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Student understanding of eigenvalue equations in quantum mechanics:
Symbolic blending and sensemaking analysis
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As part of an effort to examine students’ mathematical sensemaking (MSM) in a spins-first quantum
mechanics course during the transition from discrete (spin) to continuous (position) systems, students were
asked to construct an eigenvalue equation for a one-dimensional position operator. A subset of responses
took the general form of an eigenvalue equation written in Dirac notation. Symbolic blending, a
combination of symbolic forms and conceptual blending, as well as a categorical framework for MSM,
were used in the analysis. The data suggest two different symbolic forms for an eigenvalue equation that
share a symbol template but have distinct conceptual schemata: A transformation that reproduces the
original and to operate is to act. These symbolic forms, when blended with two sets of contextual
knowledge, form the basis of three different interpretations of eigenvalue equations modeled here as
conceptual blends. The analysis in this study serves as a novel example of, and preliminary evidence for,
student engagement in sensemaking activities in the transition from discrete to continuous systems in a

spins-first quantum mechanics course.
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I. INTRODUCTION

Quantum mechanics is one of a handful of topics in
which every physics major will take at least one course
during their undergraduate degree due to its pervasiveness
in modern research and applications in physics and beyond.
Despite the ubiquity of quantum mechanics courses and the
significant amount of work that has gone into improving
them, the subject has still proven to be very difficult for
students. The two most ubiquitous methods of teaching
quantum mechanics are the traditional functions-first and
the more novel spins-first. Learning quantum mechanics
has been shown to be a nontrivial task across both
instructional approaches [1-5].

Functions-first courses introduce quantum mechanical
principles in the context of continuous systems represented
as functions of position. As the name implies, a spins-first
approach involves introducing students to discrete, typi-
cally two-state, spin systems, which can be modeled with
relatively simple mathematics. Spins-first courses often
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immediately introduce Dirac notation, adding representa-
tional sophistication. The familiarity with Dirac notation
likely makes the transition to graduate study less challeng-
ing (at least in quantum mechanics). However, in order to
work through other canonical quantum mechanical sys-
tems, there needs to be a point at which a spins-first course
transitions from discrete systems to continuous systems that
necessitate functional representations. There is an implicit
expectation here that students would be able to utilize
the knowledge of concepts and procedures they learn in the
context of spins in these novel functional contexts. The
results discussed herein are part of a project that has sought
to examine student reasoning in the transition from discrete
to continuous systems in a spins-first course.
Eigentheory is central to the theory of quantum mechan-
ics; it is baked into the second and third postulates of
quantum mechanics [6]. Eigenvalue equations are also one
of the first mathematical entities introduced in the course
and recur across a variety of different contexts in the
curriculum. One could argue that an eigenvalue equation in
quantum mechanics has a fundamentally different inter-
pretation than that of an eigenvalue equation in a math-
ematics context, and while one could interpret them the
same way, there are more productive interpretations for
quantum mechanics. The majority of research on student
understanding of eigenvalue equations has come from the
research in undergraduate mathematics education (RUME)
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community [7-10]. The focus of this prior work has
primarily been on student recognition of the geometric
interpretation of an eigenvalue equation, one in which a
vector is only scaled, and not rotated, by an operator. The
findings on quantum mechanical eigenvalue equations in
physics education research (PER) have primarily addressed
difficulties or misconceptions [2,4,11,12].

The primary goals of this study are to explore two
research questions.

1. What knowledge and resources are students drawing
on to construct and make meaning of eigenvalue
equations in quantum mechanics?

2. To what extent are students engaging in sensemak-
ing while constructing quantum mechanical eigen-
value equations in the transition from spins to
positions?

This was done by utilizing three theoretical frameworks—
concept images, symbolic blending, and mathematical
sensemaking—to analyze written data from student
responses to a variety of prompts, which are discussed
in detail in the following sections. We identified three
distinct symbolic blends, composed of two distinct sym-
bolic forms and two distinct sets of contextual knowledge.
The first is consistent with the mathematical (geometric)
interpretation, the second is reflective of a common
difficulty in quantum mechanics, and the third is connected
to the interpretation of eigentheory presented in the
postulates of quantum mechanics. The identification of
these symbolic forms and blends serves as some of the first
evidence of students engaging in mathematical sensemak-
ing in the transition from spins to positions. Furthermore,
we were able to utilize the categorical framework for
mathematical sensemaking in physics to break down one
student’s reasoning in detail. Together, these data and
analyses demonstrate some of the sensemaking in which
students are engaging during the transition.

II. THEORETICAL FRAMEWORKS

Data analysis was an iterative process that involved
working through four different theoretical frameworks.
Because the main object of study was a mathematical
expression, a framework from the RUME community,
concept images, was utilized first to get a broad sense of
student thinking. As analysis progressed and included the
structure of the expressions being constructed, the symbolic
forms framework was a natural progression for analysis.
With that came symbolic blending to account for the
different roles of context, which was especially relevant
for the range of responses in the data in both templates and
concepts. The categorical framework for mathematical
sensemaking was used to analyze one particularly detailed
student response. It has been argued that students accessing
the symbolic forms and blends in their reasoning are
evidence of sensemaking [13]. In addition to forms
identified in this study serving as evidence of sensemaking,

one student’s response to the main task provided sufficient
detail to demonstrate evidence of mathematical sensemak-
ing as described by Gifford and Finkelstein [14], enabling
that framework to be implemented in this context and
providing a concrete example of the two in tandem. In this
section, each of these frameworks is explained, and relevant
examples of their implementations are discussed.

A. Concept image framework

Tall and Vinner developed the concept image framework
based on mathematics education for modeling knowledge
and how it is elicited [15]. A concept image is developed
over time and includes the whole of a person’s under-
standing of a single concept, including pictures, processes,
and properties. All pieces that make up a single concept
image are not necessarily connected to one another and
may not be elicited simultaneously. The portion of the
concept image elicited in response to some stimulus (in our
cases, usually a physics question) is referred to as the evoked
concept image. In fact, it seems likely that there are a variety
of factors that can influence which part of a student’s concept
image is evoked in a given scenario. Given the intersectional
nature of this project, the concept image framework has
proven to be a useful tool in the interpretation of student
responses. Since its introduction to the RUME and PER
communities, the concept image framework has been utilized
to analyze student thinking on integration [16,17], partial
derivatives [ 18], eigenvalue equations [8], and vector calcu-
lus in upper-division electricity and magnetism [19,20]. Here
it assisted in the identification and classification of different
symbolic forms in student responses.

