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tant feature of our new method is that the approximate
solution for the flux variable is obtained without approxi-
mating the pressure at all. To accomplish this, we introduce
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Y a user-defined parameter delta, which is typically chosen

to be small so that it minimizes the negative effect result-
ing from the absence of the pressure, such as inaccuracy
in both the flux approximation and the mass conservation.
The resulting algebraic system is of significantly smaller
degrees of freedom, compared to the one from the mixed
finite element methods or least-squares methods. We also
interpret the proposed method as a single step iterate of
the augmented Lagrangian Uzawa applied to solve the
mixed finite element in a special setting. Lastly, the pres-
sure recovery from the flux variable is discussed and an
optimal-order error estimate for the method is obtained.
Several examples are provided to verify the proposed the-
ory and algorithm, some of which are from more realistic
models such as SPE10.
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1 | INTRODUCTION

Let Q be a bounded open domain in R?, d = 2,3, with boundary I = Ty U 5. We are interested in
solving the following equation for u and p:

u=—KVp in Q, (1.1a)
u

V-u=f inQ, (1.1b)

u-v=g onlly, (1.1¢)

p=gp onlp, (1.1d)

where v denotes the unit outward normal vector to the boundary I', K and y are the permeability
tensor of the medium and the viscosity of the fluid, respectively, and f, g and gp are the volumetric
flow rate source or sink, the prescribed normal flux and pressure on the boundary, respectively. The
Equation (1.1) arises in the single phase flows in porous media, €2, governed by the Darcy flow model:

u= —K(Vﬁ+pg), and V-u=f,
u

subject to the boundary conditions:
u-v=g, onl'y and p=g, onlp,

where p represents the density of the fluid, g is the gravity vector, g, is a modification of gp obtained
by interchanging between p and p, and u and p are the Darcy flow rate and the pressure in the fluid.
Note that the modified pressure given in (1.1) can be obtained through p = p + pg.z, where g. and z
are the gravity scalar and the coordinate of gravitational direction, respectively.

The difficulty in the practical simulation of Darcy flow model arises from the irregularities of the
domain boundaries I'p and I'y and the permeability tensor K. We shall assume that Q is Lipschitz and
its boundary parts I'p and I'y satisfy some regularity condition that will be specified later. We shall
only assume that K € R?*“ is a d X d bounded, symmetric and uniformly positive definite matrix and
U E L®(Q).

We shall attempt to solve the Equation (1.1) using the finite element methods. For the sake of
presentation of finite element methods, we shall use standard Sobolev spaces. For example, for region
Kin R4, let (-, )k, (-, Yok || - llo.x» and | - o9k denote the L?>(K) and L?*(0K) inner products and norms,
respectively, and so on. In case K = Q, the subindex may be omitted and furthermore the index 0 may
be dropped, too. We set the following Sobolev space:

V = Hr, o(div; Q) = {v e H(div; Q) | v-v=0o0n Ty}, (1.2)

and W = L*(Q). For the sake of simplicity in notations, we shall denote the norm on H(div; Q) as
|| - |lv and the norm on L? as || - ||w or simply || - ||, respectively. The symbol ||-, -||yxw denotes the
product norm for the product space V X W.

Throughout this article, for the sake of simplicity, we shall assume that g = 0 on I'y for the
Equation (1.1). If it is not the case, we can introduce uy € H(div; ) such that uy - v = g and write
the Equation (1.1) in terms of @t = u — ug. This shall result in the modified right hand sides for (1.1a)
and (1.1b). Note that this modification does not change p or its boundary condition gp. We also further
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assume that I'p # @. This is because the case I'p = @ leads us to discuss some additional constraints
for the well-posedness of the problem. More precisely, if the Neumann condition is prescribed in the
entire boundary, I, that is, ['y = I', then the compatibility condition must be given as follows:

Jofdx = [rg ds, (1.3)

for a unique existence of solution p € H'(Q)/R. Lastly, we shall use a standard Sobolev space
notation, that is, L*(Q) with 1 < a < co denotes the space of functions whose a power is integrable
over the domain Q and W**(Q) for 1 < a < oo denotes the space of functions in L*(Q) whose first

k derivatives are in L? space. Now for f € L*(Q), the standard mixed weak formulation of (1.1) is to
find (u, p) € Hr, o(div; Q) X L*(Q) such that

(Au,v) — (p,V-v)=—(gp,Vv- V>FD, Vv € Hr, o(div; Q), (1.4a)

V-wq9) =(.q, VqelLXQ), (1.4b)

-1
where A = (%) . We note that the system (1.4) can be cast into the following operator form to find
(u,p) € Hr, o(div; Q) x L*(Q) such that for G € Hr, o(div; Q) and F € L*(Q),

(w0 )()-()

where A : H(div; ) = Hr, o(div; Q). B := V- : H(div; Q) — L?(Q) and B* is its adjoint operator
of B.

Our error analysis in Theorem 4 exploits the regularity estimate of weak solution of the Laplace
operator with mixed boundary conditions. For non-smooth domains, while the estimate for a Dirichlet
or a Neumann boundary condition is well-known, much less has been done for a mixed boundary
condition. For this reason, we will make the following regularity assumptions on I". We let that I'j, has
a positive measure, and that I'y satisfies the following conditions with B = B(0; 1) denoting the unit
ball in R?:

1. there exists a family (Uy, Uy, ... , Uy) of open sets of R4 such that
QC UL U, UpCQ;
2. there exists a corresponding family of functions (¢, ... ,¢;) such that ¢; : U; — B is
one-to-one and ¢; and qu‘l are Lipschitz-continuous fulfilling one of the following conditions:

a. UinTy =U;nT and ¢; satisfies

¢j(U;n Q) = BNRY( with x; > 0) := By, (1.6a)

$i(U;nT)=BnR"(withx, =0) :=B; (1.6b)
b. U;nTy =0 and ¢; satisfies (1.6a);

($U;NQ) = {x €B | x4 >0,x5-1 >0} =: Byy,
c. 2 ¢UinTp)={x€B|x5=0,x5-1 >0},

$UinTy) ={x€B | x4 > 0,x4-1 = 0}.

