hh

)−1(
−∗

hQW
h ep

)
.

This means that

(heu, eu) =
(

h

(
h +

1

𝛿
∗

hh

)−1

∗
hQW

h ep,
(
h +

1

𝛿
∗

hh

)−1

∗
hQW

h ep

)

≤

(

∗
hQW

h ep,
(
h +

1

𝛿
∗

hh

)−1

∗
hQW

h ep

)

=
(

QW
h ep,

[

h

(
h +

1

𝛿
∗

hh

)−1

∗
h

]

QW
h ep

)

≤ 𝛿||QW
h ep||

2 ≤ 𝛿||ep||
2
.
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10 of 22 ADHIKARI ET AL.

To summarize, we have proved the following estimate:

||eu||A ≤
√
𝛿||ep|| or equivalently ||uh − uh||A ≤

√
𝛿||pG

H − p||.

This indicates that even if we choose pG
H = 0, we are able to obtain good approximation for sufficiently

small choice of 𝛿. More precise error analysis can be found at Section 4 below. Our conclusion is that

both the single step and hybrid two-step method can be viewed as a single step iterate of the augmented

Lagrangian Uzawa method. Recently, this observation has led to a couple of applications for designing

the constrained optimization in image processings [21, 28]. In particular, this view is used to obtain

an alternative pressure recovery from the flux uh (see Algorithm 5 below).

Algorithm 5. Pressure recovery Scheme 2

Given uh ∈ Vh, we set p𝓁 = QW
h pG

H , u𝓁+1 = uhUpdate the pressure using the following formula:

ph ∶= QW
h pG

H + 1

𝛿
(Fh − huh). (3.11)

Then we notice that a standard argument can lead to the following error estimate for the pressure

update given in Equation (3.11)

||pM
h − ph|| ≤

1

(1 + 𝜇0

1

𝛿
)
||pM

h − pG
H||, (3.12)

where 𝜇0 is the minimum eigenvalue for the Schur complement operator for the discrete mixed finite

element system (3.4), that is, S = h
−1

h ∗
h. While the augmented Lagrangian Uzawa has been

used extensively, the choice of the parameter 𝛿 has not been paid too much attention. Our theoretical

contribution is at the optimal choice of this parameter 𝛿 in terms of accuracy.

4 ERROR ANALYSIS AND CHOICES OF 𝛿

In this section, we provide error estimates for our approximate solution uh in both L2
and H(div; Ω)

norms. The corresponding error analysis for ph, the pressure recovery, shall also be presented. Our

estimates shall shed light on the choice of the problem parameter 𝛿 > 0 to achieve optimal-order rates

of convergence. The error analysis performed in this section in relation with the parameter 𝛿 shall guide

how the augmented Lagrangian Uzawa method chooses an optional parameter to achieve an accurate

solution in a single iteration as well.

4.1 Error analysis to uh and ∇ ⋅ uh

We begin with the investigation of convergence behavior of uh, the approximate solution to u obtained

by Algorithm 2. We use the weighted L2
norm ||v||2

A
= (Av, v) to simplify the notation. Here and in

what follows, C represents a generic positive constant independent of the mesh size h.

Theorem 3. Assume that the solution u of (1.4) belongs to Hs(Ω). Let uh ∈ V(k)
h be the

solution satisfying (3.1). Then,

||uh − u||A ≤ C
[
hs||u||s +

√
𝛿||p||

]
, s ≤ 𝜄(k) + 1. (4.1)
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ADHIKARI ET AL. 11 of 22

Furthermore, if ∇ ⋅ u of Problem (1.4) belongs to Hs(Ω), we have

||∇ ⋅ (uh − u)|| ≤ C
[
hs||∇ ⋅ u||s + 𝛿||p||

]
, s ≤ k + 1. (4.2)

Proof. Let (uM
h , pM

h ) ∈ M
(k)
h be the mixed finite element solution satisfying (2.5). For a

fixed vh ∈ V(k)
h , by multiplying (2.5a) by 𝛿, setting qh = ∇ ⋅ vh in (2.5b), and adding the

resulting terms, we obtain

(∇ ⋅ uM
h ,∇ ⋅ vh) + 𝛿(AuM

h , vh) = (f + 𝛿 pM
h ,∇ ⋅ vh) − 𝛿⟨gD, 𝝂 ⋅ vh⟩ΓD

. (4.3)