B. Symbolic forms

Symbolic forms [21], developed as a means of examin-
ing how students think about (physics) equations, can be
seen as an extension of the knowledge-in-pieces framework
[22]. Sherin intentionally modeled this framework after
diSessa’s phenomenological primitives (p-prims), which
were a set of intuitive chunks of knowledge or ideas [22].
These p-prims were each self-contained and relatively
simple, small knowledge structures originating from nearly
superficial interpretations of reality. By comparison, sym-
bolic forms are larger structures consisting of two pieces: a
pattern of symbols in an expression, the symbol template,
and the rough idea expressed therein, labeled the con-
ceptual schema. A conceptual schema is intended to have a
fairly simple structure and is not inherently connected to
any physical system or reasoning.

Given that the schema contains all the meaning, it is
possible for a single symbol template to be a part of several
different symbolic forms, depending on the interpretation
and/or context. To make clear the difference between them,
some examples can be quickly explored. A common
expression for the total energy of a system in intermediate
mechanics is
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H=T+U,

where T is the total kinetic energy in the system and U is
the potential energy. The sum on the right side is an
example of the parts of a whole symbolic form, as the
individual pieces are summed to compose the total energy
of the system. In a senior-level quantum mechanics class,
this expression would look quite different,

y_ P 5

H= ot V(7),
but could be interpreted in much the same way. In both
cases, here the symbol template is [[J + [J] and the schema
is “elements that combine to make a whole quantity,” with
the context of providing the meaning for the quantities
represented, which is individual contributions to the total
energy of a system.

Another example can be found in the kinematics

equation,

x(t) = x; + vt + %atz.

While at first glance this could be seen as parts of a whole
due to the similarity of the symbol pattern, a more
appropriate form is base plus change. The latter’s symbolic
form consists of the template [[J 4 A] and the schema “a
base quantity changed by some amount.” In this context,
the “base” is the initial position, x;, and the “changes” are
the two time-dependent terms.

Given their intended nature as building blocks, it is
possible and likely to find more than one symbolic form in
a physics equation. In the examples discussed above, the
focus was on the meaning of the sum, but other symbolic
forms could be used to determine the meaning of the different
equal signs. Due to the nature of the framework, it has been
used in several contexts to analyze the intersection of physics
and mathematics. An example of a more traditional imple-
mentation is seen in the work of Schermerhorn and
Thompson, who used symbolic forms to investigate student
construction of differential length elements, identifying the
use of the parts of a whole form in expressions for the
components of a differential length vector [20].

Dreyfus and colleagues engaged in a theory-building
effort in the context of quantum mechanics meant to use
data to illustrate their conjectures and explore a method for
analyzing student mathematical sensemaking in quantum
mechanics (QM) problem solving [23]. They also argued
that the mathematical sensemaking (MSM) tools learned in
introductory physics are necessary but insufficient for
MSM in quantum mechanics; this argument would be
consistent with the findings of Kuo et al. [13]. The third and
final claim of Dreyfus and colleagues’ paper is that when
students do not succeed in MSM in QM, it is not because
they are not engaging in the process, but that they are not

TABLE 1. Symbolic forms proposed by Dreyfus and
colleagues [23].
Symbol
Proposed form template Conceptual schema
Transformation ﬁ|> “Reshaping” (the idea of stuff
getting molded into a
different shape).
Eigenvector Of) =¢|) A transformation that
eigenvalue reproduces the original.

using particular cognitive machinery (i.e., symbolic forms)
needed to engage in expert MSM in QM. They highlight
episodes from a Bing and Redish study [24] to illustrate
problems students could have interpreting equations with
unproductive symbolic forms in the context of a flow rate
problem. The forms they proposed are summarized in
Table I.

The interpretation of the eigenvalue equation that results
from this eigenvector-eigenvalue symbolic form is not
necessarily productive for quantum mechanics, however.
While thoroughly appropriate in mathematical contexts, the
notion of transformations in quantum mechanics is not
central in the same way as the additional expert-level
reasoning described by Dreyfus and colleagues. We argue
that although theirs is one interpretation of an eigenvalue
equation, there are others that come from students in this
framework. The most sophisticated of these interpretations
abandons the notion of transformation altogether, and this
expert-level reasoning closely resembles the associated
conceptual schema. Dreyfus and colleagues conjecture that
quantum mechanical symbolic forms are part of a phys-
icist’s cognitive ecology and that students can learn them,
though it may be difficult. Our data support this claim.

C. Symbolic blending

Conceptual blending is a theoretical framework for
cognition that has only recently been adapted from its
origins in the linguistics communities to physics and
mathematics education research [25]. This framework
models the generation of novel knowledge or ideas as
the effective blending of existing ones. Problem solving in
this framework can be modeled as consisting of two mental
spaces that act as inputs, with structure provided by a
generic space, that lead to a novel blended space where new
understanding can develop as a result. In the blended space,
ideas or relationships can be defined or recognized that
would not have come from either of the individual input
spaces. The construction of a blend is fluid, as are the
spaces occupied by the person generating the blend. This is
particularly useful when examining intersections of math-
ematics and physics, where the two disciplines can be
considered the input spaces and the blend, or lack thereof,
can be seen in student work.
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Generic Space

Conceptual
Schema

Input Space Input Space

Contextual
Knowledge

Symbol Template ”

Constructed
Equation /
Expression

Blended Space

FIG. 1. Symbolic blending diagram [26] depicting the inter-
action between a symbolic form and conceptual blending in
equation or expression construction.

In order to explicitly account for context in equation
construction and interpretation, Schermerhorn and
Thompson developed a model that incorporates symbolic
forms into conceptual blending, which they call symbolic
blending (see Fig. 1) [26]. The conceptual schema from
symbolic forms fills the role of the generic space in a
conceptual blend, providing structure to the reasoning and
the mathematical justification for the symbol template,
separate from any contextual meaning. The symbol tem-
plate is one of the two input spaces and includes the
structure of the representations of student-generated equa-
tions. The second input space contains the necessary
contextual knowledge for the construction and interpreta-
tion of the equation, such as geometric or physical knowl-
edge, that motivates the particular symbolic form use. The
symbol template and conceptual schema spaces comprise
the symbolic form, which is entirely acontextual. The two
input spaces, structured by the conceptual schema, come
together in the blended space, resulting in the equation
generated by students and the new meaning they are able to
take from it. This model extends the utility of symbolic
forms without sacrificing one of its underlying principles,
which is that the conceptual schemata should be entirely
context independent and generalizable; it accounts for the
potential of an expression to have varied meanings by
blending the template to different contexts with the same
conceptual schema for structure.

D. Mathematical sensemaking

Broadly, mathematical sensemaking (MSM) can be
considered a part of the larger activity of coherence seeking
in which students, and even experts, seek connections

Object of focus
Mathematical Physical
Mathematical Tools Mathematical Tools
; A A
S
=
S
g §
S Student ~ Mathematical Student Physical
s § Formalism System
Y Msm - M Msm - P
S
5 Physical Model Physical Model
s
: 3
&2
= . .
N Student Mathema(wal Student Physical
Formalism System
Psm -M Psm - P

FIG. 2. The four modes of mathematical sensemaking, from
Fig. 2 of Gifford and Finkelstein [14].

between conceptual and mathematical understanding in
physics [27]. Part of assessing the extent to which students
are engaging in MSM in the transition from discrete to
continuous contexts involves assessing their ability to
generalize their knowledge from spin-%2 systems to novel
systems.

