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Modern vehicles are vulnerable to cyberattacks and the consequences can be severe. While technological efforts
have attempted to address the problem, the role of human drivers is understudied. This study aims to assess the
effectiveness of training and warning systems on drivers’ response behavior to vehicle cyberattacks. Thirty-two
participants completed a driving simulator study to assess the effectiveness of training and warning system
according to their velocity, deceleration events, and count of cautionary behaviors. Participants, who held a valid
United States driving license and had a mean age of 20.4 years old, were equally assigned to one of four groups:
control (n = 8), training-only (n = 8), warning-only (n = 8), training and warning groups (n = 8). For each drive,
mixed ANOVAs were implemented on the velocity variables and Poisson regression was conducted on the
normalized time with large deceleration events and cautionary behavior variables. Overall, the results suggest
that drivers’ response behaviors were moderately affected by the training programs and the warning messages.
Most drivers who received training or warning messages responded safely and appropriately to cyberattacks, e.g.,
by slowing down, pulling over, or performing cautionary behaviors, but only in specific cyberattack events.
Training programs show promise in improving drivers’ responses toward vehicle cyberattacks, and warning

messages show rather moderate improvement but can be further refined to yield consistent behavior.

1. Introduction

Modern vehicles are monitored and controlled by numerous digital
components (Eiza & Ni, 2017; Koscher et al., 2010) and are pervasively
computerized. While this type of automotive revolution is designed to
facilitate driving that satisfies one’s increasing need for connectivity in
the vehicle, consisting of robust internet connectivity either through
embedded systems or mobile devices, it exposes vehicles to cyber-
attacks. As more sophisticated services and communications features are
incorporated into vehicles, the associated attack surface for modern
automobiles is growing (Eiza and Ni, 2017; Khan et al., 2020; Koscher
et al., 2010; Petit and Shladover, 2014; Zhang et al., 2019).

Vehicle cybersecurity has raised awareness about potential vulner-
abilities. For example, two researchers used software to hack into a Jeep
Cherokee in 2015 (Greenberg, 2015). In June 2016, a Mitsubishi
Outlander was hacked by security researchers through manipulations
between its mobile app and the Wi-Fi access point (Eiza and Ni, 2017,
Zhang et al., 2019). Previous research also revealed that attackers were

able to take control of the heater in Nissan Leaf electric vehicles via a
mobile application, repeatedly turning it on and off (Eiza and Ni, 2017).
Moreover, nearly 100 million Volkswagen vehicles that were manufac-
tured between 1995 and 2006 were subject to remote, keyless-entry
hacks (Garcia et al., 2016). It is important to note that real-world
vehicle cyberattacks are relatively rare. While research has indicated
potential vulnerabilities, they do not necessarily translate to everyday
risks for the average driver as the frequency of actual attacks is not well-
documented. However, the fact that researchers were able to identify
and exploit these vulnerabilities demonstrates the need for continuous
vigilance and improvement in automotive cybersecurity awareness.
The Federal Bureau of Investigation, with the U.S. Department of
Transportation and the National Highway Traffic Safety Administration
(NHTSA), jointly released a warning regarding the increasing vulnera-
bility of motor vehicles to remote exploits (Eiza and Ni, 2017; FBI,
2016). The possible consequence of vehicle cyberattacks can range from
malfunctions that could cause discomfort and distraction, such as the
horn being activated, to fatal events, like the driver losing longitudinal
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or lateral control of the vehicle (Koscher et al., 2010). In such situations,
if drivers are not aware of the abnormalities or do not take any actions,
traffic safety would be further compromised and consequently, traffic
crashes are more likely to occur.

While recommendations for improving vehicle cybersecurity have
been made from the perspective of technology and system design (e.g.,
integrating all critical components into a single protected chip or vehi-
cles only accepting the original software; Wolf et al., 2007), it is not
feasible to design one security solution that fits all situations, especially
given the randomness and uncertainty of vehicle cyberattacks. Since
drivers directly interact with vehicles and will ultimately respond to any
potential cyberattacks, it is equally important to consider the role of
humans in this safety—critical loop (Cranor, 2008; Zhang et al., 2019). In
addition, past research has suggested that solely relying on technology-
based control over human behavior has not been successful in terms of
minimizing the risk associated with cyber incidents (Pfleeger and
Caputo, 2012). Cyberattackers will often take advantage of human
users’ naivete and careless behaviors to exploit unintentional vulnera-
bilities, which leads to the importance of bringing humans into the loop
to reduce these vulnerabilities (Abawajy and Kelarev, 2012). Moreover,
since vehicle cyberattacks can be sudden, unexpected, or in various
formats, drivers would need to first notice what is happening and
perceive the situations caused by vehicle cyberattacks to take more
appropriate actions, per the definition of situation awareness (SA). In
summary, one may not rely on technological solutions alone to improve
vehicle cybersecurity; it is also important for drivers to gain awareness
surrounding vehicle cybersecurity (Endsley, 1995b, 1995a; Wickens and
Carswell, 2012). In the next section, we present the theoretical un-
derpinnings for how drivers gain (and maintain) awareness of their
environment.

1.1. Theoretical foundations

Operating a car imposes high cognitive demands on the driver (Unni
et al., 2017). When facing an unexpected cyberattack event, the number
and complexity of the elements in the driving environment are likely to
increase, which would add another layer of difficulty for the driver to
sense and understand the current situation. Furthermore, vehicle
cybersecurity issues can be fatal not only because the vehicle could be
controlled by others outside the vehicle, but also because drivers may
not realize it is a cyberattack due to its rareness and fail to respond.

