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ABSTRACT

In the realm of robot action recognition, identifying distinct
but spatially proximate arm movements using vision systems
in noisy environments poses a significant challenge. This
paper studies robot arm action recognition in noisy environ-
ments using machine learning techniques. Specifically, a vi-
sion system is used to track the robot’s movements followed
by a deep learning model to extract the arm’s key points.
Through a comparative analysis of machine learning meth-
ods, the effectiveness and robustness of this model are as-
sessed in noisy environments. A case study was conducted
using the Tic-Tac-Toe game in a 3-by-3 grid environment,
where the focus is to accurately identify the actions of the
arms in selecting specific locations within this constrained en-
vironment. Experimental results show that our approach can
achieve precise key point detection and action classification
despite the addition of noise and uncertainties to the dataset.

Index Terms— Franka Emika robot arm, deep learning,
key point extraction, noisy environment, robot arm action
recognition.

1. INTRODUCTION

Robotic systems are widely used in diverse sectors such as
healthcare, manufacturing, and automation [1, 2]. Central to
the performance and utility of these systems is the accurate
determination of the robot’s spatial orientation, commonly
known as pose estimation, in an uncertain environment. Typi-
cally, pose estimation involves using regression models to de-
tect the key points of a robot, which are the joints that make
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up its skeleton. Accurate pose estimation is crucial for vari-
ous tasks, ranging from object manipulation to navigation and
interaction with the environment [1, 3, 4].

With the advancement of machine learning, significant
progress has been made in the field of robot pose detection
[5–8]. As an example, convolutional neural networks (CNNs)
have been widely developed to address the pose estimation
problem of robot arms in ideal environment [9–13]. How-
ever, such solutions often overlook the challenges of noisy
and real-world environments, leading to models that excel
theoretically but struggle in everyday scenarios.

In this paper, a pretrained ResNet-50 [14] is utilized as a
standard tool for pose recognition. The output of this model
is a time series of pose locations prone to noise. A CNN
is proposed for robot arm action recognition from the noisy
time series and its performance is compared with the state-
of-the-art models such as transformers [15] and Rocket [16].
The dataset for the experiments was collected using a Franka
Emika [17] robot arm. This study makes a significant contri-
bution to the field of robot action recognition by introducing
a model for robot arm action recognition with minimal error
margins in noisy environments. The insights gained from this
study have the potential to inform the development of more
reliable robotic systems for various applications in noisy en-
vironments.

2. METHOD

The proposed model leverages a pre-trained ResNet-50 [14]
on ImageNet [18] for robot arm pose recognition followed
by a CNN for robot arm action recognition in noisy environ-
ments, as depicted in Figure 1. Each step is described as fol-
lows.

2.1. Robot Arm Pose Recognition

To capture the movement of the robot arm, our initial step in-
volves extracting precise arm poses using J cameras, where
each camera j outputs a video stream V(j) of length T with
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Fig. 1: Architecture of robot arm action recognition in noisy environments. Noise is applied after the estimation of the key
points using ResNet-50 on the robot arm in the environment.

Fig. 2: Colored circles highlight detected key points, except
for j4 and j6, which are not visible in this frame due to visi-
bility constraints.

frame size H ⇥W . Each video stream is processed by a pre-
trained ResNet-50 to estimate the robot arm poses in the X-Y
plane over time as A(j) 2 RK⇥T , where K is the number of
key points (m1, . . . ,m4, j1, . . . , j6, b) as in Figure 2.

A significant advantage of this approach is its effective-
ness with a limited number of labeled frames, attributed to
the pre-training of ResNet-50 on ImageNet [18].

2.2. Robot Arm Action Recognition

The output of ResNet-50 model for camera j, denoted as
A(j), represents the evolving trajectory of key points on a
robot arm over time. It is assumed that a noisy environment
can alternate A(j) and affect the robot arm action recogni-
tion. To tackle this challenge, a CNN is proposed as depicted
in Figure 1.

