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Abstract 12 

There has been an increase in tile drained area across the US Midwest and other regions worldwide 13 

due to agricultural expansion, intensification, and climate variability. Despite this growth, spatially 14 

explicit tile drainage maps remain scarce, which limits the accuracy of hydrologic modeling and 15 

implementation of nutrient reduction strategies. Here, we developed a machine-learning model to 16 

provide a Spatially Explicit Estimate of Tile Drainage (SEETileDrain) across the US Midwest in 17 

2017 at a 30-m resolution. This model used 31 satellite-derived and environmental features after 18 

removing less important and highly correlated features. It was trained with 60,938 tile and non-19 

tile ground truth points within the Google Earth Engine cloud-computing platform. We also used 20 

multiple feature importance metrics and Accumulated Local Effects to interpret the machine 21 

learning model. The results show that our model achieved good accuracy, with 96 % of points 22 

classified correctly and an F1 score of 0.90. When tile drainage area is aggregated to the county 23 

scale, it agreed well (r2 = 0.69) with the reported area from the Ag Census. We found that Land 24 

Surface Temperature (LST) along with climate- and soil-related features were the most important 25 

factors for classification. The top-ranked feature is the median summer nighttime LST, followed 26 

by median summer soil moisture percent. This study demonstrates the potential of applying 27 

satellite remote sensing to map spatially explicit agricultural tile drainage across large regions. The 28 

results should be useful for land use change monitoring and hydrologic and nutrient models, 29 

including those designed to achieve cost-effective agricultural water and nutrient management 30 

strategies. The algorithms developed here should also be applicable for other remote sensing 31 

mapping applications. 32 

Keywords: agricultural tile drainage, random forest classification, feature importance, Google 33 

Earth Engine (GEE), Landsat, US Midwest 34 

1 Introduction 35 

Tile drainage is generally installed to remove excess water and enhance crop productivity in poorly 36 

drained and humid regions, particularly in areas with high precipitation and shallow groundwater 37 
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tables (Hirt and Volk, 2011; ICID, 2018; Kokulan, 2019; Møller et al., 2018). Tile drainage 38 

installation has several perceived benefits including increased soil aeration, healthier and deeper 39 

root systems, optimal moisture conditions for crop growth, and more productive harvests (King et 40 

al., 2015; Schilling and Helmers, 2008; Skaggs et al., 1994). The hydrological effects of tile 41 

drainage are complex and depend on factors such as rainfall amount and intensity, soil types, and 42 

existing soil moisture conditions (Valayamkunnath et al., 2022). Miller and Lyon (2021) found 43 

that areas with a high percentage of tile drainage (>40 % of the watershed area) had flashy 44 

streamflow in 59 Ohio watersheds. In contrast, Adelsperger et al. (2023) analyzed 139 watersheds 45 

in agricultural regions of the US Midwest and found that tile drainage reduced flashiness. Studies 46 

have consistently shown that tile drainage can exacerbate nutrient losses from agricultural lands, 47 

which can enhance eutrophication in receiving water bodies such as the Gulf of Mexico and the 48 

Great Lakes (King et al., 2015; Ma et al., 2023; Rabalais and Turner, 2019; Ren et al., 2022; Smith 49 

et al., 2015). Accurately modeling streamflow and subsequent nutrient dynamics in tile-drained 50 

agricultural fields can be challenging due to the scarcity of detailed tile drainage data (White et al., 51 

2022). Spatially-explicit tile drainage information is needed to quantify their environmental effects 52 

and inform more cost-effective management efforts.  53 

Installing tile drains can help agricultural producers adapt to climate change, yet our ability to 54 

predict their effects is limited by the lack of accurate maps of tile drainage locations and practices. 55 

Information on tile drainage is often limited in spatial and temporal resolution, even in data-rich 56 

agricultural regions like the Midwestern United States. The USDA Census of Agriculture (Ag 57 

Census) estimates the area drained by tile through surveys conducted with farmers in counties 58 

across the continental United States (CONUS), which are aggregated at the county level every five 59 

years (NASS, 2017; USDA-NASS, 2012). The accuracy of these data may be affected by 60 

participation rates and respondent accuracy, potentially leading to inconsistencies (Jame et al., 61 

2022). Existing tile drainage datasets often rely on Geographic Information Systems (GIS) 62 

analyses that assume agricultural areas with flat and poorly drained soils will likely have tile 63 

drainage installed (Sugg, 2007; Nakagaki et al., 2016; Nakagaki and Wieczorek, 2016; 64 

Valayamkunnath et al., 2020; Jame et al., 2022). Table 1 summarizes existing tile drainage 65 

products and methods. These estimates rely solely on geospatial analyses to identify likely tile-66 

drained areas. Developing a cost-effective approach to map spatially explicit actual tile drainage 67 

installations would be a substantial improvement.  68 

Table 1. Existing tile drainage products and methods.  69 

Product Name 
Resolution and  

study area  
Method Description Publication 

Estimated subsurface drainage  
County, 18 leading 

drainage states  

GIS analysis based on row crops with 

poorly drained soil  
Sugg, 2007 

SubsurfaceDrainExtentUS_1990s 30-m, national scale  
Used county area from Sugg, 2007, 

cropland and poorly drained soil  
Nakagaki et al., 2016 

USDA_NASS_2012 County, CONUS Survey-based Ag census USDA-NASS, 2012 

SubsurfaceDrainExtentMW_2012 
30-m, 12 Midwest 

States  

Based on the 2012 NASS, cropland, 

poorly to moderately poorly drained soils  

Nakagaki and 

Wieczorek, 2016 



 

3 

 