We use the notation WIIEZO(Q) to represent the set of functions in W*¢(Q) whose trace on I'j is
zero, and use the shorthand H*(Q) for W*2(Q). The dual spaces of H}. () and W;-“(Q) are denoted
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4 of 22 WI LEY ADHIKARI ET AL.

by HE[} (€) and W, )1'“(9), respectively. Additionally, we define

. 2L ifd>2, 6  ifd=3,
2F =4 d-2 that is, 2* =
o ifd <2, o ifd<2.

The following theorem, which corresponds to Theorem 4 in [14], is included here for completeness.

Theorem 1. There exists £ with2 < £y < 2% such that whenever p € Hll"D,o(Q) is a weak
solution of

(AVp. V) = ahyocqy m @ V4 E€HE, Q) (1.7
Tp > Mrpo
forsome2 <€ < tyandf € Wlfpl’f(Q), thenp € Wllﬁo(Q) and

||P||erglo(g) < C(f)lvnwlj;f(g) (1.8)

For smooth domains, the following stronger result is found to be established by using the notion
of fractional order Sobolev spaces:

||p||H%ﬂ @ < Cllflly-1+s(q), for some s > 0. (1.9)
DO 'p

We refer our readers to (e.g., [6, 31]) for the estimate (1.9) and to (e.g., [12]) for the fractional order
Sobolev spaces.

The standard technique to solve the system (1.4) is the mixed finite element method. We point out
that the mixed finite element is in general difficult to formulate since it requires certain cares to adopt
a suitable stable pair of finite element spaces for u and p, as well as to design a fast solver. Our motiva-
tion in this article is that typical application areas of fluid mechanics such as subsurface flow modeling,
do not require calculations of pressure while accurate and efficient approximations of flux is crucial.
Namely, the use of standard mixed finite element methods devoted to approximate both flux and pres-
sure as accurate as possible simultaneously by distributing computational efforts to the approximation
of both flux and pressure variables can be overkill in practice. In this spirit, we have introduced a new
light scheme to compute the flux variable, that is, a parameter-dependent hybrid two-step method in
our prior work [24]. In this scheme, a pressure is approximated very roughly in a very coarse mesh by
using a standard Galerkin scheme, or its variant; then, a parameter-dependent H(div)-variational form
with appropriate right hand side is set and solved in a finer mesh. This technique is shown to give an
optimal order flux approximation.

In the current paper, we improve the hybrid two-step method, [24]. That is, we show that the
H(div)-variational form is the only equation needed to be solved, that is, the first step to obtain rough
approximate pressure can be skipped to obtain the desired flux variable of optimal accuracy. This shall
therefore lead us to obtain a single-step method. The advantage of the proposed approach is that the
bilinear equation is H(div)-elliptic, and it is free from the restriction of discrete inf-sup condition, since
it employs only the H(div) vector part of mixed finite element space pairs for which there have been
several efficient preconditioners for H(div)-bilinear form equation, just to cite a few, [3, 4, 16, 18, 19,
22]. Additionally, we provide a new interpretation of the single step flux approximation as a single
step iterate of augmented Lagrangian Uzawa applied to solve the mixed finite element in a special
setting. Lastly, although it is not our primary interest to approximate the pressure variable accurately,
we provide a scheme to compute the pressure based on the flux approximation as well.

The rest of our article is organized as follows. In Section 2, preliminaries results concerning the
mixed finite element methods for second order elliptic equations with mixed boundary conditions are
presented. A single step flux approximate scheme is then presented in Section 3 and error estimates
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ADHIKARI ET AL. Wl LEY 5of22

are provided in Section 4. Confirming numerical results for the theoretical development are presented
in Section 5.

2 | PRELIMINARIES ON THE MIXED FINITE ELEMENT METHOD AND
THE HYBRID TWO-STEP METHOD

In this section, we review the classical mixed finite element spaces, but point out some recent result
as presented in [26] that is needed to understand and solve the mixed finite element for second order
elliptic equations with mixed boundary conditions (1.4).

2.1 | Mixed finite element method for second order elliptic problem

To obtain approximate solutions for (1.4), let 7;, be a family of shape regular triangulation of Q, where
h = maxger, hg, hx = diam(K), see [9]. First, we briefly review some of the properties of the classical
mixed finite element spaces. Denote by R’]I‘Elk) and BDMZ’C) the Raviart-Thomas—Nédélec space [27,
29] and the Brezzi-Douglas-Marini or Brezzi-Douglas-Duran-Fortin space of index £ > 1 [10, 11]
defined as follows:

RTY := {ve H(div; Q) : v|x € [P(K)]? ® Span{xPy(K)}, K € T},
BDM{" := {ve H(div; Q) : vlx € [PK)’, K€ Ty},

where P;(K) denotes the space of all polynomials up to degree k defined on K, and ;k(K ) the space
of all homogeneous polynomials of degree k. Denote by CO(P;,k)) the standard C°-conforming finite
element spaces of piecewise polynomials of degree < k on mesh 7. By C‘I(Pﬁlk)) we also designate
the space of piecewise polynomials of degree < k on mesh I, namely, C‘I(Pﬁlk)) = {q € L*(Q
glx € Py(K), K € T},}. We set

RTY) = RT}” N Hr, o(div; ), BDM) = BDM’ n Hr, (div; Q).
Next, we define the family of RTN/BDM-BDDF mixed finite element spaces of index k,k =0, 1, ... ,
by
RTg5 x C1(PY),

M) =V xw® =
0k O h BDMY x C'(P),

where

ook if V§), = RTy,),
W=V v o
’ 0,h — 0,4 *

Denote by Ng‘,)l the space CO(PEIkH) ) nH}N(Q) in 2D and the Nédélec element of degree k as a subspace
of Hy(curl; Q) in 3D, respectively: that is,

N§), := {v € Hr, o(cur; Q) : v|x € [P(K)]® ® Span{q € [P (K)I® : x-q=0, K€ T,).

The key to prove the well-posedness of the above mixed formulation (1.4) and other related finite
element theory is at the (partial) de Rham complex [2, 5, 8, 17] (in two and three space dimensions)
with mixed boundary conditions with the bounded interpolation operator. This has been established in
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6 of 22 WI LEY ADHIKARI ET AL.