Gifford and Finklestein [14] developed a categorical
framework for analyzing what they have referred to as
different modes of sensemaking, using mediated cognition
and activity theory. Each mode consists of three nodes (see
Fig. 2). The first is the subject engaging in the reasoning
(bottom left, here a student). The next is a mathematical
tool or physical model (top) which is used to engage with
the object of the reasoning, which is either a mathematical
formalism or physical system (bottom right). The different
permutations of tools, models, formalism, and system result
in four different modes of sensemaking that can be used to
model reasoning. The authors model transitions within and
between these different modes of reasoning via three
different mechanisms. Two different ways of reasoning
can be related via “coordination” to provide two ways to
make sense of the same idea (object). Most relevant to this
study is a step in which reasoning can be “chained” (see
Fig. 3). Chaining is a multistep sequence, in which the
object of one mode becomes the tool in the next mode. This
framework is particularly useful for analyzing responses in

Tool A Object A
Chaining

/—*

Student Object A

Student Object B
FIG. 3. Depiction of chaining, from Fig. 6 of Gifford and

Finkelstein [14].
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which students are explicit about the knowledge they are
accessing and how they are using it to reason through their
responses to our prompts.

III. BACKGROUND AND METHODS

The work discussed here is an evolution of the collabo-
ration between the authors of Refs. [10,28,29]. In both that
study and the current study, data were collected in a senior-
level, spins-first quantum mechanics course that is required
for the completion of physics and engineering physics
B.S. degrees at the institution but is also taken by some
B.A. physics majors, physics minors, and nonphysics
majors. While not the students’ first introduction to
quantum mechanics in physics or engineering physics
programs, this is the most in-depth study of the topic
available to undergraduate students at this institution. In the
earlier study, two different but analogous tasks were used to
probe student interpretations of eigenvalue equations in
both quantum mechanical and mathematical contexts and
their comparisons between the two equations. Data are
from the second task described in the previous article,
labeled the eigenvalue equation comparison task [Fig. 1(b)
in Ref. [10]; see Fig. 4], which was administered to the
students in this dataset as a written homework assignment
just over 2 weeks into the class, during which instruction
focused on spin-¥2 systems and Dirac formalism.

There were three primary physical interpretations of
quantum mechanical eigenvalue equations presented:
measurement, potential measurement, and correspon-
dence. Students demonstrating a measurement interpreta-
tion of the eigenvalue equation provided responses
consistent with the idea that the operator acting on a state
in an eigenvalue equation represented a literal measurement
of the state of the quantity represented by the operator, with
the right-hand side of the equation representing the out-
come of that measurement. Potential measurement was a
more nuanced view of the equation in which the eigenvalue

In previous courses you have probably seen an eigenvalue
equation which looks something like this:

Az = \Z.

There are a number of ways to interpret this equation, one of
which is similar to the way we interpret

5 h
S 14) = 5 14)

in quantum mechanics. In general, however, the most
productive ways to think about these two equations are quite
different. In no more than a page, discuss the various meanings
and interpretations of these two equations, their similarities and
differences, and why we identify them both as eigenvalue
equations.

FIG. 4. Eigenvalue equation comparison task.

equation conveyed information about the outcomes of
potential, not actual, measurements. Students who pre-
sented views consistent with the correspondence view of
the eigenvalue equation gave responses that drew attention
to the stated relationships between the eigenstates and their
corresponding measurement values. The language used in
correspondence view responses may not have mentioned
measurement at all. These documented interpretations of
specifically quantum mechanical eigenvalue equations
serve as a starting point for the analysis of data presented
in this paper. For this study, we focus on two closely related
equation construction tasks.

In order to provide insight into whether students had an
established symbol template for eigenvalue equations at
that point in the course and to enable identification of a
conceptual schema for any established symbol template,
students were asked to construct a position eigenvalue
equation for the position operator [see Fig. 5(a)]. The task
was also intended to probe students’ ability to generalize
the concepts taught in the course so far to a “new”
observable, position. Changing the context was important
to this determination because to be a part of an eigenvalue
equation symbolic form, the schema should be general-
izable to different contexts. An adequate answer to this
prompt would use the same symbol template as the
eigenvector-eigenvalue symbolic form proposed by
Dreyfus and colleagues [23] but specified to the position
context. While still using the same symbolic form, the full
symbolic blend is different due to the different context.

(a)

Consider a quantum mechanical system constrained to be
located along a straight line as shown below.

_._
-+
-+
<+
-
-
4+
-
4+
-
A\

L1
AL

Write down an eigenvalue equation for an operator that
represents the position of this system. Briefly explain what each
term in the equation represents and why you wrote the equation
the way you did.

(b)

Consider a quantum mechanical system that is physically
constrained to be located along a straight line, as shown below.

<€ >

a. Write down an eigenvalue equation for an operator that
represents the position of this system.
b. Briefly explain what each term in the equation represents.
i. How do each of these relate to the physical system?
ii. What, if any, connections exist between the terms
in your equation?

FIG. 5. Position eigenvalue equation construction tasks (a) pre-
test and (b) post-test version.
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This task was given to students 6 weeks into the course
after instruction on Stern-Gerlach experiments, spin-Y2
systems, general spin systems, and time evolution of spin
systems, but prior to any instruction on continuous systems.

The post-test was slightly modified to address the issue
where students would only provide an expression with little
or no interpretation. Students were asked for an expression
and an explanation of their terms in different sections of the
task. The explicit additions asked students to relate these
terms to the physical system and explain connections
between their terms. For a condensed version of these
questions, see Fig. 5(b). The task was administered after a
full semester of instruction.

Since the distributions of student ideas between the pre-
and postinstruction administrations were not found to be
statistically significant, we will treat all responses, regard-
less of administration, as a combined dataset.

The authors engaged in collaborative qualitative analysis
to refine the codebook until a consensus was reached [30].
This was an iterative process consisting of steps through
different theoretical frameworks. As a first pass, student
responses were coded holistically in accordance with
evoked concept images. The goal of this analysis was to
generate a broad codebook for student interpretations of the
eigenvalue equations they generated. Once student inter-
pretations were grouped broadly, we began attempting to
decompose student responses into symbol templates and
conceptual schemata. Separating students’ overall inter-
pretations of the equation into a symbol template and a
context-independent conceptual schema proved surpris-
ingly challenging, however. The students overall interpre-
tations of their equations seemed to depend on different sets
of contextual knowledge in addition to a symbolic form.
The students’ interpretations of their constructed equations
could therefore be modeled effectively utilizing the sym-
bolic blending framework. The blends, in turn, reflected the
original concept image analysis, while also providing
additional information about what ideas contribute to the
overall interpretations.

