

1 **Mapping agricultural tile drainage in the US Midwest using explainable**
2 **random forest machine learning and satellite imagery**

3 Luwen Wan ^{a, b, c, *}, Anthony D. Kendall ^a, Jeremy Rapp ^a, David W. Hyndman ^{a, d}

4 ^a*Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, 48824, USA*

5 ^b*Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA*

6 ^c*Institute for Human-Centered Artificial Intelligence, Stanford University, Stanford, CA, 94305, USA*

7 ^d*Department of Geosciences, The University of Texas at Dallas, Richardson, TX, 75080, USA*

8 * Corresponding author:

9 *Luwen Wan, 367 Panama St, Green Earth Sciences, Stanford, CA 94305*

10 E-mail address: luwenwan@stanford.edu (L. Wan), kendal30@msu.edu (A. D. Kendall),

11 rappjer1@msu.edu (J. Rapp), hyndman@utdallas.edu (D. W. Hyndman)

12 **Abstract**

13 There has been an increase in tile drained area across the US Midwest and other regions worldwide
14 due to agricultural expansion, intensification, and climate variability. Despite this growth, spatially
15 explicit tile drainage maps remain scarce, which limits the accuracy of hydrologic modeling and
16 implementation of nutrient reduction strategies. Here, we developed a machine-learning model to
17 provide a Spatially Explicit Estimate of Tile Drainage (SEETileDrain) across the US Midwest in
18 2017 at a 30-m resolution. This model used 31 satellite-derived and environmental features after
19 removing less important and highly correlated features. It was trained with 60,938 tile and non-
20 tile ground truth points within the Google Earth Engine cloud-computing platform. We also used
21 multiple feature importance metrics and Accumulated Local Effects to interpret the machine
22 learning model. The results show that our model achieved good accuracy, with 96 % of points
23 classified correctly and an F1 score of 0.90. When tile drainage area is aggregated to the county
24 scale, it agreed well ($r^2 = 0.69$) with the reported area from the Ag Census. We found that Land
25 Surface Temperature (LST) along with climate- and soil-related features were the most important
26 factors for classification. The top-ranked feature is the median summer nighttime LST, followed
27 by median summer soil moisture percent. This study demonstrates the potential of applying
28 satellite remote sensing to map spatially explicit agricultural tile drainage across large regions. The
29 results should be useful for land use change monitoring and hydrologic and nutrient models,
30 including those designed to achieve cost-effective agricultural water and nutrient management
31 strategies. The algorithms developed here should also be applicable for other remote sensing
32 mapping applications.

33 **Keywords:** agricultural tile drainage, random forest classification, feature importance, Google
34 Earth Engine (GEE), Landsat, US Midwest

35 **1 Introduction**

36 Tile drainage is generally installed to remove excess water and enhance crop productivity in poorly
37 drained and humid regions, particularly in areas with high precipitation and shallow groundwater

38 tables (Hirt and Volk, 2011; ICID, 2018; Kokulan, 2019; Møller et al., 2018). Tile drainage
39 installation has several perceived benefits including increased soil aeration, healthier and deeper
40 root systems, optimal moisture conditions for crop growth, and more productive harvests (King et
41 al., 2015; Schilling and Helmers, 2008; Skaggs et al., 1994). The hydrological effects of tile
42 drainage are complex and depend on factors such as rainfall amount and intensity, soil types, and
43 existing soil moisture conditions (Valayamkunnath et al., 2022). Miller and Lyon (2021) found
44 that areas with a high percentage of tile drainage (>40 % of the watershed area) had flashy
45 streamflow in 59 Ohio watersheds. In contrast, Adelsperger et al. (2023) analyzed 139 watersheds
46 in agricultural regions of the US Midwest and found that tile drainage reduced flashiness. Studies
47 have consistently shown that tile drainage can exacerbate nutrient losses from agricultural lands,
48 which can enhance eutrophication in receiving water bodies such as the Gulf of Mexico and the
49 Great Lakes (King et al., 2015; Ma et al., 2023; Rabalais and Turner, 2019; Ren et al., 2022; Smith
50 et al., 2015). Accurately modeling streamflow and subsequent nutrient dynamics in tile-drained
51 agricultural fields can be challenging due to the scarcity of detailed tile drainage data (White et al.,
52 2022). Spatially-explicit tile drainage information is needed to quantify their environmental effects
53 and inform more cost-effective management efforts.

54 Installing tile drains can help agricultural producers adapt to climate change, yet our ability to
55 predict their effects is limited by the lack of accurate maps of tile drainage locations and practices.
56 Information on tile drainage is often limited in spatial and temporal resolution, even in data-rich
57 agricultural regions like the Midwestern United States. The USDA Census of Agriculture (Ag
58 Census) estimates the area drained by tile through surveys conducted with farmers in counties
59 across the continental United States (CONUS), which are aggregated at the county level every five
60 years (NASS, 2017; USDA-NASS, 2012). The accuracy of these data may be affected by
61 participation rates and respondent accuracy, potentially leading to inconsistencies (Jame et al.,
62 2022). Existing tile drainage datasets often rely on Geographic Information Systems (GIS)
63 analyses that assume agricultural areas with flat and poorly drained soils will likely have tile
64 drainage installed (Sugg, 2007; Nakagaki et al., 2016; Nakagaki and Wieczorek, 2016;
65 Valayamkunnath et al., 2020; Jame et al., 2022). Table 1 summarizes existing tile drainage
66 products and methods. These estimates rely solely on geospatial analyses to identify *likely* tile-
67 drained areas. Developing a cost-effective approach to map spatially explicit *actual* tile drainage
68 installations would be a substantial improvement.

69 Table 1. Existing tile drainage products and methods.

Product Name	Resolution and study area	Method Description	Publication
Estimated subsurface drainage	County, 18 leading drainage states	GIS analysis based on row crops with poorly drained soil	Sugg, 2007
SubsurfaceDrainExtentUS_1990s	30-m, national scale	Used county area from Sugg, 2007, cropland and poorly drained soil	Nakagaki et al., 2016
USDA_NASS_2012	County, CONUS	Survey-based Ag census	USDA-NASS, 2012
SubsurfaceDrainExtentMW_2012	30-m, 12 Midwest States	Based on the 2012 NASS, cropland, poorly to moderately poorly drained soils	Nakagaki and Wieczorek, 2016

USDA NASS 2017 *	County, CONUS	Survey-based Ag census	USDA-NASS, 2017
AgTile-US *	30-m, CONUS	Geospatial analysis based on cropland, slope, and soil drainage class	Valayamkunnath et al., 2020
TD-MostPD (TD-AllPD) *	30-m, 12 Corn Belt states	Areas with very poorly and poorly (and somewhat poorly) drained soils	Jame et al., 2022
SEETileDrain	30-m, 14 Midwestern and Great Lakes states	Derived from satellite and environmental datasets with machine learning	This study

70 Note: * datasets of tile drainage as of 2017 are compared in section 4.2 with the Spatially Explicit Estimate of Tile
 71 Drainage (SEETileDrain) product generated here.

72 Researchers have used thermal and aerial images to estimate tile drainage extent (Naz and
 73 Bowling, 2008; Prinds et al., 2019; Tilahun and Seyoum, 2020; Woo et al., 2019) and have mapped
 74 individual tile drains and estimated drainage spacing using high-resolution aerial imagery (Naz et
 75 al., 2009; Naz and Bowling, 2008). The extent and type of tile drains at a few edge-of-field sites
 76 in Michigan and Wisconsin were delineated using high-resolution imagery acquired with
 77 unmanned aircraft systems (Webber and Williamson, 2021). Another approach involved using an
 78 image differencing technique to delineate tile drainage area for a site in Indiana, comparing
 79 shortwave infrared reflectance (SWIR) before and after a ~2.5cm rainfall event (Gökkaya et al.,
 80 2017). SWIR is strongly related to soil moisture, and soil with tile drainage tends to dry faster
 81 resulting in higher SWIR values. However, high-resolution aerial imagery approaches can be
 82 costly, and the image differencing method is susceptible to variable weather conditions such as
 83 rainfall intensity and cloud cover. An application of convolutional neural networks has recently
 84 been developed to delineate tile drainage at the field scale, although this may limit its broad
 85 applicability (Redolozza et al., 2023; Song et al., 2021; Woo et al., 2023). Although several studies
 86 have estimated tile drainage at field- to watershed-scales, few have developed drainage maps over
 87 broad regions. A random forest model was developed to map tile drainage and reported reasonable
 88 overall accuracy rates in the Red River basin (87%) and the Bois de Sioux Watershed (77%) in
 89 Minnesota over multiple years (Cho et al., 2019). This model used vegetation indices from Landsat
 90 imagery, combined with thermal-moisture and climate-land variables, and assumed tile drainage
 91 permit records are ground ‘truth’ measurements.

92 There is insufficient spatially explicit and well-validated information regarding tile drainage extent
 93 in the US Midwest, which includes 93% of the tile drained area in the United States (USDA-
 94 NASS, 2017). Here, we mapped agricultural tile drainage by integrating satellite-derived, climate-
 95 and soil-related variables with comprehensive ground truth points in 2017 using the Google Earth
 96 Engine (GEE) cloud computing platform. This study aims to (1) provide spatially explicit 30-m
 97 estimates of tile drainage for the US Midwest in 2017, (2) identify important features for tile
 98 drainage classification across this region, and (3) provide an explainable framework to apply
 99 machine learning in agrohydrology. The spatially explicit tile drainage dataset, SEETileDrain,
 100 generated here has numerous potential applications in hydrological modeling, water quality
 101 assessment, and crop management. It offers valuable insights for environmental managers seeking
 102 to optimize agricultural water and nutrient management practices. The machine learning
 103 algorithms employed here can also map historical tile drainage with appropriate inputs, identify
 104 changes in drained area over time, and establish a baseline to predict future tile drainage

105 installations in response to changes in climate and land use.

