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Abstract
The brain’s modular functional organization facilitates adaptability. Modularity has been linked
with a wide range of cognitive abilities such as intelligence, memory, and learning. However,
much of this work has (1) considered modularity while a participant is at rest rather than during
tasks conditions and/or (2) relied primarily on lab-based cognitive assessments. Thus, the extent
to which modularity can provide information about real-word behavior remains largely unknown.
Here, we investigated whether functional modularity during resting-state and task-based fMRI was
associated with academic learning (measured by GPA) and ability (measured by PSAT) in a large
sample of high school students. Additional questions concerned the extent to which modularity
differs between rest and task conditions, and across spatial scales. Results indicated that whole-
brain modularity during task conditions was significantly associated with academic learning. In
contrast to prior work, no such associations were observed for resting-state modularity. We further
showed that differences in modularity between task conditions and resting-state varied across
spatial scales. Taken together, the present findings inform how functional brain network

modularity — during task conditions and while at rest — relate to a range of cognitive abilities.
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Introduction

The brain is able to adaptively reconfigure its functional connections to meet the demands
of daily life and perform a wide variety of cognitive tasks. A growing body of evidence indicates
that such adaptability stems from the brain’s modular organization (Bassett & Mattar, 2017;
Betzel, Gu, et al., 2016; Medaglia et al., 2015; Power et al., 2011; Sporns, 2010; Sporns & Betzel,
2016; Yeo et al., 2011; Toga et al., 2006). Modularity, a measure of network segregation, has been
proposed as a basis of cognitive abilities such as general or fluid intelligence (Barbey, 2018;
Chiappe & MacDonald, 2005; Finn et al., 2015; Hilger et al., 2020, 2020), memory (Stanley et al.,
2014; Stevens et al., 2012; Wig, 2017), and learning (Arnemann et al., 2015; Baniqued et al., 2018;
Bassett & Mattar, 2017; Duncan & Small, 2016; Gallen et al., 2016; Gallen & D’Esposito, 2019).
Given these associations, a number of recent perspectives suggest that modularity may have utility
as a neural biomarker (Barbey, 2018; Bassett & Mattar, 2017; Gabrieli et al., 2015; Gallen &
D’Esposito, 2019; Hilger et al., 2017, 2020). However, a priority for cognitive neuroscience is to
better establish how modularity can be utilized in such a manner. For example, what is the
correspondence between an individual’s intrinsic modularity (i.e., at rest or in the absence of
external demands) and their modular organization during task conditions? Is task-based modularity
a better predictor of cognitive ability than is modular organization at rest? Can modularity reliably
predict cognitive performance across contexts? The present study sought to address these
outstanding questions.

A modular network is one in which network “nodes” are clustered into multiple distinct
“subgraphs” or “communities”, with dense connectivity among nodes within each subgraph and
comparatively sparser connections across subgraphs (Newman, 2006; Sporns & Betzel, 2016). In

other words, nodes within a given subgraph communicate with one another more than they do with
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nodes of other subgraphs. Modularity, then, is a quantification of the extent to which a network
can be divided into distinct subgraphs. The brain is one such modular network, with nodes typically
referring to specific brain regions and connectivity derived from structural tracts (i.e., white matter;
“structural modularity”) or functional associations (i.e., functional connectivity; “functional
modularity”). The brain’s modular organization is found across all spatial scales; discrete modules
could be conceptualized as the two cerebral hemispheres, coordinated networks (e.g.,
frontoparietal), smaller networks (frontal, parietal), gray matter nuclei, and cell columns (Sporns,
2010).

Modularity has been identified in species ranging from the nematode C. elegan (Pan et al.,
2010; Sohn et al., 2011) to more complex organisms and systems (Betzel et al., 2017; Harriger et
al., 2012; Hilgetag & Young, 2000; Modha & Singh, 2010; Sporns & Betzel, 2016). The
prevalence of modularity across scales and lifeforms suggests that such organizational properties
facilitate evolutionary fitness (Bassett & Bullmore, 2006; Betzel et al., 2017; Gerhart & Kirschner,
2007; Kirschner & Gerhart, 1998; Sporns & Betzel, 2016). According to these perspectives,
modularity increases the brain’s capacity for independent rearrangement of subgraphs in response
to external experiences (Kashtan et al., 2007; Kashtan & Alon, 2005), which, in turn, enables
greater system-wide adaptability (Bassett & Bullmore, 2006; Mattar et al., 2018; Meunier et al.,
2009). Thus, modularity provides robustness (because of reduced constraints on any single
module; Mattar et al., 2018) as well as “evolvability” (i.e., the capacity to adaptively generate
variation in organization; Anderson & Finlay, 2014). The result, then, is that neuronal populations
that are not specialized to respond to a given input can remain unchanged while task-relevant

networks reconfigure and generate appropriate outputs.



bioRxiv preprint doi: https://doi.org/10.1101/2022.01.06.475275; this version posted January 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Given the above, modularity at rest should differ from modularity when an individual is
engaged in an external task. More specifically, because task demands elicit reconfiguration of
functional connectivity between relevant subgraphs that may be otherwise segregated (e.g., Cole
etal.,2014; Medagliaetal., 2015; Poweretal.,2011; Yeo et al., 2011), modularity should decrease
for task conditions (i.e., relative to rest or intrinsic organization). That is, subgraphs should be
more segregated in the absence of external demands. A growing body of literature indicates that
this likely to be the case (Cohen & D’Esposito, 2016; Di et al., 2013; Finc et al., 2017, 2020;
Kitzbichler et al., 2011). For example, Finc and colleagues (2020) found that modularity was
higher at rest than during an n-back task and parametrically decreased with greater working
memory load, suggesting that the brain forms functional connections between task-relevant
modules that may be less likely to communicate at rest. The finding that modularity was inversely
related to working memory load further indicates that more challenging conditions may bring
about even greater departure from intrinsic organization. This interpretation accords with the
Global Workspace Theory (Dehaene et al., 1998), which argues for a distinction between an
intrinsic “global” workspace and specialized, integrated modules for specific tasks. This line of
thinking suggests that less challenging tasks can be successfully performed within segregated
modules (i.e., preserving intrinsic modularity) compared to more challenging tasks that necessitate
greater integration between more disparate subgraphs (i.e., resulting in lower brain-wide
modularity). In the present study, we further investigated task-based changes in modularity by
comparing modular organization at rest with modular organization during two cognitive tasks.