In coding for symbolic forms specifically, student
responses were first coded for a symbol template and then
an associated conceptual schema. The first pass was essen-
tially a binary coding identifying which students provided an
expression utilizing the template [J|-) = ¢|-), where the dots
inside the ket symbols indicate identical symbols inside the
kets and thus identical kets. For those students who used this
template, a variety of conceptual schemata were identified.
This symbol template is the same as that of the eigenvector-
eigenvalue symbolic form proposed by Dreyfus and col-
leagues with the exception that the “empty” kets have been
given dots to denote that it must be the same ket on either side
of the equal sign [23]. Conceptual schemata were derived
from the portions of student responses where they interpreted
the expressions they provided. Coding only for expressions
that used an eigenvalue equation template proved inadequate,

however, as a variety of other expressions provided by
students did not conform to this symbol template and
therefore required additional categorization. Grouping sim-
ilar student responses by the structure of their equation, and
subsequently by ideas presented by the students, resulted in
the identification of other potential symbolic forms in
addition to those for eigenvalue equations.

IV. RESULTS AND ANALYSIS

Students’ responses to these different tasks show evi-
dence for a variety of interpretations of the constructed
expressions. While the tasks were intended to explore
specifically the prevalence of an eigenvalue equation
symbolic form, student responses, especially to the eigen-
value equation construction task, have demonstrated other
symbolic forms as well (see Table II). There is evidence of
the utilization of these different symbolic forms in con-
junction with different sets of contextual knowledge,
resulting in three different symbolic blends [26] for
quantum mechanical eigenvalue equations. In addition,
we see evidence of mathematical sensemaking that can
be categorized in Gifford and Finkelstein’s MSM frame-
work [14]. In this section, we describe the different
symbolic forms and their applications by students as
blends. We also provide an analysis of one student’s
reasoning through the MSM framework.

A. Basis expansion or parts of a whole

In response to the eigenvalue equation construction task,
several students wrote expressions that took the general
form of a summation rather than an operator equation.
Responses in this category all had the same structure: a
generic ket on the left-hand side equated to a sum of
products of eigenvalues and basis kets. The response shown
in Fig. 6 is representative of this group.

The symbol template of the expression seems to match
that of the expansion of a state ket into its basis kets, a
regularly utilized operation in quantum mechanics problem
solving. A general basis expansion in quantum mechanics
is |w)=>_,cnla,), where the {|a,)} constitute some
eigenvector basis, and the {c,} are the appropriate coef-
ficients of each basis vector (i.e., ¢, = (a,|y)). From a
symbolic forms standpoint, this demonstrates another
example of summing vector components to get a full
vector but in a very different context, a Dirac notation
analog to constructing a differential length vector [20].

\ /\71/7 d g a,, \&n>
hp w0 4n) s bonding of pociion
Al €40 valre o e, 5 ¢V elpanvechs”

wLM‘l/

A g

FIG. 6. Basis expansion being applied to an eigenvalue
equation.
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TABLE II. Summary of symbolic forms identified in the data.
Object Symbol template Conceptual schema Symbolic form
Basis expansion >0 Amounts of a generic substance, associated Parts of a whole
with terms, that contribute to a whole.
cd A product of factors is broken into two parts Coefficient
and one part is identified with an individual
symbol, the coefficient.
0o A vector expression including the magnitude Magnitude direction
of a quantity and a unit vector to indicate
a specific direction.
Eigenvalue ﬁm) = c|@) A transformation that reproduces the Reproductive transformation
equation original (scaling). (ct. [23])

To operate is to act.

Operator equation as action

In that previous work, the researchers identified a magni-
tude direction symbolic form for vector components; this
form nested inside the summation to constitute the parts of
the whole, the whole being the full vector. As seen in Fig. 6,
however, the student expressions in this group typically
wrote eigenvalues not only inside the RHS kets, denoting
eigenvectors, but also in front of those eigenvectors, in
place of the expansion coefficients {c, }. Thus, the resulting
expressions include the summation as parts of a whole from
a basis expansion as well as the pairing of eigenvalue and
eigenvector from an eigenvalue equation, a,|a,), rather
than a magnitude direction expression c,|a,).

This set of student responses may be indicative of a novel
conception of the right-hand side of the eigenvalue equa-
tion. Dreyfus and colleagues posited that the coefficient
symbolic form may show up in quantum mechanics in the

Conceptual
Schema

| Coefficient

Contextual
Knowledge

Eigentheory “

Eigenvalue-
Eigenvector
anlay)
Constructed
Eq.

FIG. 7. A symbolic blend in which Sherin’s coefficient sym-
bolic form is used as a tool for understanding the right-hand side
of an eigenvalue equation.

multiplication of a ket by a coefficient [23]. When blended
within the context of eigentheory, this could result in the
understanding of the right-hand side of an eigenvalue
equation as being an eigenvalue multiplied by its eigen-
vectors. This blend is modeled in Fig. 7. For students who
accessed parts of a whole in their work, this understanding
seems to have informed what they thought should be inside
the sum [21]. It is possible that the student brought in
elements from eigentheory by labeling their {c,} as
eigenvalues and incorporated position because the prompt
asks specifically for an eigenvalue equation for an operator
that represents position. This could be categorized as an
unproductive activation of parts of a whole manifesting as a
basis expansion but in the context of an eigenvalue equation
(see Fig. 8).

Conceptual
Schema

Parts of a

Eigenvalue-
Eigenvector

anlay)

| 1¥) = Yanla,) |

Constructed
Eq.

FIG. 8. A blend in which students accessed the parts of a whole
symbolic form while generating an eigenvalue equation, resulting
in an equation resembling a basis expansion but with eigenvalues
instead of component amplitudes as the coefficients.
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ea'?mv-.lvc

a ~C
P (x>= Xx[Xx)

FIG. 9. Response to eigenvalue equation construction task,
including labels, without interpretation.

Jortin Lot

osrhion
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B. Eigenvalue equation symbolic forms and blends

Student responses to the two tasks have revealed two
main symbolic forms, both with the same template of an
eigenvalue equation (e.g., Fig. 9), that combine with two
different sets of contextual knowledge, resulting in three
different symbolic blends. The data supporting each of
these interpretations will be presented along with a defi-
nition of the symbolic forms.