[26], which can be stated as follows:

Hr, o(curl; Q) —0 Hp o(div; Q) —2 12()

1 div 0
[ [t |

Ni» 2l Vi, — 25— Wi @2.1)
Namely, we have that
V- -I"u =1V -u, Vue Hr,odiv; Q). (2.2)

Let V,, be the discrete gradient operator V, : ng;l - ng;l or the adjoint operator with respect to L?
inner product, defined as follows: for g, € W(()If,),,

(Vg Vi) = =(qn, V- Vi), ¥V, € Vi (2.3)

Then, we have the (discrete) Helmholtz decomposition via the closed range theory (see also [3], [20,
Lemmas 2.5 and 2.6]), that is,

Vi) = Vx N @ V, W = N (div) @ R(div*). (2.4)

Note that the orthogonality holds both in L?(Q) and in H(div; Q) inner product.
The mixed finite element approximation for (1.4) is then to find (u}!, p}/) € Vg‘;l X Wé’f}l such that

A v) = PV - vi) = —(gp. V- Vidr,. ¥ Vi € Vi, (2.52)

V-wl g =Foq), Yane W (2.5b)

For fixed k and boundary conditions, we shall simply put V;, := Vg‘,)l and W), := W(()k,), for simplicity.
In deriving error estimates, we will take advantage of the well-known mixed finite element method
error estimates: we refer the reader to [7, 10, 11, 13, 15, 23] and references therein.

Theorem 2. The Equation (2.5) produces the approximate solution (0)!, pi') € V, X W,
to Darcy law (1.1) such that the following error estimates hold true:

[@=up,p—pllvxw S inf l(@ = Vi, p = gn)llvxw. (2.6)

Visdn €V XW,,

Proof. We note that it is standard to show that the Darcy law is well-posed. On the other
hand, this is true as well that

Avi,vi) 2 IVill}, YV €Zy = (v, €V), 1 b(v,w) =0, Yy € W,}. 2.7
From the de Rham complex, we have that
b(v-TNv,y) =0, YveEV,yeW, (2.8)

Furthermore, it holds that Hﬂiv is stable. Namely, it is a Fortin operator. This establishes
the discrete inf-sup condition. The quasi-optimality is then standard. This completes the
proof. [

2.2 | The hybrid two-step approximations

In this section, we shall review the hybrid two-step method introduced in [24]. We shall begin with a
simple but important lemma:
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Algorithm 1. Hybrid two-step scheme [24]

For a fixed # > 1 and 6>0, we perform:Find pg € CO(PI(:)) such that
(A7'VP5. Vau) = (f.qn). Y au € COPY). (2.13)
Use p% to find u;, € V), such that
(V-u,, V- -vp)+6(Auy,vy) = + 5pg, V-v)—6{gp,v- Vh)l—D , Vv, eV, (2.14)

Lemma 1. Let 6 > 0 be a parameter and (u, p) be the solution of mixed weak form (1.4).
Assume that v’ € Hr, o(div; ) solves

(V-u,V-v)+8(AW,v) = (f+6p,V - V) = 6(gp, v - V)r,, Vv € Hp o(div; Q). (29)

Then u = v’ forall § > 0.

Proof. Take g =V - vin (1.4b) to get
V-u,V-v)=(f,V-v), VveHr, odiv; Q), (2.10)
which is then added to (1.4a) multiplied by 6 to obtain
(V-w,V-v)+6(Au,v) = (f+p,V -v) = 6(gp.v-V)r,, VVEHr o(div; Q). (2.11)
We now subtract (2.11) from (2.9) to we have
(V-@® —u),V-v)+35A@U° —u),v) =0, VveHr odiv; Q). (2.12)
Therefore, by choosing v = u — u® in (2.12), we arrive at u® = u if § > 0. This completes

the proof. L

The two-step hybrid method obtains the approximation of pressure and then obtain the flux by
solving (2.9) as described as in Algorithm 1. Recall that the two step solvers rely on two meshes,
which is allowed to be independent, one for approximating the primary variable, and the other for flux
variable and such an independent nature is compensated for by an appropriate choice of the parameter
6 to arrive at an optimal accuracy of the flux variable via an appropriate transfer of the primary variable
for the discrete equation of (2.9). We also note that the problem (2.14) can be understood as solving a
bilinear form equation: find u;, € V,, such that

An(ay, vi) = (f +6p5,V - vi) — 6{gp, v - Vidr,s Vi € Vi, (2.15)

where A,(uy, vi,) = (V-uy, V- v,) + 6(Auy, v;,). For an appropriate solution technique for A, we refer
to works by Arnold et al. [3, 4] and also Hiptmair and Xu in [19].

3 | SIMPLE PARAMETER-DEPENDENT APPROXIMATION OF FLUX
VARIABLE AND PRESSURE RECOVERY

It was shown that in [24], the Algorithm I can obtain an optimally accurate flux approximation using
an approximate solution p$ for p on a coarse mesh of size H if & is appropriately chosen. In this section,
we shall show that it is really not necessary to construct an approximate solution p$ at all. Thus, in order
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8 of 22 WI LEY ADHIKARI ET AL.

Algorithm 2. Single step scheme for flux approximation

For a fixed 6>0, we perform:Find u;, € V}, such that

(Vw, Vo) + 6(Aay, vi) = (f, V- vi) = 6(gp, V- Vi)r, » YV € Vj (3.1

Algorithm 3. Pressure recovery Scheme 1

Given uy, € V,, find p;, € W}, such that

(P, V - Vi) = (Awy, Vi) +(gp, v Vi)r, . YV € V) (3.2)

to obtain a good flux approximation uy, it is unnecessary to consider two hybrid grids, but we may take
into account a finer grid only. Furthermore, we shall interpret both the hybrid two step method and
the newly proposed single step method in a unified framework. This is based on an insight on how to
interpret the parameter-dependent flux approximation. In fact, we show that the parameter-dependent
flux approximation can be viewed as a single step iterative solution via augmented Lagrangian Uzawa
applied to the mixed finite element formulation. On a separate issue, although it is not our primary
interest to approximate the primary variable p, it can be approximated from the flux u;, as indicated in
(2.5). We provide two algorithms to recover the pressure approximation as accurate as the one from
the standard mixed finite element method.

