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ABSTRACT: Single atom catalysts (SACs) have emerged as a
promising catalyst material architecture for energy, chemical, and
environmental applications. In the past several years, SACs have
been increasingly explored for persulfate-based advanced oxidation
processes (AOPs) due to their superior persulfate activation and
pollutant degradation performance compared to benchmark
dissolved ion and nanoparticle catalysts. However, there still
exist uncertainties on the mechanism of persulfate activation by
SACs, which involves a complex interplay of sulfate and hydroxyl
radicals, singlet oxygen, high-valent metal species, and/or mediated
electron transfer. Questions also remain as to how persulfate ions
molecularly align on the single atom site, how persulfate ions are converted into reactive species, and what design parameters lead to
higher efficiency for persulfate activation and pollutant degradation. In this critical review, we examine past SAC materials employed
for persulfate-based AOPs and discuss how they function differently compared to their ion and nanoparticle counterparts. We further
our discussion on current limitations, opportunities, and future research needs in (i) filling the knowledge gaps in the mechanisms of
persulfate-SAC interactions; (ii) augmenting fundamental research with theoretical simulation and in situ characterization
techniques; (iii) improving material design tailored for environmental applications; and (iv) proactively considering the challenges
associated with engineering practices and complex water matrixes.
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■ INTRODUCTION
Since the first introduction in 1987,1 advanced oxidation
processes (AOPs) have been extensively studied and widely
adopted to oxidatively destroy non-biodegradable and recalci-
trant organic pollutants that are not effectively removed by
conventional water treatment processes. To date, various AOPs
have been developed, including Fenton, photocatalytic, and
electrocatalytic systems.2 Several precursor chemicals have been
applied, including hydrogen peroxide (H2O2),

3,4 persulfates
such as peroxymonosulfate (PMS, HSO5

−) and peroxydisulfate
(PDS, S2O8

2−),5 sulfite (SO3
2−),6 and chlorine (Cl2/HOCl).4,7,8

Among these, persulfate-based AOPs have been increasingly
considered as a viable alternative to conventional H2O2-based
AOPs due to their advantages, including longer half-life (30−40
μs) and higher oxidation potential (E0(SO4

•−/SO4
2−) = +2.60∼

+3.10 VNHE) of sulfate radicals (SO4
•−) than hydroxyl radicals

(•OH, half-life = 1−100 ns,9,10 E0(•OH/OH−) = +1.90 ∼ +2.70
VNHE),

11,12 high radical formation yield,13 less dependence on
pH,14,15 and lower cost for storage and transportation of
persulfate salt than H2O2 solution.

5 To date, persulfate-based
AOPs have been explored to oxidatively remove a wide range of
organic pollutants such as polychlorinated biphenyls (PCBs),16

polycyclic aromatic hydrocarbons (PAHs),17 petroleum hydro-
carbons,18 antibiotics,19 pesticides,20 phthalates,21 and pharma-

ceuticals and personal care products (PPCPs) in various water
remediation scenarios.22

To activate persulfate and in situ produce reactive radicals
such as SO4

•− and •OH, both metal ions (homogeneous AOP)
and metal nanoparticles (heterogeneous AOP) have been
typically used as catalysts. For homogeneous catalysis, metals
are applied either as ions (e.g., Fe2+/Fe3+,23 Co2+/Co3+,24 Cu+/
Cu2+25) or complexed with chelating organics such as citric acid
and ethylenediaminetetraacetic acid (EDTA) to form organo-
metallic complexes (Figure 1a).26 The efficient contact between
soluble catalysts with persulfate as well as between reactive
radicals and target pollutants under mixing accounts for
generally higher kinetics in homogeneous catalysis than
heterogeneous catalysis. The main disadvantage of homoge-
neous catalysis is the difficulty of collecting and recycling soluble
catalysts after use.
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In comparison, heterogeneous metal nanoparticles have
received great interest due to the ease of recycling the catalysts
which are often immobilized onto a larger substrate (Figure 1b).
The localized reaction on the substrate surface makes it possible
to tune the reaction mechanisms, pollutant adsorption, and
degradation kinetics via surface modification. Another advant-
age of loading catalysts onto conducting substrates is to enable
AOPs electrochemically.27 The mechanisms of persulfate
activation by heterogeneous metal nanoparticles have been
proposed to include mediated electron transfer in addition to
mechanisms that are also found in homogeneous catalysis such
as the radical pathway (SO4