1. Eigenvector-eigenvalue/Reproductive transformation

Some students presented an interpretation of eigenvalue
equations that was consistent with the eigenvector eigen-
value symbolic form posited by Dreyfus and colleagues
[23]. The expressions all had the appropriate terms, and
some even labeled the elements appropriately (e.g., see
Fig. 9) but did not provide any physical reasoning or
explanation for their expressions. Our proposed symbol
template for this form is (J|[0) = ¢|[J), and the conceptual
schema is “a transformation that reproduces the original.”
These students are showing some evidence of this symbol
template, and the consistency of their ket labeling can be
considered evidence of the associated schema. However,

we refer to this symbolic form as reproductive
Conceptual
Schema
((o«@ Reproducing
& the original
&
S\
Symbol Contextual
Template Knowledge
“ gl-y = c|-) | Geometric Vector “

Operators Scale
Eigenvectors
al“—n) = anlan>
Constructed
Eq.

FIG. 10. Symbolic blend for the geometric interpretation of an
eigenvalue equation, using the reproductive transformation
symbolic form and a geometric vector contextual input space.

transformation as opposed to eigenvector eigenvalue, since
we have identified more than one symbolic form for
eigenvalue equations and are seeking to avoid their con-
flation. This symbolic form, when combined with the
geometric ideas related to scaling a vector, preserving
the direction of a vector, or preserving the vector altogether,
results in the interpretation of the eigenvalue equation as a
representation of the scaling of a ket (see Fig. 10). While
they are not demonstrating any additional quantum
mechanical knowledge in their responses, these students
are at least demonstrating that they know that the same ket
needs to be on both sides of the equation, which is
consistent with the template.

2. Operating as measuring

Similar to prior work on student understanding of
eigenvalue equations in quantum mechanics [10,28,29],
some student responses to the eigenvalue equation con-
struction task have the correct equation form, but the
explanations are indicative of conflation of an operator
acting on a state with the taking of a measurement of that
state. An example of one such response and explanation is
shown in Fig. 11. The student’s expression has all of the
correct elements, and they are able to appropriately identify
the different elements of the expression. However, in
addressing how each element of the expression relates to
the physical system, the student says that the operator
represents “the operation of measuring position,” which is
indicative of the operating as measuring interpretation,
which seems like a distinct interpretation of an eigenvalue
equation.

This type of reasoning could be an application of the idea
that quantum mechanical operators typically represent
measurable quantities; the overwhelming majority of oper-
ators engaged in the course do so. While this and
reproductive transformation share a symbol template,
the conceptual schema in this case is less about eigentheory
and instead focuses on the generic association of operation
as an action. This combination of template and schema
composes another symbolic form, operator equation as
action. When combined with the contextual knowledge of
the third postulate and general ideas about the effect of
quantum mechanical measurement, students arrive at an
interpretation of the eigenvalue equation in which the

Sl oalx> =2 Rfe =0
g oo ts the b W/M»Je 0‘9/ WN/VU A
Ho wala o‘() fa:ff;"-m,

M i
¢ s 742\& o )e,r(’,'m 3()/ ,,.ucmq/,‘j Vtd s’.’ﬁ’a;
FIG. 11. Response to eigenvalue equation construction task

indicative of operation as a proxy for measurement.
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Conceptual
Schema

To operate is
to act

Quantum
Measurement
(operators,
observables)

A measurement
and its result
rjl“-n) = anlan>

Constructed
Eq.

FIG. 12. Symbolic blend for the operating as measuring
interpretation of an eigenequation.

operation of the position operator on a position eigenvector
represents a measurement of position and the results of that
specific measurement, which is the eigenvalue. This sym-
bolic blend is represented in Fig. 12. These student responses
are indicative of the resource ‘“measurement as agent”
identified by Gire and Manogue [31,32]. This resource is
connected to the collapse of the wave function upon taking a
measurement. Such a resource could be applied in combi-
nation with another resource they identified, “operator as
agent,” to arrive at the conclusion that operating is measuring.
“Operator as agent” is closely connected to the conceptual
schema “to operate is to act,” with the primary distinction
being semantic to better fulfill the role of a conceptual
schema in the context of symbolic forms.

3. Potential measurement outcome

The final interpretation of eigenvalue equations with this
symbol template contains all the correct elements, written
as one would expect from convention [Fig. 13(a)].
Figure 13(b) shows one student’s explanation of what each
term represents. When the text alone is read, this is a fairly
sophisticated statement: “When you measure the position
of [the eigenstate] x; you get x;.”” The portion in brackets is
an addition by the authors for coherence, which is sup-
ported by the student’s response to the question, “How does
each of these relate to the physical system?”, shown in
Fig. 13(c).

As with the operating as measuring interpretation, this
student does not apply a geometric interpretation. However,
neither does the student include the notion that operating is
the act of taking a measurement. This is indicated by the
student’s use of the phrases “When you measure ...” and
“can be measured” in relation to the operator, in contrast to

(a)
¥ xS = keIkeN

(b)
X when you mesfs Hor peris o
IS ' ook X! jos v
wi b
(©

X ropletul, con e o=
K bnaagured gl R of poiitir
iy

FIG. 13. Student work demonstrating potential measurement
outcome. (a) Equation. (b) Explanation of elements. (c) Connec-
tion of terms to physical system.

g it

the student in Fig. 11 who stated that the operator
represented “the operation of measuring position.” This
is a subtle but important distinction, as it separates the idea
of taking a measurement from the idea that the operator
represents a measurable quantity.

This student presents a more sophisticated interpretation
of the eigenvalue equation than the previous ones shown:
that it is a statement about the possible outcome of a
measurement of the position, or more generally, the
quantity being represented by the operator. In this case,
students still recognize that the same state must be
represented on either side of the equation, suggesting the
same schema being accessed here as in reproductive
transformation. As a symbolic blend, the distinction from
a scaling interpretation is made by the selected contextual
knowledge space, which contains information related to the
third postulate and quantum measurement—the same space
as for the operating as measuring symbolic blend.
Consistent with the results from interpretation tasks [10],
we label this symbolic blend potential measurement out-
come; the blending diagram is shown in Fig. 14.

C. Interpretations of the equal sign

The student responses provided a few different ways of
interpreting the equal signs. In the case of the basis
expansion, we see an example of Sherin’s identity symbolic
form. Sherin states, “identity allows a simple but important
type of inference: It allows us to infer that whatever is true
of the right hand side of the expression is also true of the
left” [21] (p. 519). This is implicit in every equation
students wrote that took the form of a basis expansion,
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Quantum
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Potential
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FIG. 14. Symbolic blend for the potential measurement out-
come interpretation of an eigenequation.

even when applying it unproductively in these cases (see
Fig. 6). So while the right-hand side of each basis
expansion is a novel application of parts of a whole, the
equal sign in those expressions is part of the identity
symbolic form. In the categories developed by Alaee and
colleagues, this interpretation would fall under the assign-
ment category, where the left-hand side is represented by
other quantities on the right-hand side particular to a
situation [33]. Framed in the context of findings from
mathematics education, because the equal sign does not
denote an operation from one side resulting in the other side,
but more that the left-hand side is the same as the right-hand
side, the equation here most closely aligns with a relational
interpretation of the equal sign rather than an operational one
[34-36] However, we argue that a relational label is not a
perfect fit; the equal sign is not denoting that the two sides
happen to be the same as much as it is that we let the left-hand
side be represented by the right-hand side in the current
situation. So while there are certainly affordances to the
operational/relational views, the assignment category seems
more fitting.

