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This work is part of a broader project to investigate student understanding of mathematical
ideas used in upper-division physics. This study in particular probes students’ understanding of
the divergence and curl operators as applied to vector field diagrams. We examined how
students reason with partial derivatives that constitute divergence and curl of the vector field
diagrams. Students’ written responses to a task on derivatives, divergence, and curl of a 2D
vector field were collected and coded. Students were generally successful in determining the sign
of some of the constituent derivatives of div and curl, but struggled in one case in which
components were negative. Analysis of written explanations showed confusion between the sign,
direction, and change in the magnitude of vector field components.
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Introduction

Many physical quantities, such as force and momentum, are represented with vectors. For
several topics in physics, e.g., interactions in gravitation and electricity and magnetism, it is
useful to define a vector field: a vector quantity is assigned to every point of a subset of space.
Vector fields can be represented in different ways, with field lines, an array of arrows, or a
symbolic expression like ¥ = ay? + bxj. Students are introduced to vector fields in introductory
courses, typically in the contexts of electric and magnetic fields. These vector fields vary in
space, and vector calculus provides several ways to describe this variation, including the
gradient, divergence, and curl of the vector field. Several significant physical quantities are
associated with vector derivatives: Maxwell’s equations for electromagnetism describe
relationships between the divergence or curl of electric or magnetic fields and other physical
quantities, and the fields themselves can be expressed in terms of derivatives of scalar and/or
vector potentials. While most students have not encountered vector calculus the first time they
study vector fields, those who go on to major in physics and electrical engineering will use these
ideas extensively in a junior-level course in electricity and magnetism. Students encounter vector
field representations for electric and magnetic fields in an electromagnetism course, and research
involves electric and magnetic fields and even gravitational fields. Students are expected to

reason with symbolic equations but also with vector field representations of divergence (V. V=
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and find the appropriate components and see how the proper components are changing as we
move to certain directions.

Several previous studies in physics education research (PER) have examined student
understanding of divergence and curl in post-introductory courses (Baily & Astolfi, 2014; Bollen
et al., 2015; Gire & Price, 2012; Singh & Maries, 2013). Generally these studies have involved a
two-dimensional representation of a field as an array of vectors. Singh and Maries (2013)
reported that even though graduate students successfully calculated divergence and curl of the
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vector fields, they were unable to interpret the div and curl of vector field plots. Baily and Astolfi
(2014) and Bollen et al. (2015) repeated the previous study with different diagrams, reporting
that around 50% of their students could correctly determine divergence and curl given the vector
field diagrams. Bollen et al. (2015) also qualitatively studied students’ responses, categorizing
them into three approaches: description based, concept based, and formula based. For example,
determining div or curl based on a description of its meaning was categorized as description
based. If students used concepts like flux or the “paddle wheel” to determine div or curl,
respectively, it was categorized as concept based.

While previous studies have focused on the divergence and curl, the classroom experience of
one author of this study suggested that reasoning with the partial derivatives that constitute these

. av; v, . v, v, . . . .
operations, e.g., — and — for divergence or —= and — for curl in Cartesian coordinates, might
dx dy ay dx

be one element of the challenges faced by students. Previous studies have asked students to
determine the sign or value of the divergence and/or curl for a given field diagram, but there has
not been as much focus on their constituent derivatives.

Prior PER studies have documented student difficulties with partial derivatives, often in
thermal physics contexts (Bajracharya & Thompson, 2016; Thompson et al., 2006). Student
understanding of derivatives is studied widely in RUME. Zandieh (2000) developed a theoretical
framework for student understanding of derivatives, which was extended by Roundy et al. (2015)
to include partial derivatives. Wangberg and Gire (2019) investigated student understanding of
partial derivatives of scalar fields represented as surfaces using Zandieh’s framework.

The derivatives in the expressions for divergence and curl have the additional complication
that they are derivatives of vector components. In these partial derivatives, V, refers to the x-

vy . . o .
component of the vector field, so 6—2‘ is the partial derivative with respect to x of the x-

component of the vector V. Extracting information about the derivatives from a vector field
diagram involves multiple steps. Existing frameworks are restricted to derivatives of scalar
functions, and need to be extended to deal with the derivatives of vector quantities. While prior
frameworks have offered insights into student reasoning, they do not account for functions of
multiple variables, nor for the vector nature of the derivatives.