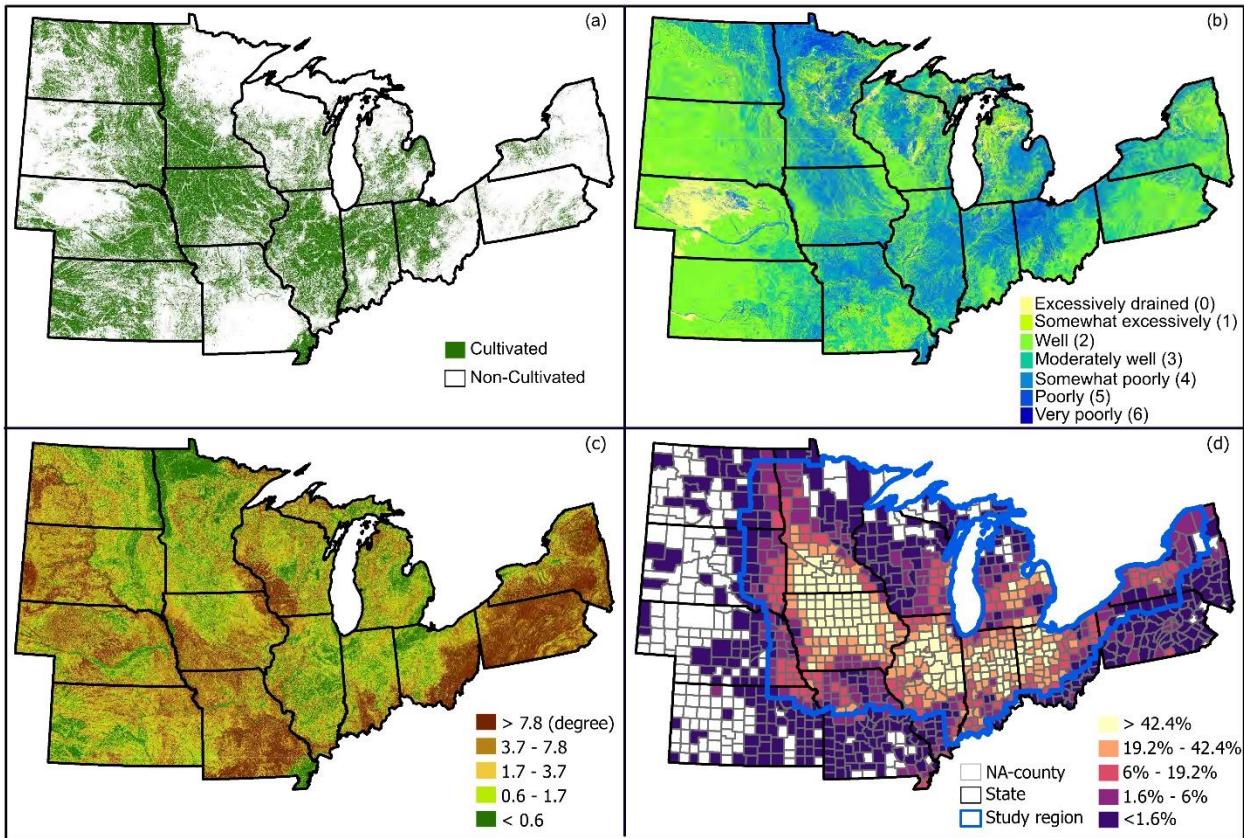
106 **2 Study area**

107 The study region includes 14 states in the central US (12 US Midwest states: Illinois, Indiana,
108 Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and
109 Wisconsin; and two Great Lakes states: Pennsylvania and New York). This region has a generally
110 sub-humid to humid continental climate with warm to hot summers (Peel et al., 2007). The annual
111 rainfall decreases from east to west, with average yearly precipitation and evapotranspiration of
112 860 and 634 mm, respectively (Abatzoglou et al., 2018).

113 The Midwest region is known for its deep, fertile soil with high concentrations of organic matter.
114 It is suitable for cultivation of corn, soybeans, sorghum, alfalfa hay, cotton, wheat, and more. The
115 Midwest has earned its reputation as the “agricultural heartland” of the US and is one of the most
116 extensively cultivated agricultural areas globally (FAO, 2017). The United States produces over
117 30% of the world's soybeans and corn (USDA, 2023); the Midwest comprises 34 % of the
118 country's agricultural area (Fig. 1a). Agriculture is thus integral to the local economies of the US
119 Midwest.

120 As shown in Fig. 1b, approximately 70% of the soil in the Midwest is classified as excessively- or
121 well-drained (yellow-green), based on the natural drainage classification provided by Soil Survey
122 Geographic Database, gSSURGO (USDA 2013, USDA 2017). The remaining 30% falls into soil
123 drainage classes (blue), including very poorly drained, poorly drained, and somewhat poorly
124 drained. The eastern Midwest is mainly lowlands, with elevations gradually increasing towards
125 the west. The median slope across the region is 3.5° (Fig. 1c).

126 The US Midwest is among the most productive agricultural regions in the world, due in part to its
127 extensive tile drainage systems (Fausey et al., 1995). The 14-state region identified in Figure 1
128 includes 92.9 % (208,358 km² of 224,190 km²) of the tile drained land across CONUS; 21.6 % of
129 the agricultural land in this region is tile-drained (USDA-NASS, 2017). However, tile drainage
130 data for 183 counties within these states (of 1177 total counties) are not reported due to the absence
131 of tile drains or withheld details to protect individual farm privacy (see NA-counties in Fig.1d).
132 To maintain a continuous boundary while excluding most NA counties, our study region is
133 confined to 737 counties delineated by the heavy blue line in Fig. 1d. The subset, hereafter referred
134 to as the ‘US Midwest’, comprises 204,842 km², or 91.4%, of the tile-drained CONUS in 2017
135 (Fig. 1d).



136

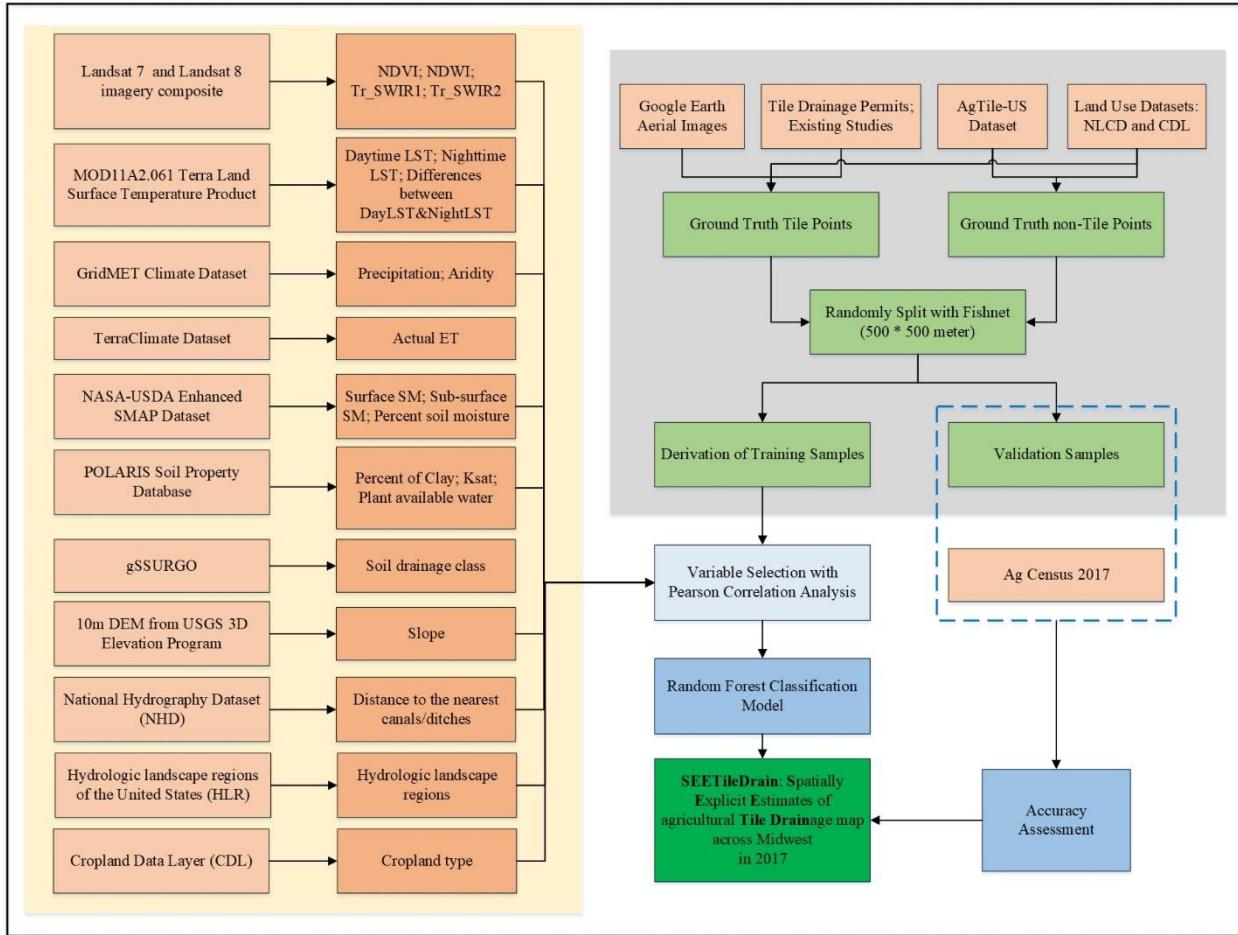
137 Fig. 1. Study region (737 counties delineated in (1d)) showing (a) cultivated and non-cultivated areas based
 138 on the 2016 National Land Cover Database and the 2017 Cropland Dataset Layer; (b) soil drainage class,
 139 classification is from natural drainage classes in the USDA SSURGO dataset, numbers in parentheses are
 140 used to visualize distribution difference and classification; (c) mean slope in degrees; and (d) percent of
 141 land area by county in tile drainage based on the 2017 Ag Census. In (d), areas with no tile drains or
 142 withheld data are shown as white NA counties due to privacy concerns, as these counties contain few farms.

