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Modern vehicles are embedded with numerous electronic components, making them more advanced and 
automated, while also making them vulnerable to cyberattacks. This study investigated how drivers respond 
to unexpected, cyber-attack-induced situations through a driving simulator study. It also examined 
differences in driver responses if they were trained or received warning messages on how to mitigate the 
effect of a vehicle cyberattack. The findings suggest that drivers’ responses to cyberattacks vary based on 
the severity of the event. Those who receive training are much more likely to drive cautiously when the 
vehicle behaves unexpectedly and those who receive warning messages are likely to view them, but not 
necessarily take action. These results have far reaching implications into the utility of training programs in 
improving driver behavior and leave future work in terms of optimizing warning message systems.  
 

 
INTRODUCTION 

 
Due to drivers’ increasing demand for in-vehicle 

entertainment options and the rapid development of 
technologies, modern automobiles are more than mechanical 
machines used for transportation (Eiza & Ni, 2017; Zhang, 
Petit, & Roberts, 2019). Vehicles are embedded with 
numerous electronic components, making them more 
advanced and automated, and allowing the possibility of 
internal and external vehicle connections. While intended to 
facilitate driving, the evolution also brings up cybersecurity 
issues: modern vehicles are vulnerable to cyberattacks. 

Hackers can propagate cyberattacks on vehicles through 
several avenues, including physical and remote access (Hodge, 
Hauck, Gupta, & Bennett, 2019). A Jeep Cherokee was 
hacked by two researchers remotely from their basement and a 
Mitsubishi Outlander was hacked through manipulations 
between its mobile app and the Wi-Fi access point (Eiza & Ni, 
2017; Zhang et al., 2019). Moreover, almost 100 million 
Volkswagen vehicles manufactured between 1995 and 2016 
were vulnerable to remote, keyless-entry hacks (Garcia, 
Oswald, Kasper, & Pavlidès, 2016; Zhang et al., 2019).  

The increasing number of electronic components, external 
connections, and communications embedded in vehicles 
account for their vulnerability to cyberattacks (Larson & 
Nilsson, 2008). Research has begun to address the issue by 
theoretically analyzing the attack surface and listing the 
potential outcomes. As a consequence, general 
recommendations regarding system design have been 
proposed to prevent future vehicles from cyberattacks. 
However, a prominent feature of cyberattacks is their 
randomness and unpredictability (Petit & Shladover, 2014). 
Combined with how fast technologies evolve and vehicle 
systems update, there is no panacea to prevent all vehicle 
cyberattacks (Zhang et al., 2019). Additionally, it is believed 
that the majority of software and hardware systems in vehicles 
are not protected against manipulations and that existing 
automotive systems tend to be fragile (Koscher et al., 2010; 
Wolf, Weimerskirch, & Wollinger, 2007; Zhang et al., 2019).  

Because drivers are those who directly interact with 
vehicles and would respond to any potential cyberattacks, it is 
critical to consider their role and investigate their response 

behavior under such situations. Doing so would allow us to 
assess the consequences of vehicle cyberattacks in terms of 
driver safety (Cranor, 2008; Zhang et al., 2019). Yet, past 
research has not thoroughly studied the drivers’ behavior in 
the context of vehicle cyberattacks. 

While there is no one-size-fits-all solution to prevent 
vehicle cyberattacks, training and warning systems are 
effective in helping drivers deal with unexpected and 
hazardous situations (Zhang et al., 2019). Therefore, we 
hypothesized that if drivers could be trained on vehicle 
cybersecurity and receive warning messages when 
encountering vehicle cyberattacks, they may safely respond to 
cyberattack-inducted situations. Regarding drivers’ response 
in safety-critical situations, various measures such as their 
glance behavior toward the side mirrors or the rear mirror, 
pulling the car over, and using information from inside of the 
vehicle for assistance are indicators as to whether the situation 
is properly and safely handled (Classen et al., 2010). 

The present study examined how drivers respond to 
vehicle cyberattacks through a driving simulator study. A 
secondary goal was to investigate how training and warning 
systems affect drivers’ response behavior toward such attacks. 
By doing so, we aimed to quantify and characterize drivers’ 
behavior under such safety-critical situations and eventually, 
offer insights into vehicle cybersecurity from the perspective 
of drivers themselves as well as possible solutions that 
consider both the drivers and vehicle systems. 
 

METHODS 
 

Phase I of this project focused on the iterative 
development of the training and warning systems using the 
human centered design process. Phase II evaluated the 
effectiveness of the training and warning systems in a driving 
simulator study and is described below. 
 