USDA_NASS_2017 * County, CONUS Survey-based Ag census  USDA-NASS, 2017 

AgTile-US * 30-m, CONUS  
Geospatial analysis based on cropland, 

slope, and soil drainage class  

Valayamkunnath et al., 

2020 

TD-MostPD (TD-AllPD) * 
30-m, 12 Corn Belt 

states  

Areas with very poorly and poorly (and 

somewhat poorly) drained soils 
Jame et al., 2022 

SEETileDrain 
30-m, 14 Midwestern 

and Great Lakes states  

Derived from satellite and environmental 

datasets with machine learning  
This study  

Note: * datasets of tile drainage as of 2017 are compared in section 4.2 with the Spatially Explicit Estimate of Tile 70 

Drainage (SEETileDrain) product generated here. 71 

Researchers have used thermal and aerial images to estimate tile drainage extent (Naz and 72 

Bowling, 2008; Prinds et al., 2019; Tilahun and Seyoum, 2020; Woo et al., 2019) and have mapped 73 

individual tile drains and estimated drainage spacing using high-resolution aerial imagery (Naz et 74 

al., 2009; Naz and Bowling, 2008). The extent and type of tile drains at a few edge-of-field sites 75 

in Michigan and Wisconsin were delineated using high-resolution imagery acquired with 76 

unmanned aircraft systems (Webber and Williamson, 2021). Another approach involved using an 77 

image differencing technique to delineate tile drainage area for a site in Indiana, comparing 78 

shortwave infrared reflectance (SWIR) before and after a ~2.5cm rainfall event (Gökkaya et al., 79 

2017). SWIR is strongly related to soil moisture, and soil with tile drainage tends to dry faster 80 

resulting in higher SWIR values. However, high-resolution aerial imagery approaches can be 81 

costly, and the image differencing method is susceptible to variable weather conditions such as 82 

rainfall intensity and cloud cover. An application of convolutional neural networks has recently 83 

been developed to delineate tile drainage at the field scale, although this may limit its broad 84 

applicability (Redoloza et al., 2023; Song et al., 2021; Woo et al., 2023). Although several studies 85 

have estimated tile drainage at field- to watershed-scales, few have developed drainage maps over 86 

broad regions. A random forest model was developed to map tile drainage and reported reasonable 87 

overall accuracy rates in the Red River basin (87%) and the Bois de Sioux Watershed (77%) in 88 

Minnesota over multiple years (Cho et al., 2019). This model used vegetation indices from Landsat 89 

imagery, combined with thermal-moisture and climate-land variables, and assumed tile drainage 90 

permit records are ground ‘truth’ measurements.  91 

There is insufficient spatially explicit and well-validated information regarding tile drainage extent 92 

in the US Midwest, which includes 93% of the tile drained area in the United States (USDA-93 

NASS, 2017). Here, we mapped agricultural tile drainage by integrating satellite-derived, climate- 94 

and soil-related variables with comprehensive ground truth points in 2017 using the Google Earth 95 

Engine (GEE) cloud computing platform. This study aims to (1) provide spatially explicit 30-m 96 

estimates of tile drainage for the US Midwest in 2017, (2) identify important features for tile 97 

drainage classification across this region, and (3) provide an explainable framework to apply 98 

machine learning in agrohydrology. The spatially explicit tile drainage dataset, SEETileDrain, 99 

generated here has numerous potential applications in hydrological modeling, water quality 100 

assessment, and crop management. It offers valuable insights for environmental managers seeking 101 

to optimize agricultural water and nutrient management practices. The machine learning 102 

algorithms employed here can also map historical tile drainage with appropriate inputs, identify 103 

changes in drained area over time, and establish a baseline to predict future tile drainage 104 

https://app.readcube.com/library/3565da2a-036f-4346-bf2e-32f3e66c15ca/all?uuid=4720315633294989&item_ids=3565da2a-036f-4346-bf2e-32f3e66c15ca:c5f890af-1ec5-4eb2-b271-4cfb570c48cf,3565da2a-036f-4346-bf2e-32f3e66c15ca:f44075af-2f88-40c4-ba39-6bef0e6f9c5d,3565da2a-036f-4346-bf2e-32f3e66c15ca:7b52fbdb-7e5d-4005-b535-7d053d369c07,3565da2a-036f-4346-bf2e-32f3e66c15ca:994d8363-7bf1-40be-bf90-7d00f9617763
https://app.readcube.com/library/3565da2a-036f-4346-bf2e-32f3e66c15ca/all?uuid=4720315633294989&item_ids=3565da2a-036f-4346-bf2e-32f3e66c15ca:c5f890af-1ec5-4eb2-b271-4cfb570c48cf,3565da2a-036f-4346-bf2e-32f3e66c15ca:f44075af-2f88-40c4-ba39-6bef0e6f9c5d,3565da2a-036f-4346-bf2e-32f3e66c15ca:7b52fbdb-7e5d-4005-b535-7d053d369c07,3565da2a-036f-4346-bf2e-32f3e66c15ca:994d8363-7bf1-40be-bf90-7d00f9617763
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installations in response to changes in climate and land use.  105 

2 Study area  106 

The study region includes 14 states in the central US (12 US Midwest states: Illinois, Indiana, 107 

Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and 108 

Wisconsin; and two Great Lakes states: Pennsylvania and New York). This region has a generally 109 

sub-humid to humid continental climate with warm to hot summers (Peel et al., 2007). The annual 110 

rainfall decreases from east to west, with average yearly precipitation and evapotranspiration of 111 

860 and 634 mm, respectively (Abatzoglou et al., 2018).  112 

The Midwest region is known for its deep, fertile soil with high concentrations of organic matter. 113 