3.1 | The single step flux approximation

We shall begin with a simple scheme for the approximation of the flux variable u in (1.1). We drop
the term 6(pg, V - vp) in (2.14) and propose a new simpler scheme Algorithm 2 to approximate u
by u;, € V,,. We then propose the Algorithm 3 below to recover an accurate pressure approximation
pn € Wy, from the flux u;, obtained in Algorithm 2. It is easy to observe that the unique existence of
uy, solving(3.1) and pj, solving (3.2) follows directly from the Lax-Milgram lemma and the discrete de
Rham sequence (2.1), respectively.

Before passing to the next subsection, we observe that the following error equation can be obtained
immediately from (1.4) and (3.1):

(V-(u=w),V-vp)+6(A(u—uy),vy) =6(p,V-vp), Vv, €V, 3.3)

where (u,p) € Hr,o(div; Q) X L*(Q) and u, € V, are the solutions satisfying (1.4) and (3.1),
respectively. The equation will be useful in our error analysis to follow.

3.2 | The single-step and hybrid two-step methods and the augmented Lagrangian Uzawa
method

In this section, we shall provide a view of both the proposed single step and hybrid two-step method
for flux approximation, as a single step iterate of the augmented Lagrangian Uzawa method for the
mixed method. This view provides an alternative way to recover the pressure from the flux as well. We
begin our discussion by casting the mixed finite element formulation (2.5) as the operator equation to
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Algorithm 4. Augmented Lagrangian Uzawa iterative method [25]

Set # = 0 and for a given p” € W), and we perform:Find u”*! by solving the following equation:
<Ah + éBZBh> w4 B =G+ éB}ij. (3.6)
Update the pressure to obtain p’*! as follows:
P = (= B, (3.7)

Go to Step 1 if (u’*!, p?*1) is not a desired solution pair.

AhBZ ll?l/[ _ Gh ’ (3.4)
B0 ! Fy

where Ay, By, B;, Gj, and Fj, are discrete version of A, B, B*, G and F. The augmented Lagrangian
Uzawa begins with the stabilization by 13} 13, of the above equation as follows:

1,
~BiBB; | uM 1p:
R <uf4)=<Gh+thF”>. (3.5)
B0 )\Ph Ey

The augmented Lagrangian Uzawa iterative method applied for the mixed formulation (3.5) can then

read as follows: given an approximate pressure pg, the flux approximation ui = uy, the solution to the

system (2.14) can be shown to satisfy the following equation in an operator form:

find (), pi') € V;, X W}, as follows:

1 % " 1 %
(Ah + 5/3,113,1>uh + BiQ} v = S BiOI i + G, (3.8)

where Q)" is the L? projection onto the space Wj,. Equivalently, we have the following formulae for u,
given as follows:

1 % - 1 % %
w, = <Ah + g13,,13,,) <gBhQ,‘f’Fh +G,— BhQ,ZVpg). (3.9)

This is exactly the single iterate from the augmented Lagrangian Uzawa method introduced in
Algorithm 4. We further note that the reference solution uy;, defined with exact pressure p, is given as
follows:

_ 1o\ 1, .
W, = (Ah + 5BhB;,) (gBhQ,V,VFh +Gj— BhQ,V,Vp>. (3.10)
Sete, =u, —u,and e, = pg — p. Then the error equation is given as follows:
= 1 sk - *
e, =u,—u = <Ah + gBhBh> (—BhQZVep).

This means that

1 % = s 1 * B *
(A e,) = (Ah(Ah +5BiB,) Biole,. (Ai+3BiBi) Bio) ep>
% 1o - *
< (Bth‘:Vep» (-Ah + gBhBh> BhQZVep>

1 * -1 *
= <vaep, [Bh(Ah+ SBiB,) Bh]QzVep> <510} ¢ II* < lle, I
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10 of 22 Wl LEY ADHIKARI ET AL.

To summarize, we have proved the following estimate:

llewlla < \/g”ep” or equivalently  [lu; —Tylls < V3[IpG - pll.

This indicates that even if we choose pg = 0, we are able to obtain good approximation for sufficiently
small choice of 6. More precise error analysis can be found at Section 4 below. Our conclusion is that
both the single step and hybrid two-step method can be viewed as a single step iterate of the augmented
Lagrangian Uzawa method. Recently, this observation has led to a couple of applications for designing
the constrained optimization in image processings [21, 28]. In particular, this view is used to obtain
an alternative pressure recovery from the flux u; (see Algorithm 5 below).

Algorithm 5. Pressure recovery Scheme 2

Given u;, € V,,, we set p* = 0)¥p%, u’*! = u,Update the pressure using the following formula:

1
pn =0} pS+ 5 (Fn = Buw). (3.11)

Then we notice that a standard argument can lead to the following error estimate for the pressure
update given in Equation (3.11)

Py = pall < ey = Pl (3.12)

1
PR
(1+po2)
where p is the minimum eigenvalue for the Schur complement operator for the discrete mixed finite
element system (3.4), that is, S = BhA,leZ. While the augmented Lagrangian Uzawa has been
used extensively, the choice of the parameter 6 has not been paid too much attention. Our theoretical
contribution is at the optimal choice of this parameter 6 in terms of accuracy.

4 | ERROR ANALYSIS AND CHOICES OF §

In this section, we provide error estimates for our approximate solution u, in both L? and H(div; Q)
norms. The corresponding error analysis for pj, the pressure recovery, shall also be presented. Our
estimates shall shed light on the choice of the problem parameter 6 > 0 to achieve optimal-order rates
of convergence. The error analysis performed in this section in relation with the parameter 6 shall guide
how the augmented Lagrangian Uzawa method chooses an optional parameter to achieve an accurate
solution in a single iteration as well.

4.1 | Error analysis tou, and V - u,

We begin with the investigation of convergence behavior of uy, the approximate solution to u obtained
by Algorithm 2. We use the weighted L> norm ||v||ﬁ = (Av, v) to simplify the notation. Here and in
what follows, C represents a generic positive constant independent of the mesh size 4.