143

3 Data and methods

144

145 The workflow we developed for creating SEETileDrain at 30-m resolution across the US Midwest
 146 is shown in Fig. 2. Geographic, remote sensing, and meteorological products at a variety of
 147 resolutions were first selected (light orange boxes). Then, a set of derived variables were computed
 148 from these primary sources (darker orange boxes). Next, we generated groups of tile and non-tile
 149 ground truth points from various sources across the US Midwest region (light green boxes). These
 150 ground truth points and input features were then utilized to train an initial random forest machine
 151 learning model that was used to select a final variable subset (light blue box). Additionally, feature
 152 importance and correlation were evaluated during this step. The final model was trained using only
 153 the more important feature from each highly correlated pair (dark blue boxes), thereby reducing
 154 multicollinearity. Through this process, tile drainage area across the Midwest was mapped,
 155 accuracy assessments were performed at pixel- and county levels (dark blue boxes), and feature
 importance was evaluated (dark green box).



156

157 Fig. 2. Workflow diagram of the random forest classification method used to create agricultural tile drainage
 158 maps across the US Midwest. This method uses 11 remote sensing and environmental datasets (highlighted
 159 in lighter orange boxes) and 21 derived variables (shown in orange boxes). Data sources used to create
 160 ground truth points for tile and non-tile, as well as the 2017 Census of Agriculture, are indicated by lighter
 161 orange boxes. Ground truth points are shown in light green boxes, classification and assessment methods
 162 are shown in blue boxes, and the final product of this study (SEETileDrain) is shown in a green box.

163

3.1 Variables derived from remote sensing imagery and environmental datasets

164
 165
 166
 167
 168
 169
 170
 171
 172

Initially, 21 variables were identified from eleven satellite and environmental datasets, as shown in orange and lighter orange boxes. Then, 36 additional features capturing the distinguishing characteristics between tile and non-tile points were derived from these datasets and variables, guided by prior research (Cho et al., 2019; Jame et al., 2022; Valayamkunnath et al., 2020). For instance, fields with tile drainage are expected to have higher Normalized Difference Vegetation Index (NDVI) values throughout the growing season, as tile drains enhance crop growth, and NDVI correlates strongly with green biomass (Prinds et al., 2019). Details about each of these datasets, their sources, how they were computed, and the shortnames assigned to each variable are provided in the Supplemental Text S1, as well as Tables A1, A2 and A3.

173 These 57 initial variables can be grouped into five categories: 1) climate, 2) static landscape
174 characteristics, 3) surface reflectance indices, 4) land surface temperature (LST), and 5) Soil
175 Moisture Active/Passive (SMAP). With the exception of the static landscape characteristics, each
176 of these variables are dynamic remotely-sensed or meteorological variables. The appropriate
177 periods for these variables were identified by analyzing the differences between tile and non-tile
178 points at approximately 14-day intervals based on two Landsat-derived indices: NDVI and
179 Normalized Difference Water Index (NDWI). Both NDVI and NDWI have been demonstrated to
180 help identify tile drained lands (Cho et al., 2019; Zhang et al., 2014). We then identified three
181 periods - spring: 4/1–5/31, summer: 7/1–8/31, and growing season: 5/1–9/31, based on the mean
182 of maximum (max among available Landsat images) NDVI and NDWI for all the ground truth
183 points across the study region (Fig. A1). For instance, tile points exhibited lower NDVI but higher
184 NDWI in April and May than non-tile points. Thus, we define the spring season as April 1st to May
185 31st. Periods for other input features match the specified time ranges for NDVI and NDWI as
186 needed.

187 Except for a few static landscape variables (soil drainage class, HLR, distance to canals or ditches,
188 plant available water (PAW)) that were computed locally and uploaded to GEE, all the data sources
189 mentioned above can be accessed through the Earth Engine's public data archive
190 (developers.google.com/earth-engine/datasets), as well as the awesome-gee-community-catalog
191 (Roy et al., 2023). The native resolution of these data sources varies from 10 to 10,000 m (Tab.
192 A2&A3). The input features were derived by aggregating or disaggregating them to 30-m
193 resolution. The final classification was performed using assets that were reduced and interpolated
194 with the built-in reduce and interpolation functions in GEE. See more details in Text S1.

195 3.2 Tile and non-tile ground truth point for classification

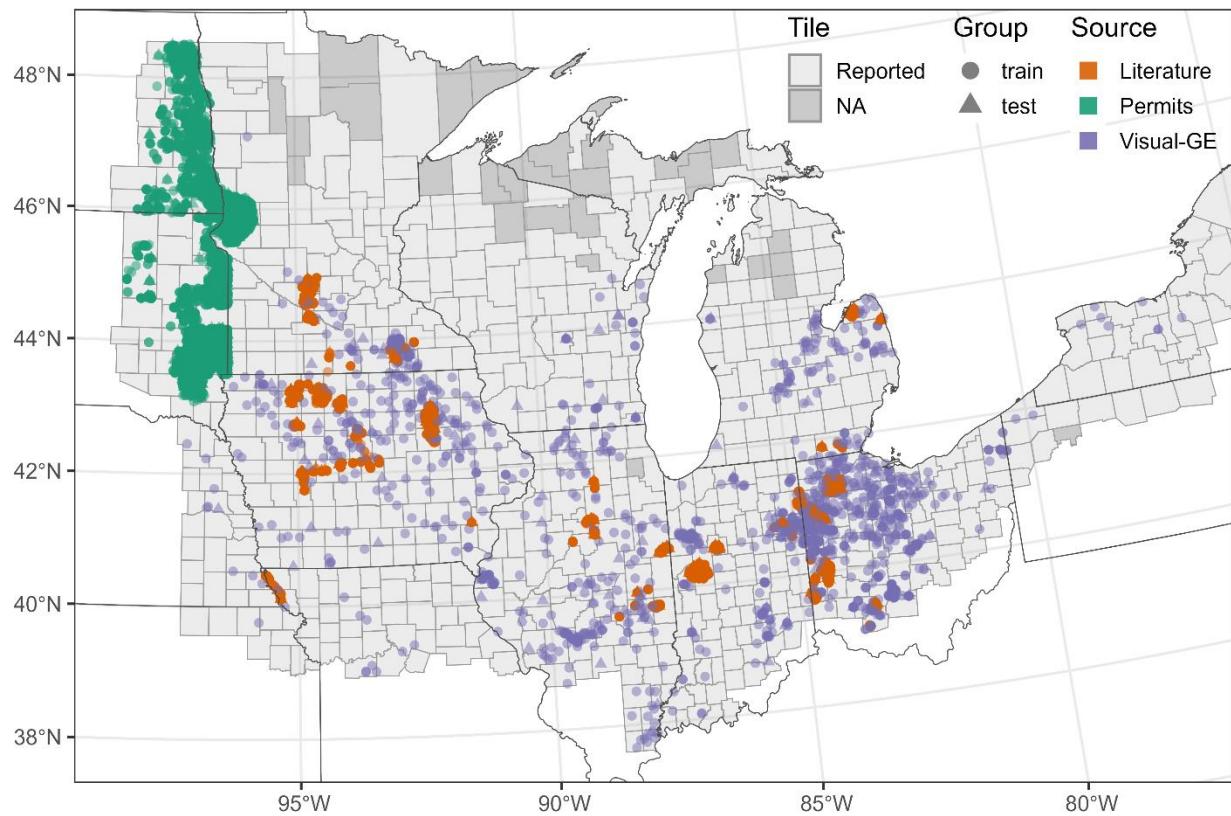
196 Tile drainage ground truth points (Fig. 3) were obtained through visual interpretation, literature,
197 and tile drainage permit records to train the classification model. A significant proportion of the
198 tile drainage points were identified through visual interpretation (purple squares in Fig. 3) using
199 the aerial imagery base map from Google Earth Pro. Potentially drained points were randomly
200 selected from likely tile drained areas (Valayamkunnath et al. 2020) within cultivated lands.
201 Drainage status was then visually interpreted based on patterns of tile drains, spaces, and canal
202 ditches around the fields using Google Earth Pro. From this process, 1753 tile drained points were
203 positively identified. Those not positively identified as tile drained were omitted, as there are many
204 conditions that can lead tiled fields to be visually indistinguishable from non-tiled ones. Another
205 set of 15,118 visually interpreted tile drainage points was obtained from a previous study that used
206 a geospatial model to determine the likely tile-drained areas of the CONUS (Valayamkunnath et
207 al., 2020). More details about each of these datasets can be found in Supplemental Text S3. The
208 workflow for generating ground truth points is shown in Fig. A2.

209 Additional tile drainage information from the literature (orange) and tile drainage permits (green)

210 were available as polylines and polygons. The polylines include sources such as tile lines and
211 drainage structures from three sites (Blissfield, Clayton, and Palmyra) in Michigan, US, as well as
212 tile lines from the Story County Farm in Iowa, tile line permits from the Bois de Sioux Watershed
213 District, and a photo of a tile-drained field in the southeast research farm in Iowa. The polygons
214 used in this study were obtained from permits for agricultural subsurface drainage tile locations
215 provided by USGS in North Dakota (Finocchiaro, 2016) and South Dakota (Finocchiaro, 2014).
216 These polygons are assumed to represent ground truth tile drainage measurements. To ensure their
217 accuracy, we randomly sampled points from these polygons and polylines areas and excluded any
218 points too close to the edges of polygons and polylines.

219 To avoid biased classification due to clustered tile points from available data and the spatial
220 correlation among adjacent points, a proximity limit between points selected for training and
221 testing was set using a 500*500-m fishnet grid. Yan and Roy (2016) reported that US farms'
222 average and median field sizes are 400 and 527 m, respectively. Here, a threshold of 500 m was
223 selected to provide training and testing point separation, thus handling co-variation while
224 maintaining an adequate number of points for model training and validation. Following this
225 process, a total of 28,723 tile drainage points remained.