Information processing lies at the heart of human performance
(Wickens et al., 2013; Wickens and Carswell, 2012). It begins with one
sensing a stimulus, then interpreting it with some meaningful informa-
tion, which requires attention resources — long-term and short-term
memory — and finally completing response selection and execution.
Central to information processing is the idea of transforming the
perceived information into action, which highlights the importance of
situation awareness (SA). SA is defined as “...the perception of the ele-
ments of the environment within a volume of time and space, the
comprehension of their meaning, and the projection of their status in the
near future...” (Endsley, 1995b, 1995a; Wickens and Carswell, 2012).
There are 3 states involved in SA: (1) perception of noticing, 2) under-
standing or comprehending, and 3) projecting or predicting (Wickens
and Carswell, 2012). To have an effective decision-making process, it is
essential for humans to maintain SA (Endsley and Connors, 2008). As
such, Salas et al. argued that mental models are important for individual
situational awareness (Salas et al., 1994). Mental models are defined as
“the rich and elaborate structure which reflects the user’s understanding
about the system’s contents, its functionality and the concept and logic
behind the functionality” (Carroll and Olson, 1987, p. 12).

A correct mental model of vehicle cyberattacks and vehicle func-
tions, which resides in one’s long-term memory (a critical component in
the information processing model), can interact with working memory
to impact response selection when encountering vehicle cyberattacks.
Such a mental model is also believed to be critical in predicting what
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might be happening in the near future, according to SA (Wickens and
Carswell, 2012). Possessing a proper mental model of vehicle func-
tionality and vehicle cyberattacks may increase the likelihood of a driver
noticing and perceiving abnormalities caused by vehicle cyberattacks.
That is, a proper mental model can benefit drivers in the context of
vehicle cyberattacks in the phase of noticing and perceiving the envi-
ronment, understanding the current situation and projecting the future,
thereby leading to a positive contribution to their decision-making from
the standpoint of both SA and information processing. Having a proper
mental model of vehicle cyberattacks can also help drivers take the
appropriate action after they become aware of the current situation.
Many have highlighted that one has to have enough information and
knowledge to be able to decide and that certain actions, such as slowing
down and using the emergency brake, can be taken by the driver when
encountering vehicle cyberattacks (McCarthy et al., 2014; Pfleeger and
Caputo, 2012).

Putting it all together, vehicle cyberattacks are unexpected and rare
events; as such, drivers are likely to respond slowly and inappropriately
(Wickens and Carswell, 2012). Relatedly, human attention is selective
and is knowledge-driven. A potential problem is that for those who are
unfamiliar with vehicle cyberattacks, it may be challenging to notice
and correctly perceive them. This can compromise both one’s informa-
tion processing and SA about current situations caused by vehicle
cyberattacks. It also indicates a poor mental model of the situation.

In this study, we want to increase drivers’ awareness of vehicle
cyberattacks, improve their mental models of vehicle cyberattacks, and
help them respond to such situations safely. That is, we hope to help
drivers make better decisions and improve their performance when
encountering vehicle cyberattacks based on principles of information
processing, situation awareness, and mental models. More cautious
behavior suggests that drivers exhibit greater safety awareness when
facing a cyberattack event, in accordance with findings by Parker et al.
(2022). More specifically, ideal responses to vehicle cyberattacks
include slowing down, using hazard lights, shutting down network
services, pulling over and shutting down the engine, or calling police or
assistance for help to ensure safety, as highlighted in studies by Alie-
brahimi and Miller (2023), Gemonet et al. (2021), Ouimet et al. (2013),
and Zhang et al. (2019). Therefore, these actions were selected to
represent an appropriate participant reaction to the cyberattack event in
terms of safety awareness.

1.2. Training and warning systems

Training seems to be a natural and effective way to develop one’s
mental model of a system of interest. In addition to targeting drivers’
mental models for improving their sensing and perceiving of the envi-
ronment and long-term memory, providing warnings to assist their
working memory and attention may also be helpful in enhancing their
response performance towards vehicle cyberattacks (Wickens et al.,
2013). Past research in the space of driving automation has found that
appropriate interface design (e.g., warnings) and giving drivers knowl-
edge about driving systems (e.g., through training) improves mental
model development (Aziz et al., 2013; Feinauer et al., 2022; Krampell
et al., 2020). In addition, both training and warnings have been shown
to be effective means to positively influence driver behavior (Akhawe
and Felt, 2013; Pollard et al., 2017; Roberts et al., 2021).

With respect to training, researchers have found that certain pro-
grams can help reduce young and inexperienced drivers’ crashes (Rob-
erts et al., 2021) and have been shown to improve drivers’ responses to
unexpected events (e.g., sudden acceleration; Pollard et al., 2017).
Relevant research also supports this idea by demonstrating that when
drivers know what to do, they can respond within seconds to unexpected
and hazardous situations (Duncan et al., 1991; Soliman and Mathna,
2009; Zhang et al., 2019). In the field of cybersecurity, training has been
shown to positively change user behavior and results in better recog-
nition of faulty information (Cone et al., 2007). In addition, embedded
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training has been found to effectively teach people how to avoid tar-
geted cyberattacks (Kumaraguru et al., 2010). According to the Infor-
mation Processing Model (Wickens et al., 2013), training leads to
improved behavior because it elevates long-term memory and interacts
with working memory, while also aiding in the process of perceiving the
current situation. These together are likely to result in a better response
selection and execution.

Warnings are also shown to be effective in improving drivers’
behavior when they face unexpected events. Drivers who are given real-
time information about a variety of behaviors such as fuel efficiency,
driver distraction, and lane position quickly change their behavior
(Birrell and Young, 2013; Dijksterhuis et al., 2012; Donmez et al., 2007).
In regard to warning message design, it is suggested that symbols should
have a clear relationship with the real-world to optimize comprehension
(Lesch et al., 2011). In the field of cybersecurity, real time warnings
about suspicious browser or smartphone behavior encourage safe
behavior (Akwahe and Felt, 2013; Jedrzejczyk et al., 2010). In summary,
both training and in-vehicle warnings can help increase drivers’ SA and
help correctly comprehend the situation when drivers encounter
cyberattacks.