The proposed CNN model has a 1-D convolution layer
with 32 filters where each filter is of size 3. After max-pooling
with window size 2, another 1-D convolution layer is applied
with 64 filters of kernel size 3. The resulted features after
max-pooling with window size 2 are flattened and passed to
two dense layers for action recognition. The number of possi-
ble target classes is 9, which represents different locations of
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Fig. 3: Data collection using one robot arm and two cameras.

the Tic-Tac-Toe game as illustrated in Figure 3.

3. EXPERIMENTS

3.1. Data Collection

To evaluate our method, we utilized J = 2 cameras posi-
tioned at varying locations within our laboratory. These cam-
eras recorded the movements of the robot arm on Tic-Tac-Toe
board, as depicted in Figure 3.

Each recorded video has T = 481 frames captured over a
16-second duration, with an original image size of H = 1280
by W = 720. To ensure the diversity of our dataset, we gath-
ered 50 samples for each of the nine action classes. Figure 4
shows some samples of the actions. We run experiments us-
ing a dataset consisting of 100 annotated frames.

3.2. Training Setup

The network was trained for up to 105 iterations with a batch
size of 8, and early stopping was utilized. To select the opti-
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Fig. 4: Dataset samples: First row captured by camera one,
second row by camera two as depicted in Figure 3.

mizer and learning rate, we conducted a grid search involving
learning rates from the set {0.001, 0.01, 0.1} and considered
three optimization algorithms: SGD, RMSprop, and Adam.
The categorical cross-entropy loss function along with the
Adam optimizer [19] were configured with a learning rate of
0.001. The split percentages for all experiments are consis-
tently set to 80%, 10%, and 10% for the training, validation,
and the testing set, respectively.

3.3. Result Analysis

Our proposed model achieved high accuracy, with only a few
misclassifications observed, between labels 8 and 5, as well
as between labels 1 and 4. The proximity of these positions
on the Tic-Tac-Toe board contributed to the confusion. In
roughly 50 to 60 epochs, our model attains a testing accuracy
of approximately 98%, with a validation accuracy of around
97.7%. To assess the classification model’s performance, we
employ two distinct models, transformer and Rocket, for clas-
sifying robot arm movements. We then compare their results
with our proposed method, particularly evaluating their per-
formance in a noisy environment.

3.3.1. Baseline Models

We utilized a transformer model including 4 attention heads,
a point-wise feedforward network with a depth of 128, and 4
transformer encoder blocks, complemented by dense layers.
The activation function used in the dense layers was ReLU. In
addition, we incorporated 1-D global average pooling to com-
press the output generated by the transformer encoder mod-
ule. Within approximately 80-90 epochs, our model achieves
a testing accuracy of around 94.2%, a validation accuracy of
approximately 93.7%. The Rocket model achieved a testing
accuracy of around 95.6%, a validation accuracy of approxi-
mately 93.8%.

3.3.2. Evaluation in Noisy Environments

In this section, we perform a comparative analysis of three
classification models by applying cut-out, salt and pepper,
and Gaussian noise to time series data that represent the robot
arm’s trajectory. To understand the influence of noise, we
designed and executed three experiments: the first employs
noise augmentation only during training; the second tests the
models on noisy data after training them on noise-free data;
and the third both trains and tests the models on noisy data.
The study compares these experiments with models trained
without any noise. The main aim is to assess the model’s
ability to generalize to noisy data, simulating situations like
camera malfunctions where frames are missing, resembling
cut-out noise. Over the course of these experiments, we sys-
tematically increase the level of noise from 10% to 50%, en-
abling us to explore the model’s resilience to escalating levels
of noise and its subsequent ability to maintain accuracy and
robustness. In the following, we provide detailed descriptions
of three distinct types of noise applied to the dataset.

Cut-out Noise: In this approach, random rectangular re-
gions within the time series are masked by setting their pixel
values to zero. This technique encourages the model to under-
stand context and adapt to missing or distorted information.
The region size is 10, and masking is through a randomized
probability selection process.