We set out to develop and implement tasks that used similar questions to prior studies
investigating div and curl for vector field diagrams, but with added explicit questions about the
constituent partial derivatives. The goal is to begin to answer the following research questions:

e To what extent can students determine the sign of the constituent derivatives of

divergence and curl given a vector field diagram?

e To what extent are student responses to tasks focused on the signs of constituent

derivatives related to success in determining the sign of divergence and curl?

Methods

Written data were collected at two universities in sections of Mathematical Methods for
Physics, post-introductory courses for physics and engineering physics majors and minors that
are intended to cover the advanced mathematics students will encounter in upper-level theory
core courses like Electricity and Magnetism or Quantum Mechanics. All students (N=32) had
completed introductory sequences in both physics and calculus, and the data were collected in
the course after instruction on vector calculus. One campus serves a diverse student population in
the southwest, the other is a predominantly white institution in the northeast. Responses from the
two universities were similar and are thus combined and reported together in this paper.
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In each course, the students had considered similar representations of vector fields in class
and answered questions relating the features of a field to its divergence and curl. In one
university, students had completed a research-based instructional tutorial; in the other, these
questions were presented as a whole-class discussion. After instruction, the questions shown in
Fig. la were posed on a course midterm exam. Students are shown a 2-d field representation and
asked to determine the signs first of the divergence and curl, then of the constituent derivatives.

In the broader study, different versions of this task were used. In this report, students
responded to a task asking first about the derivatives and then about div and curl. With this
sequence, we hoped to see whether the reasoning for div/curl included derivatives or if other
reasoning would emerge.

The coding process began with general codes for both correctness of the sign and the
correctness of reasoning provided by students. After the lead author generated the initial codes,

other members of the team independently coded several student responses to refine the coding
vy . .
a—; is zero”) or explanations that were not clear

enough to be understood were coded as unclear reasoning.
Figure 1b (not given to students) shows which components students are expected to use to

scheme. Answers without explanations (i.e.,

. . ]
determine the sign of a—‘z‘.

A slice of a vector field V (for z=0) is shown. Assume that the field has no components in the z-direction
(into and out of the page) and that other slices for other values of z would look the same (i.c., ignore z
components or direction).

A. [For each of the quantities below, state whether the quantity is positive, negative, or zero. b il Y
Show or explain briefly (stating any assumptions you are making). A '\ 1 - ! . 1 1 1
The (z component of) the curl of the field V - ) \ “ S
W h - o
the divergence of the field V -
. * - - 9
L
B. Indicate whether the following derivatives are positive, negative, or zero. Show or explain : \ A - »
briefly (stating any assumptions you are making). - N \ . N N
- h S - &
s e reai o : BTN R
5, i the region S, n the region - N - - __ . N
ay the region 2y I the region
a b

Figure 1. (a) The research task asked to probe students’ reasoning about div and curl. (b) The figure for the task,

; . )/
with components of the vector field students are expected to examine to determine a—;‘.

Results and Discussion
The numbers of students that correctly determined the constituent derivatives and the
distribution of correctness of student reasoning are shown in Table 1.
Only 4 of 32 (13%) students answered all parts of the question (all derivatives, divergence,

and curl) correctly, suggesting that the set of questions was especially challenging. Most students
. : : C vy av. vy

successfully identified the constituent derivatives in three out of four cases: for a—;’, 6—; , a—;’,

success rates were over 75%. For two of these derivatives the vector field component was not

changing in the indicated direction, and for the third it was positive and decreasing.
. d o .
In contrast, only 21% of the students correctly determined that 6—2‘ was positive with correct

reasoning. Because this derivative was the most challenging, we examined the reasoning
required in some detail. The first step was identifying the appropriate components; Figure 1b
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shows the components that students were expected to examine to determine a—;‘. Analysis of