•− and •OH), singlet oxygen (1O2)
formation, and high-valent metal species induced oxidation.28,29

However, nanoparticle catalysts suffer from relatively low atomic
efficiency compared to homogeneous catalysis since a large
fraction of metals are embedded within the particles instead of
being exposed to reaction media and, therefore, cannot
participate in the catalysis.
Single atom catalysts (SACs) have emerged as an alternative

material architecture in recent years (Figure 1c) that retains the
benefits of both homogeneous and heterogeneous catalysts.30,31

The concept of SACs is to anchor metal catalysts on the
substrate via strong ligand binding in an atomically dispersed
fashion, eliminating metal−metal interactions and fully exposing
each atom to the reaction media.32 Consequently, the 100%
atomic efficiency of SACs mimics the homogeneous catalysts,
while the presence of substrate enables facile recovery like
heterogeneous catalysts. Due to the strong atomic interaction
with the support, single atoms are generally more stable than
their nanoparticle counterparts during chemical reactions.33−36

SACs have demonstrated extraordinary reactivity and selectivity
in various reactions such as the oxygen reduction reaction
(ORR),37 hydrogen evolution reaction (HER),38 and CO2
reduction reaction (CO2RR)

39 that are critical for energy and
sustainability.
SACs have also been explored for catalytic pollution

remediations including hydrodehalogenation,40−42 oxyanion
reduction,43,44 and AOPs.45−48 These interests were triggered

by a few uniquely advantageous features of SACs for
environmental applications: (i) SACs achieve faster kinetics
than nanoparticles when normalized per mass of catalysts; (ii)
SACs are generally more cost-effective than nanoparticle
counterparts, as they are often synthesized using similar
methods with nanoparticles but using much less materials;
(iii) SACs often exhibit enhanced reaction pathway selectivity,
which is critical for the removal of target pollutants in a complex
water matrix; (iv) SACs are typically more aqueous stable than
nanoparticle counterparts due to the strong covalent bond with
the substrate, lessening the environmental concern of material
leaching; and (v) relatively simple and scalable synthesis of
many SACs on various substrates, which can be readily executed
by environmental scientists who have gained experience in
nanomaterial synthesis and characterization over the past couple
of decades. A prospect to realize these benefits has triggered
recent attention on employing SACs for heterogeneous AOPs,
persulfate-AOPs in particular.
However, realizing all the above foreseen benefits has a long

way to go, since SAC research overall is still at an early phase. An
increasing number of studies were published in the past few
years, mostly focusing on synthesizing new SAC materials for
persulfate-AOPs (Figure 1c inset and Table S1) and including
literature reviews on recent progress with SAC-persulfate
AOPs.49−51 We recognize that there are still uncertainties and
different views on the mechanisms of persulfate activation by
SACs, especially the differences between SACs and nano-
particles. We here examine past literature to first review the
methods and techniques that have been employed to synthesize
and characterize SACs and their application toward persulfate-
based AOPs. We then further our discussion on detailing various
SAC-persulfate interaction mechanisms, particularly built
around the mechanisms on how persulfate would interact with
SACs differently from nanoparticle counterparts. We conclude
our critical review by discussing existing challenges and
proposing some critical research directions to further advance
this technology.

Figure 1. Schematic comparing (a) homogeneous ions, (b) heterogeneous nanoparticles, and (c) single atom catalysts for persulfate activation.
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■ SAC SYNTHESIS AND CHARACTERIZATIONS
Metal and Support Choice. Similar to nanoparticles used

for persulfate activation, transition metals (TMs) are commonly
used for SACs, including Co,40,52−56 Fe,34,57−60 Cu,61,62 Mn,63

Ni,63 Ag,64 and Ru65 (Figure 2a). Cobalt and iron are the two
most studied SACs for persulfate activation due to their proven
catalytic activities. Noble TMs such as Pd and Pt can also
activate persulfate28 but have rarely been studied in the form of
SACs. Carbon-based materials are commonly used as substrates
to host SACs, since they provide ample anchoring sites (e.g.,
surface defects, vacancies) and their surface properties can be
tuned by functionalization, heteroatom doping, coating, and/or
hierarchical structuring to improve binding. The relatively high
electrical conductivity of saturated carbon materials can also
facilitate the electron transfer through the catalytic site, which is
beneficial for persulfate activation by mediated electron transfer
(discussed below).66,67 Examples include graphitic car-
bon,56,57,68 reduced graphene oxide (rGO),61 carbon nitride
(C3N4),