Now, by subtracting (3.1) from (4.3), we get

(
∇ ⋅ (uM

h − uh),∇ ⋅ vh
)
+ 𝛿

(
A(uM

h − uh), vh
)
= 𝛿

(
pM

h ,∇ ⋅ vh
)
. (4.4)

In particular, we choose vh = uM
h − uh to obtain

||∇ ⋅ (uM
h − uh)||2 + 𝛿||uM

h − uh||
2

A
≤ 𝛿||pM

h ||||∇ ⋅ (uM
h − uh)||.

First of all, this results in

||∇ ⋅ (uM
h − uh)|| ≤ 𝛿||pM

h ||, (4.5)

which in turns gives

||uM
h − uh||A ≤

√
𝛿||pM

h ||. (4.6)

We now recall the error estimates for the mixed finite element method [7, 10, 11, 29]:

||pM
h − p|| ≤ C hs||p||s for s ≤ 𝜄(k) + 1, (4.7a)

||uM
h − u||A ≤ C hs||u||s for s ≤ 𝜄(k) + 1, (4.7b)

||∇ ⋅ (uM
h − u)|| ≤ C hs||∇ ⋅ u||s for s ≤ k + 1. (4.7c)

Applying the triangle inequality, and combining (4.5), (4.7b), and (4.7), we have

||uh − u||A ≤ ||u − uM
h ||A + ||uM

h − uh||A

≤ C
[
hs||u||s +

√
𝛿||pM

h ||
]
,

for s ≤ 𝜄(k) + 1. Then (4.1) follows from the last estimate combined with the following

triangle inequality:

||pM
h || ≤ ||pM

h − p|| + ||p|| ≤ Chs||u||s + ||p||. (4.8)

Moreover, if ∇ ⋅ u of Problem (1.4) belongs to Hs(Ω), we have

||∇ ⋅ (uh − u)|| ≤ ||∇ ⋅ (u − uM
h )|| + ||∇ ⋅ (uM

h − uh)||
≤ C

[
hs||∇ ⋅ u||s + 𝛿||pM

h ||
]
,

for s ≤ k + 1. Using the triangle inequality and plugging (4.7a), the last inequality leads

to (4.2). This completes the proof. ▪

Two special cases for the lowest-order RTN and BDM families are explicitly given in the following

two corollaries.
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12 of 22 ADHIKARI ET AL.

Corollary 4.1. Assume that u of Problem (1.4) belongs to H1(Ω) and that 𝛿 ≤ C h2
. Let

uh ∈ RT
(0)
h be the solution satisfying (3.1). Then,

||uh − u||A ≤ C h (||u||1 + ||p||) . (4.9)

Furthermore, if ∇ ⋅ u of Problem (1.4) belongs to H1(Ω), we have

||∇ ⋅ (uh − u)|| ≤ C h (||∇ ⋅ u||1 + h||p||) . (4.10)

Proof. Choose k = 0, s = 1, and 𝛿 = h2
in (4.1) to get (4.9). These choices sufficiently

lead to get (4.10) from (4.2). ▪

Corollary 4.2. Assume that u of Problem (1.4) belongs to H2(Ω) and that 𝛿 ≤ C h4
. Let

uh ∈ BDM
(1)
h be the solution satisfying (3.1). Then,

||uh − u||A ≤ C h2 (||u||2 + ||p||) , (4.11)

and
||∇ ⋅ (uh − u)|| ≤ C h

(
||∇ ⋅ u||1 + h3||p||

)
. (4.12)

Proof. Recall that 𝜄(k) = k + 1 for BDM family, and choose k = 0, s = 2, and 𝛿 = h4
in

(4.1) to get (4.11). These choices sufficiently lead to get (4.12) from (4.2). ▪

Remark 1. For the RTN family with k = 0, that is, taking RT
(0)
h (𝜄(k) = 0 in this case)

as the hybrid space, let us consider solving the L-shaped domain problem. In this case,

p ∈ H1+𝛼(Ω) with 𝛼 = 2

3
and ∇ ⋅ u = 0. In this case, 𝛿 = h

4

3 is chosen for an optimal

convergence rate (h𝛼), as stated in (4.1). For numerical examples, see the case of partial

elliptic regularity in Section 5.2.