.V
student responses showed that most (<90%) used the correct components to determine a—;‘. For

the given vector field diagram, the absolute value of V, is getting smaller with respect to the x-
axis, but due to the direction of V, the change in V, (dV,) is positive. Written responses did not
show evidence of explicitly attending to subtracting the two components. Instead, students wrote
about the trends in the magnitude of the components, whether that component was increasing,
decreasing, or staying constant when you move in a certain direction. In one incorrect student
responses, shown in Figure 2a, the student wrote “arrows getting smaller” and seemed to

: . . . av; . o .
associate this with the resulting negative value for a—;. This response, while incorrect, included

some correct reasoning. Responses that associated the component with the appropriate direction
but reversed the sign were coded as correct reasoning with a sign mistake. However, this student
wrote about change in magnitude rather than change in component.

a a
Table 1. Performances and distribution of student reasoning for %, a_‘;y’ aal;‘, and % of the diagram. Correct
answers for the derivatives are given in parentheses. (C: Correct, I: Incorrect).
Constituent derivatives Constituent derivatives
for divergence for curl
N=32 L " 0 % avy
2 (+) % 0) 0 2 (=)
Reasoning C I C I C I C I
Correct 7 17 21 2 18 2 19 1
Incorrect 1 4 0 1 1 3 3 2
Unclear or none 3 0 4 4 2 1 6
vy . ) -
x 0 the region % in the region L} in the region
\og glive  GrrOw . . RT
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- 77‘-6113 i5 re $ielS g
o et going up
a b c
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Figure 2. (a) Incorrect response to a—;, reasoning about the decreasing arrow length to justify the response. (b) and
(c) Example responses of students relating derivatives with the direction of the vector field component.

Previous studies conducted in introductory physics courses reported student difficulties in
subtracting negative vectors when given as a graphical representation, even though students were
very successful enacting the procedure of subtracting when vectors are provided in an equation
with coordinates (Barniol & Zavala, 2014; Susac et al., 2018). Our results suggest similar
difficulty among students in this more advanced context.

While students had good success with many of the constituent derivative tasks, only 38% of
students determined the correct signs for divergence and curl with correct reasoning, as shown in
Table 2. For the divergence, most of the responses coded as incorrect signs with correct

. ) : . .
reasoning stem from finding a—; as negative, as described above. Student responses included

several alternative forms of reasoning for divergence, such as inferring flux from the vector field
diagram, or identifying changes relative to a perceived “source” of the arrows.
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There was also no clear relationship between success on derivative task and on the curl task.
Many of the students coded with incorrect reasoning for curl answered that the z component of
curl was zero and referred to the problem statement that the vector field had no z component.
This may reflect a misinterpretation of the question or a misunderstanding of the relationship
between components of the vector field and those of the curl. A previous version of this question
did not include this text and more students did find the curl correctly for the diagram.

Table 2. Student performances for divergence and curl of the diagram (C: Correct, I: Incorrect).

N=32 Divergence Curl
Reasoning C 1 C 1
Correct 12 10 12 3
Incorrect 1 6 1 13
Unclear or none 2 1 1 2

Another small set of student responses show confusion between the direction of the vector
field component and the change of the vector field component, as shown in Figure 2b and 2c.
Similar confusion between a quantity and its change or rate of change has been widely reported
in both mathematics and physics contexts at the introductory level (Meltzer, 2004; Trowbridge &
McDermott, 1981). Our data show examples in a more advanced population, suggesting the
persistence of this confusion.

Conclusions and Future Work

Our results were consistent with previous studies that reported that divergence and curl are
challenging for students. For this task and population, students were largely successful in
determining the sign of the constituent derivatives of div and curl. Incorrect responses showed
confusion between the sign, direction, and change in the magnitude of vector field components;
this confusion seems reminiscent of previous findings in both introductory physics and
mathematics classes.

Determining the constituent derivative incorrectly did result in an incorrect divergence sign,
but correct responses on constituent derivatives were not sufficient for success on divergence and
curl. Students seemed to confuse components of curl with components of the field itself.

Explicit attention to the derivatives in expressions for divergence and curl seems to be a
fruitful direction for future research and curriculum development. We plan to collect additional
data, including student interviews, to further investigate the understanding of these derivatives as
well as of divergence and curl, including relationships between quantities. We also intend to re-
examine existing data through the lens of covariation (Carlson et al., 2002) and to examine
whether it is possible to extend existing frameworks to vector derivatives.
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