52,64,69,70 carbon nanotubes (CNTs),59 MXene,71 metal
organic frameworks (MOFs) such as zeolitic imidazolate
framework (ZIF),60,72,73 covalent organic frameworks
(COFs),74 and biochar.34,62 The electronic properties (e.g.,
conductivity), surface functional groups, and physical structures

(e.g., from one to three dimensions) of these carbon supports
have been shown to affect SAC-persulfate interactions.49,59,75,76

Besides carbon-based supports, semiconductors such as TiO2
77

and MoS2
78 have also been employed for SAC-enhanced

photocatalytic activation of PMS. Other materials such as metal
oxides (e.g., MgO, FeOx, ZnO, WO3, CuO, Co3O4, Al2O3,
CeO2)

79 and metal nanoparticles80 have been widely used to
support SACs in various application fields but not yet for the
SAC-persulfate system.

SAC Synthesis Methods. We here briefly summarize
methods to synthesize SACs, while a more comprehensive
review can be found in previous literature.81−88 SACs
synthesized by some of these approaches have been applied
for persulfate AOPs, while many other approaches remain
unexplored. In general, two strategies have been used in
fabricating SACs: the “bottom-up” and the “top-down”
approaches. The key difference between these two approaches
lies in whether a mononuclear metal or a metal nanoparticle is
used as the precursor.89

The bottom-up approach is more widely used, as it ensures
that each atom is intrinsically separated from the beginning.
Mononuclear metal precursors are loaded onto the support via
adsorption, complexation, chelation, or π−π stacking, typically
using wet chemistry, and then followed by final high-temper-

Figure 2. (a) Metal and support choices of SACs for persulfate-AOPs. MXene structure: adapted with permission from VahidMohammadi et al.131

Copyright 2021, The American Association for the Advancement of Science. MoS2 structure: adapted with permission from Ghim et al.132 Copyright
2021, American Chemical Society. MOF structure: adapted with permission fromDing et al.133 Copyright 2017, Wiley-VCH. COF structure: adapted
with permission from Côte ́ et al.134 Copyright 2005, The American Association for the Advancement of Science. (b) “Bottom-up” SAC synthesis
methods. The “spatial confinement” schematic: adapted with permission from Chen et al.135 Copyright 2017, Wiley-VCH. (c) “Top-down” SAC
synthesis methods. (d) Schematic illustrating XAS working principles. (e) Schematic illustrating HAADF-STEM working principles.
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ature pyrolysis90 or room temperature reduction by reducing
chemicals91,92 or irradiation93,94 (Figure 2b). To avoid the
aggregation of single atoms, a low weight percentage of metal
over support is used (typically <1%). Several strategies have,
therefore, been developed to increase metal loading:

(i) Electrostatic Interaction. Some supports intrinsically have a
large number of surface functional groups which can serve
as SAC binding sites. For example, at pH > pHiep, GO’s
abundant negatively charged carboxylic groups (COO−)
can anchor positively charged TM ions.95 As another
example, negatively charged 2D Ti3O7

2− in the titanate
precursor effectively binds with [Pt(NH3)4]2+, a precursor
for Pt SACs.96 The substrate can also be modified with
surface linkers to offer better electrostatic interactions
with metal precursors. For example, aminosilane is widely

used to modify surfaces containing hydroxyl groups to be
positively charged for binding with negatively charged
metal precursors.41,97,98

(ii) Substrate Doping. Doping a substrate with N, P, and S with
lone pairs of electrons can increase the coordination
capability of the substrate toward metal precursors.99,100

For example, Pt single atoms have been anchored onto N-
doped CNT via the strong coordination interaction of the
H2PtCl6·6H2O precursor with hetero N atoms.100

(iii) Chelation. Metal ions can be chelated with organic ligands
such as phthalocyanine, porphyrin, ortho-phenylenedi-
amine, and phenanthroline to form organometallic
complexes (i.e., analogous to homogeneous cata-
lysts),101−104 which can then either undergo direct
pyrolysis to form carbon-SAC hybrids102 or be loaded

Figure 3. (a) Four-step reactions of persulfate activation by catalysts. (b−e) Persulfate molecular interaction with (b) dissolved metal ions, (c) carbon
supports, (d) metal surfaces, and (e) SACs.
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onto other carbon supports such as carbon black or CNTs
via π−π stacking interaction.103,104