Theorem 3. Assume that the solution u of (1.4) belongs to H(Q). Let u;, € Vglk) be the
solution satisfying (3.1). Then,

lw, —ulls < C[lull+ Valpl). s <0 +1. @1
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Furthermore, if V - u of Problem (1.4) belongs to H°(Q), we have

IV, —w| < C[R|IV-ull, +3lipll], s<k+]1. 4.2)

Proof. Let (u, pM) € M be the mixed finite element solution satisfying (2.5). For a
fixed v, € Vﬁlk), by multiplying (2.5a) by 6, setting g, = V - v; in (2.5b), and adding the
resulting terms, we obtain

(V-w), Vv + 8(Aw  vi) = (F + 6 p)l, V - vi) = 6gp, v - Vi)r,- 4.3)
Now, by subtracting (3.1) from (4.3), we get
(V- =), Vevy) + (AW —wap), vi) =6(py. V- wy). (4.4)
In particular, we choose v;, = uﬁ‘f — uy, to obtain
IV - (= w)ll* + 811w = wallZ < SlIp 1INV - (i = wp)ll.

First of all, this results in

IV - ) —uy)|l < slIpIl, 4.5)
which in turns gives
I —wlla < VallPYI. 4.6)
‘We now recall the error estimates for the mixed finite element method [7, 10, 11, 29]:
lipi —pll < C Kliplls  for s < (k) + 1, (4.7a)
lu —ully < C K|y fors <ik)+1, (4.7b)
(IV-@) —wl| <CH|V-u|, fors<k+1. 4.7¢)

Applying the triangle inequality, and combining (4.5), (4.7b), and (4.7), we have
llw, = ulla < flu—wf|la + llu)’ = wylla
<[l + Valip|.

for s < 1(k) + 1. Then (4.1) follows from the last estimate combined with the following
triangle inequality:

Iy Nl < ipy' = pll + llpll < CRY|lull + [l 4.8)
Moreover, if V - u of Problem (1.4) belongs to H*(L2), we have
IV (@ = wll < IV - @ =Dl + IV - @ —up)ll
< C[FIIV - ully+ 81PN
for s < k + 1. Using the triangle inequality and plugging (4.7a), the last inequality leads

to (4.2). This completes the proof. (]

Two special cases for the lowest-order RTN and BDM families are explicitly given in the following
two corollaries.
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12 of 22 Wl LEY ADHIKARI ET AL.

Corollary 4.1. Assume that u of Problem (1.4) belongs to H'(Q) and that 56 < C h*. Let
u, € RTEO) be the solution satisfying (3.1). Then,

sy wouy papeojumoq ‘0 “9THTS8601

lluy —ulla < C Rl + lplD) - 4.9)

Furthermore, if V - u of Problem (1.4) belongs to H'(Q), we have
IV -y —wl|l < Ch(IV-ully +alplD). (4.10)
Proof. Choose k = 0,s = 1, and 6 = h? in (4.1) to get (4.9). These choices sufficiently
lead to get (4.10) from (4.2). n

Corollary 4.2. Assume that u of Problem (1.4) belongs to H*(Q) and that 6 < C h*. Let
u, € IB%ID)MS) be the solution satisfying (3.1). Then,

llw, —ulla < C 2> (llull2 + lIpl), (4.11)

and
V- —wl <Ch(IV-ull +#pll). (4.12)

Proof. Recall that 1((k) = k + 1 for BDM family, and choose k = 0,s = 2, and 6 = K% in
(4.1) to get (4.11). These choices sufficiently lead to get (4.12) from (4.2). [

Remark 1. For the RTN family with k£ = 0, that is, taking RT;O) (1(k) = 0 in this case)
as the hybrid space, let us consider solving the L-shaped domain problem. In this case,
p € H**(Q) with « = % and V - u = 0. In this case, 6 = hé is chosen for an optimal
convergence rate O(h*), as stated in (4.1). For numerical examples, see the case of partial
elliptic regularity in Section 5.2.
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4.2 | Error analysis to p;,

Kol

In this section, we provide a convergence result of p, obtained by Algorithm 3 to p, the pressure
recovery.

Theorem 4. Assume that the solution p of the Equation (1.4) belongs to H**'(Q). Let

pn € Wy, be the solution to (3.2). Then, we have

o = pll < € [Wllpllssr + Vallpl| 5 <10+ 1. @.13)

Furthermore, if Q is smooth and % in (1.1) is in CY(Q), then
10— pull < C {1 (lwy = ulla + IV -u—Q}'V - ull) + 8lIplls+1] (4.14)
for some r > 0, where Q' is the local L* projection of W onto Wy, u is the solution of

(1.4), and wy, is the solution of (3.1).

Proof. Choose v, € Vj, such that V - v, = p;, — Q,lep with ||v,|| < Cllpn — Q,‘inH. Then,
by the definition of Q}¥, we have
lipw — Q) pII> = (o — Q) p. V - Vi)
= (pr—p,V - Vi) = (Au, — ), vy)
< Cllu, —ulf [lvall
< Cllw, —ulla llpx = Q1 pll.

ASUBOIT suOWWO)) dANEaL) d[qedtjdde ayy Aq pauIaA0S Ik SA[ONIE YO (38N JO SI[NI 10§ AIRIQI SUI[UQ A[IA UO (



ADHIKARI ET AL. Wl LEY 13 of 22

That is,
llpn — QX pll < Cllwy, — .

sy wouy papeojumoq ‘0 “9THTS8601

Now applying the triangle inequality, the last inequality, approximation property of 0",
and Theorem 3, we obtain

i =PIl < llpw = QX Pl + 101 P = I, (4.15)
< llw, —ullx + 10)'p - pll, (4.16)
< C [l + VBIPN | for s < a0+ 1. @.17)

Then (4.13) follows from the last estimate combined with the following inequality:

i 1l < 1py! = pll + 1Ipll < CElIpllse1 + NP

This completes the proof of (4.13).
To prove (4.14), we consider the following dual problem
—div(A™'Vg) = Q' p—prin Q,
(A™'Vg)-v=0o0nTy, (4.18)
qg=0 onTp.
Let g be the weak solution of problem (4.18) of the form (1.7) and w = —A~'Vq in Q.
Then V - w = 0}'p — p;,. Using the commutative property (2.2), we obtain V - vy =
oYV -w=0QVp—py. Then
10} = pull® = Q1 p = pu. V - T'W) = (p = pi, V - TT'W)
= (Adu —uy), TT'w) (4.19)
= (A —w,), "W — w) + (A(u — uy), w).
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Using the approximation property of IT3", the first term on the right-hand side of the last
equation can be estimated as:

(A — ), ITw — w) < Cllu— || [T w — w]|

< Ch lu—wp[lallllwll; < CR'[lu = wy]|alllIgllr+1, (4.20)

for some r € (0, 1]. To obtain an estimate of the second term, we apply integration by
parts and split the term as follows:
(A —w,),w) = (A —w), A™'Vg) = —(u —w;, Vg)
=V -(u-u)),q
=(V-@-T"w + V- [ u—w),qg - g+ 0)9) 21
=(V-u-0/'V-ug-0/9+ @)V -u-V-w,0/q
=(V-u-0yV-u.q-0/q) + (V- (u-w). 0/ 9.

