How students reason with derivatives of vector field diagrams
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Introduction

Physics students are introduced to vector fields in introductory courses, typically in the contexts of
electric and magnetic fields. Vector calculus provides several ways to describe how vector fields vary
in space including the gradient, divergence, and curl. Physics majors use vector calculus extensively
in a junior-level electricity and magnetism (E&M) course. Our focus here is exploring student
reasoning with the partial derivatives that constitute divergence and curl in vector field
representations, adding to the current understanding of how students reason with derivatives.

Background

Several previous studies in physics education research (PER) have examined student understanding
of divergence and curl in post-introductory and graduate courses (Baily & Astolfi, 2014; Bollen et
al., 2015; Gire & Price, 2012; Singh & Maries, 2013). These studies involved two-dimensional
representations of a field as an array of vectors and asked students to determine the divergence and/or
curl from these representations. Baily & Astolfi (2014) and Bollen et al. (2015) performed similar
studies with different diagrams and reported that around 50% of their students could correctly
determine whether the divergence and curl of the vector field diagrams are zero or not. Klein et al.
(2019) conducted a teaching experiment in which they split students into two groups. Both groups
received textual instruction on determining the sign of the partial derivatives of a vector field; one
was given visual cues to accompany the text. No difference in improvement between the groups was
seen on a transfer task. In these previous studies, students determined the sign or value of the
divergence and/or curl for a given field diagram. There has not been as much focus on the partial
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Cartesian coordinates. This study explores student understanding of constituent derivatives of
divergence and curl with vector field representations.

. . . av. av, . av. .
derivatives that constitute these operations, e.g., a—; and a_yy for divergence or — and a_xy for curl in

Zandieh (2000) developed a theoretical framework for student understanding of derivatives, which
Roundy et al. (2015) extended to include physical representations for derivatives of physics contexts.
Wangberg and Gire (2019) investigated student understanding of partial derivatives of scalar fields
using Zandieh’s framework. These works are restricted to derivatives of scalar functions. Gire &
Price (2012) reported confusion among students in an upper-division E&M course when sketching
vector fields given expressions that “cross” components and coordinates.

Study and setting

The study was conducted in the Mathematical Methods for Physics course, an intermediate course
intended to prepare students for the advanced mathematics they will encounter in upper-level physics
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courses. All students had completed introductory sequences in both physics and calculus. Written
data were collected in the course after instruction on vector calculus. In the tasks, students were shown
a 2-d field representation (see Figure 1) and asked to determine the signs first of the divergence and
curl, then of the constituent derivatives. Field 1 has only V, components; students were asked to

determine 2 E ~ and %". For Field 2 all constituent derivatives of divergence and curl were asked. Field

1 (N=14) and Field 2 (N=32) were asked in different semesters at two public universities; due to small
N, data are combined. Only the results for constituent derivatives will be discussed here.
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Figure 1: Vector field diagrams used in the tasks
Results and discussion

To determine the partial derivatives of the vector fields, students were first expected to determine
which component to consider and then identify how that component changes with respect to the
corresponding direction in the denominator (see Figure 2).
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Figure 2: The vector field components for each field that students were expected to examine for each

task. The selected vectors are those needed to examine the derivative in question, and the lighter
colored arrows are the components in the direction of interest: BV" and —= avx for Field 1 in a and b,
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and a—; for Field 2 in ¢, d, e, and f, respectlvely

Constituent derivatives for divergence

For Field 1, 9 of 14 students were able to identify the sign of == Determmlng P for Field 2 was

more challenging: 34% of the students (N=32) answered correctly. An example of the most common
incorrect reasoning was “arrows get smaller in the x-component as you move towards positive dx
direction”. We have suggested that some students recognize that the vector magnitude is decreasing,
but do not account for the negative direction of the vector and thus find the sign of Lx - to be negative

(Topdemir et al., 2023). More students correctly determmed Al to be zero for Field 2 (78%).

Constituent derivatives for curl

The constituent derivatives for curl are ‘mixed’ in that the component that is differentiated does not
match the coordinate with respect to which one differentiates (i.e., a—‘;j‘ as opposed to %). For Field 1,
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only 2 of 14 students were able to identify the change in V, with respect to the y-direction. For Field
2, 72% of the students (N=32) answered each of %—2‘ and %’_V correctly, but only 50% answered both

derivatives correctly. When finding Z—E‘ for Field 1, a few student responses suggested incorrect
notation mapping (see Figure 3a), with explanations consistent with reversed components and
variables. For example, the explanation for the sign of %‘ is consistent with the reasoning for the sign
] . . . . P .
of %. Other responses for Field 1 (Figure 3b) stated that there is no change in the y-direction, which

could be interpreted as no change in the y-component (correct but not relevant) or as no change with

. . . . . .. 9 ]
change in the y-coordinate (incorrect). This response might thus be explaining % or % rather than

P)
av, S | i . o L
a—;‘. We suspect that determining a—; is more similar to finding traditional scalar derivatives of a
. . av, . . . . o . av, .
function than finding a—;, resulting in higher performance in determining o for Field 1.
a %gfal the center of the loop b %m the center of the loop
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Figure 3: Student responses showing incorrect notation mapping to derivatives for Field 1
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Figure 4: Student responses showing incorrect notation mapping to constituent derivatives of the curl
for Field 2 (a, b). Colored text in response corresponds to similarly colored elements of derivative

For Field 2, 78% students answered %—‘2‘ correctly. Some students incorrectly mapped notations to

av. av; . .
—Zand a—;, respectively. In Figure

derivatives. Figures 4a and 4b show responses from a student for —=

. . . a
4a, the response explains how V, changes along the y-axis even though the question asked about a—‘;y.

Similarly, the response in Figure 4b explains how V,, changes along the x-axis instead of %—Zj‘. This

reasoning may inflate student performance on the partial derivative tasks for which the component
L . ]

and the direction were the same (i.e., % and a—‘;y).

Conclusions and reflections

Determining the signs of the constituent derivatives of divergence and curl was a challenging task for
students: only 5 of 32 students (16%) correctly determined all four partial derivative signs. Some
challenges were dependent on the properties of the specific vector fields, e.g., when the vector field
had a single component or when a vector field component was negative. Incorrect student responses
suggested confusion between the change in a component and the change in a coordinate, confirming
the informal observation of Gire & Price (2012) and a report in these proceedings by Walker & Dray
(2023). While the vector field representation is complex, our data suggest that mapping the notation
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to the quantities in the ratio is the more challenging aspect of the task for most students. We note that,
in general, students both recognized covariation in the constituent partial derivatives and treated these
partial derivatives as ratios of small changes (along one coordinate). While consistent with the
framework of Zandieh (2000) and Roundy et al. (2015), this suggests the need for extending the
framework to account for specifics of vector partial derivatives.

Instructors may wish to integrate tasks including partial derivatives using vector field diagrams into
instruction to provide an avenue for students to link more procedural understanding with graphical
representations and explicitly attend to features of vector partial derivatives.
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