Participants 

 A total of 32 participants (aged 18-26; 23 males, 7 
females, and 2 non-conforming individuals) were recruited 
from a university campus and the surrounding town using 
flyers and email advertisements. A power analysis showed that 
with a sample size of 32 and an effect size 0.38, when setting 
the alpha error to 0.05, the power is 0.8. The average age of 

C
op

yr
ig

ht
 2

02
2 

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s 

So
ci

et
y.

 A
ll 

rig
ht

s 
re

se
rv

ed
. 1

0.
11

77
/1

07
11

81
32

26
61

50
6

Proceedings of the 2022 HFES 66th International Annual Meeting 737

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1071181322661506&domain=pdf&date_stamp=2022-10-27


the participants was 20.4 years (SD = 2.0 years). Only 
individuals with a valid United States driving license were 
included in the study. Participants were randomly split into 
four groups: training only, warnings only, training + warnings, 
and no intervention (control group). 
 
Simulation Environment and Equipment  

A fixed-based RTI (Realtime Technologies Inc.) driving 
simulator consisting of a fully equipped 2013 Ford Fusion 
surrounded by six screens with a 330-degree field of view was 
used for the study (Figure 1). The cab has two dynamic side-
mirrors, providing participants with realistic side and rear 
views of the scenarios. In the car, there is a fully customizable 
virtual dashboard and center stack.  

 

 
Figure 1: RTI driving simulator 

During each drive, participants were recorded using the 
video capture and review system, Sim Observer. Two cameras 
recorded the participant’s hand and foot movements, as well 
as the forward view and dashboard (Figure 2). 
 

 
Figure 2: Camera view of hand and foot movements along 
with forward roadway and dashboard 

Driving Environment and Scenarios  
The driving environment consisted of long sections of 

roadway with four straight sections and four curves – a loop – 
with no traffic lights or stop signs, and a speed limit of 35 
(Figure 3). Drivers experienced a total of four 
scenarios/drives: the first was a baseline drive whereas the 
next three drives contained cybersecurity events. All 
cybersecurity events occurred when the driver was entering 
the last straight section. Table 1 lists and describes the three 
cybersecurity events in the order they were presented to 

participants. The cybersecurity events were chosen based on 
past literature (McCarthy, Harnett, & Carter, 2014).  

 
Figure 3: Layout of driving scenario 

Training and Warning System 
Participants in the training and training + warning group 

received training before being exposed to the cybersecurity 
events (i.e., between the first two drives). This training 
informed participants of the dangers of vehicle cyberattacks 
and how to respond to cyberattacks. Participants were tested 
on their knowledge using scenes (e.g., “What would you do if 
your vehicle changed lanes by itself?”). Participants in the 
warning and training + warning group had in-vehicle warning 
messages appear, as shown in Table 1. The warning was 
dependent on the severity of the cybersecurity event and was 
issued approximately 5 seconds after the cybersecurity event 
began. The warnings were designed and developed based on 
the feedback that we received from our previous user-centered 
design experiments as well as general guideline for warning 
design (Baldwin & Lewis, 2014; Wogalter & Mayhorn, 2005). 
 
Driving Measures and Dependent Variables 

To ascertain which behaviors were indicative of a driver 
responding to a cyberattack, the research team viewed and 
annotated a portion of the videos. For example, looking in the 
rearview mirror for an emergency vehicle during the Siren 
scenario or exhibiting large steering wheel movements when 
trying to gain control during the Lane Change scenario were 
both expected reactions. A total of 11 behaviors (i.e., 
dependent variables) were included in the analysis: hand 
hesitation, foot hesitation, changing the number of hands on 
wheel, checking the side mirror, checking the rearview mirror, 
looking at the dashboard for airbag or check engine message, 
looking at the dashboard for a warning message, large steering 
wheel movement, changing lanes, pulling over, and slamming 
the brakes. For the 11 dependent variables, the Spearman’s 
correlation coefficient was evaluated, and all pairs were not 
found to be correlated except for the “hand hesitation” and 
“changing number of hands on wheel” (ρ = 0.22, p = 0.03). 

Participants' responses were determined from the videos 
recorded in Sim Observer. Coding started from the moment 
the cybersecurity event began. For each video, a researcher 
noted the time when the participant did one of the 11 
predetermined reactions. To ensure accuracy and reliability, 
three researchers coded the videos for the same two 
participants and any discrepancies were rectified.  
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Table 1: Cybersecurity Event Descriptions and the Associated 
Warning Message 

Event Type Warning Message 

Sirens 
Sirens, similar to a police car 
or ambulance, begin to play.  