226 The potential tile-drained layer AgTile-US (Valayamkunnath et al., 2020) was also used to identify
227 non-tiled points. We created a mask using a 120-m buffer around all likely tile drained areas. Those
228 areas within agricultural land but outside the mask were defined as likely non-tiled. We then
229 randomly selected 32,215 points, each at least 500 m apart from this layer and used as likely non-
230 tile points in the classification. Although these points may not accurately reflect actual ground
231 conditions, it is practical to utilize them for classification due to the limited availability of non-tile
232 data and the associated labor costs for manual identification.



233

234 Fig. 3. Map of ground truth tile drainage points sourced from literature (orange), tile drainage permits
 235 (green), and visual interpretation from Google Earth Pro aerial imagery (purple). The training and testing
 236 tile drainage points are ≥ 500 m apart, as indicated with different point shapes. The study area's counties
 237 are highlighted in gray, with the ones reported by USDA-NASS to have tile drainage displayed in light
 238 gray. Areas marked as "NA" indicate no tile drains or withheld data due to privacy.

239 **3.3 Random forest classification and accuracy assessment**

240 Random Forest (RF) was chosen for classification because it effectively handles non-monotonic
 241 relationships between features and accommodates non-linear relationships. It also reduces the
 242 likelihood of overfitting, a common issue in machine learning, by generating random subsets of
 243 features and constructing multiple decision trees based on these subsets (Breiman, 2001).
 244 Therefore, RF classification has been widely used for various classification tasks, including
 245 irrigation mapping, flood risk assessment, and water quality predictions (Belgiu and Drăguț, 2016;
 246 Cho et al., 2019; Deines et al., 2019, 2017; Wang et al., 2015; Xie and Lark, 2021; Gupta et al.,
 247 2023).

248 The RF classifiers are tuned by varying the number of decision trees (*ntree*) and the number of
 249 features randomly selected and tested for the best split when growing trees (*mtry*). A review of
 250 random forest in remote sensing found that most research sets *ntree* to 500 (Belgiu and Drăguț,

251 2016). This is because the error rate stabilizes before reaching this number of trees (Lawrence et
252 al., 2006), and the *randomForest* R package defaults to 500 for *ntree* (Liaw and Wiener, 2002).
253 The classification accuracy is highly dependent on the *mtry* parameter, which is typically set to the
254 square root of the number of input features. However, it can be adjusted between one and the
255 maximum number of input features. Using the Google Earth Engine cloud computing platform,
256 the classifier applies the knowledge gained from the training data to make predictions for areas in
257 out-of-sample regions. We used the default settings of 500 trees (*ntree*) and the square root of the
258 number of features as features per split (*mtry*) for classification.

259 Here, random forest classification was performed twice: an initial classification with all 57
260 features, and a final classification and mapping conducted with the 31 selected (Table A2) after
261 eliminating highly covariate features (Table A3). Cross-validation techniques were employed to
262 train and validate the machine learning model using different proportions of data. The model was
263 trained on balanced data and validated on imbalanced data proportionate to tiled and non-tiled
264 areas. To split our ground truth dataset, we first divided non-tile points, randomly selecting 30%
265 for validation (22,540/9675 training/validation). Next, the number of validation tile drainage
266 points was determined based on the overall area ratio (~1:4) of tile and non-tile in the US Midwest
267 region of the Ag Census (USDA-NASS, 2017). Thus 2281 tiled points were selected for validation,
268 leaving 26,442 for training. Overall, we used 49,982 points in training, and 11,956 in validation
269 (81 % training/19 % testing).

270 An initial classification model was trained on all features, which was then used as the basis for
271 reducing our total number of features, as many of our input features were highly correlated. This
272 is not strictly necessary for accurate classification because RF is generally robust to
273 multicollinearity among predictor features. The RF model naturally reduces the variance by
274 building many decision trees based on a random subset of input features and ground truth points.
275 However, the reliability and interpretability of feature importance can be affected by
276 multicollinearity. For instance, multicollinearity can result in biased importance scores where the
277 actual contribution of each feature to the model's predictive power isn't accurately reflected
278 because the model may arbitrarily favor one correlated feature over the others in different trees.
279 By reducing covariation, we can evaluate the unique contribution of each feature and improve the
280 interpretability of the model. With this initial classification, we calculated the Pearson correlation
281 coefficient (*r*) between each pair of features and used the *MeanDecreaseAccuracy* algorithm to
282 determine feature importance in the initial classification, with *ntree* = 500 and *mtry* set by the
283 square root of the number of features used in the model. If the Pearson correlation between pairs
284 of features exceeded a threshold of 0.8, we retained only the feature with higher importance. For
285 instance, in the first model run with *ntree* = 500 and *mtry* = 7 (~ square root of 57, the number of
286 initial features), 50 pairs of features have a correlation coefficient higher than 0.8. For one example
287 pair, SSM_median_spr and SMP_median_spr, the correlation coefficient (*r* = 0.99) exceeded our
288 threshold; SSM_median_spr was dropped at this step based on its lower Mean Decrease in
289 Accuracy. It is important to note that there is no standard threshold for correlations, as they are

290 domain-specific and vary across studies (Schober et al., 2018). Here, a correlation of 0.8 or greater
291 is considered to indicate a strong correlation.

292 To evaluate the model's accuracy on the testing dataset, we used three metrics: overall accuracy,
293 recall (producer's accuracy), and precision (user's accuracy), see equations (1) – (3). These metrics
294 are commonly used in classification models and directly show the number of correctly identified
295 pixels (Congalton and Green, 2019). Accuracy is the percentage of pixels correctly identified (i.e.,
296 as tile or non-tile) in agricultural fields, recall is the percentage of known tile drainage points that
297 were correctly identified, and precision is the number of true positive results (points identified as
298 tile drainage) divided by the number of samples predicted to be positive, including those not
299 identified correctly. Each metric ranges from 0 to 1, with higher values indicating the classification
300 model is more reliable. These metrics were calculated as follows:

301
$$\text{Overall Accuracy} = (TP + TN) / (TP + TN + FP + FN) \quad (1)$$

302
$$\text{Recall} = TP / (TP + FN) \quad (2)$$

303
$$\text{Precision} = TP / (TP + FP) \quad (3)$$

304 Where TP represents the number of true positives (tile drainage points), TN represents the number
305 of true negatives (non-tile), FP represents the number of false positives (points predicted to be tile
306 drainage that are not tile-drained), and FN represents the number of false negatives (points
307 expected to be non-tile that are tile-drained).

308 We also calculated the F1 score and balanced accuracy (equations (4) & (5)) to evaluate the
309 predictive performance. F1 score was calculated as the harmonic mean of precision and recall,
310 which gives the same weight to precision and recall (Sasaki, 2007). For this case, the true
311 proportion of tile and non-tile classes differs substantially, so balanced accuracy can provide a
312 more robust metric.

313
$$F1 \text{ score} = 2 * (\text{Precision} * \text{Recall}) / (\text{Precision} + \text{Recall}) \quad (4)$$

314
$$\text{Balanced Accuracy} = (TP / (TP + FN) + TN / (TN + FP)) / 2 \quad (5)$$

315 The county-scale accuracy assessment used 2017 Ag Census statistical data. We calculate
316 classified tile drainage areas for each county and then fit a linear regression model to compare
317 them with reported ones.

318 To ensure the reliability of our tile drainage product for the US Midwest in 2017, we compared
319 the total estimated tile drainage area to three other likely tile drainage maps (AgTile-US, TD-
320 MostPD and TD-AllPD) and reported areas from the Ag Census for the study region in 2017. We
321 also performed a random forest classification using the same training and validation points but
322 only used slope and soil drainage classes, as they are commonly used in other products with GIS
323 analysis. For this simple model, the number of trees (*n*tree) was set to be the same as our full
324 classification (default: 500), and the number of *mtry* was specified as two since there are only two

325 features. We compared the out-of-bag (OOB) error, accuracy and F1 score with our final
326 classification.

327 **3.4 Interpretability and explainability of the machine learning model**

328 We applied four methods to assess and communicate the results of the tile drainage classification
329 model: Mean Decrease in Gini (Gini) (Liaw and Wiener, 2002), Mean Decrease in Accuracy
330 (MDA) (Archer and Kimes, 2008), Shapley Additive Explanations (SHAP) (Lundberg and Lee,
331 2017), and Accumulated Local Effects (ALE) (Apley and Zhu, 2020). These measures each
332 provide different insights into how the model makes predictions, which input features are
333 important, and how predictions change as input features vary. Applying multiple methods results
334 in a more comprehensive understanding of the random forest machine learning model.

335 Feature importance helps quantify what features drive model performance and, more specifically,
336 how much each feature improves the model's accuracy. We ran the *importance* function from the
337 *randomForest* package in R (Liaw and Wiener, 2002), as GEE does not provide feature importance
338 measures. To do this, we extracted feature values for training and validation points and developed
339 a proxy random forest classification with the same training and testing data and identical parameter
340 settings (*ntree* and *mtry*) using the *randomForest* packages in R; thus, identically specified, the
341 feature importance values computed in R are likely to mirror their importance in GEE. The
342 *importance* function includes *MeanDecreaseGini* and *MeanDecreaseAccuracy* measures.
343 *MeanDecreaseGini* is an impurity-based importance measure, representing the total decrease in
344 node impurities from splitting on the features, averaged over all trees. *MeanDecreaseAccuracy* is
345 a permutation-based importance, measuring accuracy reduction on out-of-bag samples when the
346 feature values are randomly permuted; *MeanDecreaseAccuracy* is considered a more reliable
347 measure of importance than the *MeanDecreaseGini* (Strobl et al., 2008).

348 We also computed Shapley values, which assess the contribution of each feature to each individual
349 prediction. Unlike the *MeanDecreaseGini*, the Shapley value measures the average contribution
350 of a feature to the prediction across all possible combinations of features, not the difference in
351 prediction when we remove the feature from the model. To explain the model as a whole (not just
352 using one prediction), and for computational reasons, we randomly decomposed 489 (1 % of the
353 training points) predictions, which allows us to examine the global feature importance using SHAP
354 (the average absolute of 489 Shapley values).