Other recent work indicates that modularity facilitates learning (Bassett & Mattar, 2017),
consistent with the perspective that modularity promotes adaptability. In artificial intelligence,

modularity has been shown to support task learning (Jo et al., 2018) and the acquisition of new
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skills without catastrophic forgetting, the sudden loss of previously acquired information (Ellefsen
et al., 2015; McCloskey & Cohen, 1989). Similar findings have been observed in humans. In one
such study, researchers investigated whether resting-state modularity was predictive of improved
functioning in patients with acquired brain injury following a five-week cognitive training program
(Arnemann et al., 2015). Results indicated a significant, positive association between modularity
and improvement in executive function and attention, suggesting modularity may be a marker of
intervention-related plasticity. Similarly, in a study of older adults, people with more modular
brains (again, at rest) showed greater cognitive improvements after a 12-week intervention
targeting attention, reasoning, and innovation (Gallen et al., 2016). Resting-state modularity has
also been correlated with executive function gains following an exercise-based clinical trial
(Baniqued et al., 2018) and working memory training (Iordan et al., 2018) in older adults, as well
as the effectiveness of imitation-based therapy for aphasic patients (Duncan & Small, 2016). More
recent studies have begun to establish a similar pattern of results in younger, healthier samples.
For example, children with higher resting-state modularity exhibited greater improvements across
a range of cognitive tests following an intervention to improve working memory and reasoning
(Baniqued et al., 2019). In another study of young children, resting-state modularity was positively
associated with improved cognitive performance after participation in an extended physical fitness
program (Chaddock-Heyman et al., 2020).

Although the literatures on modularity and learning are broadly cohesive, they are also
somewhat limited in scope. First, prior work examining modularity and learning has relied heavily

on resting-state fMRI, despite differences in modular organization between task and rest
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conditions!. Since challenging tasks are typically accompanied by a reduction in modularity, it is
plausible that individual differences in the extent to which one can maintain higher modularity
despite task demands may be even more reflective of cognitive abilities. That is, higher task-based
modularity may signal less of a need to deviate from one’s intrinsic workspace (Dehaene et al.,
1998). The present study investigated this possibility by relating learning to both resting-state and
task-based modularity. More broadly, the inclusion of resting-state and task-based fMRI aligns
with a growing emphasis placed on “multimodal” protocols to better understand how principles of
brain organization relate to cognitive performance (e.g., Baykara et al., 2021).

A second limitation of prior work relating modularity to learning is that research has been
largely restricted to patients with brain injury and older individuals (see Baniqued et al., 2019;
Chaddock-Heyman et al., 2020 as recent exceptions). These populations are likely to have
impaired cognitive functioning and reduced modularity (Betzel et al., 2014; Geerligs et al., 2015;
Song et al., 2014), particularly for brain systems involved in executive functioning and associative
processing (e.g., frontoparietal control network, ventral attention network; Chan et al., 2014). It is
plausible, then, that individual differences in modularity may be a downstream result of — or at
least meaningfully influenced by — neurological damage or degeneration. That is, modularity may
be a proxy for “brain health” rather than uniquely related to a larger organizational framework,
and those with less significant decay would show higher modularity and be more receptive to
interventions. This possibility is supported by work showing a correlation between modularity and

learning for older, but not younger adults (Duncan & Small, 2016).

! This refers specifically to “static”” measures of modularity. “Dynamic” estimates of modularity — which
were not considered in the present study due to experimental task design — have been frequently applied to
task data (e.g. Bassett et al., 2011; Gerraty et al., 2018; Reddy et al., 2018).
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The existing literature is also limited in the kind of learning that has been investigated. For
instance, despite the value placed on classroom-based education and its connection to achievement
later in life (French et al., 2015; Noble & Sawyer, 2004; Noble & Sawyer, 2002; Sawyer, 2013;
Schulenberg et al., 1994) — little is presently known concerning the relationship between
modularity and in-school learning/achievement. Identifying the neurocognitive processes
supportive of school-based learning has the potential to yield significant real-world value.

Here, we applied network analyses of fMRI data to examine modularity at rest and during
two cognitive tasks in a group of high school students. Key questions concerned: (i) how resting-
state modularity compared with task-based modularity; (ii) whether task-based modularity was
associated with task performance; and (ii1) if modularity — either at rest or during either task — was

associated with academic learning and ability.

Methods

Participants

Seventy-nine students (Mage = 16.70 years; SD = 0.49 years, 50.63% female, 49.37% male)
were recruited from five Northern Virginia public high schools prior to the start of their senior
year. All participants were right-handed and reported no history of mental illness or psychoactive
drug use. Written informed consent was obtained from each participant as well as assent from a
parent or guardian. All procedures received approval from the Georgetown University IRB.
Experimental procedures

The study was performed at the Center for Molecular Imaging at Georgetown University.
Participants performed a verbal relational reasoning task (henceforth “reasoning”) and a mental

rotation task (MRT; order counterbalanced) inside the MRI scanner. Tasks were selected based on
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separate hypotheses described elsewhere (Cortes et al., 2021). The imaging sessions also included
a S5-minute resting-state scan as well as a high-resolution anatomical image acquisition
(MPRAGE). We did not obtain valid imaging data for all tasks for all participants due to factors
such as subject movement (see Additional Processing for Network Construction) and time
constraints at the time of data collection. In order to increase statistical power, we elected to use
all available data for each participant rather than restrict analyses to only the full set of participants
with complete data for all three fMRI conditions (i.e., resting state, reasoning, MRT), as this would
have substantially reduced the sample size. The total N for each measure is detailed in Table S1.
Verbal relational reasoning task

Participants completed 60 verbal relational reasoning problems (“reasoning’) in the fMRI
scanner. Each problem was composed of two premises and one conclusion. Instructions stated that
participants should judge whether the information in the conclusion necessarily followed from the
premises or not (e.g., Premise 1: “The dog is smarter than the cat”; Premise 2: “The cat is smarter
than the bird”; Conclusion: “The dog is smarter than the bird”; Fig. S1). Participants also
completed 20 trials of a control task in which they determined if the conclusion exactly matched
one of the premises. Participants had 8 seconds to respond after the presentation of the conclusion.
Task performance was estimated using a composite measure of speed and accuracy (see SI for
calcuation of this variable; Vandierendonck, 2017; Woltz & Was, 2006).
Mental rotation task