Then using the approximation property of Q)" the first term on the right-hand side of the
last equation can be estimated by:

(V-u=-0/V-u,g-0/¢) < IV-u-0yV-ullllg—0)qll < CH'|V-u=0}/'V-ullllgll,. (4.22)
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To estimate the last term in (4.21), we first subtract (3.1) from (1.4b) with g = V - v, and
use the recovery equation (3.2) to find

(V- (—w), V- vy) =6 [(Aup, vi) + (g0, Vi - V)r, | = 8@n, V- Vi) ¥ Vi € V.
Then choosing v, such that V - v, = 0} ¢, and applying (4.13), the last equation yields

(V- (u—wy), 0}/ q) = 8(pn, Q' ¢) < lIpallllgll < Cllp = pall + lpIDIIgll

< C8°|Ipllssr + VollpDligll  (4:23)
< C8lIpllssi llgll-

The estimate for the last term in (4.19) is obtained by plugging (4.22) and (4.23) into
(4.21). Then plugging (4.20) for the first term and applying the estimate provided by (1.9),
one obtains (4.14). n

Remark 2. The local post-processing scheme proposed in [32] utilizes the mixed finite
element solutions computed in V;Lk) X Wf(lk) to develop a more accurate approximation of the
primary variable in the higher degree space W,(,k“) . Here, we present the scheme adapted
to our finite element solutions to approximate the pressure p with increased accuracy
and provide a result demonstrating the accuracy improvement. We denote Q' by lek) to
emphasize the polynomial degree and extend the notation to write Qg) for the local L? pro-
jection of W onto W,ii) for integer i > 0. Then the post-processing solution pj; € W,(lk“) is
defined element-by-element through pj|x € Py41(K) as a solution ¢, of the formulation

A"V, Vank = (F.anx — (Wi - Vi aidox ¥ an € U = 0 10W, Pk (4.242)
subject to
QE,O)le)h = Q;,O)IKph’ (4.24b)

where v is the outward unit normal vector on the boundary of K. The solution pj, is found
to achieve the following improved accuracy

Ip = pill < € [ (1w = wlls + 10 = wllos) + [ = &5, + 2P — i @29

where || - |[o is the mesh-dependent norm defined by ”‘1”(2),11 = ||qlI* + ZKGT’I hilqﬁK
for functions ¢ € L*(Q) with g|x € H'(K) V K € Tj, and ||v|[§, = [IV]* + Yker, hxllv -
VK||(2)’3K for functions v € H(div; Q) with v - vk € L*(0K) V K € T;. The above error
estimate is established using the same arguments as in Theorem 2.2 in [32] and applying
the trace inequality (see e.g., [1]).

5 | NUMERICAL EXAMPLES

In this section, we present sample results from numerical experiments to confirm our theoretical results
as well as to demonstrate the effectivity and the robustness of our algorithm. For all the numerical
examples, in order to look at convergence behaviors closely, uniform meshes are used instead of adap-
tive meshes. On the other hand, the small parameter 6 makes the system of equations nearly singular,
for which round-off errors are observed to cause accuracy deterioration. In our numerical computa-
tion, we use defect corrections to overcome round-off errors. Namely, using a solution obtained by
the direct solver, we obtain a residual and calculate correction by solving the system once more. The
improved accuracy of the solution is reported in our numerical tables.
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TABLE 1  Errors and their reduction ratios of u, € RT;O) and p for the pressure boundary condition (5.2a); the
parameter § is chosen as /2.

DOFs h llu—ul?| Rate llw — ul” || giy Rate e = pall Rate
56 1/4 6.37378e—01 X 3.25377e+00 X 1.50786e—01 X

208 1/8 3.24488e—01 0.9740 1.63642¢+00 0.9916 7.82612¢—02 0.9461
800 1/16 1.63279e—01 0.9908 8.19426e—01 0.9979 3.94786e—02 0.9872
3136 1/32 8.18073e—02 0.9970 4.09866e—01 0.9995 1.97822e—02 0.9969
12,416 1/64 4.09294e—02 0.9991 2.04952¢—01 0.9999 9.89644e—03 0.9992
49,408 1/128 2.04685¢—02 0.9997 1.02478¢—01 1.0000 4.94889¢—03 0.9998

TABLE 2 Errors and their reduction ratios of u,, € ]B]D)M;” and p for the pressure boundary condition (5.2a); the
parameter & is chosen as h*.

DOFs h llu— | Rate llu — ul* [ giy Rate Ilp = pall Rate
112 1/4 1.53125¢—01 X 3.25371e+00 X 1.50782e—01 X

416 1/8 4.06233e—02 1.9143 1.63641e+00 0.9916 7.82634e—02 0.9461
1600 1/16 1.03491e—02 1.9728 8.19424e—01 0.9979 3.94786e—02 0.9873
6272 1/32 2.60407e—03 1.9907 4.09865¢—01 0.9995 1.97822e—02 0.9969
24,832 1/64 6.74000e—04 1.9499 2.04952¢—01 0.9999 9.89645¢—03 0.9992

TABLE 3  Errors and their reduction ratios of u;, € RT;O) and p for the flux boundary condition (5.2b); the parameter &
is chosen as h?%.