(iv) Spatial conf inement. The vacancy structure of MOFs and
COFs can serve as a template to confine SACs and avoid
their aggregation due to surface migration.105,106

In the top-down approach, metal−metal bonds in metal
nanoparticle precursors89 are broken down by acid wash-
ing,107,108 electrical corrosion,109,110 or high-temperature treat-
ment (typically >800 °C)36,111−114 to form single atoms on the
same support.89,114 Alternatively, an emitting-and-trapping
strategy has been utilized to volatilize metal nanoparticles to
single atoms, which are then trapped on a separate support
(Figure 2c). The support that traps volatile metal atoms
possesses abundant coordination sites or defects to form stable
binding with the metal atoms that pass by.33 An oxidizing
atmosphere (O2 or air) is often preferred to form oxidative metal
species.36,111 Ammonia atmosphere can also induce the
formation of volatile metal-NH3 complexes via Lewis acid−
base interactions.112,113

Characterization. X-ray absorption spectroscopy (XAS) is
considered essential to determine SACs’ oxidation states and
coordination environments and consequently confirm their
atomically dispersed states (Figure 2d).115 In contrast, X-ray
photoelectron spectroscopy (XPS), although it is widely used to
evaluate the oxidation states of metals in nanoparticles, is
generally not suitable for SAC analysis, since the beam energy
(e.g., 5 keV with a top-notch Cr Kα source) is too low for the low
metal content in typical SAC samples (e.g., <1 wt %). XAS is also
often operated in a fluorescence mode (i.e., in contrast to
transmissionmode), which is suitable to lowmetal loading (<3−
5wt %). X-ray absorption near-edge structure (XANES) analysis
provides information as to the oxidation states of metal atoms
from the white-line intensities and the edge energies.116

Extended X-ray absorption fine structure (EXAFS) analysis
provides information on the coordination environment of metal
atoms,117 often in comparison to bulk metal, metal oxide, metal-
N (e.g., M-Pc), and/or sulfide references.118 However, it is
generally difficult to distinguish low-atomic-number elements
such as C, N, O, and S from other similar elements.119 Further
curve fitting of EXAFS spectra based on standards provides the
coordination number and bond length.117 The Debye−Waller
factor needs to be considered in the EXAFS analysis to account
for the disorder from static and/or thermal origin, which limits
the accuracy of coordination numbers to be approximately
±20%.119 Another frequently used method to confirm the
occurrence of SACs is in situ Fourier-transform infrared
spectroscopy (FTIR) using CO as a probe molecule.120 The
CO adsorption signal on an SAC appears as one sharp
interaction peak (one CO on one metal atom).121 For
nanoparticles, the peak becomes wider with additional bridging
peaks (one CO on two contiguous metal atoms).122 In either
case, CO adsorption on substrates such as carbonmaterial could
complicate the interpretation.123,124

A visual confirmation using scanning tunneling microscopy
(STM) and high-angle annular dark-field scanning transmission
electron microscopy (HAADF-STEM) is another essential
technique to verify the presence of SACs. STM is commonly
used to characterize SACs on a secondary metal support (i.e.,
single atom alloy, SAA).125−127 HAADF-STEM (Figure 2e)81 is
used when SACs are loaded onto substrate with lighter elements
such as carbon, since the image intensity from eachmetal atom is
approximately proportional to the square of its atomic

number.128 Aberration correction of HAADF-STEM (AC-
HAADF-STEM) further enhances the contrast and resolution
by focusing the electron beam <1 Å.129 Since the area surveyed
by these high-resolution imaging techniques is extremely small, a
complementary analysis using lower-resolution TEM needs to
be carried out to fully exclude the possibility of nanoparticle/
nanocluster formation over a larger area. Besides the above-
mentioned techniques, other methods, such as XPS, Raman
spectroscopy, X-ray powder diffraction (XRD), and Mössbauer
spectroscopy, are typically employed to obtain complementary
information on the structures and properties of SACs and their
host substrates.85,130