Participants completed a version of the Mental Rotation Task (MRT; Peters & Battista,
2008; Shepard & Metzler, 1971) for which they assessed whether two images of 3-dimensional
objects (Fig. S1) were rotated images of the same object or images of different objects. Objects

were shown at three different angles (50, 100, 150 degrees) to vary task difficulty. We also
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included 12 trials with 0 degrees of rotation as a control condition. There were 84 trials in total.
Participants had 7 seconds to respond. Performance was captured using a composite speed-
accuracy metric.
Markers of academic ability and learning

Finally, we obtained participants’ Grade Point Average (GPA) and Preliminary Scholastic
Aptitude Test (PSAT) scores prior to the scanning session. PSAT scores are used to predict
performance at the collegiate level and, in the present study, were conceptualized a correlate of
academic ability and fluid intelligence (Coyle, 2015; Lent et al., 1986). Student GPA was
considered a proxy for classroom learning (Duff et al., 2004; Komarraju et al., 2011).
fMRI image acquisition and processing
Imaging procedures

Image acquisition was performed on a 3 T Siemens Trio Tim MRI scanner. Task fMRI
data were acquired from T2*-weighted echoplanar imaging (EPI) sequence (37 3.0 mm transversal
slices; 64 x 64 matrix; repetition time = 2000 ms; echo time = 30 ms; field of view = 192 mm; 3.0
x 3.0 x 3.0 mm voxels; flip angle = 90 degrees). To account for magnet stabilization, the first 2
volumes were excluded from analysis. Task were presented with E-Prime and viewed through a
mirror attached to a head coil. Participants used SR-boxes in their right hand (index and middle
finger) to respond. Resting-state fMRI data (5 minutes in total) were collected using a T2*-
weighted EPI sequence (43 2.55 mm transversal slices; 64 x 64 matrix; repetition time = 2280 ms;
echo time = 30 ms; field of view = 192 mm; 3.0 x 3.0 x 2.5 mm voxels; flip angle = 90 degrees).
A high-resolution T1-weighted MPRAGE image (176 1.00 mm slices; 256 x 256 matrix; repetition
time = 1900 ms; echo time = 2.52 ms; field of view = 250 mm; 1.0 x 1.0 x 1.0 mm; flip angle =9

degrees) was obtained for registration of functional data.
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SMRI data preprocessing

Results included in this manuscript come from preprocessing performed
using fMRIPrep 1.5.0 (Esteban et al., 2017, 2019; RRID:SCR 016216), which is based
on Nipype 1.2.2 (Gorgolewski et al., 2011; Gorgolewski et al., 2018; RRID:SCR_002502)

Anatomical data preprocessing. The Tl-weighted (T1w) image was corrected for
intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison et al., 2010), distributed
with ANTs 2.2.0 (Avants et al., 2008, RRID:SCR_004757), and used as T1w-reference throughout
the workflow. The Tlw-reference was then skull-stripped with a Nipype implementation of
the antsBrainExtraction.sh workflow (from ANTSs), using OASIS30ANTs as target template.
Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM)
was performed on the brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR 002823, Zhang et
al., 2001). Volume-based spatial normalization to two standard spaces (MNI152NLin6Asym,
MNI152NLin2009cAsym) was performed through nonlinear registration
with antsRegistration (ANTs 2.2.0), using brain-extracted versions of both T1w reference and the
T1w template. The following templates were selected for spatial normalization: FSL’s MNI ICBM
152 non-linear 6th Generation Asymmetric Average Brain Stereotaxic Registration Model (Evans
et al., 2012, RRID:SCR _002823; TemplateFlow ID: MNI152NLin6Asym), ICBM 152 Nonlinear
Asymmetrical template version 2009¢ (Fonov et al., 2009, RRID:SCR_008796; TemplateFlow
ID: MNI152NLin2009cAsym).

Functional data preprocessing. For each of the BOLD runs found per subject (reasoning,
MRT, and rest), the following preprocessing was performed. First, a reference volume and its
skull-stripped version were generated using a custom methodology of fMRIPrep. The BOLD

reference was then co-registered to the T1w reference using flirt (FSL 5.0.9, Jenkinson & Smith,
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2001) with the boundary-based registration (Greve & Fischl, 2009) cost-function. Co-registration
was configured with nine degrees of freedom to account for distortions remaining in the BOLD
reference. Head-motion parameters with respect to the BOLD reference (transformation matrices,
and six corresponding rotation and translation parameters) are estimated before any spatiotemporal
filtering using mcflirt (FSL 5.0.9, Jenkinson et al., 2002). BOLD runs were slice-time corrected
using 3dTshift from AFNI 20160207 (Cox & Hyde, 1997, RRID:SCR_005927). The BOLD time-
series (including slice-timing correction when applied) were resampled onto their original, native
space by applying a single, composite transform to correct for head-motion and susceptibility
distortions. These resampled BOLD time-series will be referred to as preprocessed BOLD in
original space, or just preprocessed BOLD. The BOLD time-series were resampled into several
standard spaces, correspondingly generating the following spatially-normalized, preprocessed
BOLD runs: MNI152NLin6Asym, MNI152NLin2009cAsym. First, a reference volume and its
skull-stripped version were generated using a custom methodology of fMRIPrep. Automatic
removal of motion artifacts using independent component analysis (ICA-AROMA, Pruim et al.,
2015) was performed on the preprocessed BOLD on MNI space time-series after removal of non-
steady state volumes and spatial smoothing with an isotropic, Gaussian kernel of 6mm FWHM
(full-width half-maximum). Corresponding “non-aggressively” denoised runs were produced after
such smoothing. Additionally, the “aggressive” noise-regressors were collected and placed in the
corresponding confounds file. Several confounding time-series were calculated based on
the preprocessed BOLD: framewise displacement (FD), DVARS and three region-wise global
signals. FD and DVARS are calculated for each functional run, both using their implementations
in Nipype (following the definitions by Power et al., 2014). The three global signals are extracted