2. Research objective and hypothesis

While system design and preventative mechanisms, like firewalls and
antivirus software, add an additional layer of protection against vehicle
cyberattacks, training and warning systems that involve human drivers
are an ideal complement that reduce vulnerability. As such, the goal of
this study was to fill this research gap by examining whether training
and warning systems improve drivers’ response behavior to vehicle
cyberattacks, as measured by the change in their velocity and acceler-
ation (Gemonet et al., 2021) along with the frequency of engaging in
cautionary behaviors (Classen et al., 2010). We conducted a driving
simulator study to assess the objective. The hypothesis was that drivers
who received vehicle cybersecurity training and in-vehicle warning
messages would slow down, pull over, and exhibit more cautionary
behaviors when they faced the cyberattack-induced events. More spe-
cifically, training and warnings would lead to: (1) a reduction in ve-
locity, (2) a higher time proportion of large deceleration events
(measured by elevated g-force values), and (3) more cautionary be-
haviors after a cyberattack-induced event occurs.

3. Methods

This research complied with the American Psychological Association
Code of Ethics and was approved by the Institutional Review Board at
the University of Massachusetts Amherst.

This study is a continuation of a previous study (Zhang et al., 2019).
In the previous study, we focused on the iterative development of the
training and warning systems using methods essential to human-
centered design (e.g., interviews and co-design sessions). In this study,
we assessed the effectiveness of the training and warning system in
improving drivers’ response behavior to vehicle-cyberattack-induced
situations via a driving simulator experiment (Parker et al., 2022;
Zhang et al., 2023).

3.1. Participants

A total of 32 participants (age 18-26) were recruited from the Uni-
versity of Massachusetts Amherst campus and the town of Amherst using
flyers and The average age of the participants was 20.4 years (SD = 2.0
years). Only individuals with a valid United States driving license were
included in this study. With respect to participant demographics, there
were 23 males, 7 females, and 2 with a non-conforming gender. In terms
of race/ethnicity, there were 28 Caucasian/Whites, 2 African Ameri-
cans/Blacks, 1 Hispanic/Latino, and 1 Asian in terms of race/ethnicity.
Last, there were 5 participants who drove less than 5000 miles in the
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past year, 10 who drove 5000-1000 miles, 12 who drove 10000-15000
miles, and 5 who drove 15000 + miles. A power analysis showed that
with a sample size of 32 and an effect size of 0.38 when setting alpha to
0.05, the power is 0.8. The analysis was conducted for each drive,
implying that alpha correction was not needed.

Participants were randomly divided into 4 groups with each group
having the same sample size (n = 8): the control group, the training-only
group, the warning-only group, and the training-and-warning group.
Participants in the control group did not receive training, nor were they
offered any in-vehicle warning messages. Those in the training-only
group and the warning-only group received either the training or the
warning messages, respectively. Participants in the training-and-
warning group received both the training before the drives and warn-
ings during the drives. An overview of the experimental design of the
study is shown in Fig. 1.

3.2. Apparatus

The driving simulator was a fixed-based RTI (Realtime Technologies
Inc.) consisting of a fully equipped 2013 Ford Fusion surrounded by six
screens with a 330-degree field of view, as can be seen in Fig. 2. Ford
Fusions offer the benefits of a midsize sedan with a handling and rank
that are high among midsize sedans, therefore providing participants
with a comfortable and familiar driving experience. The cab features
two dynamic side-mirrors which provide realistic side and rear views of
the scenarios for the participants. The interior of the car has a fully
customizable virtual dashboard and center stack. Driving behavior data
was directly recorded from the driving simulator at a rate of 60 Hz.
Additionally, two cameras were used to record the hand and foot
movements of the participant. The cameras were combined with the
forward view and views of the dashboard via a program called Sim
Observer (Fig. 3).

3.3. Roadway environment

Each participant drove 4 times: 1 baseline drive and 3 experimental
drives. All drives share the same roadway environment (Fig. 4): a 2-way,
4-lane street in a rural-based area. The speed limit was 35 mph and there
was moderate traffic. The roadway was designed in a simple and non-
distracting way so that the cybersecurity events were salient. In the
baseline drive, there was no unexpected, cyberattack-induced event,
while in each of the experimental drives, participants encountered such
an event. As can be seen in Fig. 4, the cyberattack occurred in the last
straight section. This design was used to ensure that participants did not
become over sensitized to the appearance of hazards (Ranney, 2011;
Zhang et al., 2019).

3.4. Cybersecurity events

Because vehicle cyberattacks can manifest in various ways, multiple
drives, each corresponding to a cybersecurity event, were used in this
study. In the Siren drive, a siren, such as from a police car or an
ambulance, played while there were no such cars anywhere nearby. In
the Dashboard Signs drive, two common vehicle warning signs (“CHECK
ENGINE” and airbag symbol) illuminated on the dashboard after a short
beep, and they were repeatedly and randomly turned on and off. For the
Lane Change drive, the participant’s vehicle was suddenly controlled by
the experimenter who made the vehicle weave between lanes. Each
cybersecurity event lasted 2 to 4 s. All the cybersecurity events were
adapted and developed based on past literature regarding the possible
outcomes of vehicle cyberattacks (McCarthy et al., 2014). We specif-
ically chose the three events because they are either safety—critical
(Siren or Lane Change) (J. Garcia et al., 2020), representative of a
cybersecurity event showing erroneous messages (Dashboard Signs), or
lane positioning and navigation errors (Lane Change). During the
experiment, the order of these events was presented from least to most
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Fig. 1. The Experimental Design of the Study.