■ PERSULFATE INTERACTION
Reaction Steps of Persulfate Activation. To examine

whether SACs can be an effective persulfate activator, it is
important to understand how persulfate interacts with catalysts
at the molecular level (Figure 3a). The different modes of such
interaction lead to different persulfate activation pathways and
kinetics. The first step of persulfate activation is the adsorption
of the persulfate ion onto the catalytic site at varying molecular
alignments (i.e., depending on which O atom of persulfate binds
with the metal atom). The second step involves either one or
two-e− transfer from the catalyst to persulfate. Unlike the
activation by external energy sources such as photons (UV
photolysis) or heat (thermolysis), the activation of persulfate
ions by metal catalysts involves electron transfer, which is the
key driving force to weaken the O−O bond. The third step is
molecular decay in which the electron transferred to the
persulfate ion eventually results in the breakage of the O−O
bond and the formation of reactive species such as radicals, 1O2,
and high-valent metal species (�M(n+2)+�O). The fourth step
is the detachment of surface-adsorbed persulfate decay
intermediates or products (e.g., moieties including SO4*,
*OH, O*, where the asterisk denotes species which can be
either radical or anion) from the catalytic site and its
regeneration.
We first define O atoms of persulfate molecules under

different categories (Figure 3a).40,136 PMS (HSO5
−, pKa2 =

9.3137) contains three types of O atoms: Oα: three terminal O
atoms bonded to the S atom; Oβ: one O atom bonded to both
the S atom and another O atom; and Oγ: the O atom at the
peroxide terminal, bonded to the H atom. The three Oα atoms
are in resonance, sharing a pair of delocalized electrons, and have
a relatively short S−Oα bond distance (1.435−1.444 Å).138 The
S−Oβ distance is 1.632 Å, and the Oβ−Oγ bond distance is 1.460
Å.138 PDS (S2O8

2−, pKa2 = −3.5139) contains two types of O
atoms: Oα: six terminal O atoms bonded to S atom; and Oβ: the
two O atoms bonded to both S and O atoms. The bond
distances are 1.427 Å for S−Oα, 1.644 Å for S−Oβ, and 1.497 Å
forOβ−Oβ.

138 The breakage of peroxide bonds�i.e., theOβ−Oγ
bond (estimated dissociation energy = 140−213.3 kJ·mol−1) in
PMS and the Oβ−Oβ bond (dissociation energy = 140 kJ·mol−1)
in PDS�is the key process leading to radical generation.140−142

However, they are different in that the Oβ−Oγ bond in PMS is
asymmetrical with a partial positive charge on the Oγ, while the
Oβ−Oβ bond in PDS is symmetrical.141

Persulfate Molecular Interaction with Dissolved Ions
and Carbon Supports. Electronegative O atoms in persulfate
can coordinate with positively charged metal ion to form a
complex (Figure 3b). Subsequent electron transfer from the
complexed metal ion to the persulfate molecule due to the
stronger electronegativity of O (χO = 3.44) than TMs (χTM =
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1.36−2.54) leads to the breakage of the O−O bond and
subsequent formation of radicals. Due to the asymmetrical Oβ−
Oγ bond in PMS, the metal ion (Mn+) can donate one e− to
either Oγ (pathway ①) or Oβ (pathway ②) atom, forming
SO4

•−/OH− or SO4
2−/•OH, respectively (Figure 3b). In

comparison, the complex of Mn+ with symmetrical PDS only
leads to a pathway which generates one SO4

•− and one SO4
2−

per PDS molecule.
The adsorption of persulfate ions on carbon supports has been

extensively studied using density functional theory (DFT)
simulations.143−147 At the edge of the basal planes of 2D carbon
materials such as GO, unsaturated carbons with spins of
nonbonding σ or π electrons exist in large numbers due to bond
termination and play a significant role in electron transfer toward
adsorbed oxygen atoms in persulfate (Figure 3c, ①).148−151

Consequently, carbon defective edges and vacancies were shown
to be more reactive than the basal plane to activate persulfate
molecule due to more efficient electron transfer from pollutants
to persulfate.143

In addition, electron-rich ketone and quinone groups have
been suggested as major active sites among the O functionalities
(carbonyl, carboxylic, and hydroxyl) on carbon supports,143,146

similar to ORR reactions.152,153 The C atom in the C�O
structure serves as a binding site for persulfate, forming an O−−
C+−O− bridge (Figure 3c, ②).154 Interestingly, a higher O
content usually leads to inferior PMS catalytic activities,
including CNTs and GO,143,146,155 which has been partially
ascribed to the interference of the PMS molecular alignment
with edge sites by steric hindrance when they are occupied by
more O groups.143 In addition, once these unsaturated carbons
are occupied by O functionalities, the conductivity of the
support decreases as the number of unpaired π-electrons
decreases,156 leading to less efficient electron transfer.
The doping of other heteroatoms, especially N (e.g., graphitic,