In the case of the equal sign in reproductive trans-
formation, the equal sign seems much more akin to
“happens to be the same as,” an understanding that has
been documented in the literature [33]. That interpretation
of the equal sign is consistent with the relational view of the
equal sign students have demonstrated in their interpreta-
tion of mathematical eigenvalue equations [10]. This is
contrary to the proposition by Dreyfus and colleagues that
the meaning of the equal sign would instead be indicative of
students’ understanding of the conditional equality depen-
dent on the eigenvectors and eigenvalues [23]. This notion
of conditional equality based on the sets of eigenvectors
and eigenvalues did not show up at all in our dataset.

There were also cases where the equal sign did not seem
to have a distinct meaning. Neither potential measurement
outcome nor operating as measuring showed evidence of
distinct meanings of the equal sign, which is consistent
with the conceptual schemata for these forms, both of
which lack a role for the equal sign. In both cases, the
interpretations of the eigenvalue equation are heavily
focused on quantum mechanical concepts (independent
of the correctness of those concepts), resulting in a lack of a
distinct conceptualization of the equal sign. This stands in
contrast to the way most physics equations are read:
generally, a physics equation can be read as a direct
mapping of real-world quantities [10]. For example,
Newton’s second law ZI? = ma communicates that the
sum of all forces on an object is equal to the product of the
object’s mass and acceleration. The relationships between
the terms in a quantum mechanical eigenvalue equation are
not quite so clear, which may contribute to these results.

D. Evidence of mathematical sensemaking

While the response format for the tasks discussed here
does not, in general, lend themselves to analysis with the
categorical framework for mathematical sensemaking devel-
oped by Gifford and Finkelstein [14], one student’s work,
shown in Fig. 15, provided enough intermediary reasoning
steps to allow for the framework to be implemented. The
student began by defining the position operator as x. They
then determined the appropriate form of an eigenvalue
equation by considering what appeared to be a specific
and iconic eigenvalue equation, the Schrodinger equation.
From this, the student extrapolated what features of the
expression would look like when transferred to the context of
position. In our symbolic forms analysis, this student’s

Sttt
Paition < eljectoxphem cofimd ﬂr"\'\/l’d' line

[1] Position operator: X
[2] Format will be like the eigenvalue equation: Hifw)= E, l¢(t)

[3] So we have a position operator multiplied/operating on |(¢)) that
will give us the same [ (t)) back, but multiplied by a constant

[4] I'll call the constant of position x,,

[5] The eigenvalue equation is then:

6 )RR AL

[7] x,, will be an eigenvalue of the state and 1(t) is our ket or
eigenvector

[8] X is the position operator acting on [(t))

FIG. 15. Student response to pretest version of the position
eigenvalue equation construction task, analyzed with sensemak-
ing framework. Text has been typed for legibility.
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FIG. 16. Reasoning structures for student work in Fig. 15.

response would be another example of reproductive trans-
formation: their reasoning in line 3 that the operation
generates the same vector multiplied by a constant is
consistent with the idea of scaling presented in that schema.
They went on to define their eigenvalues symbolically before
providing an eigenvalue equation for the position operator.
This student’s reasoning could be modeled very simply with
a flowchart that begins with the energy eigenvalue equation,
flows into their understanding of the general structure of
eigenvalue equations, and terminates with the position
eigenvalue equation.

The MSM framework allows for a more nuanced view of
this reasoning process. Our diagram of this student’s MSM
is shown in Fig. 16. The first structure represents the first
three lines of the student’s response, in which they used the
Schrodinger equation as a tool to determine the general
structure—template—of an eigenvalue equation, which
serves as the object of this reasoning. (Note that the student
writes the template in words rather than symbolically.) This
understanding of the eigenvalue equation template now
becomes a tool that the student uses to write a position
eigenvalue equation, the final object. This process of the
student’s original object of reasoning becoming a tool in
their next step of reasoning is indicative of what Gifford
and Finkelstein refer to as chaining. In the third and fourth
lines of their response, the student is determining which
pieces of their energy eigenvalue equation need to change
to generate the position eigenvalue equation.

Once the tools and objects of sensemaking are identified,
the mode can be determined by deciding whether the tool
and or object is mathematical or physical in nature. Despite
the student starting and ending with equations that contain
physically meaningful quantities—eigenvalue equations
for the Hamiltonian and position operators—the student
used these equations more as mathematical tools and
objects. In the first structure, the student used the energy
eigenvalue (Schrodinger) equation as a mathematical tool
to make sense of the general structure of an eigenvalue
equation. In the second structure, the student used the
general form of an eigenvalue equation as a template to
construct a position eigenvalue equation, which is the
mathematical object here. Both context-specific eigenvalue
equations are only used for their mathematical structures,

and the energy eigenvalue equation is recalled as an
archetype; any physical meaning behind the expression
is neither implied nor expressed. It seems similar to the
position equation. Since the symbol template is a math-
ematical formalism, then both reasoning steps have math-
ematical tools and objects and thus both can be labeled as
Msm-M.

There is some precedent to argue that such use of physics
equations does not involve the use of physics concepts. The
situation of a student recalling a well-known physics
equation for a mathematical purpose (e.g., “plugging in”
the relevant elements for the given system) has been
described previously in the literature. Modir et al. described
four epistemic frames for mathematical and physical
reasoning in physics problem solving [37]. One frame
includes students’ recollection of equations, facts, and
properties of physical quantities without justifications.
This algorithmic physics frame addressed steps that phys-
icists would often describe as “just math” in problem
solving, consisting of procedural operations with physi-
cally meaningful variables. Because this work does not
reflect mathematical reasoning, it is not indicative of the
way mathematicians would think of mathematics, and thus
algorithmic physics is distinguished from both conceptual
physics and algorithmic mathematics for this reason. Gifford
and Finkelstein acknowledged algorithmic physics but
delineated it from any of their sensemaking modes that
include physics because of the focus on conceptual physics in
their definitions [14]. All three modes that include physics in
Gifford and Finkelsetein’s categorical framework for math-
ematical sensemaking in physics would fall under the
conceptual physics frame. Returning to the example in
Figs. 15 and 16, had the student referred back to the physical
system in explaining their equation, e.g., by relating the
eigenvalues to the possible positions, then their work would
have been classified as being in the conceptual physics frame
and similarly be categorized in a sensemaking mode that
includes physics in the categorical framework.