It is suitable for cultivation of corn, soybeans, sorghum, alfalfa hay, cotton, wheat, and more. The 114 

Midwest has earned its reputation as the “agricultural heartland” of the US and is one of the most 115 

extensively cultivated agricultural areas globally (FAO, 2017). The United States produces over 116 

30% of the world's soybeans and corn (USDA, 2023); the Midwest comprises 34 % of the 117 

country’s agricultural area (Fig. 1a). Agriculture is thus integral to the local economies of the US 118 

Midwest. 119 

As shown in Fig. 1b, approximately 70% of the soil in the Midwest is classified as excessively- or 120 

well-drained (yellow-green), based on the natural drainage classification provided by Soil Survey 121 

Geographic Database, gSSURGO (USDA 2013, USDA 2017). The remaining 30% falls into soil 122 

drainage classes (blue), including very poorly drained, poorly drained, and somewhat poorly 123 

drained. The eastern Midwest is mainly lowlands, with elevations gradually increasing towards 124 

the west. The median slope across the region is 3.5° (Fig. 1c). 125 

The US Midwest is among the most productive agricultural regions in the world, due in part to its 126 

extensive tile drainage systems (Fausey et al., 1995). The 14-state region identified in Figure 1 127 

includes 92.9 % (208,358 km2 of 224,190 km2) of the tile drained land across CONUS; 21.6 % of 128 

the agricultural land in this region is tile-drained (USDA-NASS, 2017). However, tile drainage 129 

data for 183 counties within these states (of 1177 total counties) are not reported due to the absence 130 

of tile drains or withheld details to protect individual farm privacy (see NA-counties in Fig.1d). 131 

To maintain a continuous boundary while excluding most NA counties, our study region is 132 

confined to 737 counties delineated by the heavy blue line in Fig. 1d. The subset, hereafter referred 133 

to as the ‘US Midwest’, comprises 204,842 km2, or 91.4%, of the tile-drained CONUS in 2017 134 

(Fig. 1d). 135 
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 136 

Fig. 1. Study region (737 counties delineated in (1d)) showing (a) cultivated and non-cultivated areas based 137 

on the 2016 National Land Cover Database and the 2017 Cropland Dataset Layer; (b) soil drainage class, 138 

classification is from natural drainage classes in the USDA SSURGO dataset, numbers in parentheses are 139 

used to visualize distribution difference and classification; (c) mean slope in degrees; and (d) percent of 140 

land area by county in tile drainage based on the 2017 Ag Census. In (d), areas with no tile drains or 141 

withheld data are shown as white NA counties due to privacy concerns, as these counties contain few farms. 142 

3 Data and methods  143 

The workflow we developed for creating SEETileDrain at 30-m resolution across the US Midwest 144 

is shown in Fig. 2. Geographic, remote sensing, and meteorological products at a variety of 145 

resolutions were first selected (light orange boxes). Then, a set of derived variables were computed 146 

from these primary sources (darker orange boxes). Next, we generated groups of tile and non-tile 147 

ground truth points from various sources across the US Midwest region (light green boxes). These 148 

ground truth points and input features were then utilized to train an initial random forest machine 149 

learning model that was used to select a final variable subset (light blue box). Additionally, feature 150 

importance and correlation were evaluated during this step. The final model was trained using only 151 

the more important feature from each highly correlated pair (dark blue boxes), thereby reducing 152 

multicollinearity. Through this process, tile drainage area across the Midwest was mapped, 153 

accuracy assessments were performed at pixel- and county levels (dark blue boxes), and feature 154 

importance was evaluated (dark green box).  155 
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 156 

Fig. 2. Workflow diagram of the random forest classification method used to create agricultural tile drainage 157 

maps across the US Midwest. This method uses 11 remote sensing and environmental datasets (highlighted 158 

in lighter orange boxes) and 21 derived variables (shown in orange boxes). Data sources used to create 159 

ground truth points for tile and non-tile, as well as the 2017 Census of Agriculture, are indicated by lighter 160 

orange boxes. Ground truth points are shown in light green boxes, classification and assessment methods 161 

are shown in blue boxes, and the final product of this study (SEETileDrain) is shown in a green box.  162 

3.1 Variables derived from remote sensing imagery and environmental datasets 163 

Initially, 21 variables were identified from eleven satellite and environmental datasets, as shown 164 

in orange and lighter orange boxes. Then, 36 additional features capturing the distinguishing 165 

characteristics between tile and non-tile points were derived from these datasets and variables, 166 

guided by prior research (Cho et al., 2019; Jame et al., 2022; Valayamkunnath et al., 2020). For 167 

instance, fields with tile drainage are expected to have higher Normalized Difference Vegetation 168 

Index (NDVI) values throughout the growing season, as tile drains enhance crop growth, and 169 

NDVI correlates strongly with green biomass (Prinds et al., 2019). Details about each of these 170 

datasets, their sources, how they were computed, and the shortnames assigned to each variable are 171 

provided in the Supplemental Text S1, as well as Tables A1, A2 and A3.  172 
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These 57 initial variables can be grouped into five categories: 1) climate, 2) static landscape 173 

characteristics, 3) surface reflectance indices, 4) land surface temperature (LST), and 5) Soil 174 

Moisture Active/Passive (SMAP). With the exception of the static landscape characteristics, each 175 

of these variables are dynamic remotely-sensed or meteorological variables. The appropriate 176 

periods for these variables were identified by analyzing the differences between tile and non-tile 177 

points at approximately 14-day intervals based on two Landsat-derived indices: NDVI and 178 