DOFs h flu—ul”| Rate Il — u?” || giy Rate e —pall Rate
40 1/4 6.60495¢—01 X 3.25377e+00 X 1.52770e—01 X

176 1/8 3.28211e—01 1.0089 1.63642e+00 0.9916 7.84947¢—02 0.9607
736 1/16 1.63847e—01 1.0023 8.19426e—01 0.9979 3.95068e—02 0.9905
3008 1/32 8.18911e—02 1.0006 4.09866e—01 0.9995 1.97857e—02 0.9976
12,160 1/64 4.09415e—02 1.0001 2.04952¢—01 0.9999 9.89688¢—03 0.9994
48,896 1/128 2.04702e—02 1.0000 1.02478¢—01 1.0000 4.94894¢—03 0.9999

5.1 | The case of full elliptic regularity

We begin with a simple example with the identity tensor, that is, A = I, given as follows. With the
domain Q = (0, 1)2, the following problem is considered:

u=-Vp, inQ, (5.1a)
Veou=f, inQ, (5.1b)
on the boundary I" of which one of the following two boundary conditions are assumed:
p=g, onl, (5.2a)
v.-u=g, onl. (5.2b)

Here, f and g are generated by the analytic solution p(x,y) = x3y 4+ y* + sin(xx) cos(zy). For this
example, uniform triangulations of Q are adopted in our numerical simulation and the approximation
of the flux variable, R']I‘;,O) and IB%}D)M;,D spaces are employed.

Tables 1 and 2 show errors in the computation of the flux variable applying the hybrid method
with pressure boundary condition (5.2a) and give optimal convergence rates in the approximation of
the flux variable. The choices of parameter are set to § = A2 for R’]I‘g’]}), and § = h* for ]B%]D)Mgzl.

Also the case where the flux boundary condition (5.2b) is solved is shown in Tables 3 and 4 with
parameters & = h” for ]RTZO) and 6 = h* for IB%]D)ME,I).
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TABLE 4 Errors and their reduction ratios of u;, € BDMZI) and p for the flux boundary condition (5.2b); the parameter 6
is chosen as h*.

DOFs h [lu— uﬁ‘ I Rate Il — o [l Rate e —pall Rate
80 1/4 2.52166e—01 X 3.25377e+00 X 1.59554e—01 X

352 1/8 6.44209e—02 1.9688 1.63642e+00 0.9916 7.94309e—-02 1.0063
1471 1/16 1.62002e—02 1.9915 8.19426e—01 0.9979 3.96269e—02 1.0032
6016 1/32 4.05619e—-03 1.9978 4.09866e—01 0.9995 1.98008e—02 1.0009
24,320 1/64 1.01444e-03 1.9994 2.04952e—01 0.9999 9.89878e—03 1.0002

TABLE 5 Local mass conservation error in maximum norm as a function of § for a fixed fine mesh size at h = 1/64.

6 IV - u, = Ouflleo.,
L.e—03 0.78834D-05
1.e—04 0.78836D-06
Le—05 0.78836D-07
1.e—06 0.78836D-08
Le—07 0.78836D-09

We note that when we control the 6 so that it gradually decreases to zero, Table 5 verifies the decay
of local conservation error.

5.2 | The case of partial elliptic regularity

We next consider the L-shape domain problem with a constant coefficient in the non-convex domain
Q= (-1,1)?\ [0, 1) x (0, —1] with nonhomogeneous pressure boundary data g as given in (5.2a). As
an exact solution, the harmonic function p(r, ) = r* sin(a0) is taken, where a = % sothatp e H 3 Q)
and g € Hs ().

We approximate u;, € RT;O) and u, € BDMS) on uniform meshes. For the choices of 6, we
attempted to use 6 = 1 and h;'t on RT(O), and h]T0 on IB%ID)ME,D. We provide two results in Table 6, the
computation of the flux variable, obtained withé = 1 and 6 = hé on RTZO). In Table 7, the computation
of the flux variable, obtained with 6 = 1 and hg, is shown with the flux boundary condition (5.2b). In
Table 8, the computation of the flux variable on BDM(I), obtained with h?, is shown for the pressure
(5.2a) and the flux boundary condition (5.2b). The numerical results confirm that proper choices of
parameter 6 are important in using the Algorithm 2.

5.3 | The case of varying permeability tensor

It is well known that for the heterogeneous permeability tensor, the numerical solution often fails to
converge due to the huge condition number. To overcome such a difficulty, several efficient precondi-
tioners for H(div)-bilinear form equation are proposed [3, 4, 16, 18, 19, 22]. For numerical example
in this subsection, the H(div)-preconditioner designed in [3] was implemented. The exact solution is
the same as that of full ellipticity regularity case. The source function and boundary conditions are
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TABLE 6 Errors and their reduction ratios of u, € RTLO) for the L-shape domain with pressure boundary condition (5.2a).

DOFs
44

160

608
2368
9344
37,120
147,968

h
1/4
1/8
1/16
1/32
1/64

1/128
1/256

llu = w ||

2.90157e—01
2.05193e—01
1.44885e—01
1.08681e—01
8.94803e—02
8.03837e—02
7.64213e—02

Note: The parameter 6 is chosen as 1 and hi.

Rate

X
0.4999
0.5021
0.4148
0.2805
0.1547
0.0729

4
flu—w* |
2.77970e—01
1.86047e—01
1.20496e—01
7.70649e—02
4.89770e—02
3.10161e—02
1.96008e—02

Rate

X
0.5793
0.6267
0.6448
0.6540
0.6591
0.6621

TABLE 7  Errors and their reduction ratios of u, € RT;O) for the L-shape domain with the flux boundary condition (5.2b).

DOFs
28

128

544
2240
90838
36,608
146,944

h
1/4
1/8
1/16
1/32
1/64

1/128
1/256

llu = w |
3.30758e—01
2.71112e—01
2.31156e—01
2.08484e—01
1.96699e—01
1.90804e—01

1.87865e—01

Note: The parameter 6 is chosen as 1 and hi.

Rate

X
0.2869
0.2300
0.1489
0.0839
0.0439
0.0224

4
flu—w* |
2.81957e—01
1.93947e—01
1.29180e—01
8.47662e—02
5.51806e—02
3.57533e—02
2.30971e—02

Rate

X
0.5398
0.5863
0.6078
0.6193
0.6261
0.6304

TABLE 8 Errors and their reduction ratios of u;, € BDMLU for the L-shape domain with the pressure (5.2a) and the flux
boundary condition (5.2b) with corresponding DOFs.