Audio states “Your comfort and 
convenience might be impacted. 
Distraction might be caused”. Image 
appears on the dashboard. 

 

Dashboard Signs 
A single high-pitched beep 
sounds and the two warning 
signs illuminate on the 
dashboard. 

 

Audio states “Your comfort and 
convenience might be impacted. 
Distraction might be caused”. Image 
appears on the dashboard. 

 

Lane Change 
The vehicle is suddenly 
controlled by the experimenter, 
who repeatedly moves the 
vehicle from the left lane to the 
right. 

Audio states “Your safety is 
compromised. Slow down and 
prepare to pull over”. Image appears 
on the dashboard. 

 

 
Data Analysis and Independent Variables 

For all dependent variables, the equality of the mean and 
variance was examined to determine the appropriate model: 
either Poisson or logistic regression. Six variables were best 
suited for Poisson regression, including the count of: hand 
hesitation, foot hesitation, changing number of hands on 
wheel, changing lanes, looking at dashboard for airbag or 
check engine messages, and slamming on brakes. The other 5 
variables were modeled using logistic regression where the 
counts were converted to a binary format: 0 – if the behavior 
never occurred or 1 – if the behavior ever occurred.  

With both Poisson and logistic regression models, there 
were two independent variables: group (control, training, 
warning, and training + warning) and drive (Sirens, Dashboard 
Signs, and Lane Change). As these were both categorical 
variables, we selected a reference level of control for the 
group variable and Dashboard Signs for the drive variable. 
 

RESULTS 
 

Table 2 indicates the average number of times each 
participant engaged in each of the activities per drive (for the 
first 6 activities that were modeled using Poisson regression). 
For the last activity that was modeled using logistic 

regression, Table 3Table 2 indicates the percentage of 
participants who engaged in the activity for the lane change 
drive. No large steering wheel movements were recorded for 
the Siren or Dashboard Signs drives. 

 
Table 2: Average number of times each participant engaged in 
the activity per drive for six of the dependent variables 

  Drive 

Variable Group Siren 
Dashboard 

Signs 
Lane 

Change 

Hand 
hesitation 

Control 0.000 0.000 0.375 

Training 0.000 0.000 0.125 

Warning 0.000 0.125 0.000 

Training + Warning 0.000 0.000 0.250 

Foot 
hesitation 

Control 0.375 0.250 0.375 

Training 0.250 0.250 0.250 

Warning 0.125 0.250 0.750 

Training + Warning 0.143 0.125 0.125 

Change 
hands on 

wheel 

Control 0.375 0.625 0.625 

Training 0.375 0.125 0.250 

Warning 0.000 0.375 1.250 

Training + Warning 0.286 0.375 0.375 

Change 
lanes 

Control 0.250 0.500 0.125 

Training 0.125 0.250 0.375 

Warning 1.000 0.375 0.000 

Training + Warning 0.000 0.125 0.250 

Look at 
dash for 
airbag or 
engine 

messages 

Control 0.000 0.000 0.000 

Training 0.000 0.000 0.000 

Warning 0.625 2.625 1.500 

Training + Warning 0.571 1.125 0.750 

Slam on 
brakes 

Control 0.000 0.000 0.000 

Training 0.000 0.000 0.125 

Warning 0.000 0.000 0.250 

Training + Warning 0.000 0.000 0.125 

 
Poisson regression and logistic regression models were 

applied on each response variable. Among the dependent 
variables, hand hesitation, foot hesitation, changing number of 
hands on wheel, changing lanes, looking at dashboard for 
airbag or check engine messages, slamming on brakes, and 
large steering wheel movement were not statistically 
significantly associated with the independent variables and/or 
had a poor model fit (using the Pearson’s Chi-Square statistic). 

We present the findings from the statistical analysis for 
the remaining four variables that had good model fit (look at 
dashboard to check for warning messages, check rearview 
mirror, check side mirror, and pull over) in the proceeding 
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sections. These four significant dependent variables were all 
modeled using logistic regression and we present the 
percentage of participants who engaged in a certain activity.  