within the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological
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regressors were extracted to allow for component-based noise correction (CompCor, Behzadi et
al., 2007). Principal components are estimated after high-pass filtering the preprocessed
BOLD time-series (using a discrete cosine filter with 128s cut-off) for the two CompCor variants:
temporal (tCompCor) and anatomical (aCompCor). tCompCor components are then calculated
from the top 5% variable voxels within a mask covering the subcortical regions. This subcortical
mask is obtained by heavily eroding the brain mask, which ensures it does not include cortical GM
regions. For aCompCor, components are calculated within the intersection of the aforementioned
mask and the union of CSF and WM masks calculated in T1w space, after their projection to the
native space of each functional run (using the inverse BOLD-to-T1w transformation). Components
are also calculated separately within the WM and CSF masks. For each CompCor decomposition,
the k components with the largest singular values are retained, such that the retained components’
time series are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM,
combined, or temporal). The remaining components are dropped from consideration. The head-
motion estimates calculated in the correction step were also placed within the corresponding
confounds file. The confound time series derived from head motion estimates and global signals
were expanded with the inclusion of temporal derivatives and quadratic terms for each
(Satterthwaite et al., 2013). Frames that exceeded a threshold of 0.5 mm FD or 1.5 standardised
DVARS were annotated as motion outliers. All resamplings can be performed with a single
interpolation step by composing all the pertinent transformations (i.e. head-motion transform
matrices, susceptibility distortion correction when available, and co-registrations to anatomical
and output spaces). Gridded (volumetric) resamplings were performed

using antsApplyTransforms (ANTs), configured with Lanczos interpolation to minimize the
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smoothing effects of other kernels (Lanczos, 1964). Non-gridded (surface) resamplings were
performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.5.2 (Abraham et al., 2014,
RRID:SCR _001362), mostly within the functional processing workflow. For more details of the
pipeline, see the section corresponding to workflows in fMRIPrep’s documentation.

Additional processing for network construction

Following fMRIPrep image preprocessing, additional processing of individual subject
functional data was conducted with XCP Engine (Ciric et al., 2018). Processing was performed
using ICA-AROMA (Pruim et al., 2015) with global signal regression. ICA-AROMA identifies
sources of variance in brain signal using independent component analyses, incorporating each
source as either noise or signal of interest. Sources identified as noise are then denoised along with
mean signal from white matter, CSF, and grey matter (because of global signal regression). This
processing pipeline was chosen in order to aggressively minimize the influence of head motion
(Macey et al., 2004; Pruim et al., 2015), which has been shown to have particularly profound
effects on functional connectivity analyses (Power et al., 2012; Van Dijk et al., 2012). Further,
each volume was motion censored, and volumes with >0.5mm of motion were flagged.
Participants with > 25% bad volumes were excluded from analyses. Frame-to-frame displacement
(i.e., mean framewise displacement; FD) for all participants was retained for use in subsequent
linear regression models. Additional processing steps included demeaning and detrending,
mathematical expansion to model delayed or nonlinear signal fluctuations, temporal filtering [0.01
- 0.1 Hz], and spatial smoothing. Finally, we regressed stimulus/task-evoked activity during both
tasks to study residual, task-free/“state signal (Cole et al., 2014; Gratton et al., 2016; Hwang et

al., 2019; Norman-Haignere et al., 2012).
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Atlas/ROI selection

We segmented the brain into regions of interest (ROIs) using two standardized atlases. The
cortical surface was divided in 200 parcellations based on functional homogeneity (Schaefer et al.,
2018). Subcortical ROIs — included because of their well-established role in reasoning (Christoff
et al., 2001; Melrose et al., 2007) and spatial thinking (Gao et al., 2017; Packard & Knowlton,
2002; Sukumar et al., 2012) — were obtained from the anatomically-defined Harvard-Oxford atlas
(Desikan et al., 2006). While the methods of parcellation were not consistent across these two
atlases (i.e., functionally-based for cortical; anatomically-based for subcortical), we did not have
any a priori hypotheses regarding the involvement of specific regions of subcortical structures,
and therefore preferred to treat each structure as a discrete ROI. Further, we used a relatively coarse
cortical atlas to partially mitigate differences in parcel size between cortical and subcortical ROlIs.
Network analyses
Functional connectivity

Functional connectivity was estimated using the signal timeseries of the 216 ROIs (200
cortical parcels from Schaefer et al., 2018; 16 subcortical structures from Harvard-Oxford Atlas;
Desikan et al., 2006). For each participant, we performed pairwise correlations for every ROI to
every other ROI, resulting in a 216 x 216 (z-transformed), weighted functional connectivity matrix.
Separate functional connectivity matrices were obtained for reasoning, MRT, and rest.
Modularity

Modularity is characterized by a clustering of nodes (i.e., ROIs) into multiple and distinct
subgraphs or communities, with a greater number of connections among nodes with a community
than connections between communities (Genon, Reid, Langner, Amunts, & Eickhoff, 2018;

Lorenz et al., 2017; Power et al., 2011; Toga, Thompson, Mori, Amunts, & Zilles, 2006; Yeo et
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al., 2011). In order to obtain an estimate of functional modularity, we used an increasingly
prevalent method known as modularity maximization (Newman & Girvan, 2004), which assigns
nodes to communities by comparing the connection density for each node (i.e., the portion of
possible edges that are actual connections) against the connection density for each node of a
generated null model. Modularity maximization algorithms then attempt to place nodes connected
by edge weights that exceed what is found in the null model into the same community, such that
the internal connection density will maximally exceed the internal density of the null model. This
ultimately produces a modularity statistic (“Q”), which measures the extent to which communities
or subgraphs exhibit segmentations/clustering (higher Q = higher modularity; Betzel & Bassett,
2016; Newman, 2006). Because the algorithm is non-deterministic and can only approximate
maximal modularity, we repeated the process 100 times per participant per imaging task to increase
statistical robustness, and used consensus clustering to create a consensus community partition.
Modularity was thus calculated as average Q across the 100 iterations.

While some prior work has relied on binary representations of functional connectivity (i.e.,
nodes that are correlated above some threshold are said to be connected, those below it are not),
binarizing functional connections may introduce a number of statistical complications, such as the
need to create matrices over multiple thresholds as well as the loss of potentially meaningful
negative correlations (Rubinov & Sporns, 2011). In order to avoid these consequences and more
fully characterize functional networks, we used the original weighted functional connectivity
matrices to obtain modularity estimations. Consistent with recommended procedures (Rubinov &
Sporns, 2011), Q was calculated using a negative asymmetrical weight that treats negative
correlations as auxiliary to positive correlations, as the latter more directly relate to modular

organization (i.e., positive correlations among nodes directly indicate that those nodes correspond
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to a module whereas negative correlations can only dissociate nodes from modules). We therefore

defined modularity (here, Q") as
* 1 + + 1 " =
Q" = FZ(WU - eij)6MiMj - WZ(WU - eij)5MiMj
i 0

where the left side of the equation shows the calculation of modularity for positive connections

only (Q"): Zi]-(wlf; - e;;-) is the average difference between observed within-module positive

R

connection weights, w;j, and those expected by chance. e[}; O, M= 1 when nodes i and j are in

the same module and 0 when they are not; the positive-weight scaling factor, i+, adjusts Q™ to fall
v

between 0 and 1. The right side of the equation reflects calculation of Q-, modularity based on

1
vty

Note that the difference in the

negative weights, rescaled by the total connection weight,

scaling factor for Q" and Q- is used to place less weight on the role of negative connections in the
calculation of Q.