4.2 Error analysis to ph

In this section, we provide a convergence result of ph obtained by Algorithm 3 to p, the pressure

recovery.

Theorem 4. Assume that the solution p of the Equation (1.4) belongs to Hs+1(Ω). Let
ph ∈ Wh be the solution to (3.2). Then, we have

||ph − p|| ≤ C
[
hs||p||s+1 +

√
𝛿||p||

]
, s ≤ 𝜄(k) + 1. (4.13)

Furthermore, if Ω is smooth and K

𝜇
in (1.1) is in C1(Ω), then

||QW
h p − ph|| ≤ C

[
hr (||uh − u||A + ||∇ ⋅ u − QW

h ∇ ⋅ u||
)
+ 𝛿||p||s+1

]
(4.14)

for some r > 0, where QW
h is the local L2 projection of W onto Wh, u is the solution of

(1.4), and uh is the solution of (3.1).

Proof. Choose vh ∈ Vh, such that ∇ ⋅ vh = ph − QW
h p with ||vh|| ≤ C||ph − QW

h p||. Then,

by the definition of QW
h , we have

||ph − QW
h p||2 = (ph − QW

h p,∇ ⋅ vh)
= (ph − p,∇ ⋅ vh) = (A(uh − u), vh)
≤ C||uh − u||A ||vh||

≤ C||uh − u||A ||ph − QW
h p||.
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ADHIKARI ET AL. 13 of 22

That is,

||ph − QW
h p|| ≤ C||uh − u||A.

Now applying the triangle inequality, the last inequality, approximation property of QW
h ,

and Theorem 3, we obtain

||ph − p|| ≤ ||ph − QW
h p|| + ||QW

h p − p||, (4.15)

≤ ||uh − u||A + ||QW
h p − p||, (4.16)

≤ C
[
hs||p||s+1 +

√
𝛿||pM

h ||
]
, for s ≤ 𝜄(k) + 1. (4.17)

Then (4.13) follows from the last estimate combined with the following inequality:

||pM
h || ≤ ||pM

h − p|| + ||p|| ≤ Chs||p||s+1 + ||p||.

This completes the proof of (4.13).

To prove (4.14), we consider the following dual problem

− div(A−1∇q) = QW
h p − ph in Ω,

(A−1∇q) ⋅ 𝝂 = 0 on ΓN ,

q = 0 on ΓD.

(4.18)

Let q be the weak solution of problem (4.18) of the form (1.7) and w = −A−1∇q in Ω.

Then ∇ ⋅ w = QW
h p − ph. Using the commutative property (2.2), we obtain ∇ ⋅ Πdiv

h w =
QW

h ∇ ⋅ w = QW
h p − ph. Then

||QW
h p − ph||

2 = (QW
h p − ph,∇ ⋅ Πdiv

h w) = (p − ph,∇ ⋅ Πdiv

h w)
= (A(u − uh),Πdiv

h w)
= (A(u − uh),Πdiv

h w − w) + (A(u − uh),w).
(4.19)

Using the approximation property of Πdiv

h , the first term on the right-hand side of the last

equation can be estimated as:

(A(u − uh),Πdiv

h w − w) ≤ C||u − uh||A||Πdiv

h w − w||

≤ Chr||u − uh||A||||w||r ≤ Chr||u − uh||A||||q||r+1, (4.20)

for some r ∈ (0, 1]. To obtain an estimate of the second term, we apply integration by

parts and split the term as follows:

(A(u − uh),w) = −(A(u − uh),A−1∇q) = −(u − uh,∇q)
= (∇ ⋅ (u − uh), q)
= (∇ ⋅ (u − Πdiv

h u) + ∇ ⋅ (Πdiv

h u − uh), q − QW
h q + QW

h q)
= (∇ ⋅ u − QW

h ∇ ⋅ u, q − QW
h q) + (QW

h ∇ ⋅ u − ∇ ⋅ uh,QW
h q)

= (∇ ⋅ u − QW
h ∇ ⋅ u, q − QW

h q) + (∇ ⋅ (u − uh),QW
h q).