pyridinic, and pyrrolic N), can help increase the adsorption of
persulfate ions.144 The N doping tailors the charge distribution
of adjacent carbons due to its higher electronegativity (χN = 3.04
vs χC = 2.55). Consequently, O atoms in persulfate more
efficiently coordinate with partially positive carbons. The charge
is then expected to transfer from the electron-rich N to
persulfate molecules via the N−−C+−O− bridge (Figure 3c,
③).144 Compared with O, the steric hindrance effect of N atoms
on persulfate adsorption may be less significant since they are
doped within the basal plane. Yet, similar to O, the effects of
higher loading of N on the support’s electron transfer and
persulfate activation should be further investigated, as previous
studies showed that an extensive N loading would lead to
conductivity loss of carbon supports.157−159

Persulfate Molecular Interaction with Metal Nano-
particle, Oxide, and SAC. Researchers have been employing
DFT for the past few years to establish the pathways of the
persulfate activation with the focus on how the initial O atom
alignment dictates the overall mechanism.147 It is noteworthy
that, in the ORR, a similar reductive process as persulfate
activation, the focus on the O2 molecular alignment on the
catalyst site has been widely studied in the past decade.160−164

We build our discussion on this analogy between persulfate
activation and the ORR. The binding of O atoms in dioxygen on
the metal surface is generally classified into three types: end-on
Pauling-type (one O with one metal), side-on Griffiths-type
(two O with one metal), and also side-on Yeager-type (two O
with two metals).165 The side-on types indicate strongly
chemisorbed coordination, while the end-on type can be either

weakly chemisorbed or physiosorbed.165 These three different
adsorption configurations determine how strongly the molecule
is adsorbed on the catalytic site and how difficult it is for the
intermediate to be released and for the catalytic site to be
regenerated, thus affecting the overall activation pathway.
In persulfate interaction with metal or metal oxide NPs

(Figure 3d), the side-on type has been simulated as a dominant
adsorption mode of PDS on Co3O4,

166 PMS on CuCo2O4,
167

PMS on the (100) surface of Cu2O,168 PMS on Co NPs and
CoO,46 and PMS on Fe2O3.

169 Some studies also elaborated on
the end-on type, such as PMS on the (110) and (111) surfaces of
Cu2O,168 PMS on δ-MnO2,

170 and PDS on NiO.171 The
crystalline phase, facet type, nanoparticle size, heteroatom
doping, and solvent environment can all affect the thermody-
namically favorable adsorption configuration of persulfate.147,168

To date, DFT studies on metal or metal oxide NPs mainly target
for simulating the mechanisms and confirming the O−O bond
cleavage, while few of them considered different adsorption
types and their thermodynamical/kinetic implication.
For persulfate interaction with SACs, in particular, SACs in

the M−Nx−C structure, the end-on type has been simulated for
both PMS40,58,169,172−174 and PDS175,176 as the major
adsorption mode. The side-on type is usually not considered
due to the fact that it requires two adjacent metal atoms. This is
similar to the ORR, in which the adsorption of O2 on SACs is
typically end-on type, rather than side-on coordination.165,177

Taking theM−Nx−C structure as an example, with end-on type,
as persulfate has different O types, its molecular alignment along
the SACs can thus have several categories depending on which
O atom is coordinated. The alignment can be defined into three
categories for PMS: type I (M−Oα), type II (M−Oβ), and type
III (M−Oγ) (Figure 3e); and two categories for PDS: type I
(M−Oα) and type II (M−Oβ). For example, type I has been
considered for PMS interaction with Fe−N4−C.58,169,172−174 In
contrast, type I46,172 and type III40 for PMS with Co−N4−C and
type I for PDS with Fe−N4−C and Cu−N2−C have also been
assumed.175,176 These different adsorptionmodes determine the
electron transfer process and how strongly persulfate and
intermediate species bind with the SAC and, therefore, the
overall persulfate activation pathway. For example, it may affect
whether the electrons transferred from the single atomMn+ go to
the −SO4 or the −OH within persulfate, affecting the available
radical type.