Further, it is evident from the above calculation that modularity is heavily influenced by
“lower level” network features. That is, the number (and average weight) of positive and negative
edges strongly influence the overall calculation of Q. In order to better understand the influence of
these network characteristics, we retained the number and average weight of positive and negative
edges for each participant. These values were plotted against Q (Table S2), and were considered
for use as additional covariates in subsequent linear regression models.

Crucially, modularity exists over multiple scales, meaning that within any one community
there are a number of smaller, segregated communities, and that these communities within
communities also display modular organization. One notable shortcoming to modularity
maximization stems from what is known as the resolution limit — an insensitivity to this inherently

hierarchical organization. Theoretically, one could choose to “cut” at any point and observe the
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extent of segmentation at that point. The resolution parameter, y (Reichardt & Bornholdt, 2006),
can be used to mitigate this issue. By changing vy, one is able to vary the threshold for segmenting
the brain into communities of different sizes (Betzel & Bassett, 2016). When y < 1, modularity
maximization detects larger (and fewer) communities, resulting in a higher value for Q; when y >
1 the algorithm produces several smaller communities and a smaller Q statistic (Fig. 1). Although
we did not have an a priori reason to focus on modularity at any particular scale in the present
study, we calculated Q across a range of y — from 0.5 to 2.0 in increments of 0.5 — to provide a
more complete picture of participant modularity. Modularity calculations were performed using

functions in Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/; Rubinov & Sporns,

2010). All custom MATLAB code used for analyses supporting the results of the present study are

available on the Open Science Framework (https://osf.io/naj3y/).

= y=05 y=1.0 y=2.0

Nodes Nodes Nodes Nodes

Figure 1. Toy graph of modularity over multiple scales. A functional connectivity matrix (left) is used
to obtain a modularity statistic (Q). Using the resolution parameter, y, modularity is calculated over varying
scales (right). As y increases, the number of communities increase while the size of the communities
decreases.

Nodes
Nodes

Correlation

Nodes
Nodes
[EEE N
Communities

Results
Modularity during rest and task conditions
We used the technique of modularity maximization to estimate modular organization at
rest and during two task conditions (reasoning, MRT) across four resolution parameters (y from
0.5 t0 2.0, at 0.5 intervals; Fig. 1). As y increases, Q is expected to decrease because the modularity

maximization algorithm is biased towards more (and smaller) communities.
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We first investigated whether the task conditions altered modularity by comparing Qgrest
with QReasoning and Qmrr. Across all resolution parameters, paired t-tests revealed that modularity
was significantly higher at rest than during reasoning (all #(63) > 9.60, p < 0.0001; Fig. 2A), with
the nominally greatest difference at y = 0.5 (Qrest = 0.57, SD = 0.04; QRreasoning = 0.49, SD = 0.05).
This result suggests that task demands during reasoning caused a reconfiguration of — and decrease
in — intrinsic (i.e., resting-state) modular organization. Qrest Was also significantly greater than
Qwmrr for y = 0.5 (#69) = 3.71, p = 0.004) and y= 1.0 (#(69) = 2.55, p = 0.01), but not for y = 1.5
(#(69)=1.73, p=10.09) or y =2.0 (1(69) = 1.43, p = 0.16).

Because of the observed differences across y, we next explored whether task-based
reconfigurations in modularity varied based on the resolution parameter. In other words, is resting-
state modularity more similar to task-based modularity at different y? A two factor repeated
measures ANOVA indicated that this was the case; the model revealed a significant 4 (Resolution
Parameter: 0.5, 1.0, 1.5, 2.0) X 2 (Scan Condition: Rest vs Task) interaction for both reasoning (¥
=43.50, p <0.0001) and MRT (F' = 17.62, p < 0.0001). Thus, modularity was lower during task
conditions than rest, but this effect was the largest when the modularity maximization function
was biased towards fewer and larger communities (i.e., at lower vy).

We next investigated whether Qrest was correlated with Qgreasoning Or QMRT to assess
correspondence between resting-state and task-based modularity (Table 1). Across all four
resolution parameters, resting-state modularity was unassociated with QRreasoning (all » < 0.12, p >
0.34) or Qwmrr (all » <0.15, p > 0.23). By contrast, modularity during the two task conditions was
strongly correlated at all levels of y (all » > 0.34, p < 0.005). A post-hoc seemingly unrelated
estimate (suest) tested indicated that the association between Qreasoning and Qwmrr did not vary

across ¥ (Qy=1.5vs. Qy=2.0: x> = 3.65, p = 0.06; all other comparisons: ¥*> < 1.60, p > 0.20).
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Taken together, these results indicate that task demands during reasoning and MRT led to
a decrease in modular organization — with the greatest effects for y < 1.0. Modularity during the
completion of both tasks showed little correspondence to modularity at rest, but the strong
correlations between Qreasoning and Qmrt suggest that individuals may exhibit similar modular

organization across different task conditions.

A
0.65 y=0.5 y=1.0 y=1.5 v=2.0
. . Rest
g 0.55 .Reasoning
_éﬁ . Mental Rotation
S o4
e}
o
=
0.35
0.25
B

Nodes

Nodes
Figure 2. Modularity across resolution parameter and task conditions. Modularity scores (Q) were
obtained over a range of resolution parameters for rest, reasoning, and mental rotation. The inverse
relationship between Q and y is demonstrated. (A) Q highest during rest relative to both task conditions,
with the largest differences observed at lower resolution parameters (y). (B) Average Q for full sample
during rest; increasing y yields more, smaller communities. Community assignments for each node in SI.