V. DISCUSSION AND CONCLUSIONS

Students’ responses to the tasks discussed herein indicate
that they are thinking about eigenvalue equations in a
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variety of ways, three of which, highlighted here through a
symbolic blending lens, are reproductive transformation,
operating as measuring, and potential measurement out-
come. These three symbolic blends all share a symbol
template given by ﬁ|E) = ¢|[J), but have two distinct
conceptual schemata, and build upon two different sets of
contextual knowledge.

The findings presented here provide insight into the
symbolic reasoning students may be accessing while
working through eigenvalue equation construction in
quantum mechanics as well as an opportunity to assess
student sensemaking in the transition from discrete to
continuous systems in a spins-first course. Ways in which
our findings relate to prior studies will be discussed in
detail in this section.

A. Symbolic blends

Dreyfus and colleagues posited that there may be
symbolic forms specific to quantum mechanics that had
yet to be seen in student work [23]. One such form was an
eigenvalue equation symbolic form. Their eigenvalue
equation symbolic form, reproductive transformation,
which is consistent with the desired outcome of mathemat-
ics instruction on eigenvalue equations [7], is one of the two
forms identified here that all use the same eigenvalue
equation template, which follows the canonical structure.
The other form, operator equation as operation, focuses on
the action of the operator in the mathematical representa-
tion. These two forms blend with two different contextual
knowledge spaces, resulting in three distinct interpretations
of the eigenvalue equation which are summarized in
Table III.

These interpretations are consistent with those identified
by Wawro and colleagues in tasks in which students were
provided eigenvalue equations and asked for their meaning
[10]. Our current study turned the task from an interpre-
tation task into a construction task, allowing for analysis of
the prior interpretations via symbolic forms and/or sym-
bolic blends, and providing opportunities to observe
activation of additional symbol templates and/or conceptual
schema that may not be productive in the context of
eigenvalue equations. In fact, these data have yielded an
example of a novel application of the parts of a whole
symbolic form, as a basis expansion being applied in the
context of quantum mechanical eigenvalue equations.

Operating as measuring is also consistent with earlier
findings in the literature. Gire and Manogue [31,32] found

TABLE IIL

a tendency for students to associate measurements with
operators when discussing sequential measurements on a
superposition state; their work framed this tendency as the
activation of a resource that they called “quantum meas-
urement as an agent.”” This is not an unreasonable con-
clusion for students to draw, especially given the resource
“operator as agent” and the emphasis on measurement in
quantum mechanics (e.g., the collapse of the state or wave
function). When an operator acts on a state, there is often
some kind of transformation made to that state, in some
cases, changing it to another known state and in others, an
entirely unknown state. The association of operators with
both observables and transformations of a state can there-
fore be easily conflated as they are both in these data and
those presented by Gire and Manogue. In addition, Singh
and Marshman [2] showed frequent conflation by students
between operating and measuring.

The third blend, potential measurement outcome, is
significantly more relevant to and meaningful for the
physical interpretation of a quantum mechanical eigenvalue
equation. The fact that this interpretation shares a symbolic
form with reproductive transformation is indicative of the
idea posited by Dreyfus and colleagues [23] that there is
additional expertlike reasoning that allows one to extract
additional information from an eigenvalue equation in
quantum mechanics. The additional information in this
case is coming directly from the contextual input space in
the blend. While the student who provided this response is
not representative of our population in general, they serve
as an example of the potential for students to reach this
understanding. The fact that this is a single student can also
lend some support to the claim made by Dreyfus and
colleagues that while students can develop these interpre-
tations that are part of the cognitive ecology of physicists, it
is challenging [23].

All three symbolic blends are consistent with student
interpretations of quantum mechanical eigenvalue equa-
tions presented by Wawro and colleagues [10]. Student
ideas around potential measurement, measurement, and
scaling were all present in that work and informed the
analysis in this study. Interestingly, two ideas expressed by
students in their interpretation task were not evident in the
data collected with the eigenvalue equation construction
task. Student ideas consistent with the correspondence
interpretation of quantum mechanical eigenvalue equations
reported by Wawro and colleagues focused heavily on the
relationships between eigenvectors and eigenvalues with-
out explicitly invoking (potential) measurement or scaling.

Symbolic blends for eigenvalue equations and their elements.

Symbolic blend

Symbolic form

Context

Scaling
Potential measurement outcome
Operating as measuring

Reproductive transformation
Reproductive transformation
Operator equation as action

Geometric vector
Quantum measurement
Quantum measurement
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Despite the questions asking students about potential
connections between the terms in their expressions in
the eigenvalue equation construction task in this study,
student responses were not consistent with this interpreta-
tion. Similarly, the functional interpretation of the equal
sign was documented by Wawro and colleagues in student
interpretations of both mathematical and quantum
mechanical eigenvalue equations. In the functional inter-
pretation, the right-hand side of the equation serves as an
output of the left-hand side (e.g., f(|a,)) = a,|a,)). This
view was also not present in the construction task data.

Many student difficulties in quantum mechanics have
been reported by others [1-3]; we see other difficulties here
through the lens of symbolic forms. In addition to the
conceptual, mathematical, and notational difficulties faced
in quantum mechanics, Dreyfus and colleagues suggested
that the potential for activation of unproductive symbolic
forms can be a cause for challenges [23]. We provide
evidence of this occurring with students’ activation of parts
of a whole via a basis expansion during the construction of
an eigenvalue equation for a position operator. Given that
both forms include the pairing of a coefficient and an
eigenvector, this is not an unreasonable conflation. There
are in fact situations in quantum mechanics where activa-
tion of parts of a whole would be appropriate and
productive, such as changes of basis or perturbation theory.
In those instances, the expected forms would be very
similar to those identified in the construction of differential
length elements reported by Schermerhorn and Thompson
[20], albeit in the notation of convenience (e.g., Dirac
notation).

It is also noteworthy that neither interpretation nor
construction of eigenvalue equations was trivial for stu-
dents. Some explicitly wrote about the difficulty of the
tasks in their responses, while others showed the non-
triviality of the task through their failure to provide a
classifiable expression in response to the construction task.

B. Sensemaking

While generalizing has proven to be a challenge for
students, the symbolic forms identified in these data
suggest that students are engaging in sensemaking during
this transitional period, that is, trying to apply their
knowledge of eigenvalue equations and other quantum
systems to generate a representative equation for a novel
system. As described by Sherin [21], Kuo et al. [13,38],
Dreyfus et al. [23], and Schermerhorn and Thompson [20],
symbolic forms are cognitive resources students can access
in order to engage in mathematical sensemaking.
Differences in student reasoning during problem-solving
tasks have been attributed to their use, or lack of use, of a
productive symbolic form [13]. In the context of the
eigenvalue equation construction task, especially before
instruction on position, this is implicitly a part of what

students are being asked to do. They are given a physical
system and asked to generate a representative mathematical
expression. For some students, the process that ensues
includes making connections between their mathematical
knowledge of eigenvalue equations (form and function) and
their knowledge of how quantum mechanical systems
behave (primarily ideas presented in the second and third
postulates). This process is facilitated, or hindered, by the
activation of different symbolic forms. The fact that we can
identify different symbolic forms accessed by students,
whether productive in the case of some of the eigenvalue
equation symbolic forms or unproductive in the case of
parts of a whole, serves as evidence of students engaging in
mathematical sensemaking.