Fig. 2. Driving Simulator.

severe as to not bias the participant with an extreme event first, thereby
significantly altering their response for subsequent drives. Therefore, all
the participants experienced the same drive order: (1) Siren, (2) Dash-
board Signs, and (3) Lane Change.

3.5. Warning messages

In phase 1 of the project (Zhang et al., 2019), we followed the
human-centered design process — interviews and co-design sessions with
participants — to collaboratively prototype and refine the design of the
warning systems. The final content and format were finalized based on
the results of a heuristic evaluation with four human factors researchers
and the participants’ feedback. The modality of the warning systems —
auditory and visual — were preferred by most participants when asked
about the ideal warning they would like to receive when vehicle
cyberattacks occurred. In addition, we followed guidelines when
designing the warning messages. First, in addition to the fact that the
warnings of auditory and visual modality were preferred by the partic-
ipants, it was also found to be the most helpful in past research (Maltz
and Shinar, 2004). Second, command displays are most appropriate for
the condition of high stress and time pressure (Lee et al., 1999; Wickens,

1992), so we used command sentences (e.g., drive with caution or slow
down and pull over) to instruct participants.

When designing the warning messages, we categorized the Siren and
Dashboard Signs as a non-safety critical situation and the Lane Change
as a safety—critical situation. The warning messages were identical in the
Siren and Dashboard Signs drives: a yellow warning sign showed on the
dashboard right after the cybersecurity event. In addition, an audio
message was played to notify participants that their comfort and con-
venience would be impacted. For the Lane Change drive, a danger
warning sign and audio were provided, implying that the situation was
more severe in nature. The audio message instructed them to slow down
and pull over. Warnings were issued approximately 5 s after the
cybersecurity event began. Each audio warning message lasted for
around 2 s and was played from a speaker mounted in the vehicle so
participants could hear and understand the message content clearly.
Table 1 lists the cybersecurity event and the associated warning
message.

3.6. Training program

Similar to the warning systems, the design of the training program
was refined in phase 1 through the human-centered design process.
Participants received a PowerPoint-slide-based training program where
they were informed of the dangers of vehicle cybersecurity events,
specifically, how to react if they fall victim. The training program was
designed based on the 3 M (Mistake-Mitigation-Mastery) training
method (Frese and Altmann, 1989), which has been successfully used to
teach driving skills such as hazard anticipation (Roberts et al., 2021;
Unverricht et al., 2018). This presentation consisted of a total of 12
slides. The first two slides provided examples of real-world vehicle
cybersecurity incidents. The next two slides presented information
about why vehicles were vulnerable to cyberattacks and what an
attacker may gain from a vehicle cyberattack. Next, participants saw two
slides about the outcomes of vehicle cyberattacks and what they should
do in the case of a cyberattack. The participants were then tested on their
knowledge using 5 different scenes (e.g., “What would you do if your
vehicle changed lanes by itself?””), with each scene corresponding to one
slide. They were considered finished with the scene once they correctly
indicated the best reaction to the respective scene (e.g., check sur-
roundings, slow down, or pull over; Chen et al., 2021; McCarthy et al.,
2014). If they indicated an incorrect answer, the experimenter provided
them with the correct answer. The five scenes were similar, but distinct,
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Fig. 3. Sim Observer View.
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from the examples provided at the beginning of the training program.
The training concluded with a one slide refresher on how to react in the
event of a cyberattack (Fig. 5). The training program was given before
the simulator experiment and there was no time gap between the
training program and the simulator experiment. The entire training
program lasted between 10 and 15 min.

Fig. 4. Layout of the Drive.

3.7. Study procedure

First, informed consent was obtained. Second, participants sat in the
driving simulator and were instructed to conduct themselves as they
would in a normal car. This includes adjusting the driver’s seat,
fastening their seat belts, adhering to the speed limit, using blinkers, and
following any on-screen instructions. Third, participants took a practice
drive to adjust to the simulator and controls. This was followed by the

baseline drive in which participants drove through the same environ-
ment as in the experimental drives without any cyberattack-induced
events. Fourth, if they were assigned to the training or training and
warning group, participants underwent training (described above),
which was used to help prepare them should they become a victim of a
cyberattack. Drivers in other groups were instructed to drive in their
usual manner, but not on how to behave when a vehicle cyberattack
occurs. Participants then experienced the three experimental drives that
contained the cybersecurity events. Regardless of group assignment the
order of the drives was as follows: Siren, Dashboard Signs, and Lane
Change. Each drive lasted 3-4 min. Once finished with the drives, par-
ticipants completed a series of surveys in the following order: system
usability survey (SUS) (Brooke, 1996), technology acceptance (Davis
et al., 1989), driver behavior questionnaire (Reimer et al., 2005),
sensation seeking questionnaire (Hoyle et al., 2002), and a post-drive
questionnaire. Note that these surveys are not included in the current
analysis. Finally, they were debriefed and compensated.

3.8. Dependent variables

Participants’ behavior was measured by examining their velocity
over time, the change in their velocity before and after the cyberattack
event, and the proportion of time the driver had elevated g-force events
(deceleration > 0.45 g; Simons-Morton et al., 2012) after the cyber-
attack event started. These three dependent variables have been shown
to be directly associated with driving performance and were therefore
chosen to represent participants’ response behavior from the perspective
of safety (Aliebrahimi and Miller, 2023; Gemonet et al., 2021; Ouimet
etal.,, 2013; Zhang et al., 2019). A reduction in the velocity and a larger
time proportion of large deceleration after the cyberattack event is
desired.