DOFs

88/56

320/256
1216/1088
4736/4480
18,688/18,176
74,240/73,216

10
Note: The parameter 6 is chosen as 75 .

changed according to the exact solution and varying permeability field

h

1/4
1/8
1/16
1/32
1/64
1/128

BC (5.2a)

||u—u:% I Rate
1.18933e—01 X
7.51826e—02 0.6617
4.74130e—02 0.6651
2.98797e—02 0.6661
1.88257e—02 0.6665
1.18605e—02 0.6665

Ao (x+2)? +y?

sin(zxy)

sin(zxy)
1

BC (5.2b)
Jlu— u:% I Rate
1.24663e—01 X
7.99052e—02 0.6417
5.12513e-02 0.6407
3.28582e—02 0.6413
2.10542e-02 0.6421
1.34834e—02 0.6429
5.3)

With the use of V-cycle multigrid preconditioner, the numerical solution converges within a few iter-
ations. Table 9 shows errors in the computation of the flux variable applying the hybrid method with
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TABLE 9 Errors and their reduction ratios of u;, € RT;O) for the varying permeability tensor with flux boundary
condition.

DOFs h lu— | Rate la — wy, |laiv Rate
40 1/4 4.89318e+00 X 1.45608e+01 X

176 1/8 2.44908e+00 0.9985 7.37602e+00 0.9812
736 1/16 1.22496e+00 0.9995 3.69997e¢+00 0.9953
3008 1/32 6.12536e—01 0.9999 1.85148e+00 0.9988
12,160 1/64 3.06275e—-01 1.0000 9.25928e—-01 0.9997
48,896 1/128 1.53139¢—01 1.0000 4.62987e—01 0.9999

Note: The parameter § is chosen as h?.

flux boundary condition (5.2b) and gives optimal convergence rates in the approximation of the flux
variable with varying permeability tensor.

5.4 | The case of heterogeneous permeability tensor

We consider the following Darcy’s flow problem with two-dimensional heterogeneous permeability
tensor that is provided from the SPE10 Model 1. The domain is Q = (0,100) x (0, 20) and nonhomo-
geneous pressure boundary data p;, = 1000 and po,. = 10 are set on the left and right boundaries,
respectively. The zero flux boundary conditions are imposed on the top and bottom boundaries. The
source function in (5.1b) is set to be zero. For this example, uniform triangulations of € are adopted in
our numerical simulation and the R’]TELO) space is employed for the approximation of the flux variable.
For the recovery of pressure, the C‘I(PEIO)) space is employed. For the comparison of our numerical
results, the standard mixed finite element method space ]RTELO) x C! (PELO)) is employed to create ref-
erence numerical solutions. The values of heterogeneous permeability tensor are shown in Figure 1
with log scale. A figure for the (u, v) velocity fields and the recovered pressure field p by Algorithms
2 and 3 is also shown in Figure 2. We checked that the numerical results agree well with those by the
standard mixed finite element approximation, and thus we omit the results for the latter. For the hybrid
method, the computational mesh size 4 is chosen to be 0.5 and its corresponding optimal choice of the
parameter § is set to 2.5 x 107, Since the flow drives in the negative direction of pressure gradient
and pressure boundary condition is imposed on the inlet/outlet with specified values, the velocity in
x-direction varies more widely comparing to the velocity in y-direction. The pressure field changes
almost linearly with small variations in x direction.

Table 10 reports the CPU time comparison between the mixed finite element method and Algo-
rithms 2 and 3 for the SPE10 data. For the time in assembling matrix, time for constructing stiffness
matrix is necessary for the mixed finite element method, but in the case of the hybrid simple method,
construction of mass and divergence matrices are needed additionally. However, for the resulting
matrix system in the mixed finite element method, we need to solve positive indefinite system for
velocity and pressure simultaneously. On the other hand, for the simple hybrid method, it is enough
to solve positive symmetric definite system for the velocity and recover pressure separately. Overall
computational time for solving flux and pressure variables by using the same direct linear solver or
iterative minimum residual method (MINRES) [30] shows simple hybrid scheme is more efficient in
computational time.
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FIGURE 1 Permeability tensor with log scale from SPE10 model 1.
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20

0 20 40 60 80 100

FIGURE 2 The velocity field (u, v) (upper) in ]RTZO) by Algorithm 2 and the recovered pressure p (lower) in C! (P;lo)) by
Algorithm 3 for SPE10 Model 1.

TABLE 10 The CPU time comparison of the standard mixed finite element method and our Algorithm 2.

Assembling matrix Direct solver MINRES
Mixed method 135 59s 340s
Hybrid method 155 0.5s 130s

5.5 | The case of heterogeneous permeability tensor-SPE10 layer75

We consider the following Darcy’s flow problem with two-dimensional heterogeneous permeability
tensor that is provided from SPE10 Model 2 Layer75. The model dimensions are 1200 x 2200 x 170
(ft) and the fine scale cell size is 20 x 10 x 2 (ft) thus the domain is 60 X 220 X 85. We only consider the
single layer 75, the computational domain is £ = (0, 60) X (0,220). The zero flux boundary conditions
are imposed on the top and bottom boundaries. For the left and right boundaries, nonhomogeneous
pressure boundary data p;, = 100,000 and p,, = 10 is implied and the source function in (5.1b) is set
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FIGURE 3 The permeability (left) for SPE Layer 75, the velocity field (u, v) (middle) in RT;O) by Algorithm 2 and the
recovered pressure p (right) in C! (P;,O)) by Algorithm 3 with specified pressure data on left/right and zero flux data on
top/bottom boundaries.

x10* x10°
120 T T 250 250
i 2
100 g
200 200
15
80 g
150 150 1
60 E
05
100 100
40 i 0
55 | 50 50 05
a1
0 : 0 0
0 10 20 30 0 20 40 60 0 20 40 60

FIGURE 4 The (&, v) velocity quiver plot (left), u-(middle) and v-(right) fields with lowerleft point source and upperright
point sink by Algorithm 2 using RT;O).

to be zero. The values of heterogeneous permeability tensor are shown in the leftmost of Figure 3 with
log scale. A flow plot for the (u, v) velocity field and the recovered pressure field p by Algorithms 2
and 3 are also shown in Figure 3. The plotted flow is averaged over eight triangles for the visibility.
In the presence of point source at the leftlower and point sink at right upper corners with all zero
flux boundary conditions, the numerical simulations are also performed and their results are shown in
Figure 4. In this simulation, we can clearly see the flow pattern as we expected.
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