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W) Check for updates

How do drivers respond to vehicle cyberattacks? A driving simulator study
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Modern vehicles are embedded with numerous electronic components, making them more advanced and
automated, while also making them vulnerable to cyberattacks. This study investigated how drivers respond
to unexpected, cyber-attack-induced situations through a driving simulator study. It also examined
differences in driver responses if they were trained or received warning messages on how to mitigate the
effect of a vehicle cyberattack. The findings suggest that drivers’ responses to cyberattacks vary based on
the severity of the event. Those who receive training are much more likely to drive cautiously when the
vehicle behaves unexpectedly and those who receive warning messages are likely to view them, but not
necessarily take action. These results have far reaching implications into the utility of training programs in
improving driver behavior and leave future work in terms of optimizing warning message systems.

INTRODUCTION

Due to drivers’ increasing demand for in-vehicle
entertainment options and the rapid development of
technologies, modern automobiles are more than mechanical
machines used for transportation (Eiza & Ni, 2017; Zhang,
Petit, & Roberts, 2019). Vehicles are embedded with
numerous electronic components, making them more
advanced and automated, and allowing the possibility of
internal and external vehicle connections. While intended to
facilitate driving, the evolution also brings up cybersecurity
issues: modern vehicles are vulnerable to cyberattacks.

Hackers can propagate cyberattacks on vehicles through
several avenues, including physical and remote access (Hodge,
Hauck, Gupta, & Bennett, 2019). A Jeep Cherokee was
hacked by two researchers remotely from their basement and a
Mitsubishi Outlander was hacked through manipulations
between its mobile app and the Wi-Fi access point (Eiza & Ni,
2017; Zhang et al., 2019). Moreover, almost 100 million
Volkswagen vehicles manufactured between 1995 and 2016
were vulnerable to remote, keyless-entry hacks (Garcia,
Oswald, Kasper, & Pavlides, 2016; Zhang et al., 2019).

The increasing number of electronic components, external
connections, and communications embedded in vehicles
account for their vulnerability to cyberattacks (Larson &
Nilsson, 2008). Research has begun to address the issue by
theoretically analyzing the attack surface and listing the
potential outcomes. As a consequence, general
recommendations regarding system design have been
proposed to prevent future vehicles from cyberattacks.
However, a prominent feature of cyberattacks is their
randomness and unpredictability (Petit & Shladover, 2014).
Combined with how fast technologies evolve and vehicle
systems update, there is no panacea to prevent all vehicle
cyberattacks (Zhang et al., 2019). Additionally, it is believed
that the majority of software and hardware systems in vehicles
are not protected against manipulations and that existing
automotive systems tend to be fragile (Koscher et al., 2010;
Wolf, Weimerskirch, & Wollinger, 2007; Zhang et al., 2019).

Because drivers are those who directly interact with
vehicles and would respond to any potential cyberattacks, it is
critical to consider their role and investigate their response

behavior under such situations. Doing so would allow us to
assess the consequences of vehicle cyberattacks in terms of
driver safety (Cranor, 2008; Zhang et al., 2019). Yet, past
research has not thoroughly studied the drivers’ behavior in
the context of vehicle cyberattacks.

While there is no one-size-fits-all solution to prevent
vehicle cyberattacks, training and warning systems are
effective in helping drivers deal with unexpected and
hazardous situations (Zhang et al., 2019). Therefore, we
hypothesized that if drivers could be trained on vehicle
cybersecurity and receive warning messages when
encountering vehicle cyberattacks, they may safely respond to
cyberattack-inducted situations. Regarding drivers’ response
in safety-critical situations, various measures such as their
glance behavior toward the side mirrors or the rear mirror,
pulling the car over, and using information from inside of the
vehicle for assistance are indicators as to whether the situation
is properly and safely handled (Classen et al., 2010).

The present study examined how drivers respond to
vehicle cyberattacks through a driving simulator study. A
secondary goal was to investigate how training and warning
systems affect drivers’ response behavior toward such attacks.
By doing so, we aimed to quantify and characterize drivers’
behavior under such safety-critical situations and eventually,
offer insights into vehicle cybersecurity from the perspective
of drivers themselves as well as possible solutions that
consider both the drivers and vehicle systems.