In addition to the driving data, we also examined video data by
counting the times the participants checked the side mirror, checked the
rearview mirror, and changed the number of hands on the wheel after
the cyberattack event started. Taken together, we call these “cautionary
behaviors”. More cautionary behaviors suggest that drivers have better
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Table 1
Cybersecurity Event and the Associated in-Vehicle Warnings.
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Cybersecurity Event

Audio Warning Message (a female voice) Visual Warning Message

Siren
Siren similar to a police car or ambulance begins to play.

Dashboard Signs

A single high-pitched beep sounds and the two warnings signs illuminate on the dashboard

in an alternating fashion.

CHECK ENGINF

| -

Lane Change

Experimenter takes lateral and longitudinal control of the vehicle, causing the car to
repeatedly move from the left lane to the right.

“Your comfort and convenience might be
impacted. Distraction might be caused”

WARNING

A

Drive with caution

“Your comfort and convenience might be
impacted. Distraction might be caused”

WARNING

A

Drive with caution

“Your safety is compromised. Slow down and
prepare to pull over”

What to do when vehicle cyberattacks happen?

- Check surroundings carefully

- Inform the vehicles around that you might be in danger 4

- Downshift, slow down, and use hazard lights

- Shut down network services

- Pull over and shut down the engine

- Call police or assistance for help

,\\

Fig. 5. Example Screen from the Training Program.

safety awareness when encountering the cyberattack events (Parker
et al., 2022). To keep consistent time intervals, the before cybersecurity
event period was defined as 5 s before the event started. On average, the
post cybersecurity event period was 27 s.

3.9. Independent variables and data analysis

The main independent variables of interest were the training group
(training, no training) and warning group (warning, no warning), which
were between-subject variables. The within-subject variable was time
(before and after the cyberattack event).

We employed mixed-design analysis of variance models (ANOVAs)
on the velocity variables and Poisson regression on the normalized time
with large deceleration events and cautionary behavior variables. To
conduct the analysis, The normalized time with large deceleration
events means that we normalized the time period and then counted
occurrences of large decelerations over the normalized period. As a

result, we consider that dependent variable to be the ‘proportion of time
with large deceleration events’. The ANOVA and Poisson regression
model were built separately on the three drives: Siren, Dashboard Signs,
and Lane Change. The formula of the Poisson regression model is as
follows:

Y — hiXi+baXa by

where Y is the dependent variable, and X;s are the independent variable.
To conduct the analysis, the baseline drive was excluded from the
analysis because it contained no cybersecurity events. Additionally, we
only performed the Poisson for the proportion of time with large
deceleration events for the period after the event as there were excess
zeros in the period before the event (i.e., participants did not have a
reason to slow down before the cybersecurity event). We performed a
total of six mixed-design ANOVAs with velocity and change in velocity
as the dependent variables and a total of six Poisson regression models
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with the time proportion of deceleration and the count of drivers’
cautionary behaviors. To account for the order effect where the partic-
ipants were exposed to the same drive order during the experiment, all
the analyses were conducted separately by drive.

4. Results
4.1. Descriptive Statistics

Table 2 presents descriptive statistics of participants’ velocity by
group based on drive and time. Across the Siren, Dashboard Signs, and
Lane Change drives, participants who received training had a larger
reduction in average velocity from before the event to after the event
than the untrained group. No differences can be observed between the
warning and no warning groups except in the Lane Change drive: those
who received warnings had a larger reduction in velocity than those who
did not receive warnings.

Compared to Siren and Dashboard Signs drives, participants in the
Lane Change drive had a greater reduction in velocity from before the
event to after the event. It should also be noted that in the Baseline drive,
participants in all groups exhibited similar driving styles, i.e., no groups
appear to intrinsically possess more careful or riskier driving behavior.

Regarding the proportion of time with large deceleration events
(Table 3), those who were in the training group had the largest time
proportion of large deceleration in comparison to other groups. We see
the largest values for the proportion of time with large deceleration
events after the event occurred in the Lane Change drive. However, in
the Siren and Dashboard Signs drives, participants also had large de-
celerations when the cybersecurity event occurred, indicating that they
acted by slowing down as a response to the event. In the baseline drive,
participants did not have many large deceleration events. This naturally
follows since there were no events in the drive, allowing participants to
drive normally without the need to frequently or harshly apply the
brakes.

Regarding the count of cautionary behaviors (Table 4), in the Siren
group, participants had a larger number of these behaviors than in the
Dashboard Signs and Lane Change groups on average. Participants who
did not receive the training had more cautionary behaviors than those
who received training whereas those who received the warning mes-
sages had more cautionary behaviors than those who did not receive
warning messages.

4.2. Mixed design ANOVAs

4.2.1. Velocity

Table 5, Table 6, and Table 7 show the result of the mixed ANOVA
model on velocity with time, training, and warning being the indepen-
dent variables on the Siren, Dashboard Signs, and Lane Change drives,
respectively. For the Siren drive, time and training were significant
factors: after the event, participants decreased their velocity, with a
greater reduction observed among those who received training. For the
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Dashboard Signs drive, there were significant time, training, and
training * time effects. Combined with the visualization presented in
Fig. 6, participants reduced their velocity more after the event when
they received training compared to those who did not receive training.
For the Lane Change drive, there were significant time and warning *
time effects, suggesting a greater decrease in the velocity after the
cyberattack event for those who received warning messages in com-
parison to those who did not. This trend can also be seen in Fig. 7.

4.2.2. Velocity difference between before and after the event

Similarly, the velocity difference between before and after the event
was entered into an ANOVA with training and warning as the inde-
pendent variables for each drive. There were no significant effects for
the Siren drive. There was a significant training effect (F(1, 26) = 5.113,
p = .03) for the Dashboard Signs drive and a significant warning effect (F
(1, 18) = 5.674, p = .03) for the Lane Change drive.