Normalized Difference Water Index (NDWI). Both NDVI and NDWI have been demonstrated to 179 

help identify tile drained lands (Cho et al., 2019; Zhang et al., 2014). We then identified three 180 

periods - spring: 4/1–5/31, summer: 7/1–8/31, and growing season: 5/1–9/31, based on the mean 181 

of maximum (max among available Landsat images) NDVI and NDWI for all the ground truth 182 

points across the study region (Fig. A1). For instance, tile points exhibited lower NDVI but higher 183 

NDWI in April and May than non-tile points. Thus, we define the spring season as April 1st to May 184 

31st. Periods for other input features match the specified time ranges for NDVI and NDWI as 185 

needed. 186 

Except for a few static landscape variables (soil drainage class, HLR, distance to canals or ditches, 187 

plant available water (PAW)) that were computed locally and uploaded to GEE, all the data sources 188 

mentioned above can be accessed through the Earth Engine’s public data archive 189 

(developers.google.com/earth-engine/datasets), as well as the awesome-gee-community-catalog 190 

(Roy et al., 2023). The native resolution of these data sources varies from 10 to 10,000 m (Tab. 191 

A2&A3). The input features were derived by aggregating or disaggregating them to 30-m 192 

resolution. The final classification was performed using assets that were reduced and interpolated 193 

with the built-in reduce and interpolation functions in GEE. See more details in Text S1.  194 

3.2 Tile and non-tile ground truth point for classification 195 

Tile drainage ground truth points (Fig. 3) were obtained through visual interpretation, literature, 196 

and tile drainage permit records to train the classification model. A significant proportion of the 197 

tile drainage points were identified through visual interpretation (purple squares in Fig. 3) using 198 

the aerial imagery base map from Google Earth Pro. Potentially drained points were randomly 199 

selected from likely tile drained areas (Valayamkunnath et al. 2020) within cultivated lands. 200 

Drainage status was then visually interpreted based on patterns of tile drains, spaces, and canal 201 

ditches around the fields using Google Earth Pro. From this process, 1753 tile drained points were 202 

positively identified. Those not positively identified as tile drained were omitted, as there are many 203 

conditions that can lead tiled fields to be visually indistinguishable from non-tiled ones. Another 204 

set of 15,118 visually interpreted tile drainage points was obtained from a previous study that used 205 

a geospatial model to determine the likely tile-drained areas of the CONUS (Valayamkunnath et 206 

al., 2020). More details about each of these datasets can be found in Supplemental Text S3. The 207 

workflow for generating ground truth points is shown in Fig. A2.  208 

Additional tile drainage information from the literature (orange) and tile drainage permits (green) 209 
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were available as polylines and polygons. The polylines include sources such as tile lines and 210 

drainage structures from three sites (Blissfield, Clayton, and Palmyra) in Michigan, US, as well as 211 

tile lines from the Story County Farm in Iowa, tile line permits from the Bois de Sioux Watershed 212 

District, and a photo of a tile-drained field in the southeast research farm in Iowa. The polygons 213 

used in this study were obtained from permits for agricultural subsurface drainage tile locations 214 

provided by USGS in North Dakota (Finocchiaro, 2016) and South Dakota (Finocchiaro, 2014). 215 

These polygons are assumed to represent ground truth tile drainage measurements. To ensure their 216 

accuracy, we randomly sampled points from these polygons and polylines areas and excluded any 217 

points too close to the edges of polygons and polylines.  218 

To avoid biased classification due to clustered tile points from available data and the spatial 219 

correlation among adjacent points, a proximity limit between points selected for training and 220 

testing was set using a 500*500-m fishnet grid. Yan and Roy (2016) reported that US farms' 221 

average and median field sizes are 400 and 527 m, respectively. Here, a threshold of 500 m was 222 

selected to provide training and testing point separation, thus handling co-variation while 223 

maintaining an adequate number of points for model training and validation. Following this 224 

process, a total of 28,723 tile drainage points remained. 225 

The potential tile-drained layer AgTile-US (Valayamkunnath et al., 2020) was also used to identify 226 

non-tiled points. We created a mask using a 120-m buffer around all likely tile drained areas. Those 227 

areas within agricultural land but outside the mask were defined as likely non-tiled. We then 228 

randomly selected 32,215 points, each at least 500 m apart from this layer and used as likely non-229 

tile points in the classification. Although these points may not accurately reflect actual ground 230 

conditions, it is practical to utilize them for classification due to the limited availability of non-tile 231 

data and the associated labor costs for manual identification.  232 
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 233 

Fig. 3. Map of ground truth tile drainage points sourced from literature (orange), tile drainage permits 234 

(green), and visual interpretation from Google Earth Pro aerial imagery (purple). The training and testing 235 

tile drainage points are ≥ 500 m apart, as indicated with different point shapes. The study area's counties 236 

are highlighted in gray, with the ones reported by USDA-NASS to have tile drainage displayed in light 237 

gray. Areas marked as “NA” indicate no tile drains or withheld data due to privacy. 238 

3.3 Random forest classification and accuracy assessment  239 

Random Forest (RF) was chosen for classification because it effectively handles non-monotonic 240 

relationships between features and accommodates non-linear relationships. It also reduces the 241 

likelihood of overfitting, a common issue in machine learning, by generating random subsets of 242 

features and constructing multiple decision trees based on these subsets (Breiman, 2001). 243 

Therefore, RF classification has been widely used for various classification tasks, including 244 

irrigation mapping, flood risk assessment, and water quality predictions (Belgiu and Drăguţ, 2016; 245 

Cho et al., 2019; Deines et al., 2019, 2017; Wang et al., 2015; Xie and Lark, 2021; Gupta et al., 246 