METHODS

Phase I of this project focused on the iterative
development of the training and warning systems using the
human centered design process. Phase Il evaluated the
effectiveness of the training and warning systems in a driving
simulator study and is described below.

Participants

A total of 32 participants (aged 18-26; 23 males, 7
females, and 2 non-conforming individuals) were recruited
from a university campus and the surrounding town using
flyers and email advertisements. A power analysis showed that
with a sample size of 32 and an effect size 0.38, when setting
the alpha error to 0.05, the power is 0.8. The average age of
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the participants was 20.4 years (SD = 2.0 years). Only
individuals with a valid United States driving license were
included in the study. Participants were randomly split into
four groups: training only, warnings only, training + warnings,
and no intervention (control group).

Simulation Environment and Equipment

A fixed-based RTI (Realtime Technologies Inc.) driving
simulator consisting of a fully equipped 2013 Ford Fusion
surrounded by six screens with a 330-degree field of view was
used for the study (Figure 1). The cab has two dynamic side-
mirrors, providing participants with realistic side and rear
views of the scenarios. In the car, there is a fully customizable
virtual dashboard and center stack.

Figure 1: RTI driving simulator

During each drive, participants were recorded using the
video capture and review system, Sim Observer. Two cameras
recorded the participant’s hand and foot movements, as well
as the forward view and dashboard (Figure 2).

Figure 2: Camera view of hand and foot movements along
with forward roadway and dashboard

Driving Environment and Scenarios

The driving environment consisted of long sections of
roadway with four straight sections and four curves — a loop —
with no traffic lights or stop signs, and a speed limit of 35
(Figure 3). Drivers experienced a total of four
scenarios/drives: the first was a baseline drive whereas the
next three drives contained cybersecurity events. All
cybersecurity events occurred when the driver was entering
the last straight section. Table 1 lists and describes the three
cybersecurity events in the order they were presented to

participants. The cybersecurity events were chosen based on
past literature (McCarthy, Harnett, & Carter, 2014).
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Training and Warning System

Participants in the training and training + warning group
received training before being exposed to the cybersecurity
events (i.e., between the first two drives). This training
informed participants of the dangers of vehicle cyberattacks
and how to respond to cyberattacks. Participants were tested
on their knowledge using scenes (e.g., “What would you do if
your vehicle changed lanes by itself?”). Participants in the
warning and training + warning group had in-vehicle warning
messages appear, as shown in Table 1. The warning was
dependent on the severity of the cybersecurity event and was
issued approximately 5 seconds after the cybersecurity event
began. The warnings were designed and developed based on
the feedback that we received from our previous user-centered
design experiments as well as general guideline for warning
design (Baldwin & Lewis, 2014; Wogalter & Mayhorn, 2005).

Driving Measures and Dependent Variables

To ascertain which behaviors were indicative of a driver
responding to a cyberattack, the research team viewed and
annotated a portion of the videos. For example, looking in the
rearview mirror for an emergency vehicle during the Siren
scenario or exhibiting large steering wheel movements when
trying to gain control during the Lane Change scenario were
both expected reactions. A total of 11 behaviors (i.e.,
dependent variables) were included in the analysis: hand
hesitation, foot hesitation, changing the number of hands on
wheel, checking the side mirror, checking the rearview mirror,
looking at the dashboard for airbag or check engine message,
looking at the dashboard for a warning message, large steering
wheel movement, changing lanes, pulling over, and slamming
the brakes. For the 11 dependent variables, the Spearman’s
correlation coefficient was evaluated, and all pairs were not
found to be correlated except for the “hand hesitation” and
“changing number of hands on wheel” (p = 0.22, p = 0.03).

Participants' responses were determined from the videos
recorded in Sim Observer. Coding started from the moment
the cybersecurity event began. For each video, a researcher
noted the time when the participant did one of the 11
predetermined reactions. To ensure accuracy and reliability,
three researchers coded the videos for the same two
participants and any discrepancies were rectified.
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Table 1: Cybersecurity Event Descriptions and the Associated
Warning Message

Event Type Warning Message

Sirens Audio states “Your comfort and
Sirens, similar to a police car convenience might be impacted.

or ambulance, begin to play. Distraction might be caused”. Image
appears on the dashboard.