(4.21)

Then using the approximation property of QW
h , the first term on the right-hand side of the

last equation can be estimated by:

(∇ ⋅u−QW
h ∇ ⋅u, q−QW

h q) ≤ ||∇ ⋅u−QW
h ∇ ⋅u||||q−QW

h q|| ≤ Chr||∇ ⋅u−QW
h ∇ ⋅u||||q||r. (4.22)
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14 of 22 ADHIKARI ET AL.

To estimate the last term in (4.21), we first subtract (3.1) from (1.4b) with q = ∇ ⋅ vh and

use the recovery equation (3.2) to find

(∇ ⋅ (u − uh),∇ ⋅ vh) = 𝛿
[
(Auh, vh) + ⟨gD, vh ⋅ 𝝂⟩ΓD

]
= 𝛿(ph,∇ ⋅ vh) ∀ vh ∈ Vh.

Then choosing vh such that ∇ ⋅ vh = QW
h q, and applying (4.13), the last equation yields

(∇ ⋅ (u − uh),QW
h q) = 𝛿(ph,QW

h q) ≤ 𝛿||ph||||q|| ≤ 𝛿(||p − ph|| + ||p||)||q||

≤ C𝛿(hs||p||s+1 +
√
𝛿||p||)||q||

≤ C𝛿||p||s+1||q||.

(4.23)

The estimate for the last term in (4.19) is obtained by plugging (4.22) and (4.23) into

(4.21). Then plugging (4.20) for the first term and applying the estimate provided by (1.9),

one obtains (4.14). ▪

Remark 2. The local post-processing scheme proposed in [32] utilizes the mixed finite

element solutions computed in V(k)
h ×W (k)

h to develop a more accurate approximation of the

primary variable in the higher degree space W (k+1)
h . Here, we present the scheme adapted

to our finite element solutions to approximate the pressure p with increased accuracy

and provide a result demonstrating the accuracy improvement. We denote QW
h by Q(k)

h to

emphasize the polynomial degree and extend the notation to write Q(i)
h for the local L2

pro-

jection of W onto W (i)
h for integer i ≥ 0. Then the post-processing solution p∗

h ∈ W (k+1)
h is

defined element-by-element through p∗
h|K ∈ Pk+1(K) as a solution 𝜙h of the formulation

(A−1∇𝜙h,∇qh)K = (f , qh)K − ⟨uh ⋅ 𝝂K , qh⟩𝜕K ∀ qh ∈ (I − Q(0)
h |K)W (k+1)

h |K (4.24a)

subject to

Q(0)
h |K𝜙h = Q(0)

h |Kph, (4.24b)

where 𝝂K is the outward unit normal vector on the boundary of K. The solution p∗
h is found

to achieve the following improved accuracy

||p − p∗
h|| ≤ C

[
h
(
||u − uh||A + ||Πdiv

h u − u||0,h
)
+ ‖
‖
‖

p − Q(k+1)
h p‖‖

‖0,h
+ ‖
‖
‖

Q(k)
h p − ph

‖
‖
‖

]
, (4.25)

where || ⋅ ||0,h is the mesh-dependent norm defined by ||q||2
0,h = ||q||2 +

∑
K∈h

h2

K|q|21,K
for functions q ∈ L2(Ω) with q|K ∈ H1(K) ∀ K ∈ h and ||v||2

0,h = ||v||2 +
∑

K∈h
hK||v ⋅

𝝂K||
2

0,𝜕K for functions v ∈ H(div; Ω) with v ⋅ 𝝂K ∈ L2(𝜕K) ∀ K ∈ h. The above error

estimate is established using the same arguments as in Theorem 2.2 in [32] and applying

the trace inequality (see e.g., [1]).