Relationship between modularity and task performance

We next investigated whether individual differences in modularity were related to variation
in task performance. Pairwise correlations indicated that — across all levels of y — QRreasoning Was
unassociated with reasoning task performance (all » < 0.17, p > 0.18; Table S3). For MRT,
however, we observed a weak, positive association between modularity and MRT performance

across all levels of y (0.20 <r < 0.28; 0.02 <p <0.11; Table S3).
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Zero-order correlations between brain and behavior are fairly common for fMRI studies of
individual differences (Power et al., 2012, 2015). However, to obtain a more precise estimate of
the relationship between modularity and task performance, we next ran a linear multiple regression
model to predict MRT performance in which we controlled for a number of additional variables.
First, the model included covariates for socioeconomic status (SES; estimated via mother’s
education), race, and gender because functional connectivity has been previously shown to vary
by these demographic factors (Satterthwaite et al., 2015; Sripada et al., 2014; Tomasi & Volkow,
2012; Ursache & Noble, 2016; Zhang et al., 2018). We also controlled for participant-level mean
framewise displacement to account for in-scanner head movement, which can have substantial
impacts on estimates of functional connectivity (Ciric et al., 2017, 2018; Cole et al., 2014;
Satterthwaite et al., 2013; Satterthwaite et al., 2012) and differentially affect different brain
networks (Van Dijk et al., 2012), even after common denoising pipelines (Ciric et al., 2017, 2018;
Van Dijk et al., 2012). There is also evidence to suggest that in-scanner movement may be
associated with a wide range of behavioral and demographic measures, including fluid intelligence
and verbal ability (Siegel et al., 2017). Finally, we sought to control for lower-level network
features that were used to calculate modularity but were not of central interest to the hypothesized
relationship between modularity and behavior. To this end, we included the average functional
connectivity strength of negative edges as an additional covariate regressor. Note that because
positive and negative connections were strongly, inversely related to each other, it would have
been inappropriate to include both in the linear regression models. Correlations between
modularity and several lower level network features are indicated in Table S2.

In this regression model (for modularity at y = 1, see Table S4 for similar findings at other

resolution parameters), QmrT was no longer a significant predictor of MRT performance (f = -
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0.12, p = 0.56), but mean framewise displacement was (f = -0.41, p = 0.003). Thus, participants
who moved less in the scanner performed better on the task. These results suggest that the bivariate
association between Qmrt and MRT performance may actually reflect differences in framewise
displacement, consistent with recent work reporting associations between movement and cognitive
performance (Siegel et al., 2017). That is, because framewise displacement was negatively
correlated with both Q (»=-0.30, p = 0.009) and MRT performance (i.e., less movement associated
with better performance; » = -0.28, p = 0.02), QmrT Was positively correlated with performance.
Broadly, these results highlight the importance of controlling for in-scanner movement to more
precisely estimate the relationship between brain and behavior.

Table 1. Correlations between modularity, GPA, and PSAT scores

QRrest QRest QRest Qrest  QRreasoni Q Qreasoning Q) Qwrr  Qwrr  Qwrr  Qwrr GPA
y=05 y=10 y=15 y=20 =05 y=1.0 y=15 y=20 y=05 y=10 y=15 =20
Qrest Y= 1.0 0.91%* -
Qrest Y= 1.5 0.78%* .94
Qrest Y =2.0 0.73%%  0.88%*  (0.95%* -
Qreasoning ¥ = 0.5 0.12 0.05 0.05 0.04 -
Qreasoning ¥ = 1.0 0.12 0.08 0.08 0.08 0.96** -
Q~reasoning ¥ = 1.5 0.12 0.09 0.10 0.11 0.90%* 0.97** -
Qreasoning ¥ = 2.0 0.07 0.06 0.08 0.10 0.85%* 0.92%* 0.96%* -
QwrrY=0.5 0.07 0.05 0.05 0.03 0.37% 0.37* 0.35% 0.41%* --
Qwrry=1.0 0.14 0.11 0.11 0.10 0.37% 0.38% 0.37% 0.41%*% [ 0.95%* -
Qwrry=15 0.12 0.10 0.12 0.12 0.39% 0.39% 0.39% 0.43%% [ 0.91%%  0.98** -
QvrrY=2.0 0.10 0.10 0.13 0.13 0.42%* 0.43%* 0.42%* 0.47+%% [ 0.89%*  0.95%%  0.98** -
GPA 0.04 0.00 0.03 0.05  0.45%* 0.52%% 0.47%* 0.44%% 026 023  024f 0.6} -
PSAT -0.10  -0.10  -0.04  -0.09 0.283 0.30% 027} 0.25 0.23 0.13 0.13 0.14  0.60%*

Note: ** p <0.001, * p <0.01, { p <0.05, uncorrected

Relationship between modularity and academic learning and ability

Given prior work establishing a positive association between modularity and intelligence
(Barbey, 2018; Chiappe & MacDonald, 2005; Finn et al., 2015; Hilger et al., 2017, 2020, see
Kruschwitz et al., 2018 for alternative account) and learning (Arnemann et al., 2015; Baniqued et

al., 2018; Duncan & Small, 2016; Gallen et al., 2016; Gallen & D’Esposito, 2019), we examined
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whether modularity was related to PSAT scores (i.e., academic ability) and GPA (i.e., a proxy for
academic learning).

We found no evidence of an association between resting-state modularity and academic
ability; PSAT scores were uncorrelated with Qrest at all resolution parameters (all » < 0.05, p >
0.41; Table 1). Similarly, student GPA — an broad index of academic learning (Duff et al., 2004;
Komarraju et al., 2011) — was uncorrelated with Qrest (all # < 0.04, p > 0.69; Table 1, Fig. 3). These
findings run counter to perspectives that suggest that modularity — especially modularity during
resting-state fMRI — may be a biomarker of learning or intelligence (Barbey, 2018; Gallen &
D’Esposito, 2019), but do adhere with a large sample study (N = 1096) in which the authors found
no association between global network measures of resting-state functional connectivity and
intelligence (Kruschwitz et al., 2018).

Although resting-state modularity was unassociated with PSAT scores or GPA, we next
investigated whether academic ability or learning was associated with fask-based modularity.
Pairwise correlations revealed a positive correlation between QRreasoning and academic ability (PSAT
scores; Y =0.5to 1.5: all »>0.26, p < 0.05; y=2.0: » = 0.25, p = 0.06), as well as an even stronger
association between QRreasoning and GPA (i.e., a proxy for academic learning; all » > 0.43, p <
0.0007; Table 1, Fig. 3). We also observed a nominally positive — although non-significant —
association between Qmrt and PSAT scores (all » > 0.12, p > 0.07, Table 1). QmrT Was also
correlated with GPA across all resolution parameters (all » > 0.23, p <0.06; Table 1, Fig. 3).