WARNING

A

Drive with caution

Audio states “Your comfort and
convenience might be impacted.
Distraction might be caused”. Image

Dashboard Signs

A single high-pitched beep
sounds and the two warning
signs illuminate on the appears on the dashboard.

dashboard. WARNING

CHECK ENGINE Q

Drive with caution

Lane Change

The vehicle is suddenly
controlled by the experimenter,
who repeatedly moves the
vehicle from the left lane to the
right.

Audio states “Your safety is
compromised. Slow down and
prepare to pull over”. Image appears
on the dashboard.

Data Analysis and Independent Variables

For all dependent variables, the equality of the mean and
variance was examined to determine the appropriate model:
either Poisson or logistic regression. Six variables were best
suited for Poisson regression, including the count of: hand
hesitation, foot hesitation, changing number of hands on
wheel, changing lanes, looking at dashboard for airbag or
check engine messages, and slamming on brakes. The other 5
variables were modeled using logistic regression where the
counts were converted to a binary format: 0 — if the behavior
never occurred or 1 — if the behavior ever occurred.

With both Poisson and logistic regression models, there
were two independent variables: group (control, training,
warning, and training + warning) and drive (Sirens, Dashboard
Signs, and Lane Change). As these were both categorical
variables, we selected a reference level of control for the
group variable and Dashboard Signs for the drive variable.

RESULTS

Table 2 indicates the average number of times each
participant engaged in each of the activities per drive (for the
first 6 activities that were modeled using Poisson regression).
For the last activity that was modeled using logistic

regression, Table 3Table 2 indicates the percentage of
participants who engaged in the activity for the lane change
drive. No large steering wheel movements were recorded for
the Siren or Dashboard Signs drives.

Table 2: Average number of times each participant engaged in
the activity per drive for six of the dependent variables

Drive
. Dashboard Lane
Variable Group Siren Signs Change
Control 0.000 0.000 0.375
Hand Training 0.000 0.000 0.125
hesitation  warning 0.000  0.125  0.000

Training + Warning ~ 0.000 0.000 0.250

Control 0375 0250 0375

Foot Training 0250 0250  0.250

hesitation  waning 0.125 0250  0.750

Training + Warning ~ 0.143 0.125 0.125

Control 0375  0.625  0.625

Change  Training 0375 0125  0.250
hands on

wheel Warning 0.000 0.375 1.250

Training + Warning ~ 0.286 0.375 0.375

Control 0250 0500  0.125

Change  Training 0.125 0250 0375

lanes Warning 1.000 0375  0.000

Training + Warning ~ 0.000 0.125 0.250

Lookat  Control 0.000  0.000  0.000

dash for  Training 0.000  0.000  0.000
airbag or

engine ~ Warning 0.625  2.625 1.500

messages  Training + Warning ~ 0.571 1.125 0.750

Control 0.000  0.000  0.000

Slamon  Training 0.000  0.000  0.125

brakes  Warning 0.000  0.000  0.250

Training + Warning ~ 0.000 0.000 0.125

Poisson regression and logistic regression models were
applied on each response variable. Among the dependent
variables, hand hesitation, foot hesitation, changing number of
hands on wheel, changing lanes, looking at dashboard for
airbag or check engine messages, slamming on brakes, and
large steering wheel movement were not statistically
significantly associated with the independent variables and/or
had a poor model fit (using the Pearson’s Chi-Square statistic).

We present the findings from the statistical analysis for
the remaining four variables that had good model fit (look at
dashboard to check for warning messages, check rearview
mirror, check side mirror, and pull over) in the proceeding
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sections. These four significant dependent variables were all
modeled using logistic regression and we present the
percentage of participants who engaged in a certain activity.

Table 3: Proportion of participants who engaged in large
steering wheel movements during the lane change drive

Group Proportion
Control 0.875
Training 0.625
Warning 1.000
Training + Warning 0.625

Look at dashboard to check for warning messages

Figure 4 summarizes results for looking at the dashboard
to check for warning messages. The group factor was
significant: the warning group, versus the training + warning
group, decreases the log odds of looking at the dashboard by
1.42 (B =1.42, SE=0.71, z-score = -2, p < 0.05). The
goodness of fit test was not significant (p = 0.1), implying that
the model fit the data.