It is worth noting that the ANOVA on the velocity difference is
equivalent to a post-hoc analysis for the ANOVA on velocity. The results
from the velocity difference analysis also match the results from the
velocity analysis indicating that training was significant for the Dash-
board Signs drive and warning was significant for the Lane Change
drive.

4.2.3. Proportion of time with large deceleration events

The proportion of time with large deceleration events (in percentage)
after the event was entered into a Poisson regression with training and
warning being the independent variables for each drive. No training and
no warning were the reference levels. For the Siren drive, Table 8 shows
the output of Poisson regression. All factors including the intercept were
significant. The results and Fig. 8 suggest that for those who were in the
no warning and no training group, the expected proportion of time with
large deceleration events was 15.18 %. For the single factors, the results
imply that: (1) the expected proportion of time with large deceleration
events for the training group is 1.65 times the expected time proportion
for the no warning and no training group, and that (2) the proportion of
time with large deceleration events for the warning group is 0.47 times
the expected time proportion for the no warning and no training group.
For the interaction factor, the results imply that: (1) for those who
received training, the expected proportion of time with large decelera-
tion events increases by a factor of 1.15 when comparing the warning
group with the no-warning group, and that (2) for those who received
warning messages, the expected proportion of time with large deceler-
ation events increases by a factor of 4.01 when comparing the training
group with the no-training group, implying that training was efficient,
especially for those who received warning messages.

For the Dashboard Signs drive, Table 9 shows the output of Poisson
regression. All factors, excluding the intercept, were significant. The
results and Fig. 9 suggest that for those who were in the no warning and
no training group, the expected proportion of time with large deceler-
ation events was 1.12 %. The expected proportion of time with large
deceleration events for the training group is 16.12 times the expected

Table 2
Descriptive Statistics of Velocity (in mph).
Drive Time Group
No training Training No warning Warning
M SD M SD M SD M SD
Baseline Before event 39.92 4.88 38.58 5.11 38.80 5.55 39.92 4.33
Baseline After event 43.93 4.71 43.49 5.04 43.04 5.84 44.15 3.52
Siren Before event 41.48 3.90 38.58 4.97 39.69 5.44 40.36 3.70
Siren After event 33.90 8.38 25.65 6.00 30.77 8.81 29.66 8.27
Dashboard Signs Before event 39.92 5.08 38.36 4.08 39.03 5.40 39.03 3.84
Dashboard Signs After event 39.03 5.98 3211 7.72 35.46 7.98 35.68 7.60
Lane Change Before event 39.03 4.37 39.25 4.82 38.80 4.88 39.47 4.28
Lane Change After event 29.21 6.13 24.53 5.58 29.44 5.86 24.08 5.58
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Table 3
Descriptive Statistics of the Proportion of Time with Large Deceleration Events After the Event.
Drive Group
No training Training No warning Warning
M SD M SD M SD M SD
Baseline 0.01 0.031 0.003 0.013 0.01 0.031 0.003 0.013
Siren 0.111 0.116 0.266 0.117 0.2 0.151 0.172 0.128
Dashboard Signs 0.047 0.119 0.187 0.141 0.096 0.125 0.138 0.167
Lane Change 0.2 0.076 0.345 0.142 0.249 0.137 0.295 0.132
Table 4
Descriptive Statistics of Count of Cautionary Behaviors. 451
Drive Group
No training Training No warning Warning
M SD M SD M SD M SD -
40 T
Siren 8.25 6.34 4.6 2.35 6 5.6 7 4.68
Dashboard Signs 3 1.59 2.81 2.26 2.56 1.79 3.25 2.05 =
Lane Change 5.19 5.9 1.81 2.01 2.62 2.92 4.38 5.9 E‘ Tramung
> 35 « No training
S
o -8~ Training
Table 5 g
Mixed ANOVA Result on Velocity for the Siren Drive. a0
Effect DF DF F P
numerator denominator
Training 1 23 8.143 .01* )
Warning 1 23 0.086 77 <o <
Time 1 23 38.246 < .001* —
Training * Warning 1 23 0.368 .55 et
Training * Time 1 23 3.67 .07 e
Warning * Time 1 23 0.416 .53 et
Training * Warning * Time 1 23 0.169 .69
Time
(* p < 0.05).
Fig. 6. Graph of Velocity (y axis) Before and After the Event (x axis) for
Table 6 Training and No Training Groups (line color) During the Dashboard Signs
a. € . . . Drive; the Error Bars Represent the Standard Error.
Mixed ANOVA Result on Velocity for the Dashboard Signs Drive.
Effect DF DF F p
numerator denominator 45
Training 1 26 5.333 .03*
Warning 1 26 0.01 .92
Time 1 26 6.693 .02* 404
Training * Warning 1 26 0.638 .43
Training * Time 1 26 5.113 .03*
Warning * Time 1 26 0.082 .78
Training * Warning * Time 1 26 0.876 .36 = 351 :
CE:L Warning
(* p < 0.05). = ;
> == No warning
G 304 :
o = \Narning
9]
Table 7 e
Mixed ANOVA Result on Velocity for the Lane Change Drive. 25
Effect DF DF F P
numerator denominator
Training 1 18 2.596 .13 204
Warning 1 18 1.137 .30
Time 1 18 87.894  <.001* = o
. . et wer
Training * Warning 1 18 0.193 .67 oy 6
Training * Time 1 18 1.212 .29 C\Jbe‘geb G We“ﬁ(’
Warning * Time 1 18 5.674 .03* @efo® piet
Training * Warning * Time 1 18 0.303 .59 .
Time

(* p < 0.05).

time proportion for the no warning and no training group. The expected
proportion of time with large deceleration events for the warning group
is 7.31 times the expected proportion for the no warning and no training
group. For those who received training sessions, the expected proportion
of time with large deceleration events increases by a factor of 1.07 when

Fig. 7. Graph of Velocity (y axis) Before and After the Event (x axis) for
Warning and No Warning Groups (line color) During the Lane Change Drive;
the Error Bars Represent the Standard Error.
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Table 8
Poisson Regression Result on Time Proportion of Large Deceleration for the Siren
Drive.