Given evidence that task-based modularity was associated with estimates of academic
ability and learning but resting-state modularity was not, we next asked whether this difference
was significant. That is, were QRreasoning Or QmrT significantly more correlated with PSAT scores

and GPA than was Qrest? Another series of suest tests indicated that QRreasoning Was significantly
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more correlated with both GPA (¥*>=15.78, p = 0.0001) and PSAT scores (y*> = 8.35, p = 0.004)
than was Qrest (results reflect Q at y=1; results at other resolution parameters indicated in Table
S5). Qmrt was also more strongly correlated with GPA and PSAT scores than was Qrest at a trend
level (GPA: ¥*=2.91, p=0.09; PSAT: y>=2.67, p = 0.10).

Lastly, we ran a series of additional linear multiple regression models using the same
covariates as those previously described to predict GPA and PSAT scores (i.e., demographic
information, task-specific framewise displacement and functional connectivity strength of
negative edges). Note that regression models reported here examined modularity for y = 1 (see
Table S6, S7 for results at other resolution parameters).

Regression models indicated that QmrT was no longer associated with PSAT scores (f = -
0.09, p=0.72) or GPA (f = 0.23, p = 0.33; Table S7). Post-hoc analyses, however, indicated that
the effect size of Qmrr in the regression model to predict GPA was not significantly different than
that observed in the zero-order correlations (y?><0.01, p = 0.97). Thus, the loss of significance
likely stems from fewer degrees of freedom in the multiple regression model. QReasoning Was not a
significant predictor of PSAT scores in a multiple regression model (f = -0.16, p = 0.46), but
remained a significant predictor of GPA (f = 0.42, p = 0.04; Table S6, Fig. 3). Taken together,
these results indicate that modularity — particularly during task conditions — may be associated

with GPA, a broad index of academic learning.

24



bioRxiv preprint doi: https://doi.org/10.1101/2022.01.06.475275; this version posted January 6, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Rest Mental Rotation Reasoning

4.0

3.6

GPA

3.2

.40 .45 .50 .55 .30 .40 .50 .60 .30 .35 .40 45 .50

Modularity (Q)

Figure 3. Associations between modularity and GPA. All plots display results at y = 1.0. For all plots,
red line indicates standardize beta for Q in multiple regression model. No association between GPA and Q
during rest, but a positive correlation was observed for both task conditions. Note that, while Qumrt Was not
significantly associated with GPA (p = 0.33), the magnitude of the effect was similar as observed in the
zero-order correlations. 95% CI indicated for zero-order correlations. See Tables S6, S7 for results across
all resolution parameters.

Discussion

In this study, we examined modularity across different resolution parameters and task
conditions, as well as the extent to which modularity related to task performance and indices of
academic learning and ability. We found that modularity was higher at rest than during task
conditions, and that the magnitude of this difference was largest when modularity calculations
were biased towards larger and fewer communities (i.e., y < 1.0). Results further indicated that
Qrest was unassociated with task-based modularity. That is, there was little correspondence
between resting-state modularity and modular organization when completing cognitive tasks. By
contrast, we observed strong correlations between Qmrt and QRreasoning, suggesting that individuals
may exhibit similar levels of modularity across different task conditions. Individual differences in
modularity were unrelated to task performance, but showed associations with GPA as a proxy for
academic learning (participants with higher modularity during both task conditions had higher
GPAs).

Modular organization, the clustering of network nodes into multiple and distinct subgraphs

(Genon et al., 2018; Lorenz et al., 2017; Newman, 2006; Power et al., 2011; Sporns & Betzel,
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2016; Yeo etal., 2011; Toga et al., 2006), is thought to allow for flexible adaptation and integration
through the rearrangement of pertinent subnetworks in response to task demands (Kashtan et al.,
2007; Kashtan & Alon, 2005; Wig, 2017). That is, tasks induce a reconfiguration of intrinsic
functional modules. If this is true, then one would expect to see a reduction in brain-wide
modularity when an individual is engaged in a task because otherwise-segregated subgraphs must
communicate in order to execute the relevant goals or objectives. Indeed, task-based reductions in
modularity have been frequently reported (e.g., Cohen & D’Esposito, 2016; Di et al., 2013; Finc
et al., 2017, 2020; Kitzbichler et al., 2011). The present study provides further support for task-
induced decreases in modularity; modularity was higher at rest than during reasoning or MRT.
Brains are hierarchical (Bassett & Bullmore, 2006; Betzel et al., 2017; Betzel & Bassett,
2016; Reichardt & Bornholdt, 2006), meaning that the community organization at one level is
nested within larger levels of organization. For example, at a coarse level, one could consider the
two hemispheres to reflect discrete communities. Moving down to finer granularity, modules are
reflected in separable functional networks (e.g., frontoparietal network), smaller sub-networks
(frontal, parietal), gray matter nuclei, and even cell columns (Sporns, 2010). Therefore, it is
important to estimate global network statistics (i.e., modularity) over different scales because
organizational properties may be meaningfully different for larger communities (i.e., at lower
values of the resolution parameter, y) than for smaller communities contained within them (i.e., at
higher values of y). Intriguingly, the extent of the above-mentioned task-based decreases in
modularity varied as a function of community size; we observed larger differences between rest
and the two task conditions when estimating the modular organization of larger communities
compared to the differences observed for smaller communities. The modularity statistic (Q) is

positively associated with community size (i.e., Q is larger when derived from larger
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communities), thus the discrepancy between rest and task conditions shrunk alongside decreasing
modularity. That is, differences between Qrest and Qrask were less pronounced for smaller
communities. This result may stem from the finding that resting-state subgraph
intercommunication is already high when estimating the network organization of smaller
communities (as evidenced by lower Q). Task demands are associated decreased segregation of
resting-state functional networks (Cole et al., 2014; Medaglia et al., 2015; Power et al., 2011; Yeo
et al., 2011), but the relative extent of this departure is less when the intrinsic communities are
already interconnected. Said differently, results of the present study indicate that as one moves
further down the hierarchy of functional organization in the brain, task-induced changes in
modularity decrease in magnitude.

This is not to say, however, that alterations (or lack thereof) to smaller communities are
meaningless. Rather, in order to quantify how a given task influences the organization of functional
brain networks, it is necessary to identify the resolution at which such effects should be observed.
By moving up and down the brain’s organizational hierarchy, we become better able to make such
determinations. The present findings suggest that that brain’s modular organization at finer scales
is fairly robust to external demands induced by cognitive tasks, whereas coarser communities are
more subject to task-based reorganization. Future network neuroscience work should keep such
considerations in mind when examining associations between community organization and other
variables of interest.