Group M Control [ Training M Warning ] Training + Warning

0.75 0.75

0.6

0.4

0.2

0.0 0 0 0 0 0 0

Siren Dashboard Signs
Drive

Figure 4: Percentage of participants who checked the
dashboard for warning messages, separated by group

Lane Change

Percentage of participants that checked dashboard for warnings

Check rearview mirror

Figure 5 summarizes results for checking the rearview
mirror. The siren factor was significant: the Sirens scenario,
when compared to the Dashboard Signs scenario, increases the
log odds of checking the side mirror by 3.22 (f = 3.22, SE =
0.82, z-score = 3.92, p < 0.01). The goodness of fit test was
not significant (p = 0.3), implying that the model fit the data.

Check side mirror

Figure 6 summarizes results for checking the side mirror.
The lane change factor was significant: the Lane Change
scenario, relative to the Dashboard Signs scenario, decreases

the log odds of checking the side mirror by 1.4 (f = 1.4, SE =
0.68, z-score = -2.06, p = 0.04). The goodness of fit test was
not significant (p = 0.76), implying that the model fit the data.

Group H Control M Training M Warning B Training + Warning

1.00 ] ]

.875 0.87!

0.75
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Percentage of participants that checked rearview mirror

Siren Dashboard Signs
Drive

Lane Change

Figure 5: Percentage of participants who checked the rearview
mirror, separated by group

Group M Control M Training B Warming B Training + Warning

1 1 1
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0.5
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Percentage of participants that checked side mirror

Siren Dashboard Signs

Drive

Figure 6: Percentage of participants who checked the side
mirror, separated by group

Lane Change

Pull over

Figure 7 summarizes results for pulling over. The training
and warning + training factors were significant. The training
group, versus the control group, increases the log odds of
pulling over by 1.89 (8 = 1.89, SE = 0.66, z-score = 2.85, p <
0.01). The training + warning group, as compared to the
control group, increases the log odds of pulling over by 3.95
(5 =3.95, SE =1.13, z-score = 3.49, p < 0.01). The goodness
of fit test was not significant (p = 0.55), implying that the
model fit the data.
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Figure 7: Percentage of participants who pulled over,
separated by group

DISCUSSION

The objective of this study was to investigate how drivers
respond to cyberattacks and to determine if training and
warning systems affect drivers’ responses to cyberattacks. We
conducted a simulator study with 32 participants wherein
some drivers received training on how to respond to
cyberattacks and some drivers received warning messages (on
the dashboard) about a cyberattack. Participants experienced
three cyberattacks of differing severity levels.

Of the 11 behaviors that were examined, significant
differences between the groups and drivers were only
exhibited among four behaviors: looking at the dashboard for
warning messages, checking the rearview mirror, checking the
side view mirror, and pulling over. Those who received
warning messages viewed them whenever they appeared.
When participants heard a siren similar to an emergency
vehicle, many checked their rearview mirrors, presumably to
see if there was an emergency vehicle behind them. Similarly,
when the vehicle began to abruptly change lanes by itself,
participants were less likely to check the side view mirror.
With respect to pulling over when a cybersecurity event
occurred, those who received any form of training were much
more likely to pull over, regardless of the scenario. Pulling
over, for most participants, concluded the drive as they put the
car in park. However, in the Sirens scenario, some participants
pulled over, waited until the sirens stopped, continued to
drive, but pulled over again once the sirens restarted.

Implications from this indicate the utility of training for
improving drivers’ responses to cyberattacks. Even a short
training session— our training was approximately 10 minutes —
leads drivers to be more cautious when their vehicle behaves
unexpectedly. Providing simple messages on the dashboard
capture drivers’ attention, but do not necessarily lead to a
change in behavior. There were stark differences in how

drivers responded to cyberattacks across the scenarios: the
sound of emergency sirens leads drivers to check their
rearview and side mirrors much more so than other scenarios.
Though this study highlighted important findings when it
comes to drivers’ responses to cyberattacks, there are
limitations and opportunities for future work. First, when
coding participant videos, the researcher had to accommodate
for a limited field of view. Future work should consider
combining video data with driving behavior data (e.g., vehicle
speed) to ascertain drivers’ responses. The lack of an effect for
warnings indicates they can be improved. Relatedly, a larger
study with more participants and more cybersecurity events
would allow for greater generalizability. Last, drivers in this
study were young; future work can consider a different driving
demographic, particularly those with more driving experience
or who drive a vehicle on a day to day basis (e.g., for work).
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