2023).  247 

The RF classifiers are tuned by varying the number of decision trees (ntree) and the number of 248 

features randomly selected and tested for the best split when growing trees (mtry). A review of 249 

random forest in remote sensing found that most research sets ntree to 500 (Belgiu and Drăguţ, 250 
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2016). This is because the error rate stabilizes before reaching this number of trees (Lawrence et 251 

al., 2006), and the randomForest R package defaults to 500 for ntree (Liaw and Wiener, 2002). 252 

The classification accuracy is highly dependent on the mtry parameter, which is typically set to the 253 

square root of the number of input features. However, it can be adjusted between one and the 254 

maximum number of input features. Using the Google Earth Engine cloud computing platform, 255 

the classifier applies the knowledge gained from the training data to make predictions for areas in 256 

out-of-sample regions. We used the default settings of 500 trees (ntree) and the square root of the 257 

number of features as features per split (mtry) for classification. 258 

Here, random forest classification was performed twice: an initial classification with all 57 259 

features, and a final classification and mapping conducted with the 31 selected (Table A2) after 260 

eliminating highly covariate features (Table A3). Cross-validation techniques were employed to 261 

train and validate the machine learning model using different proportions of data. The model was 262 

trained on balanced data and validated on imbalanced data proportionate to tiled and non-tiled 263 

areas. To split our ground truth dataset, we first divided non-tile points, randomly selecting 30% 264 

for validation (22,540/9675 training/validation). Next, the number of validation tile drainage 265 

points was determined based on the overall area ratio (~1:4) of tile and non-tile in the US Midwest 266 

region of the Ag Census (USDA-NASS, 2017). Thus 2281 tiled points were selected for validation, 267 

leaving 26,442 for training. Overall, we used 49,982 points in training, and 11,956 in validation 268 

(81 % training/19 % testing). 269 

An initial classification model was trained on all features, which was then used as the basis for 270 

reducing our total number of features, as many of our input features were highly correlated. This 271 

is not strictly necessary for accurate classification because RF is generally robust to 272 

multicollinearity among predictor features. The RF model naturally reduces the variance by 273 

building many decision trees based on a random subset of input features and ground truth points. 274 

However, the reliability and interpretability of feature importance can be affected by 275 

multicollinearity. For instance, multicollinearity can result in biased importance scores where the 276 

actual contribution of each feature to the model’s predictive power isn’t accurately reflected 277 

because the model may arbitrarily favor one correlated feature over the others in different trees. 278 

By reducing covariation, we can evaluate the unique contribution of each feature and improve the 279 

interpretability of the model. With this initial classification, we calculated the Pearson correlation 280 

coefficient (r) between each pair of features and used the MeanDecreaseAccuracy algorithm to 281 

determine feature importance in the initial classification, with ntree = 500 and mtry set by the 282 

square root of the number of features used in the model. If the Pearson correlation between pairs 283 

of features exceeded a threshold of 0.8, we retained only the feature with higher importance. For 284 

instance, in the first model run with ntree = 500 and mtry = 7 (~ square root of 57, the number of 285 

initial features), 50 pairs of features have a correlation coefficient higher than 0.8. For one example 286 

pair, SSM_mediean_spr and SMP_median_spr, the correlation coefficient (r = 0.99) exceeded our 287 

threshold; SSM_mediean_spr was dropped at this step based on its lower Mean Decrease in 288 

Accuracy. It is important to note that there is no standard threshold for correlations, as they are 289 



 

11 

 

domain-specific and vary across studies (Schober et al., 2018). Here, a correlation of 0.8 or greater 290 

is considered to indicate a strong correlation.  291 

To evaluate the model's accuracy on the testing dataset, we used three metrics: overall accuracy, 292 

recall (producer’s accuracy), and precision (user’s accuracy), see equations (1) – (3). These metrics 293 

are commonly used in classification models and directly show the number of correctly identified 294 

pixels (Congalton and Green, 2019). Accuracy is the percentage of pixels correctly identified (i.e., 295 

as tile or non-tile) in agricultural fields, recall is the percentage of known tile drainage points that 296 

were correctly identified, and precision is the number of true positive results (points identified as 297 

tile drainage) divided by the number of samples predicted to be positive, including those not 298 

identified correctly. Each metric ranges from 0 to 1, with higher values indicating the classification 299 

model is more reliable. These metrics were calculated as follows:  300 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) / (𝑇𝑃 + 𝑇𝑁 +  𝐹𝑃 + 𝐹𝑁)  (1) 301 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁)   (2) 302 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃)  (3) 303 

Where TP represents the number of true positives (tile drainage points), TN represents the number 304 

of true negatives (non-tile), FP represents the number of false positives (points predicted to be tile 305 

drainage that are not tile-drained), and FN represents the number of false negatives (points 306 

expected to be non-tile that are tile-drained).  307 

We also calculated the F1 score and balanced accuracy (equations (4) & (5)) to evaluate the 308 

predictive performance. F1 score was calculated as the harmonic mean of precision and recall, 309 

which gives the same weight to precision and recall (Sasaki, 2007). For this case, the true 310 

proportion of tile and non-tile classes differs substantially, so balanced accuracy can provide a 311 

more robust metric. 312 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)  (4) 313 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁) + 𝑇𝑁 / (𝑇𝑁 +  𝐹𝑃)) / 2   (5)  314 

The county-scale accuracy assessment used 2017 Ag Census statistical data. We calculate 315 

classified tile drainage areas for each county and then fit a linear regression model to compare 316 

them with reported ones.  317 

To ensure the reliability of our tile drainage product for the US Midwest in 2017, we compared 318 

the total estimated tile drainage area to three other likely tile drainage maps (AgTile-US, TD-319 