Consistent with the putative relationship between modularity and adaptability (Anderson
& Finlay, 2014; Bassett & Bullmore, 2006; Mattar et al., 2018; Meunier et al., 2009), a growing
number of studies have indicated that modularity may be a biomarker of learning (Arnemann et

al., 2015; Baniqued et al., 2018, 2019; Chaddock-Heyman et al., 2020; Duncan & Small, 2016;
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Gallen et al., 2016; Gallen & D’Esposito, 2019). Results from the present study lend some support
to these perspectives. Most notably, we observed a significant positive association between task-
based modularity and GPA — a reasonable proxy for academic learning (Duff et al., 2004;
Komarraju et al., 2011). Even after controlling for a number of potentially confounding variables,
including demographic information, in-scanner movement, and other functional network
characteristics, the association between modularity during the reasoning task and GPA remained
significant. For MRT, although modularity was no longer significantly predictive of GPA, the
magnitude of the effect size in the multiple regression model was not significantly different than
in the zero-order correlations, suggesting that the reduction in significance stemmed from fewer
degrees of freedom.

The present findings differ from past work in a number of ways. First, to our knowledge,
the extended classroom-based learning in the present study is qualitatively distinct from prior
work examining modularity and learning, which has been restricted to comparatively shorter
interventions. GPA — used in the present study as a proxy for academic learning — is subject to a
host of additional factors including motivation, attendance, and effort (Goldman & Widawski,
1976; Noble & Sawyer, 2004; Stiggins et al., 1989). On the one hand, this complicates the
specificity of the present findings as the observed effects could be attributed to any combination
of these variables (and several others). However, given the influence of high school GPA on later
life achievement (French et al., 2015; Noble & Sawyer, 2004; Noble & Sawyer, 2002; Sawyer,
2013; Schulenberg et al., 1994), identifying its neural correlates is likely to be of interest to
educators and policy-makers, and may have additional value if it can provide insights beyond what
can be obtained through behavioral assessments alone (Bruer, 1997; Goswami, 2009; Supekar et

al., 2013). More broadly, to better understand the relationship between brain organization and
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learning, this association should be investigated for contexts in which learning matters most (i.e.,
in the real-world and schools).

Another novel contribution of the present study is that the strongest associations between
learning and modularity were obtained during reasoning and MRT; GPA was strongly associated
with task-based modularity but showed no relationship with modularity during the resting scan.
These findings run counter to a body of work that has identified associations between resting-state
modularity and learning (Arnemann et al., 2015; Baniqued et al., 2018, 2019; Chaddock-Heyman
et al., 2020; Duncan & Small, 2016; Gallen et al., 2016; Gallen & D’Esposito, 2019). Because
modularity was higher at rest than during either of the task conditions, our findings suggest that
additional insights may be gained by considering the extent to which one is able to maintain
intrinsic, resting-state modularity despite competing task demands. Note, however, that additional
analyses involving a “difference score” (i.e., task-based modularity subtracted from resting-state
modularity; see SI) were redundant with those obtained using task-based modularity alone.
Therefore, it is unclear whether the amount of change from intrinsic (i.e., resting-state) functional
organization can offer unique insights beyond modular organization during the task itself.
Regardless, the present findings indicate that task-based modularity may be a better candidate
neural biomarker of academic learning than modularity at rest, although it remains important to
control for demographics, in-scanner motion, and lower-level network features.

We also examined associations between modularity and PSAT scores. As noted above,
GPA is likely to reflect a number of factors including academic ability and intelligence, but it also
clearly relates to learning as well (Duff et al., 2004; Komarraju et al., 2011). Learning is less related
to PSAT scores, which are generally believed to reflect academic ability and fluid intelligence

(Coyle, 2015; Lent et al., 1986). In contrast to results involving GPA, modularity was only weakly
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associated with PSAT scores. This result challenges prior research that has associated modular
organization with assessments of general intelligence (i.e., the Wechsler Abbreviated Scale of
Intelligence; Hilger et al., 2017, 2020; Weschler, 2011) and memory (Stanley et al., 2014; Stevens
etal.,2012; Wig, 2017). At least one recent study, however, concluded that resting-state functional
connectivity shows little correspondence with intelligence (Kruschwitz et al., 2018). It is plausible
— although speculative — that these discrepant findings could be due to publication bias: research
groups that identify associations between modularity and intelligence publish their results, but
researchers who fail to identify such relationships in their own datasets do not. Indeed, many
leading scientific publishers have specifically highlighted the value of publishing — rather than
effectively burying — “null” or “negative” results (“Rewarding Negative Results Keeps Science on
Track,” 2017). Given the increased use of graph theoretic techniques to examine the brain bases
of multifaceted psychological constructs (e.g., Barbey, 2018; Bassett & Mattar, 2017; Gallen &
D’Esposito, 2019), there is an especially pressing need for transparent reporting within network
neuroscience. Mitigating publication bias has been shown to improve replicability (Dwan et al.,
2008; Szucs & loannidis, 2017), especially with smaller samples (Button et al., 2013).

One notable limitation of the present study is that the resting scan was only five minutes in
duration. Although this is reasonably consistent with prior work that has related modularity to
intervention-related gains (e.g., Arnemann et al., 2015; Baniqued et al., 2018; Gallen et al., 2016),
the effect of scan duration can impact functional connectivity estimates. Specifically, scans of 12
minutes or longer are substantially more reliable than 5-7 minute scans (Birn et al., 2013). Because
both task conditions were of a sufficient duration to allow for stabilization of functional networks
(Van Dijk et al., 2009), it is plausible that results from a longer resting-state scan would have

yielded comparable results to the task conditions.
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To conclude, the present study investigated modular organization at rest and during two
task conditions. We observed higher modularity at rest than during task, with the most pronounced
differences for larger functional communities. We also investigated the extent to which modularity
related to real-world learning (i.e., in schools), extending prior work that has relied on shorter
and/or lab-based training paradigms. Although resting-state modularity was unassociated with
academic learning, we found that participants with higher task-based modularity had higher GPAs.
Future work should continue to explore the implications of brain network organization on learning
in real-world context, and should pay particular attention to differential associations of resting vs.
task-related connectivity.
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