Effect Estimate  Std. Expected z value p
Error Values

(Intercept) 2.72 0.09 15.18 29.88 <
.001*

Training 0.50 0.12 1.65 4316 <
.001*

Warning —0.75 0.16 0.47 —4.686 <
.001*

Training * 0.89 0.19 2.43 4708 <

Warning .001*
(* p < 0.05).
No training Training

c °

2
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0 1 Warning
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D034 l = = No waring
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T T T T
No warning Warning No warning Warning

Warning

Fig. 8. Graph of Proportion of Time with Large Deceleration Events (y axis)
Separated by Warning (x axis) and Training (grid) for the Siren Drive; the Error
Bars Represent the Standard Error.

Table 9
Poisson Regression on Proportion of Time with Large Deceleration Events for the
Dashboard Signs Drive.

Effect Estimate  Std. Expected zvalue p
Error Values
(Intercept) 0.12 0.33 1.12 0.35 72
Training 2.78 0.34 16.12 8.09 < .001*
Warning 1.99 0.36 7.31 5.61 < .001*
Training * -1.92 0.37 0.15 -5.14 < .001*
Warning
(* p < 0.05).

comparing the warning group with the no-warning group, implying that
warning had little effect on those who had training sessions. For those
who received warning messages, the proportion of time with large
deceleration events increased by a factor of 2.36 when comparing the
training group with the no-training group.

For the Lane Change drive, the results indicate that only training
(beta = 0.52, p < .001) was significant. The expected proportion of time
with large deceleration events for the training group is 1.65 times the
expected proportion for the no warning and no training group.

4.2.4. Count of cautionary behaviors
The count of cautionary behaviors was modeled using Poisson
regression with training and warning being the independent variables
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Fig. 9. Graph of Proportion of Time with Large Deceleration Events (y axis)
Separated by Warning (lower x axis) and Training (grid) for the Dashboard
Signs Drive; the Error Bars Represent the Standard Error.

separated by drive. No training and no warning were the reference
levels.

For the Siren drive, there was a significant training effect (beta =
—0.64, p = .003), indicating that the expected number of cautionary
behaviors for the training group is 0.53 times the expected number of
behaviors for the no warning and no training group. Training reduced
the frequency of checking mirrors and/or changing the number of hands
on the wheel.

For the Dashboard Signs drive, there were no significant effects.

For the Lane Change drive, the warning and training * warning
interaction were significant. The results are shown in Table 10. The
results and Fig. 10 suggest that for those who were in the no warning and
no training group, the expected count of cautionary behaviors was 3 and
that the expected count of behaviors for the warning group was 2.46
times the expected count of the behaviors for the no warning and no
training group. For those who received training, the expected count of
cautionary behaviors increases by a factor of 0.61 when comparing the
warning group with the no-warning group. For those who received
warning messages, the expected count of cautionary behaviors increased
by a factor of 0.18 when comparing the training group with the no-
training group, implying that training made the participants reduce
the frequency of their cautionary behaviors.

5. Discussion

The present study focused on how Human Factors aspects can
improve vehicle cybersecurity, which is an understudied topic, by
analyzing whether a training program and in-vehicle warning message
system help drivers respond to cyberattack-induced situations. A driving

Table 10
Poisson Regression Result on Count of the Behaviors for the Lane Change Drive.
Effect Estimate  Std. Expected zvalue p
Error Values
(Intercept) 1.10 0.20 3.00 5.38 <
.001*
Training -0.29 0.31 0.748 —-0.92 .36
Warning 0.90 0.24 2.46 3.72 <
.001*
Training * -1.39 0.45 0.25 -3.07 .002*
Warning

(* p < 0.05).
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No training Training

Warning
= = No warning
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Training
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Fig. 10. Graph of count of cautionary behaviors (y axis) separated by warning
(x axis) and training (grid) for the Lane Change drive; the error bars represent
the standard error.

simulator study was conducted to assess the effectiveness of the training
program and the warning message system on driver behavior, i.e., ve-
locity, proportion of time with large deceleration events, and count of
certain cautionary behaviors. Specifically, the research question was
whether training and/or warnings would lead to enhanced driving
performance, which in this case was reduced velocity, greater propor-
tion of time with large deceleration events, and more cautionary be-
haviors (Gemonet et al., 2021).

Regarding the hypothesis focused on the effectiveness of training, the
results of the mixed ANOVA on raw velocity suggested that the effect of
training was most significant for the Siren drive as the participants in
that drive generally drove at a slower velocity than the non-training
group. In terms of the velocity difference, the effect of training was
most significant for the Dashboard Signs drive as the participants
reduced their velocity the most if they received the training sessions
compared to the non-training group. The results of Poisson regression
showed a significant training effect across all the drives, indicating that
the participants had a greater proportion of time with large deceleration
events when they received training programs. Additionally, those who
received training performed cautionary behaviors less frequently after
the Siren and Lane Change cyberattack events. Past research has found
that training can improve people’s hazard and risk perception (Duffy,
2003), but that was not necessarily the case here. When combined with
the driving behavior results, it implies that training leads drivers to
immediately react by slowing down, while also not looking around to
gain information about their surroundings.