MostPD and TD-AllPD) and reported areas from the Ag Census for the study region in 2017. We 320 

also performed a random forest classification using the same training and validation points but 321 

only used slope and soil drainage classes, as they are commonly used in other products with GIS 322 

analysis. For this simple model, the number of trees (ntree) was set to be the same as our full 323 

classification (default: 500), and the number of mtry was specified as two since there are only two 324 
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features. We compared the out-of-bag (OOB) error, accuracy and F1 score with our final 325 

classification.  326 

3.4 Interpretability and explainability of the machine learning model 327 

We applied four methods to assess and communicate the results of the tile drainage classification 328 

model: Mean Decrease in Gini (Gini) (Liaw and Wiener, 2002), Mean Decrease in Accuracy 329 

(MDA) (Archer and Kimes, 2008), Shapley Additive Explanations (SHAP) (Lundbery and Lee, 330 

2017), and Accumulated Local Effects (ALE) (Apley and Zhu, 2020). These measures each 331 

provide different insights into how the model makes predictions, which input features are 332 

important, and how predictions change as input features vary. Applying multiple methods results 333 

in a more comprehensive understanding of the random forest machine learning model.  334 

Feature importance helps quantify what features drive model performance and, more specifically, 335 

how much each feature improves the model’s accuracy. We ran the importance function from the 336 

randomForest package in R (Liaw and Wiener, 2002), as GEE does not provide feature importance 337 

measures. To do this, we extracted feature values for training and validation points and developed 338 

a proxy random forest classification with the same training and testing data and identical parameter 339 

settings (ntree and mtry) using the randomForest packages in R; thus, identically specified, the 340 

feature importance values computed in R are likely to mirror their importance in GEE. The 341 

importance function includes MeanDecreaseGini and MeanDecreaseAccuracy measures. 342 

MeanDecreaseGini is an impurity-based importance measure, representing the total decrease in 343 

node impurities from splitting on the features, averaged over all trees. MeanDecreaseAccuracy is 344 

a permutation-based importance, measuring accuracy reduction on out-of-bag samples when the 345 

feature values are randomly permuted; MeanDecreaseAccuracy is considered a more reliable 346 

measure of importance than the MeanDecreaseGini (Strobl et al., 2008).  347 

We also computed Shapley values, which assess the contribution of each feature to each individual 348 

prediction. Unlike the MeanDecreaseGini, the Shapley value measures the average contribution 349 

of a feature to the prediction across all possible combinations of features, not the difference in 350 

prediction when we remove the feature from the model. To explain the model as a whole (not just 351 

using one prediction), and for computational reasons, we randomly decomposed 489 (1 % of the 352 

training points) predictions, which allows us to examine the global feature importance using SHAP 353 

(the average absolute of 489 Shapley values). 354 

Finally, we computed an overall importance by assigning each input feature a score equal to its 355 

rank within each of the three classification algorithms (Gini, MDA, and SHAP) and summing the 356 

three scores. Note the highest ranked feature in each metric was assigned a score of N = number 357 

of features used in the model, and the lowest a score of 1. The highest possible score (3*N) 358 

corresponds to a feature that ranked highest in all three measures of importance.  359 

To visualize the relationship between the value of the predictor features and probability of the 360 
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targeted class (i.e., tile), we computed and plotted ALE with the iml R package (Molnar, 2018). 361 

ALE plots produce output similar to the commonly used Partial Dependence Plots, but with distinct 362 

advantages. They are generally more robust and efficient, especially when dealing with correlated 363 

features and complex data landscapes. This robustness comes from the way ALE calculates and 364 

focuses on localized changes around actual data points, rather than over a large or entire range of 365 

a feature. By focusing on real data distributions, ALE reduces the risk of extrapolating beyond 366 

what the model has learned from the training dataset, improving both the interpretability and 367 

accuracy of the results.  368 

4 Results and discussion  369 

4.1 Feature selection, elimination and distribution differences between tile and non-tile 370 

We initially collected 57 input features by selecting among the three time periods (spring, summer, 371 

and growing season) and statistics (mean, maximum, range) from 21 variables (orange boxes in 372 

Fig 2). Following our initial classification with 57 features, 31 were selected for final classification 373 

with paired correlation coefficients < 0.8 (Table A2 and Fig. A3); 26 features (Table A3) were 374 

removed by successively eliminating less important features from the highly correlated features 375 

pairs as detailed in Text S2. These features were not incorporated into our final classification model 376 

as they did not significantly improve prediction accuracy.  377 

We compared bulk distribution differences between the two groups: tile and non-tile ground truth 378 

(Figures A4 & A5). Based on the Wilcoxon test in R, our analysis showed a significant difference 379 

(p < 0.0001) between the two groups for the 30 features, and only one feature 380 

(Tr_swir1_grow_max) with no significant difference (ns) between tile and non-tile groups used in 381 

the final classification. For median and range differences between tile and non-tile points, see 382 

Table A4. Feature distribution differences between tile and non-tile are shown in Text S4. Several 383 

alternate input variables were investigated for inclusion in this research, as described in Text S5. 384 

4.2 Classified map from random forest classification and accuracy assessment  385 

Random forest binary classification provides pixel-wise probabilities for a given class, and the 386 

probabilities for tile drainage are shown in Fig. 4a. Classified tile-drained areas (Fig. 4b) are 387 

identified with probabilities > 0.5 and are concentrated in the Corn Belt region, including the 388 

eastern Dakotas, southern Minnesota, north-central Iowa, northeastern Illinois and Indiana, 389 

northwestern Ohio, and the Michigan's thumb area. As examples, inset maps in Fig.4b illustrate 390 

that the machine learning model generally captures the reported tile fields in the western Lake Erie 391 

basin and tile permits in South Dakota.  392 

The point-based assessment for the testing dataset indicates that the classification model achieved 393 

good overall accuracy, with a score of 0.96, thus 96 % of tile and non-tile points, are classified 394 

correctly. Recall and precision are 0.96 and 0.85, respectively. The balanced accuracy and F1 395 
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scores are 0.96 and 0.90, respectively. These metrics demonstrate the good quality of the 396 

classification model.  397 

We summed the predicted tile drainage areas for each county from the classified map and 398 

compared these with the reported areas from the Ag Census in 2017, as illustrated in Fig. A6. The 399 

random forest classification model reasonably agreed with the reported area, with an R2 value of 400 