Salt and Pepper: Adding salt and pepper noise to time
series data means inserting random spikes (salt) or drops
(pepper) to mimic extreme values, making the data more re-
silient and ready for unexpected changes. We use parameters
like density (how many data points get noise) and intensity
(how strong the noise is). Density ranges from 10 to 50 in
five steps, and intensity depends on the data’s minimum (for
pepper) or maximum (for salt) values. We decide to apply
salt or pepper noise randomly to each data point based on
probability.

Gaussian Noise: The critical hyperparameter in apply-
ing Gaussian noise is the noise level or standard deviation,
which we have explored across a range of values, from 0.1%
to 0.5%.

Average and standard deviation (STD) of accuracy for
transformer, Rocket and CNN models are presented in Ta-
bles 1, 2 and 3 after 5-fold cross-validation. Additionally,
Figure 5 provides a comprehensive analysis of how each type
of noise impacts the performance of the three models, facili-
tating their comparison. In general, these models may display
sensitivity to data noise, with variations depending on their
architectures and the data’s characteristics. Our study, con-
ducted within the context of time series data and our specific
application, illustrates how the sensitivity of these models to
noise is influenced by their architectures and the unique fea-
tures of the data. In summary, the CNN model emerges as the
most promising performer, demonstrating exceptional capa-
bility in excelling even in noisy environments. On the other
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Table 1: Performance of the transformer-based model with
noisy data. Noise and accuracy results are in %.

Noise Noise type Train Test Train & Test

10
Cut-out 93.0±1.6 91.1±1.9 91.3±1.1

Salt & Pepper 89.0±1.6 82.3±2.1 78.4±2.9
Gaussian 90.6±2.7 95.0±1.1 96.0±2.1

20
Cut-out 93.3±2.1 88.8±2.7 91.0±1.7

Salt & Pepper 82.6±1.8 75.9±3.5 74.3±4.4
Gaussian 91.1±1.6 91.4±1.7 94.0±1.7

30
Cut-out 90.8±1.5 91.1±4.8 90.6±4.9

Salt & Pepper 71.6±3.9 57.0±6.5 65.1±2.7
Gaussian 87.5±2.2 97.7±2.6 93.0±2.3

40
Cut-out 88.8±4.1 89.2±2.1 85.7±4.3

Salt & Pepper 70.2±2.6 55.1±4.6 44.7±3.9
Gaussian 86.5±1.8 93.3±1.6 91.6±3.8

50
Cut-out 85.0±3.6 80.0±3.6 80.1±5.8

Salt & Pepper 65.3±2.9 53.5±3.6 46.9±5.1
Gaussian 86.8±4.0 90.5±1.1 86.4±1.5

Table 2: Performance of the Rocket model with noisy data.
Noise and accuracy results are in %.

Noise Noise type Train Test Train & Test

10
Cut-out 79.2±6.2 58.4±4.4 95.8±3.7

Salt & Pepper 73.5±4.3 34.4±3.8 78.3±6.3
Gaussian 89.8±1.4 51.5±2.7 92.2±1.7

20
Cut-out 80.2±5.9 47.4±4.8 91.8±1.4

Salt & Pepper 69.1±3.8 30.9±5.4 71.8±3.7
Gaussian 83.2±4.6 48.2±5.3 93.1±2.6

30
Cut-out 73.8±4.3 35.5±3.7 94.1±4.6

Salt & Pepper 62.4±5.2 30.1±4.9 58.4±2.7
Gaussian 76.4±2.4 39.1±4.8 89.4±4.9

40
Cut-out 76.9±3.3 28.0±6.3 94.5±4.8

Salt & Pepper 57.6±3.9 28.3±3.7 53.6±4.0
Gaussian 69.4±3.3 32.7±3.9 89.1±4.1

50
Cut-out 60.7±4.8 21.3±5.2 92.1±5.3

Salt & Pepper 47.1±3.4 26.4±4.5 48.8±5.7
Gaussian 53.4±6.1 27.2±5.5 87.4±3.2

hand, Rocket exhibits the lowest level of effectiveness, with
a notable drop in accuracy when exposed to noise. However,
when noise is introduced into both training and test datasets,
the Rocket model’s performance remains consistent with that
in a noise-free environment. It is worth noting that among all
types of noise, salt and pepper noise has the most detrimental
impact on accuracy across all models.