355 Finally, we computed an overall importance by assigning each input feature a score equal to its
356 rank within each of the three classification algorithms (Gini, MDA, and SHAP) and summing the
357 three scores. Note the highest ranked feature in each metric was assigned a score of N = number
358 of features used in the model, and the lowest a score of 1. The highest possible score (3*N)
359 corresponds to a feature that ranked highest in all three measures of importance.

360 To visualize the relationship between the value of the predictor features and probability of the

targeted class (i.e., tile), we computed and plotted ALE with the *iml* R package (Molnar, 2018). ALE plots produce output similar to the commonly used Partial Dependence Plots, but with distinct advantages. They are generally more robust and efficient, especially when dealing with correlated features and complex data landscapes. This robustness comes from the way ALE calculates and focuses on localized changes around actual data points, rather than over a large or entire range of a feature. By focusing on real data distributions, ALE reduces the risk of extrapolating beyond what the model has learned from the training dataset, improving both the interpretability and accuracy of the results.

4 Results and discussion

4.1 Feature selection, elimination and distribution differences between tile and non-tile

We initially collected 57 input features by selecting among the three time periods (spring, summer, and growing season) and statistics (mean, maximum, range) from 21 variables (orange boxes in Fig 2). Following our initial classification with 57 features, 31 were selected for final classification with paired correlation coefficients < 0.8 (Table A2 and Fig. A3); 26 features (Table A3) were removed by successively eliminating less important features from the highly correlated features pairs as detailed in Text S2. These features were not incorporated into our final classification model as they did not significantly improve prediction accuracy.

We compared bulk distribution differences between the two groups: tile and non-tile ground truth (Figures A4 & A5). Based on the Wilcoxon test in R, our analysis showed a significant difference ($p < 0.0001$) between the two groups for the 30 features, and only one feature (Tr_swir1_grow_max) with no significant difference (ns) between tile and non-tile groups used in the final classification. For median and range differences between tile and non-tile points, see Table A4. Feature distribution differences between tile and non-tile are shown in Text S4. Several alternate input variables were investigated for inclusion in this research, as described in Text S5.

4.2 Classified map from random forest classification and accuracy assessment

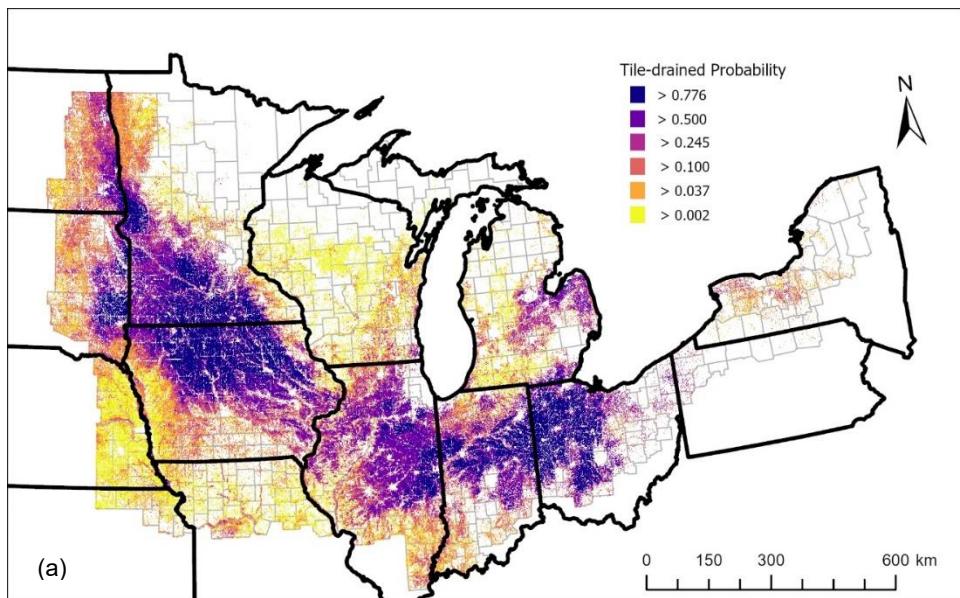
Random forest binary classification provides pixel-wise probabilities for a given class, and the probabilities for tile drainage are shown in Fig. 4a. Classified tile-drained areas (Fig. 4b) are identified with probabilities > 0.5 and are concentrated in the Corn Belt region, including the eastern Dakotas, southern Minnesota, north-central Iowa, northeastern Illinois and Indiana, northwestern Ohio, and the Michigan's thumb area. As examples, inset maps in Fig.4b illustrate that the machine learning model generally captures the reported tile fields in the western Lake Erie basin and tile permits in South Dakota.

The point-based assessment for the testing dataset indicates that the classification model achieved good overall accuracy, with a score of 0.96, thus 96 % of tile and non-tile points, are classified correctly. Recall and precision are 0.96 and 0.85, respectively. The balanced accuracy and F1

396 scores are 0.96 and 0.90, respectively. These metrics demonstrate the good quality of the
397 classification model.

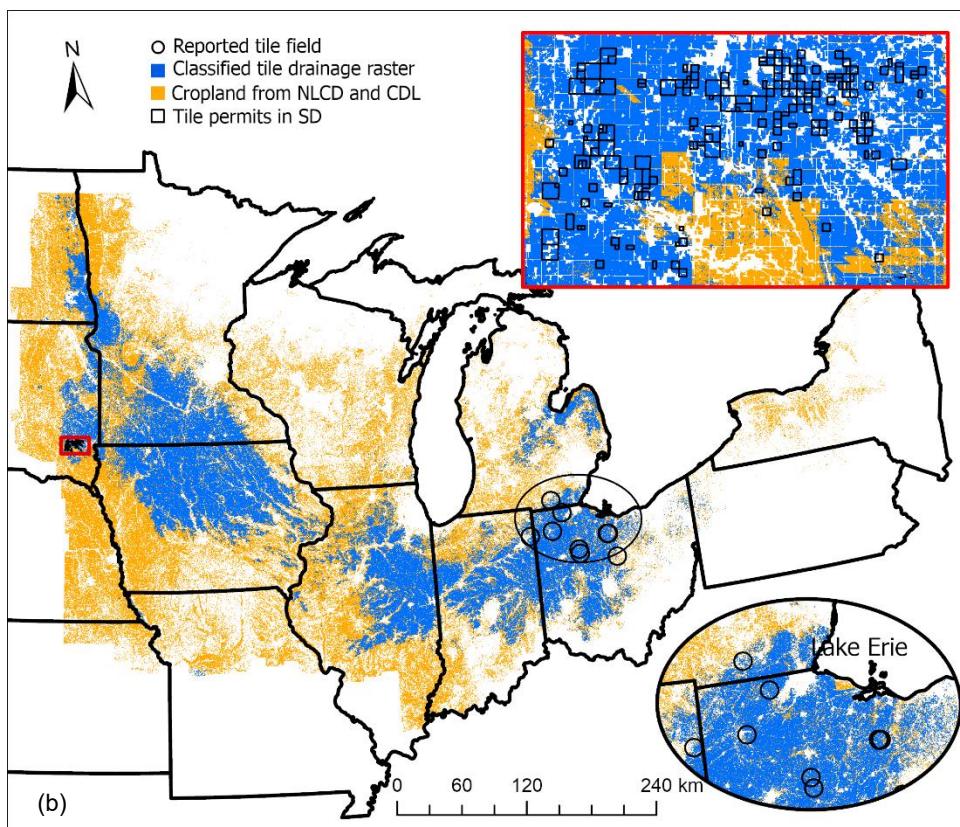
398 We summed the predicted tile drainage areas for each county from the classified map and
399 compared these with the reported areas from the Ag Census in 2017, as illustrated in Fig. A6. The
400 random forest classification model reasonably agreed with the reported area, with an R^2 value of
401 0.69. However, the model tended to overestimate tile drainage area, with a best-fit linear slope of
402 1.1, especially in counties with larger tile drainage reported by NASS. It often underestimates area
403 in counties with smaller reported areas, such as points with reported areas $< 500 \text{ km}^2$. Eight states
404 (Illinois, Indiana, Iowa, Michigan, Minnesota, North Dakota, Ohio, and Pennsylvania) had R^2
405 values ≥ 0.65 , while tile drainage areas in Michigan and Pennsylvania were underestimated (Fig.
406 A7). The estimates for the remaining states (Kansas, Missouri, Nebraska, New York, South
407 Dakota, and Wisconsin) are less accurate, likely because they are less heavily tile-drained or have
408 fewer ground truth points.

409



(a)

410



(b)

416

Fig. 4. Random forest classification from GEE showing (a) probability of tile drainage at 30-m resolution and (b) classified tile drainage map (SEETileDrain, blue) with agricultural land (yellow) as a background, corresponding tile drainage probability > 0.5 in (a). Two zoomed-in windows show the reported tile fields (black circles) in the western Lake Erie basin and tile drainage permits (black rectangles) in South Dakota (red rectangles).

We created a county-level residuals map, calculated as the tiled area percentage difference

(predicted-reported) divided by the reported area (Fig. A6). The map revealed overestimation in counties with heavily tile-drained regions, primarily in Eastern Dakota, Southern Minnesota, the Des Moines Lobe in Iowa, Northeastern Illinois, Mid-northern Indiana, and Northwestern Ohio. This is likely because our tile drainage training points are concentrated in these areas, and we assumed tile drainage permits in South Dakota, North Dakota, and the Bois de Sioux Watershed District all represent actual tile installations for ground truth.

We also found that 27 % of counties were not predicted to have any tile drainage installation despite having reported tile drains by NASS (NA-Classified in Fig. A6). These counties have a relatively low reported area, with a median reported area of about 27 km² (5 % of agricultural lands). This indicates that our classification model would benefit from more ground truth information from regions with a low percent of tile drains. It is important to note that the area reported by farmers through surveys may be somewhat inaccurate. However, it is the only source available for this comparison across the region.