0.69. However, the model tended to overestimate tile drainage area, with a best-fit linear slope of 401 

1.1, especially in counties with larger tile drainage reported by NASS. It often underestimates area 402 

in counties with smaller reported areas, such as points with reported areas <  500 km2. Eight states 403 

(Illinois, Indiana, Iowa, Michigan, Minnesota, North Dakota, Ohio, and Pennsylvania) had R2 404 

values ≥ 0.65, while tile drainage areas in Michigan and Pennsylvania were underestimated (Fig. 405 

A7). The estimates for the remaining states (Kansas, Missouri, Nebraska, New York, South 406 

Dakota, and Wisconsin) are less accurate, likely because they are less heavily tile-drained or have 407 

fewer ground truth points. 408 
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409 

  410 

Fig. 4. Random forest classification from GEE showing (a) probability of tile drainage at 30-m resolution 411 

and (b) classified tile drainage map (SEETileDrain, blue) with agricultural land (yellow) as a background, 412 

corresponding tile drainage probability > 0.5 in (a). Two zoomed-in windows show the reported tile fields 413 

(black circles) in the western Lake Erie basin and tile drainage permits (black rectangles) in South Dakota 414 

(red rectangles).  415 

We created a county-level residuals map, calculated as the tiled area percentage difference 416 

(a) 

(b) 
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(predicted-reported) divided by the reported area (Fig. A6). The map revealed overestimation in 417 

counties with heavily tile-drained regions, primarily in Eastern Dakota, Southern Minnesota, the 418 

Des Moines Lobe in Iowa, Northeastern Illinois, Mid-northern Indiana, and Northwestern Ohio. 419 

This is likely because our tile drainage training points are concentrated in these areas, and we 420 

assumed tile drainage permits in South Dakota, North Dakota, and the Bois de Sioux Watershed 421 

District all represent actual tile installations for ground truth.  422 

We also found that 27 % of counties were not predicted to have any tile drainage installation 423 

despite having reported tile drains by NASS (NA-Classified in Fig. A6). These counties have a 424 

relatively low reported area, with a median reported area of about 27 km2 (5 % of agricultural 425 

lands). This indicates that our classification model would benefit from more ground truth 426 

information from regions with a low percent of tile drains. It is important to note that the area 427 

reported by farmers through surveys may be somewhat inaccurate. However, it is the only source 428 

available for this comparison across the region. 429 

Table 1 lists various tile drainage products covering multiple Midwestern states, and they 430 

estimated tile drainage area in US Midwest (737 counties) as 204,842 km2 (USDA-NASS), 431 

201,206 km2 (AgTile-US), 576,493 km2 (TD-MostPD), 1,025,288 km2 (TD-AllPD). Our product, 432 

SEETileDrain, estimated that 185,549 km2 were tile drained in 2017, which is ~9.4 % lower than 433 

the estimates from survey-based statistics from USDA-NASS. AgTile-US utilizes information on 434 

soil drainage and topographic slope threshold within cropland areas to estimate tile drainage and 435 

constrained the geospatial model with statistical tile drainage area at the county level, trained on 436 

data from the Census of Agriculture in 2017 (Valayamkunnath et al., 2020). The estimate is ~1.8 437 

% lower than the reported areas from USDA-NASS. Another study by (Jame et al., 2022) 438 

developed two Transforming Drainage (TD) extent products for the US Midwest based on soil 439 

drainage class. These classes were selected because they are related to crop production and are 440 

considered more suitable for estimating likely drained land than soil properties alone. The first 441 

product, TD-MostPD, includes areas with very poorly and poorly drained soils that are likely tile-442 

drained. The second product, TD-AllPD, includes somewhat poorly drained soils in addition to the 443 

two categories used in TD-MostPD. Thus, it’s unsurprising that TD-MostPD and TD-AllPD 444 

estimated 2.8 and 5 times more tile drainage extent than the statistics from USDA-NASS for this 445 

region, respectively.  446 

For better comparison to these maps (AgTile-US, TD-MostPD, TD-AllPD), which rely primarily 447 

on soil drainage class and slope information, we trained a random forest classification model based 448 

solely on these inputs of all ground truth points. This simplified model had an out-of-bag (OOB) 449 

error rate of 36 %, compared to 4 % for our full model. The model also exhibited lower precision 450 

(0.29) and recall (0.66), demonstrating a less accurate classification model based on only two 451 

features, compared to our final classification model which used 31 features. This simplified 452 

model's F1 score, and balanced accuracy were 0.4 and 0.64, compared to those of 0.9 and 0.96 in 453 

our final model with 31 features. This indicates that added features beyond soil drainage class and 454 
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slope significantly improved the binary classification.  455 

Overall, the random forest classification model used here provides substantial advantages over 456 

traditional estimation methods that rely on Ag Census data collected at the county level (USDA-457 