5 NUMERICAL EXAMPLES

In this section, we present sample results from numerical experiments to confirm our theoretical results

as well as to demonstrate the effectivity and the robustness of our algorithm. For all the numerical

examples, in order to look at convergence behaviors closely, uniform meshes are used instead of adap-

tive meshes. On the other hand, the small parameter 𝛿 makes the system of equations nearly singular,

for which round-off errors are observed to cause accuracy deterioration. In our numerical computa-

tion, we use defect corrections to overcome round-off errors. Namely, using a solution obtained by

the direct solver, we obtain a residual and calculate correction by solving the system once more. The

improved accuracy of the solution is reported in our numerical tables.
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ADHIKARI ET AL. 15 of 22

TABLE 1 Errors and their reduction ratios of uh ∈ RT
(0)
h and p for the pressure boundary condition (5.2a); the

parameter 𝛿 is chosen as h2
.

DOFs h ||u − uh2

h || Rate ||u − uh2

h ||div Rate ||p − ph|| Rate

56 1/4 6.37378e−01 x 3.25377e+00 x 1.50786e−01 x

208 1/8 3.24488e−01 0.9740 1.63642e+00 0.9916 7.82612e−02 0.9461

800 1/16 1.63279e−01 0.9908 8.19426e−01 0.9979 3.94786e−02 0.9872

3136 1/32 8.18073e−02 0.9970 4.09866e−01 0.9995 1.97822e−02 0.9969

12,416 1/64 4.09294e−02 0.9991 2.04952e−01 0.9999 9.89644e−03 0.9992

49,408 1/128 2.04685e−02 0.9997 1.02478e−01 1.0000 4.94889e−03 0.9998

TABLE 2 Errors and their reduction ratios of uh ∈ BDM
(1)
h and p for the pressure boundary condition (5.2a); the

parameter 𝛿 is chosen as h4
.

DOFs h ||u − uh4

h || Rate ||u − uh4

h ||div Rate ||p − ph|| Rate

112 1/4 1.53125e−01 x 3.25371e+00 x 1.50782e−01 x

416 1/8 4.06233e−02 1.9143 1.63641e+00 0.9916 7.82634e−02 0.9461

1600 1/16 1.03491e−02 1.9728 8.19424e−01 0.9979 3.94786e−02 0.9873

6272 1/32 2.60407e−03 1.9907 4.09865e−01 0.9995 1.97822e−02 0.9969

24,832 1/64 6.74000e−04 1.9499 2.04952e−01 0.9999 9.89645e−03 0.9992

TABLE 3 Errors and their reduction ratios of uh ∈ RT
(0)
h and p for the flux boundary condition (5.2b); the parameter 𝛿

is chosen as h2
.

DOFs h ||u − uh2

h || Rate ||u − uh2

h ||div Rate ||p − ph|| Rate

40 1/4 6.60495e−01 x 3.25377e+00 x 1.52770e−01 x

176 1/8 3.28211e−01 1.0089 1.63642e+00 0.9916 7.84947e−02 0.9607

736 1/16 1.63847e−01 1.0023 8.19426e−01 0.9979 3.95068e−02 0.9905

3008 1/32 8.18911e−02 1.0006 4.09866e−01 0.9995 1.97857e−02 0.9976

12,160 1/64 4.09415e−02 1.0001 2.04952e−01 0.9999 9.89688e−03 0.9994

48,896 1/128 2.04702e−02 1.0000 1.02478e−01 1.0000 4.94894e−03 0.9999

5.1 The case of full elliptic regularity

We begin with a simple example with the identity tensor, that is, A = I, given as follows. With the

domain Ω = (0, 1)2, the following problem is considered:

u = −∇p, in Ω, (5.1a)

∇ ⋅ u = f , in Ω, (5.1b)

on the boundary Γ of which one of the following two boundary conditions are assumed:

p = g, on Γ, (5.2a)

𝝂 ⋅ u = g, on Γ. (5.2b)

Here, f and g are generated by the analytic solution p(x, y) = x3y + y4 + sin(𝜋x) cos(𝜋y). For this

example, uniform triangulations of Ω are adopted in our numerical simulation and the approximation

of the flux variable, RT
(0)
h and BDM

(1)
h spaces are employed.