Concerning the effectiveness of warnings, the results of the mixed
ANOVA on raw velocity suggest that the effect of warning was only
significant for the Lane Change drive as participants in that drive
generally drove at a lower velocity than the no-warning group. In terms
of the velocity difference, the effect of warning was also only significant
for the Lane Change drive as participants reduced their velocity the most
if they received the warning messages compared to the no-warning
group. Those who received warning messages after the cyberattack
events are found to have a significantly greater proportion of time with
large deceleration events for the Dashboard Signs drive and interest-
ingly, less proportion of time with large deceleration events for the Siren
drive. However, they also have more cautionary behaviors for the Lane
Change drive. As the “pull over” warning messages were only provided
in the Lane Change drive, it naturally follows that there is a stronger
warning effect in terms of slowing down the vehicle and performing
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more cautionary behaviors. Taken together, it indicates that participants
preferred to be thoroughly informed about what happened and what to
do through a combination of visual and auditory warnings (Zhang et al.,
2019) and that unclear warning messages (i.e., the non-safety critical
events) will lead to a weaker, sometimes contradictory, effects (Parker
et al., 2022).

Overall, the results indicated that training and warnings are effective
in helping drivers respond to cyberattack events. Training programs
seem to improve drivers’ mental models, which helps them understand
what cyberattacks are and what to do when they encounter a (suspected)
vehicle cyberattack. Warnings are an important aspect in helping drivers
understand the current situation and can present information effec-
tively, thus improving drivers’ decision-making ability (Endsley, 2015).
Hence, drivers’ situation awareness and understanding of vehicle
cyberattacks are enhanced through training programs and warning
messages. In addition, training on the comprehension of the warning
symbols could help people’s understanding of the situation (Lesch et al.,
2011), indicating that the training and warning have a synergistic effect.
It is worth noting that the training program instructed the participants
on what the vehicle cyberattack was and what to do, and that the
warning messages simply informed the participants of what to do. The
stronger effect of training (over warnings) indicated that simply telling
people what to do may not be effective, but rather giving them more
information is more compelling (Aliebrahimi and Miller, 202.3).

Relatedly, the effectiveness of training and warning are not consis-
tent across drives. This more noticeable effect of training on perfor-
mance and the rather moderate effect of warnings on performance could
be due to a variety of factors. First, while much evidence has demon-
strated training’s effectiveness in enhancing driving performance (Cas-
utt et al., 2014; Dorn and Barker, 2005; Roberts et al., 2021), other
researchers have claimed that the effect of training on road safety is
controversial, and that specific skills training has failed to promote
measurable improvements (Dorn and Barker, 2005). Second, the impact
of in-vehicle warnings on driver behavior is not always positive; their
effectiveness depends also on other factors such as the time of issuance
(Wan et al., 2016). Third, lack of understanding and comprehensibility
of warning messages might be another factor that hinders people’s
performance and awareness. Providing training on the warning symbols
and contents, as well as contextual cues to make the connection between
the symbol and its referent can help people, especially older adults,
better understand the warnings (Lesch et al., 2011, 2013).

For vehicle cybersecurity and traffic safety, in the future it is
important to incorporate and implement appropriate training programs
and warning systems on a larger scale. Training programs designed to
educate both vehicle manufacturers and drivers can enhance cyberse-
curity vigilance. Manufacturers can incorporate secure design principles
into their products, reducing vulnerabilities from the outset, while
drivers can become more adept at recognizing potential threats and
taking preventive actions. Meanwhile, advanced warning systems inte-
grated into vehicles can defend against cyberattacks and alert drivers to
potential risks in real time. As these systems become more advanced,
they can detect and respond to threats autonomously, further improving
the driving experience and safety for drivers. Implementing these
measures on a larger scale not only enhances individual vehicle security,
but also contributes to a collective improvement in automotive cyber-
security across the entire industry, making the road a safer place for all.

5.1. Limitations

Several limitations exist in the present study. The sample size was
relatively small and the participants were all young drivers. Given young
drivers’ inexperience and lack of hazard anticipation, their response
represents the least desirable option, implying that older, more experi-
enced drivers would respond even better to training and warning than
younger drivers. Future work should examine the effectiveness of
training and warning systems with a larger group of more diverse
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drivers. Also, only three vehicle cyberattack events were studied.
Whether the results regarding training and warning systems’ effective-
ness in improving drivers’ response behavior can be generalized to other
situations and other driver groups remains unknown; more empirical
evidence is needed. Additionally, with the limited cyberattack events,
only the drivers’ behavior was assessed, not their vehicle cybersecurity
knowledge nor their mental models of vehicle cybersecurity. Third,
temporal effects were not examined in this study, e.g., it is unknown
whether the effects of training will last over time. Last, there might have
been a learning effect in this study since the drives were all presented in
the same order (to prevent drivers from becoming over sensitized to
extreme events) and the event happened in the same location in the
drive. Due to the nature of repeated exposure, after experiencing the first
drive, participants may have been able to anticipate what would happen
in the following drives. However, the models are examined separately
for each drive to account for this effect. Future research could consider
randomization to avoid this issue.

5.2. Conclusions

A driving simulator experiment was conducted to assess the effec-
tiveness of training and in-vehicle warning messages in improving
drivers’ response behavior to vehicle cyberattacks. Most drivers did
respond to the cyberattacks in a way that was safe and appropriate, e.g.,
by slowing down, pulling over, or performing cautionary behaviors. The
results suggest that drivers’ response behavior was moderately affected
by the training programs and the warning messages, but only in specific
cyberattack events. This research is among the first attempts to incor-
porate training and warning systems into the human-system loop when
studying vehicle cybersecurity. This paper offers automobile manufac-
turers and cybersecurity experts a new direction and possibly more
feasible solutions to potentially alleviate the safety risks caused by
vehicle cyberattacks by sharing the responsibility between technological
mitigations and human drivers.
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