NASS, 2017), which can introduce uncertainty due to the potential reporting errors and scale 458 

mismatches. Unlike these methods, which have been used to produce likely tile drainage products 459 

that were used for area comparison, our model estimates actual tile drainage locations and is 460 

completely independent of the Ag Census and its inherent errors. This independence allows the 461 

model to provide consistent and reliable estimates of tile drainage between survey years, bypassing 462 

the limitations typically associated with temporal gaps in data collection. In addition, the spatially 463 

explicit nature of SEETileDrain addresses the critical issue of scale by providing high-resolution 464 

information at the 30-m pixel scale, providing a more accurate tool to assess and manage 465 

agricultural drainage systems.  466 

4.3 Feature importance and model explainability  467 

The importance of 31 input features for tile drainage classification across the US Midwest was 468 

assessed using Gini, MDA, and SHAP. AET in the growing season (AET_grow) ranked the highest 469 

in the MDA, and the maximum nighttime LST in the summer (NightLST_max_summ) ranked top 470 

in the Gini index (Fig. A8); thus, they were in the top right corner of the multi-way importance 471 

plot (Fig. A9). Four additional features (aridity in spring, median soil moisture percent in summer, 472 

the range of daytime LST in growing season and soil drainage class) ranked high in both Gini and 473 

MDA, meaning that removing these features will substantially reduce purity and model accuracy.  474 

SHAP, here average absolute Shapley values from 489 randomly selected predictions from training 475 

points, are shown in Fig. 5a. Shapley values determine if features positively or negatively affected 476 

the classification accuracy of our model for a given prediction (tile, in this case). It is important to 477 

note that Shapley values are the average contribution of an input feature to the target prediction. 478 

Thus, it might be biased due to slightly more non-tile points being used in model training. Our 479 

results reveal that the most important features are the maximum nighttime LST in the summer 480 

(NightLST_max_summ) and soil drainage class.  481 

We computed the overall importance (Fig. 5b) from the three measures (Gini, MDA, SHAP). It 482 

revealed that features derived from MODIS products and soil- and climate-related features are the 483 

most important. The top-ranking feature is the maximum of nighttime LST during summer. This 484 

is somewhat consistent with (Cho et al., 2019), where the mean LST in the spring strongly 485 

contributed to the random forest classification for tile drainage in the Bois de Sioux Watershed 486 

District in Minnesota and the Red River basin (overlies portions of Dakotas and Minnesota). 487 

Accumulated Local Effects to evaluate whether high or low values of the features correspond to 488 

higher probabilities of tile drains are shown in Text S6.  489 
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 490 

Fig. 5. (a) SHAP values, average absolute Shapley values from 489 (1%) predictions and (b) overall 491 

importance (summed score from MDA, Gini, and SHAP). Different colors in (a) & (b) denote original data 492 

category. Features are identified by their short names, which can be related to full names and other 493 

information using Table A2. 494 

4.4 Limitations and future implications  495 

The algorithm's accuracy depends on the coverage of ground truth information, which was not 496 

evenly spatially distributed and is imbalanced for tile and non-tile points. Other sources of bias 497 

include assumptions that all tile drainage permits represent actually drained areas, and potential 498 

issues during the visual interpretation. In addition, correlation between variables may still remain 499 

and influence the feature importance, though this study successively removed relatively highly 500 
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correlated (paired correlation coefficients >0.8) but less important features. Although feature co-501 

variation is not often explicitly evaluated in random forest classification, additional preprocessing 502 

could be used to reduce the effects of correlated features on the performance of the classification 503 

model and improve the robustness of feature importance.  504 

Future work could improve accuracy and efficiency by including advanced deep learning, and 505 

visual transformer-based encoder-decoder architectures to identify tile drainage (Breitkopf et al., 506 

2022; Redoloza et al., 2023). The use of high-resolution images, such as the Harmonization of the 507 

Landsat and Sentinel-2 data (HLS) (Claverie et al., 2018), images provided by the Planet Lab or 508 

Google's aerial imagery, would enable the identification of finer resolution tile drainage, which 509 

would be particularly useful at small scales (e.g., field to watershed). Incorporating such 510 

techniques and data sources could enhance our understanding of the effects of tile drainage on 511 

agricultural landscapes and facilitate the development of more effective management strategies. 512 

The machine learning model developed here could be readily applied to other regions for past and 513 

future years, which would be helpful for hydrological, water quality, and crop modeling research. 514 

This information may also help watershed managers and stakeholders achieve cost-effective 515 

agricultural water and nutrient management strategies while maintaining optimal crop production. 516 

As one of the critical water and nutrient transport pathways, a more accurate tile drainage map 517 

would improve the estimates of the contributions of this pathway (Michaud et al., 2019; King et 518 

al., 2015; Ikenberry et al., 2014). In addition, hydrologic and water quality models across scales 519 

would benefit from the method and results. For example, the National Agroecosystems Model 520 

(NAM) framework is continually updated with improved techniques and new data (White et al., 521 

2022). By integrating a machine learning algorithm and incorporating the SEETileDrain product, 522 

the NAM would better support USDA modeling efforts from the field to the national scale. 523 

5 Conclusions  524 

Spatially explicit agricultural tile drainage across the US Midwest was mapped at 30-m resolution 525 

using a random forest machine learning classification model. This model was implemented on the 526 

Google Earth Engine cloud computing platform, ultimately selecting 31 features from eleven data 527 

sources, using a novel collection of ground truth points. This map product, SEETileDrain, is the 528 

first estimate of actual tile drainage across the US Midwest independent of county-level surveys. 529 

The resulting classified map demonstrated good accuracy in point-based assessment and 530 

reasonable agreement with the reported area from USDA-NASS. Land surface temperature, soil 531 

moisture percent, actual evapotranspiration, and soil drainage class were strong predictors for tile 532 

drainage identification in the US Midwest. 533 
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