Table 1 lists various tile drainage products covering multiple Midwestern states, and they estimated tile drainage area in US Midwest (737 counties) as 204,842 km² (USDA-NASS), 201,206 km² (AgTile-US), 576,493 km² (TD-MostPD), 1,025,288 km² (TD-AllPD). Our product, SEETileDrain, estimated that 185,549 km² were tile drained in 2017, which is ~9.4 % lower than the estimates from survey-based statistics from USDA-NASS. AgTile-US utilizes information on soil drainage and topographic slope threshold within cropland areas to estimate tile drainage and constrained the geospatial model with statistical tile drainage area at the county level, trained on data from the Census of Agriculture in 2017 (Valayamkunnath et al., 2020). The estimate is ~1.8 % lower than the reported areas from USDA-NASS. Another study by (Jame et al., 2022) developed two Transforming Drainage (TD) extent products for the US Midwest based on soil drainage class. These classes were selected because they are related to crop production and are considered more suitable for estimating likely drained land than soil properties alone. The first product, TD-MostPD, includes areas with very poorly and poorly drained soils that are likely tile-drained. The second product, TD-AllPD, includes somewhat poorly drained soils in addition to the two categories used in TD-MostPD. Thus, it's unsurprising that TD-MostPD and TD-AllPD estimated 2.8 and 5 times more tile drainage extent than the statistics from USDA-NASS for this region, respectively.

For better comparison to these maps (AgTile-US, TD-MostPD, TD-AllPD), which rely primarily on soil drainage class and slope information, we trained a random forest classification model based solely on these inputs of all ground truth points. This simplified model had an out-of-bag (OOB) error rate of 36 %, compared to 4 % for our full model. The model also exhibited lower precision (0.29) and recall (0.66), demonstrating a less accurate classification model based on only two features, compared to our final classification model which used 31 features. This simplified model's F1 score, and balanced accuracy were 0.4 and 0.64, compared to those of 0.9 and 0.96 in our final model with 31 features. This indicates that added features beyond soil drainage class and

455 slope significantly improved the binary classification.

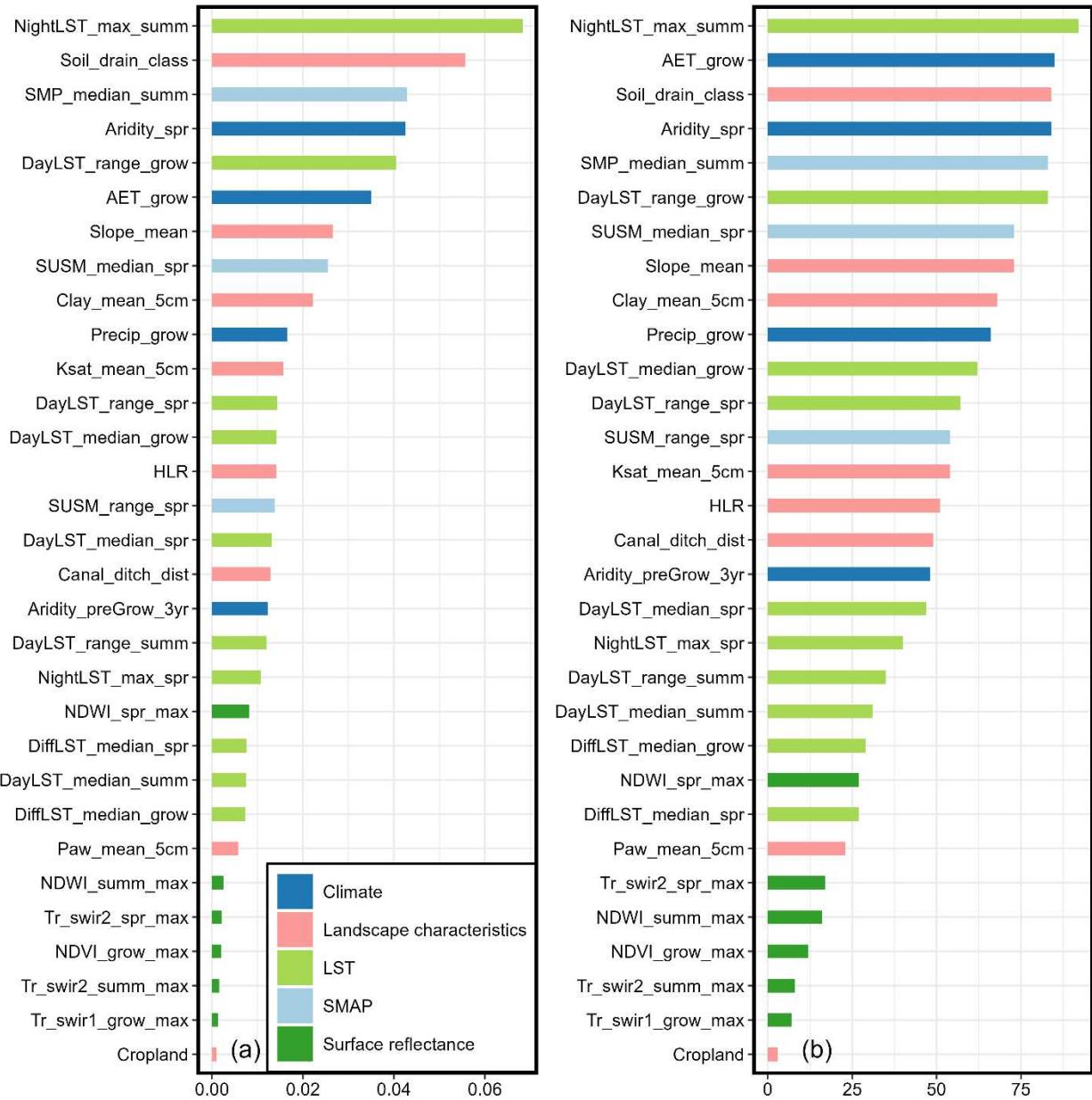
456 Overall, the random forest classification model used here provides substantial advantages over
457 traditional estimation methods that rely on Ag Census data collected at the county level (USDA-
458 NASS, 2017), which can introduce uncertainty due to the potential reporting errors and scale
459 mismatches. Unlike these methods, which have been used to produce *likely* tile drainage products
460 that were used for area comparison, our model estimates *actual* tile drainage locations and is
461 completely independent of the Ag Census and its inherent errors. This independence allows the
462 model to provide consistent and reliable estimates of tile drainage between survey years, bypassing
463 the limitations typically associated with temporal gaps in data collection. In addition, the spatially
464 explicit nature of SEETileDrain addresses the critical issue of scale by providing high-resolution
465 information at the 30-m pixel scale, providing a more accurate tool to assess and manage
466 agricultural drainage systems.

467 **4.3 Feature importance and model explainability**

468 The importance of 31 input features for tile drainage classification across the US Midwest was
469 assessed using Gini, MDA, and SHAP. AET in the growing season (AET_grow) ranked the highest
470 in the MDA, and the maximum nighttime LST in the summer (NightLST_max_summ) ranked top
471 in the Gini index (Fig. A8); thus, they were in the top right corner of the multi-way importance
472 plot (Fig. A9). Four additional features (aridity in spring, median soil moisture percent in summer,
473 the range of daytime LST in growing season and soil drainage class) ranked high in both Gini and
474 MDA, meaning that removing these features will substantially reduce purity and model accuracy.

475 SHAP, here average absolute Shapley values from 489 randomly selected predictions from training
476 points, are shown in Fig. 5a. Shapley values determine if features positively or negatively affected
477 the classification accuracy of our model for a given prediction (tile, in this case). It is important to
478 note that Shapley values are the average contribution of an input feature to the target prediction.
479 Thus, it might be biased due to slightly more non-tile points being used in model training. Our
480 results reveal that the most important features are the maximum nighttime LST in the summer
481 (NightLST_max_summ) and soil drainage class.

482 We computed the overall importance (Fig. 5b) from the three measures (Gini, MDA, SHAP). It
483 revealed that features derived from MODIS products and soil- and climate-related features are the
484 most important. The top-ranking feature is the maximum of nighttime LST during summer. This
485 is somewhat consistent with (Cho et al., 2019), where the mean LST in the spring strongly
486 contributed to the random forest classification for tile drainage in the Bois de Sioux Watershed
487 District in Minnesota and the Red River basin (overlies portions of Dakotas and Minnesota).
488 Accumulated Local Effects to evaluate whether high or low values of the features correspond to
489 higher probabilities of tile drains are shown in Text S6.



490

491
492
493
494

Fig. 5. **(a)** SHAP values, average absolute Shapley values from 489 (1%) predictions and **(b)** overall importance (summed score from MDA, Gini, and SHAP). Different colors in (a) & (b) denote original data category. Features are identified by their short names, which can be related to full names and other information using Table A2.

495

4.4 Limitations and future implications

496
497
498
499
500

The algorithm's accuracy depends on the coverage of ground truth information, which was not evenly spatially distributed and is imbalanced for tile and non-tile points. Other sources of bias include assumptions that all tile drainage permits represent actually drained areas, and potential issues during the visual interpretation. In addition, correlation between variables may still remain and influence the feature importance, though this study successively removed relatively highly

501 correlated (paired correlation coefficients >0.8) but less important features. Although feature co-
502 variation is not often explicitly evaluated in random forest classification, additional preprocessing
503 could be used to reduce the effects of correlated features on the performance of the classification
504 model and improve the robustness of feature importance.

505 Future work could improve accuracy and efficiency by including advanced deep learning, and
506 visual transformer-based encoder-decoder architectures to identify tile drainage (Breitkopf et al.,
507 2022; Redoloza et al., 2023). The use of high-resolution images, such as the Harmonization of the
508 Landsat and Sentinel-2 data (HLS) (Claverie et al., 2018), images provided by the Planet Lab or
509 Google's aerial imagery, would enable the identification of finer resolution tile drainage, which
510 would be particularly useful at small scales (e.g., field to watershed). Incorporating such
511 techniques and data sources could enhance our understanding of the effects of tile drainage on
512 agricultural landscapes and facilitate the development of more effective management strategies.