4. CONCLUSION

This study focuses on vision-based robot action recognition
in noisy environments, where our model performs real-time,
accurate 2-D pose estimation of a robot arm from video in-
puts. In contrast to studies focused on ideal environments, our
research evaluates the performance of state-of-the-art neural
networks like transformer and Rocket in noisy environments.
Our findings show robustness of the model in robot arm action
recognition in various noisy environments.

Table 3: Performance of the CNN model with noisy data.
Noise and accuracy results are in %.

Noise Noise type Train Test Train & Test

10
Cut-out 98.1±1.2 98.0±1.2 98.0±1.6

Salt & Pepper 95.5±1.8 91.1±1.8 95.6±1.9
Gaussian 98.1±2.4 98.3±2.2 98.2±3.1

20
Cut-out 98.2±1.7 97.1±2.6 97.8±1.5

Salt & Pepper 92.8±3.4 73.3±4.5 98.1±2.7
Gaussian 97.2±1.7 97.6±3.5 97.4±1.9

30
Cut-out 98.0±1.1 98.2±1.7 97.1±1.4

Salt & Pepper 92.3±2.4 52.5±1.7 97.9±4.9
Gaussian 95.4±3.6 98.1±3.6 97.5±3.8

40
Cut-out 97.3±1.3 97.0±1.5 97.4±1.9

Salt & Pepper 91.6±3.9 45.7±4.1 91.1±3.5
Gaussian 95.7±4.8 98.0±4.7 97.0±4.1

50
Cut-out 97.0±3.4 97.7±2.9 96.8±2.2

Salt & Pepper 88.0±4.1 31.3±2.9 89.6±3.3
Gaussian 95.5±5.2 97.7±3.0 97.2±4.6

Fig. 5: Comparative analysis of transformer, Rocket, and
CNN models in diverse noise scenarios during training, test-
ing, and combined, in percentage. Top row: Cut-out noise;
middle row: Salt and Pepper noise; bottom row: Gaussian
noise.
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pose estimation and environment mapping using an extended
kalman filter,” International Journal of Systems Science, vol.
45, no. 12, pp. 2603–2618, 2014.

[4] Chao Sun, Xing Wu, Jia Sun, Changyin Sun, and Lu Dong,
“Robust pose estimation via hybrid point and twin line repro-
jection for rgb-d vision navigation,” IEEE Transactions on In-

strumentation and Measurement, vol. 71, pp. 1–19, 2022.
[5] Christoph Heindl, Sebastian Zambal, Thomas Ponitz, Andreas

Pichler, and Josef Scharinger, “3d robot pose estimation from
2d images,” arXiv preprint arXiv:1902.04987, 2019.

[6] Yang Tian, Jiyao Zhang, Zekai Yin, and Hao Dong, “Robot
structure prior guided temporal attention for camera-to-robot
pose estimation from image sequence,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition, 2023, pp. 8917–8926.
[7] Jingpei Lu, Florian Richter, and Michael C Yip, “Marker-

less camera-to-robot pose estimation via self-supervised sim-
to-real transfer,” in Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, 2023, pp.
21296–21306.

[8] Fan Zhou, Zijing Chi, Chungang Zhuang, and Han Ding, “3d
pose estimation of robot arm with rgb images based on deep
learning,” in Intelligent Robotics and Applications: 12th Inter-

national Conference, ICIRA 2019, Shenyang, China, August

8–11, 2019, Proceedings, Part IV 12. Springer, 2019, pp. 541–
553.

[9] Thomas Gulde, Dennis Ludl, and Cristóbal Curio, “Ropose:
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