Tables 1 and 2 show errors in the computation of the flux variable applying the hybrid method

with pressure boundary condition (5.2a) and give optimal convergence rates in the approximation of

the flux variable. The choices of parameter are set to 𝛿 = h2
for RT

(0)
g,h and 𝛿 = h4

for BDM
(1)
g,h.

Also the case where the flux boundary condition (5.2b) is solved is shown in Tables 3 and 4 with

parameters 𝛿 = h2
for RT

(0)
h and 𝛿 = h4

for BDM
(1)
h .
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16 of 22 ADHIKARI ET AL.

TABLE 4 Errors and their reduction ratios of uh ∈ BDM
(1)
h and p for the flux boundary condition (5.2b); the parameter 𝛿

is chosen as h4
.

DOFs h ||u − uh4

h || Rate ||u − uh4

h ||div Rate ||p − ph|| Rate

80 1/4 2.52166e−01 x 3.25377e+00 x 1.59554e−01 x

352 1/8 6.44209e−02 1.9688 1.63642e+00 0.9916 7.94309e−02 1.0063

1471 1/16 1.62002e−02 1.9915 8.19426e−01 0.9979 3.96269e−02 1.0032

6016 1/32 4.05619e−03 1.9978 4.09866e−01 0.9995 1.98008e−02 1.0009

24,320 1/64 1.01444e−03 1.9994 2.04952e−01 0.9999 9.89878e−03 1.0002

TABLE 5 Local mass conservation error in maximum norm as a function of 𝛿 for a fixed fine mesh size at h = 1∕64.

𝜹 ||𝛁 ⋅ uh − Qhf ||∞,h

1.e−03 0.78834D-05

1.e−04 0.78836D-06

1.e−05 0.78836D-07

1.e−06 0.78836D-08

1.e−07 0.78836D-09

We note that when we control the 𝛿 so that it gradually decreases to zero, Table 5 verifies the decay

of local conservation error.

5.2 The case of partial elliptic regularity

We next consider the L-shape domain problem with a constant coefficient in the non-convex domain

Ω = (−1, 1)2 ⧵ [0, 1) × (0,−1] with nonhomogeneous pressure boundary data g as given in (5.2a). As

an exact solution, the harmonic function p(r, 𝜃) = r𝛼 sin(𝛼𝜃) is taken, where 𝛼 = 2

3
so that p ∈ H

5

3 (Ω)

and g ∈ H
7

6 (Γ).
We approximate uh ∈ RT

(0)
h and uh ∈ BDM

(1)
h on uniform meshes. For the choices of 𝛿, we

attempted to use 𝛿 = 1 and h
4

3 on RT
(0)
h , and h

10

3 on BDM
(1)
h . We provide two results in Table 6, the

computation of the flux variable, obtained with 𝛿 = 1 and 𝛿 = h
4

3 on RT
(0)
h . In Table 7, the computation

of the flux variable, obtained with 𝛿 = 1 and h
4

3 , is shown with the flux boundary condition (5.2b). In

Table 8, the computation of the flux variable on BDM
(1)
h , obtained with h

10

3 , is shown for the pressure

(5.2a) and the flux boundary condition (5.2b). The numerical results confirm that proper choices of

parameter 𝛿 are important in using the Algorithm 2.

5.3 The case of varying permeability tensor

It is well known that for the heterogeneous permeability tensor, the numerical solution often fails to

converge due to the huge condition number. To overcome such a difficulty, several efficient precondi-

tioners for H(div)-bilinear form equation are proposed [3, 4, 16, 18, 19, 22]. For numerical example

in this subsection, the H(div)-preconditioner designed in [3] was implemented. The exact solution is

the same as that of full ellipticity regularity case. The source function and boundary conditions are
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ADHIKARI ET AL. 17 of 22

TABLE 6 Errors and their reduction ratios of uh ∈ RT
(0)
h for the L-shape domain with pressure boundary condition (5.2a).