513 The machine learning model developed here could be readily applied to other regions for past and
514 future years, which would be helpful for hydrological, water quality, and crop modeling research.
515 This information may also help watershed managers and stakeholders achieve cost-effective
516 agricultural water and nutrient management strategies while maintaining optimal crop production.
517 As one of the critical water and nutrient transport pathways, a more accurate tile drainage map
518 would improve the estimates of the contributions of this pathway (Michaud et al., 2019; King et
519 al., 2015; Ikenberry et al., 2014). In addition, hydrologic and water quality models across scales
520 would benefit from the method and results. For example, the National Agroecosystems Model
521 (NAM) framework is continually updated with improved techniques and new data (White et al.,
522 2022). By integrating a machine learning algorithm and incorporating the SEETileDrain product,
523 the NAM would better support USDA modeling efforts from the field to the national scale.

524 **5 Conclusions**

525 Spatially explicit agricultural tile drainage across the US Midwest was mapped at 30-m resolution
526 using a random forest machine learning classification model. This model was implemented on the
527 Google Earth Engine cloud computing platform, ultimately selecting 31 features from eleven data
528 sources, using a novel collection of ground truth points. This map product, SEETileDrain, is the
529 first estimate of actual tile drainage across the US Midwest independent of county-level surveys.
530 The resulting classified map demonstrated good accuracy in point-based assessment and
531 reasonable agreement with the reported area from USDA-NASS. Land surface temperature, soil
532 moisture percent, actual evapotranspiration, and soil drainage class were strong predictors for tile
533 drainage identification in the US Midwest.

534 **Declaration of Competing Interest**

535 None.

536 **Acknowledgments**

537 This research was jointly funded by NASA Grants NNX11AC72G and 80NSSC21K1652, USDA-
538 NIFA/NSF award 2018-67003-2740, NOAA Grant NA12OAR4320071, and Michigan State
539 University. Support for this research was also provided by the NSF Long-term Ecological
540 Research Program (DEB 2224712) at the Kellogg Biological Station and by Michigan State
541 University AgBioResearch. Luwen Wan was partially funded by the China Scholarship Council
542 (CSC). Any opinions, findings, conclusions, or recommendations expressed in this material are
543 those of the authors and do not necessarily reflect the views of NASA, USDA-NIFA/NSF, NOAA,
544 or CSC.

545 We are grateful to Eva Arvizu and Jordyn Porter, who visually interpreted tile drainage points via
546 the Google Earth aerial images. We thank Dan Jaynes (Iowa State University), Ghane Ehsan and
547 Jason Piwarshi (Michigan State University), and Nathan Trosen (Moore Engineering, Inc.) for
548 providing ground truth points for this research. We also thank Eunsang Cho (NASA, Goddard
549 Space Flight Center), who shared code and guidance on the machine learning algorithm and David
550 Roy (Michigan State University), Yanhua Xie (The University of Oklahoma) and Jill Deines
551 (Pacific Northwest National Laboratory) for their valuable suggestions to improve this work. The
552 BdSW tile drainage permit records were obtained from the BdSW district in Minnesota (www.bdswd.com) and SD and ND tile drainage records are publicly available from the USGS Science
553 Base website (www.sciencebase.gov).
554

555 All satellite and input data used are available through the Google Earth Engine code editor
556 (code.earthengine.google.com) and the awesome-gee-community-catalog (gee-community-catalog.org/), except for soil drainage class, HLR, and distance to the nearest canals and ditches,
557 which are freely available from SSURGO, USGS HLR, and NHD datasets. The PAW layers are
558 derived from POLARIS dataset. The Python scripts for generating PAW layers and the R scripts
559 for selecting variables, implementing the random forest model and visualizing the figures, are
560 available on HydroShare. The SEETileDrain product is also available on HydroShare, along with
561 the probability map. <https://doi.org/10.4211/hs.4c8af0c89d2b4686808bcf9c6f7c0da3>
562

563 **References**

564 Abatzoglou, J.T., Dobrowski, S.Z., Parks, S.A., Hegewisch, K.C., 2018. TerraClimate, a high-
565 resolution global dataset of monthly climate and climatic water balance from 1958–2015.
566 Sci. Data 5, 170191. <https://doi.org/10.1038/sdata.2017.191>.

567 Adelsperger, S.R., Ficklin, D.L., Robeson, S.M., 2023. Tile drainage as a driver of streamflow
568 flashiness in agricultural areas of the Midwest, USA. Hydrol. Process. 37.
569 <https://doi.org/10.1002/hyp.15021>.

570 Apley, D.W., & Zhu, J. (2020). Visualizing the effects of predictor variables in black box
571 supervised learning models. J. R. Stat. Soc. Series B Stat. Methodology 82(4), 1059-1086.
572 doi:10.1111/rssb.12377.

573 Archer, K.J., & Kimes, R.V. (2008). Empirical characterization of random forest variable
574 importance measures. *Computational Statistics & Data Analysis*, 52(4), 2249-2260.
575 <https://doi:10.1016/j.csda.2007.08.015>.

576 Belgiu, M., Drăguț, L., 2016. Random forest in remote sensing: a review of applications and
577 future directions. *Isprs J. Photogramm* 114, 24–31.
578 <https://doi.org/10.1016/j.isprsjprs.2016.01.011>.

579 Breiman, L., 2001. Random forests. *Mach. Learn.* 45, 5–32.
580 <https://doi.org/10.1023/a:1010933404324>.

581 Breitkopf, T.-L., Hackel, L.W., Ravanbakhsh, M., Cooke, A.-K., Willkommen, S., Broda, S.,
582 Demir, B., 2022. Advanced Deep Learning Architectures for Accurate Detection of
583 Subsurface Tile Drainage Pipes from Remote Sensing Images. *arXiv*.
584 <https://doi.org/10.48550/arxiv.2210.02071>.

585 Cho, E., Jacobs, J.M., Jia, X., Kraatz, S., 2019. Identifying subsurface drainage using satellite big
586 data and machine learning via google earth engine. *Water Resour. Res.* 55, 8028–8045.
587 <https://doi.org/10.1029/2019wr024892>.

588 Claverie, M., Ju, J., Masek, J.G., Dungan, J.L., Vermote, E.F., Roger, J.-C., Skakun, S.V.,
589 Justice, C., 2018. The harmonized Landsat and Sentinel-2 surface reflectance data set.
590 *Remote Sens. Environ.* 219, 145–161. <https://doi.org/10.1016/j.rse.2018.09.002>.

591 Congalton, R.G., Green, K., 2019. Assessing the Accuracy of Remotely Sensed Data, Principles
592 and Practices, Third edition. <https://doi.org/10.1201/9780429052729>.

593 Deines, J.M., Kendall, A.D., Hyndman, D.W., 2017. Annual irrigation dynamics in the U.S.
594 Northern High Plains derived from Landsat satellite data. *Geophys. Res. Lett.* 44, 9350–
595 9360. <https://doi.org/10.1002/2017gl074071>.

596 Deines, J.M., Kendall, A.D., Crowley, M.A., Rapp, J., Cardille, J.A., Hyndman, D.W., 2019.
597 Mapping three decades of annual irrigation across the US High Plains aquifer using Landsat
598 and Google Earth Engine. *Remote Sens. Environ.* 233, 111400.
599 <https://doi.org/10.1016/j.rse.2019.111400>.

600 FAO, 2017. FAO Statistical Databases.

601 Fausey, N.R., Brown, L.C., Belcher, H.W., Kanwar, R.S., 1995. Drainage and water quality in
602 Great Lakes and Cornbelt states. *J. Irrig. Drain. Eng.* 121, 283–288.
603 [https://doi.org/10.1061/\(asce\)0733-9437\(1995\)121:4\(283\)](https://doi.org/10.1061/(asce)0733-9437(1995)121:4(283)).

604 Finocchiaro, R.G., 2016. Agricultural Subsurface Drainage Tile Locations by Permits in North
605 Dakota.

606 Finocchiaro, R.G., 2014. Agricultural Subsurface Drainage Tile Locations by Permits in South
607 Dakota.

608 Gökkaya, K., Budhathoki, M., Christopher, S.F., Hanrahan, B.R., Tank, J.L., 2017. Subsurface
609 tile drained area detection using GIS and remote sensing in an agricultural watershed. *Ecol.*
610 *Eng.* 108, 370–379. <https://doi.org/10.1016/j.ecoleng.2017.06.048>.

611 Gupta, A., Hantush, M.M., Govindaraju, R.S., 2023. Sub-monthly time scale forecasting of
612 harmful algal blooms intensity in Lake Erie using remote sensing and machine learning. *Sci.*
613 *Total Environ.* 900, 165781. <https://doi.org/10.1016/j.scitotenv.2023.165781>.

614 Hirt, U., Volk, M., 2011. Quantifying the proportion of tile-drained land in large river basins.
615 *Phys Chem Earth Parts B C* 36, 591–598. <https://doi.org/10.1016/j.pce.2011.05.004>.

616 ICID, 2018. World Drained Area.

617 Ikenberry, C.D., Soupir, M.L., Schilling, K.E., Jones, C.S., Seeman, A., 2014. Nitrate-nitrogen
618 export: magnitude and patterns from drainage districts to downstream river basins. *J.
619 Environ. Qual.* 43, 2024–2033. <https://doi.org/10.2134/jeq2014.05.0242>.

620 Jame, S.A., Frankenberger, J., Reinhart, B.D., Bowling, L., 2022. Mapping agricultural drainage
621 extent in the U.S. Corn Belt: the value of multiple methods. *Appl. Eng. Agric.* 38, 917–930.
622 <https://doi.org/10.13031/aea.15226>.

623 King, K.W., Williams, M.R., Macrae, M.L., Fausey, N.R., Frankenberger, J., Smith, D.R.,
624 Kleinman, P.J.A., Brown, L.C., 2015. Phosphorus transport in agricultural subsurface
625 drainage: a review. *J Environ. Qual.* 44, 467–485. <https://doi.org/10.2134/jeq2014.04.0163>.