Analysis of the student’s response in Fig. 15 through the
categorical framework for sensemaking [14] (Fig. 16)
yields an example of what sensemaking in quantum
mechanics, especially in the transition from discrete to
continuous systems, can look like. It also, however, brings
to light a common problem in physics education research of
delineating between mathematics and physics in sense-
making and problem solving. There are many different
models for modeling student reasoning and reasoning
spaces that include different mathematics and physics
modes/worlds/spaces and which allow, to varying degrees,
the blending of the two. The application of mathematical
sensemaking in this analysis highlights brilliantly the
interplay of mathematics and physics. While the student’s
response does not include physics concepts (the criterion
for being either Msm-P or Psm-P), neither is the student
doing what mathematicians would typically describe as
mathematics [39—41]. This explains why in the Gifford and
Finkelstein [14] model, the student’s work falls distinctly
under Msm-M, whereas the student might be placed in an
algorithmic physics frame according to Modir and col-
leagues [37]. While it would seem that these two inter-
pretations of the student’s work should be at odds with one
another, both are self-consistent. This difference under-
scores the interconnections of the two disciplines. The
difference in classification of this reasoning can inform
future characterization of the boundary between mathemat-
ics and physics from the perspectives of problem solving
and mathematical modeling.

C. Implications for instruction

The identification of new symbolic forms and
blends poses some interesting possibilities with regard to
quantum mechanics instruction. Kuo et al. reported that
students who could access certain symbolic forms in
problem solving were able to find conceptual shortcuts
to quantitative problems [13]. The group also generated
instructional materials for an introductory course that set
these “calculation-concept crossover” questions as a target
of instruction and found that they were indeed a feasible
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target [38]. As researchers continue to determine the ways
in which students interpret expressions in quantum
mechanics, we should be able to develop a road map to
guide them to more expertlike interpretations. The iden-
tification of both more sophisticated (potential measure-
ment outcome) and less sophisticated (operating as
measuring) symbolic blends accessed by students pro-
vides instructors with both a target and a glimpse of
potential pitfalls for their students. Given the unique
mathematics at play in quantum mechanics (relative to
most other areas of physics) and its interplay with
quantum mechanical concepts, it is unlikely that the forms
discussed here span the space of those accessed by
students. Therefore, it is also important to continue
assessing the ways students are thinking about individual
expressions in quantum mechanics.

As noted by Wawro et al. [10], the interpretation of a
quantum mechanical eigenequation is idiosyncratic: a
geometric scaling interpretation is not productive when
working with normalized eigenstates, and so it is not
helpful to think about the equation as a transliteration of
a sentence about the relationship between the quantities in
the equation, but as a representation of the third postulate of
quantum mechanics. The findings in this study and in
Wawro et al. [10] demonstrate student difficulties in
recognizing this strong distinction between the mathemati-
cal and physical meanings of the equation. Thus, eliciting
student explanations about both meanings is crucial to
inform an instructor about the spectrum of student thinking
in the classroom on this topic.

Adding to the difficulty of the transition is the inter-
pretation of position as an observable. Quantum mechani-
cal position is an inherently tricky quantity, particularly at
the point in the course where it is introduced. Spin and
energy in the context of the first few chapters of Ref. [6] are
fairly abstract quantities. Position, on the other hand, is
something students have been thinking about in some way
since their first semester of introductory physics, if not
before that. The need to consider each position as an
eigenvalue may not be a challenge, but defining a state of
the system at a location, a single point, as an eigenstate—an
eigenvector—could cause confusion among students.
Discussing a location as an eigenvector could be interpreted
by students as a position vector rather than an eigenvector
of the position Hilbert space. In a conceptual blending
analysis of student’s use of electric field vector arrows, Gire
and Price describe the “dual role of space” in student
construction of electric field vector diagrams, that there is
interference between the spatial map of the vector field and
the length of a field vector as a magnitude [42]. This brings
to mind the related difficulties identified by Ambrose et al.
when investigating student understanding of electromag-
netic wave representations, where students considered
areas outside the envelope of the EM wave to have no
field strength [43]. It is highly likely that students in

quantum mechanics conflate these dual roles of space
when interpreting position as a vector, but with the added
complication that both quantities under consideration are
position (e.g., rather than position and electric field
strength). Thus, one may expect additional student diffi-
culties related to this dual-role issue in the transition to
position as the central quantity. Although students may
perform the correct computation and even use the correct
vocabulary, their physical and mathematical interpretations
of a position eigenvector may not be clear from a single
response and may compound attempts to address difficul-
ties related to the broader eigenequation interpretation in
the context of the position.

D. Conclusion

Overall, we present evidence that students are engaging
in mathematical sensemaking in the transition from spins to
positions in a spins-first quantum mechanics course. This is
shown by a symbolic form and symbolic blending analysis
of student work constructing eigenvalue equations for
position, as the first continuous variable in the course.
Students implement varied symbolic forms and symbolic
blends in the construction process, most with the appro-
priate symbol structure but with varying sophistication with
respect to the quantum mechanical meaning of the equation
and of operations on state vectors. Data are also analyzed
through the lens of sensemaking, based on attempts to
resolve inconsistencies during the process. The abstract
nature of the physics concepts is tightly intertwined with
the mathematical entities, leading to a challenge in dis-
tinguishing one from the other in the reasoning. This
analysis serves as a novel example of and preliminary
evidence for student engagement in sensemaking activities
in the transition from discrete to continuous systems in a
spins-first quantum mechanics course.

Spins-first quantum mechanics courses are relatively
novel in the grand scheme of physics instruction. While
their intent to provide students a foundation in quantum
mechanics with “simple” systems and subsequently ask
them to generalize to more complex systems has peda-
gogical validity, those generalizations are not trivial for
students to make. Nevertheless, we present some of the first
evidence that students are engaging in the kind of sense-
making, based on attempts to resolve inconsistencies in the
process of constructing eigenvalue equations, that could
generate connections between their understanding of dis-
crete spin systems and continuous position systems, as well
as the challenges of connecting the mathematical oper-
ations and entities with the physical concepts and meanings
in such an abstract topic as quantum mechanics. The extent
to which instruction can mediate the transition is yet to be
determined, but viewing the process through the frame-
works used in this study may help suggest successful
strategies.
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