DOFs h ||u − u1
h|| Rate ||u − uh

4
3

h || Rate

44 1/4 2.90157e−01 x 2.77970e−01 x

160 1/8 2.05193e−01 0.4999 1.86047e−01 0.5793

608 1/16 1.44885e−01 0.5021 1.20496e−01 0.6267

2368 1/32 1.08681e−01 0.4148 7.70649e−02 0.6448

9344 1/64 8.94803e−02 0.2805 4.89770e−02 0.6540

37,120 1/128 8.03837e−02 0.1547 3.10161e−02 0.6591

147,968 1/256 7.64213e−02 0.0729 1.96008e−02 0.6621

Note: The parameter 𝛿 is chosen as 1 and h
4

3 .

TABLE 7 Errors and their reduction ratios of uh ∈ RT
(0)
h for the L-shape domain with the flux boundary condition (5.2b).

DOFs h ||u − u1
h|| Rate ||u − uh

4
3

h || Rate

28 1/4 3.30758e−01 x 2.81957e−01 x

128 1/8 2.71112e−01 0.2869 1.93947e−01 0.5398

544 1/16 2.31156e−01 0.2300 1.29180e−01 0.5863

2240 1/32 2.08484e−01 0.1489 8.47662e−02 0.6078

9088 1/64 1.96699e−01 0.0839 5.51806e−02 0.6193

36,608 1/128 1.90804e−01 0.0439 3.57533e−02 0.6261

146,944 1/256 1.87865e−01 0.0224 2.30971e−02 0.6304

Note: The parameter 𝛿 is chosen as 1 and h
4

3 .

TABLE 8 Errors and their reduction ratios of uh ∈ BDM
(1)
h for the L-shape domain with the pressure (5.2a) and the flux

boundary condition (5.2b) with corresponding DOFs.

BC (5.2a) BC (5.2b)

DOFs h ||u − uh
10
3

h || Rate ||u − uh
10
3

h || Rate

88/56 1/4 1.18933e−01 x 1.24663e−01 x

320/256 1/8 7.51826e−02 0.6617 7.99052e−02 0.6417

1216/1088 1/16 4.74130e−02 0.6651 5.12513e−02 0.6407

4736/4480 1/32 2.98797e−02 0.6661 3.28582e−02 0.6413

18,688/18,176 1/64 1.88257e−02 0.6665 2.10542e−02 0.6421

74,240/73,216 1/128 1.18605e−02 0.6665 1.34834e−02 0.6429

Note: The parameter 𝛿 is chosen as h
10

3 .

changed according to the exact solution and varying permeability field

A =

[
(x + 2)2 + y2

sin(𝜋xy)
sin(𝜋xy) 1

]

. (5.3)

With the use of V-cycle multigrid preconditioner, the numerical solution converges within a few iter-

ations. Table 9 shows errors in the computation of the flux variable applying the hybrid method with
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18 of 22 ADHIKARI ET AL.

TABLE 9 Errors and their reduction ratios of uh ∈ RT
(0)
h for the varying permeability tensor with flux boundary

condition.

DOFs h ||u − uh|| Rate ||u − uh||div Rate

40 1/4 4.89318e+00 x 1.45608e+01 x

176 1/8 2.44908e+00 0.9985 7.37602e+00 0.9812

736 1/16 1.22496e+00 0.9995 3.69997e+00 0.9953

3008 1/32 6.12536e−01 0.9999 1.85148e+00 0.9988

12,160 1/64 3.06275e−01 1.0000 9.25928e−01 0.9997

48,896 1/128 1.53139e−01 1.0000 4.62987e−01 0.9999

Note: The parameter 𝛿 is chosen as h2
.

flux boundary condition (5.2b) and gives optimal convergence rates in the approximation of the flux

variable with varying permeability tensor.

5.4 The case of heterogeneous permeability tensor

We consider the following Darcy’s flow problem with two-dimensional heterogeneous permeability

tensor that is provided from the SPE10 Model 1. The domain is Ω = (0,100) × (0, 20) and nonhomo-

geneous pressure boundary data pin = 1000 and pout = 10 are set on the left and right boundaries,

respectively. The zero flux boundary conditions are imposed on the top and bottom boundaries. The

source function in (5.1b) is set to be zero. For this example, uniform triangulations of Ω are adopted in

our numerical simulation and the RT
(0)
h space is employed for the approximation of the flux variable.