626 Kokulan, V., 2019. Environmental and economic consequences of tile drainage systems in
627 Canada, Canadian Agri-food Policy Institute.

628 Lawrence, R.L., Wood, S.D., Sheley, R.L., 2006. Mapping invasive plants using hyperspectral
629 imagery and Breiman cutler classifications (randomForest). *Remote Sens. Environ.* 100,
630 356–362. <https://doi.org/10.1016/j.rse.2005.10.014>.

631 Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. *R News* 2(3), 18–
632 22.

633 Lundberg, S.M., & Lee, S.I., 2017. A unified approach to interpreting model predictions. In
634 *Advances in Neural Information Processing Systems 30* (pp. 4765-4774).

635 Ma, Z., Guan, K., Peng, B., Sivapalan, M., Li, L., Pan, M., Zhou, W., Warner, R., Zhang, J.,
636 2023. Agricultural nitrate export patterns shaped by crop rotation and tile drainage. *Water
637 Res.* 229, 119468. <https://doi.org/10.1016/j.watres.2022.119468>.

638 Michaud, A.R., Poirier, S., Whalen, J.K., 2019. Tile drainage as a hydrologic pathway for
639 phosphorus export from an agricultural subwatershed. *J. Environ. Qual.* 48, 64–72.
640 <https://doi.org/10.2134/jeq2018.03.0104>.

641 Miller, S.A., Lyon, S.W., 2021. Tile drainage causes flashy streamflow response in Ohio
642 watersheds. *Hydrol. Process.* 35. <https://doi.org/10.1002/hyp.14326>.

643 Møller, A.B., Beucher, A., Iversen, B.V., Greve, M.H., 2018. Predicting artificially drained areas
644 by means of a selective model ensemble. *Geoderma* 320, 30–42.
645 <https://doi.org/10.1016/j.geoderma.2018.01.018>.

646 Molnar, C., 2018. iml: an R package for interpretable machine learning. *J. Open Source Softw.* 3,
647 786. <https://doi.org/10.21105/joss.00786>.

648 Nakagaki, N., Wieczorek, M.E., 2016. Estimates of Subsurface Tile Drainage Extent for 12
649 Midwest States, 2012.

650 Nakagaki, N., Wieczorek, M.E., Qi, S.L., 2016. Estimates of Subsurface Tile Drainage Extent
651 for the Conterminous United States, Early 1990s.

652 Naz, B.S., Bowling, L.C., 2008. Automated identification of tile lines from remotely sensed data.
653 *Trans. ASABE.* 51(6), 1937–1950.

654 Naz, B.S., Ale, S., Bowling, L.C., 2009. Detecting subsurface drainage systems and estimating
655 drain spacing in intensively managed agricultural landscapes. *Agr. Water Manage.* 96, 627–
656 637. <https://doi.org/10.1016/j.agwat.2008.10.002>.

657 Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-Geiger
658 climate classification. *Hydrol. Earth Syst. Sc.* 11, 1633–1644. <https://doi.org/10.5194/hess-11-1633-2007>.

659 Prinds, C., Petersen, R.J., Greve, M.H., Iversen, B.V., 2019. Locating tile drainage outlets and
660 surface flow in riparian lowlands using thermal infrared and RGB-NIR remote sensing.
661 *Geogr Tidsskr-den* 119, 1–12. <https://doi.org/10.1080/00167223.2019.1573408>.

663 Rabalais, N.N., Turner, R.E., 2019. Gulf of Mexico hypoxia: past, present, and future. Limnol.
664 Oceanogr. Bull. 28, 117–124. <https://doi.org/10.1002/lob.10351>.

665 Redoloza, F.S., Williamson, T.N., Headman, A.O., Allred, B.J., 2023. Machine-learning model
666 to delineate sub-surface agricultural drainage from satellite imagery. J. Environ. Qual. 52,
667 907–921. <https://doi.org/10.1002/jeq2.20493>.

668 Ren, D., Engel, B., Mercado, J.A.V., Guo, T., Liu, Y., Huang, G., 2022. Modeling and assessing
669 water and nutrient balances in a tile-drained agricultural watershed in the U.S. Corn Belt.
670 Water Res. 210, 117976. <https://doi.org/10.1016/j.watres.2021.117976>.

671 Roy, S., Swetnam, T., Trochim, E., Schwehr, K., Pasquarella, V., 2023. samapriya/awesome-
672 gee-community-datasets: Community Catalog (1.0.4). Zenodo.

673 Sasaki, Y., 2007. The truth of the F-measure. Teach tutor mater 1(5), 1–5.

674 Schilling, K.E., Helmers, M., 2008. Effects of subsurface drainage tiles on streamflow in Iowa
675 agricultural watersheds: exploratory hydrograph analysis. Hydrol. Process. 22, 4497–4506.
676 <https://doi.org/10.1002/hyp.7052>.

677 Schober, P., Boer, C., Schwarte, L.A., 2018. Correlation Coefficients. Anesthesia Analg. 126,
678 1763–1768. <https://doi.org/10.1213/ane.0000000000002864>.

679 Skaggs, R.W., Brevé, M.A., Gilliam, J.W., 1994. Hydrologic and water quality impacts of
680 agricultural drainage*. Crit. Rev. Environ. Sci. Technol. 24, 1–32.
681 <https://doi.org/10.1080/10643389409388459>.

682 Smith, D., King, K., Johnson, L., Francesconi, W., Richards, P., Baker, D., Sharpley, A.N., 2015.
683 Surface runoff and tile drainage transport of phosphorus in the Midwestern United States. J.
684 Environ. Qual. 44, 495–502. <https://doi.org/10.2134/jeq2014.04.0176>.

685 Song, H., Woo, D.K., Yan, Q., 2021. Detecting subsurface drainage pipes using a fully
686 convolutional network with optical images. Agr Water Manage 249, 106791.
687 <https://doi.org/10.1016/j.agwat.2021.106791>.

688 Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T., Zeileis, A., 2008. Conditional variable
689 importance for random forests. Bmc Bioinformatics 9, 307. [https://doi.org/10.1186/1471-2105-9-307](https://doi.org/10.1186/1471-
690 2105-9-307).

691 Sugg, Z., 2007. Assessing US Farm Drainage: Can GIS Lead to Better Estimates of Subsurface
692 Drainage Extent? World Resources Institute.

693 Tilahun, T., Seyoum, W.M., 2020. High-resolution mapping of tile drainage in agricultural fields
694 using unmanned aerial system (UAS)-based radiometric thermal and optical sensors.
695 Hydrology 8, 2. <https://doi.org/10.3390/hydrology8010002>.

696 USDA, 2013. Soil Survey Geographic (SSURGO) database - Drainage Class.

697 USDA, 2017. Soil Survey Manual (USDA Handbook No. 18). US Government Printing Office.

698 USDA, 2023. World Agricultural Production (WAP27-34), Foreign Agricultural Services
699 Circular Series.

700 USDA-NASS, 2012. Agricultural Census data for county-level tile drainage area, 2012.

701 USDA-NASS, 2017. Agricultural Census data for county-level tile drainage area.

702 Valayamkunnath, P., Barlage, M., Chen, F., Gochis, D.J., Franz, K.J., 2020. Mapping of 30-
703 meter resolution tile-drained croplands using a geospatial modeling approach. Sci Data 7,
704 257. <https://doi.org/10.1038/s41597-020-00596-x>.

705 Valayamkunnath, P., Gochis, D.J., Chen, F., Barlage, M., Franz, K.J., 2022. Modeling the
706 Hydrologic Influence of Subsurface Tile Drainage Using the National Water Model. Water
707 Resour. Res. 58. <https://doi.org/10.1029/2021wr031242>.

708 Wang, Z., Lai, C., Chen, X., Yang, B., Zhao, S., Bai, X., 2015. Flood hazard risk assessment
709 model based on random forest. *J. Hydrol.* 527, 1130–1141.
710 <https://doi.org/10.1016/j.jhydrol.2015.06.008>.

711 Webber, J.J., Williamson, T.N., 2021. Workflow for Using Unmanned Aircraft Systems and
712 Traditional Geospatial Data to Delineate Agricultural Drainage Tiles at Edge-of-Field Sites.
713 U.S. Geological Survey Scientific Investigations Report 2021–5013.

714 White, M.J., Arnold, J.G., Bieger, K., Allen, P.M., Gao, J., Čerkasova, N., Gambone, M., Park,
715 S., Bosch, D.D., Yen, H., Osorio, J.M., 2022. Development of a field scale SWAT+
716 modeling framework for the contiguous U.S. *JAWRA J. Am. Water Resour. Assoc.* 58,
717 1545–1560. <https://doi.org/10.1111/1752-1688.13056>.

718 Woo, D.K., Ji, J., Song, H., 2023. Subsurface drainage pipe detection using an ensemble learning
719 approach and aerial images. *Agric. Water Manag.* 287, 108455.
720 <https://doi.org/10.1016/j.agwat.2023.108455>.

721 Woo, D.K., Song, H., Kumar, P., 2019. Mapping subsurface tile drainage systems with thermal
722 images. *Agr Water Manag* 287, 108455. doi.org/10.1016/j.agwat.2023.108455.

723 Xie, Y., Lark, T.J., 2021. Mapping annual irrigation from Landsat imagery and environmental
724 variables across the conterminous United States. *Remote Sens. Environ.* 260, 112445.
725 <https://doi.org/10.1016/j.rse.2021.112445>.

726 Yan, L., Roy, D.P., 2016. Conterminous United States crop field size quantification from multi-
727 temporal Landsat data. *Remote Sens. Environ.* 172, 67–86.
728 <https://doi.org/10.1016/j.rse.2015.10.034>.

729 Zhang, C., Walters, D., Kovacs, J.M., 2014. Applications of low altitude remote sensing in
730 agriculture upon farmers' requests— A case study in northeastern Ontario, Canada. *PLoS
731 ONE* 9, e112894. <https://doi.org/10.1371/journal.pone.0112894>.