 
Table 3: Proportion of participants who engaged in large 
steering wheel movements during the lane change drive 

Group Proportion 

Control 0.875 

Training 0.625 

Warning 1.000 

Training + Warning 0.625 

 
Look at dashboard to check for warning messages 

Figure 4 summarizes results for looking at the dashboard 
to check for warning messages. The group factor was 
significant: the warning group, versus the training + warning 
group, decreases the log odds of looking at the dashboard by 
1.42 (! = 1.42, SE = 0.71, z-score = -2, p < 0.05). The 
goodness of fit test was not significant (p = 0.1), implying that 
the model fit the data. 
 

 
Figure 4: Percentage of participants who checked the 
dashboard for warning messages, separated by group 

Check rearview mirror 
Figure 5 summarizes results for checking the rearview 

mirror. The siren factor was significant: the Sirens scenario, 
when compared to the Dashboard Signs scenario, increases the 
log odds of checking the side mirror by 3.22 (! = 3.22, SE = 
0.82, z-score = 3.92, p < 0.01). The goodness of fit test was 
not significant (p = 0.3), implying that the model fit the data. 
 
Check side mirror 

Figure 6 summarizes results for checking the side mirror. 
The lane change factor was significant: the Lane Change 
scenario, relative to the Dashboard Signs scenario, decreases 

the log odds of checking the side mirror by 1.4 (! = 1.4, SE = 
0.68, z-score = -2.06, p = 0.04). The goodness of fit test was 
not significant (p = 0.76), implying that the model fit the data. 

 

 
Figure 5: Percentage of participants who checked the rearview 
mirror, separated by group 

 
Figure 6: Percentage of participants who checked the side 
mirror, separated by group 

Pull over 
Figure 7 summarizes results for pulling over. The training 

and warning + training factors were significant. The training 
group, versus the control group, increases the log odds of 
pulling over by 1.89 (! = 1.89, SE = 0.66, z-score = 2.85, p < 
0.01). The training + warning group, as compared to the 
control group, increases the log odds of pulling over by 3.95 
(! = 3.95, SE = 1.13, z-score = 3.49, p < 0.01). The goodness 
of fit test was not significant (p = 0.55), implying that the 
model fit the data. 
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Figure 7: Percentage of participants who pulled over, 
separated by group 

DISCUSSION 
 

The objective of this study was to investigate how drivers 
respond to cyberattacks and to determine if training and 
warning systems affect drivers’ responses to cyberattacks. We 
conducted a simulator study with 32 participants wherein 
some drivers received training on how to respond to 
cyberattacks and some drivers received warning messages (on 
the dashboard) about a cyberattack. Participants experienced 
three cyberattacks of differing severity levels. 

Of the 11 behaviors that were examined, significant 
differences between the groups and drivers were only 
exhibited among four behaviors: looking at the dashboard for 
warning messages, checking the rearview mirror, checking the 
side view mirror, and pulling over. Those who received 
warning messages viewed them whenever they appeared. 
When participants heard a siren similar to an emergency 
vehicle, many checked their rearview mirrors, presumably to 
see if there was an emergency vehicle behind them. Similarly, 
when the vehicle began to abruptly change lanes by itself, 
participants were less likely to check the side view mirror. 
With respect to pulling over when a cybersecurity event 
occurred, those who received any form of training were much 
more likely to pull over, regardless of the scenario. Pulling 
over, for most participants, concluded the drive as they put the 
car in park. However, in the Sirens scenario, some participants 
pulled over, waited until the sirens stopped, continued to 
drive, but pulled over again once the sirens restarted. 

Implications from this indicate the utility of training for 
improving drivers’ responses to cyberattacks. Even a short 
training session– our training was approximately 10 minutes – 
leads drivers to be more cautious when their vehicle behaves 
unexpectedly. Providing simple messages on the dashboard 
capture drivers’ attention, but do not necessarily lead to a 
change in behavior. There were stark differences in how 

drivers responded to cyberattacks across the scenarios: the 
sound of emergency sirens leads drivers to check their 
rearview and side mirrors much more so than other scenarios. 

Though this study highlighted important findings when it 
comes to drivers’ responses to cyberattacks, there are 
limitations and opportunities for future work. First, when 
coding participant videos, the researcher had to accommodate 
for a limited field of view. Future work should consider 
combining video data with driving behavior data (e.g., vehicle 
speed) to ascertain drivers’ responses. The lack of an effect for 
warnings indicates they can be improved. Relatedly, a larger 
study with more participants and more cybersecurity events 
would allow for greater generalizability. Last, drivers in this 
study were young; future work can consider a different driving 
demographic, particularly those with more driving experience 
or who drive a vehicle on a day to day basis (e.g., for work). 
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