For the recovery of pressure, the C−1(P(0)
h ) space is employed. For the comparison of our numerical

results, the standard mixed finite element method space RT
(0)
h × C−1(P(0)

h ) is employed to create ref-

erence numerical solutions. The values of heterogeneous permeability tensor are shown in Figure 1

with log scale. A figure for the (u, v) velocity fields and the recovered pressure field p by Algorithms

2 and 3 is also shown in Figure 2. We checked that the numerical results agree well with those by the

standard mixed finite element approximation, and thus we omit the results for the latter. For the hybrid

method, the computational mesh size h is chosen to be 0.5 and its corresponding optimal choice of the

parameter 𝛿 is set to 2.5 × 10
−5

. Since the flow drives in the negative direction of pressure gradient

and pressure boundary condition is imposed on the inlet/outlet with specified values, the velocity in

x-direction varies more widely comparing to the velocity in y-direction. The pressure field changes

almost linearly with small variations in x direction.

Table 10 reports the CPU time comparison between the mixed finite element method and Algo-

rithms 2 and 3 for the SPE10 data. For the time in assembling matrix, time for constructing stiffness

matrix is necessary for the mixed finite element method, but in the case of the hybrid simple method,

construction of mass and divergence matrices are needed additionally. However, for the resulting

matrix system in the mixed finite element method, we need to solve positive indefinite system for

velocity and pressure simultaneously. On the other hand, for the simple hybrid method, it is enough

to solve positive symmetric definite system for the velocity and recover pressure separately. Overall

computational time for solving flux and pressure variables by using the same direct linear solver or

iterative minimum residual method (MINRES) [30] shows simple hybrid scheme is more efficient in

computational time.
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FIGURE 1 Permeability tensor with log scale from SPE10 model 1.

FIGURE 2 The velocity field (u, v) (upper) in RT
(0)
h by Algorithm 2 and the recovered pressure p (lower) in C−1(P(0)

h ) by

Algorithm 3 for SPE10 Model 1.

TABLE 10 The CPU time comparison of the standard mixed finite element method and our Algorithm 2.

Assembling matrix Direct solver MINRES

Mixed method 1.3 s 5.9 s 340 s

Hybrid method 1.5 s 0.5 s 130 s

5.5 The case of heterogeneous permeability tensor-SPE10 layer75

We consider the following Darcy’s flow problem with two-dimensional heterogeneous permeability

tensor that is provided from SPE10 Model 2 Layer75. The model dimensions are 1200 × 2200 × 170

(ft) and the fine scale cell size is 20×10×2 (ft) thus the domain is 60×220×85. We only consider the

single layer 75, the computational domain is Ω = (0, 60) × (0,220). The zero flux boundary conditions

are imposed on the top and bottom boundaries. For the left and right boundaries, nonhomogeneous

pressure boundary data pin = 100,000 and pout = 10 is implied and the source function in (5.1b) is set
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20 of 22 ADHIKARI ET AL.

FIGURE 3 The permeability (left) for SPE Layer 75, the velocity field (u, v) (middle) in RT
(0)
h by Algorithm 2 and the

recovered pressure p (right) in C−1(P(0)
h ) by Algorithm 3 with specified pressure data on left/right and zero flux data on

top/bottom boundaries.

FIGURE 4 The (u, v) velocity quiver plot (left), u-(middle) and v-(right) fields with lowerleft point source and upperright

point sink by Algorithm 2 using RT
(0)
h .

to be zero. The values of heterogeneous permeability tensor are shown in the leftmost of Figure 3 with

log scale. A flow plot for the (u, v) velocity field and the recovered pressure field p by Algorithms 2

and 3 are also shown in Figure 3. The plotted flow is averaged over eight triangles for the visibility.

In the presence of point source at the leftlower and point sink at right upper corners with all zero

flux boundary conditions, the numerical simulations are also performed and their results are shown in

Figure 4. In this simulation, we can clearly see the flow pattern as we expected.
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