Application of DFT for SAC-Persulfate Interaction
Analysis. It is difficult to directly observe persulfate interaction
pathways with SACs using conventional characterization
techniques. In general, instrumental analysis can confirm the
types of resulting reactive species but does not provide
mechanistic insights for their generation pathways. Theoretical
simulations such as DFT have, therefore, been frequently
employed to analyze SAC-persulfate interaction pathways,
including molecular alignment, electron transfer, and molecular
decay. DFT calculation aims to validate the experimental results,
determine the main active sites, evaluate thermodynamical and
kinetic feasibilities, predict intermediates, and explore the effects
of different factors (e.g., water chemistry, catalyst composition).
The collective information is beneficial for guiding the design of
more effective, robust, and sustainable SACs to achieve high
atomic activity and selectivity in persulfate-based water
treatments in the future.
DFT can suggest the most thermodynamically favorable

pathway for each persulfate alignment mode based on the
adsorption energies (Eads), the activation energy barrier (ΔG),
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and the extent of O−O bond length elongation (lO−O).
40,174 For

example, DFT showed that type I would be more favorable than
type II for PMS adsorption on Fe−N4−C,174 while type III
would bemore efficient than type II for PMS adsorption onCo−
N4−C, ultimately leading to elongation of the O−O bond and
generation of SO4

•− and •OH.40 DFT can also help explain the
differences between SACs and other catalysts. For Fe−N4−C
and Co−N4−C,46,169,172 the relationship between the reaction
kinetics and Eads of PMS on various substrates follows a volcano
shaped trend. In other words, while the binding strength is in the
order of oxide≈ pure metal >M−N4−C> graphiticN > carbon,
the kinetics was fastest with M−N4−C. This suggests that the
binding between PMS and catalyst should be strong enough to
facilitate PMS activation and subsequent activation (i.e., in
contrast to weakly binding carbon), while it should be weak
enough to avoid catalytic site poisoning by reaction
intermediates (i.e., in contrast to strongly binding metal or
metal oxide). In this example, this balance is achieved with SAC
in the M−N4−C configuration.
Note that metal or metal oxide NPs interact with persulfate

majorly through the side-on mode with more than one O atom
binding to the metal, explaining the reason why the binding
strength is higher than the end-on mode, which is the case of
SACs. However, NPs’ interaction with persulfate can also be the
end-on type,168,170,171 whichmight decrease binding energies. In
theORR, it was shown that when the AuNP size is smaller, more
end-on Pauling-type of O2 adsorption occurs.163 The adsorbed
O atoms can turn from end-on Pauling-type into the side-on
Griffiths-type gradually with time forMn−N4−C in theORR.178

Similar behavior might be possible with persulfate but has not
yet been reported.

■ ELECTRON TRANSFER AND PERSULFATE
MOLECULAR DECAY ON SACS

Radical Generation. A number of studies have identified
radicals (SO4

•− and •OH) as the main product of persulfate
activation by SACs.40,47,52,57,64,179−181 To verify the radical

generation pathway, researchers have employed two exper-
imental approaches: the scavenging experiment and the electron
paramagnetic resonance (EPR) analysis for indirect and direct
confirmations, respectively. Radical scavengers such asmethanol
(MeOH, kSO4•−/MeOH = 3.2 × 106 M−1 s−1, k•OH/MeOH = 9.7 ×
108 M−1 s−1) or ethanol (EtOH, kSO4•−/EtOH = (1.6−7.7) × 107
M−1 s−1, k•OH/EtOH = (1.2−2.8) × 109 M−1 s−1) can be used to
quench both SO4

•− and •OH. In contrast, tert-butanol (TBA,
kSO4•−/TBA = (4−9.1)× 105M−1 s−1, k•OH/TBA = (3.8−7.6)× 109
M−1 s−1) or nitrobenzene (NB, kSO4•−/NB < 106M−1 s−1, k•OH/NB
= (3.0−3.9) × 109 M−1 s−1) can be used to nearly exclusively
quench •OH.182 A decrease in pollutant removal kinetics in the
presence of a radical scavenger is used to gauge the relative role
of a particular radical. For EPR, 5,5-dimethyl-1-pyrroline N-
oxide (DMPO) is commonly used as a spin-trapping agent for
both •OH and SO4

•−, generating characteristic peaks of
DMPO•−OH and DMPO•−SO4, respectively,

52,57,71,180,183 or
5,5-dimethyl-2-pyrrolidone-N-oxyl (DMPOX)34,40,47 which is
formed by further radical-mediated oxidation of DMPO•−OH
with SO4

•−.184 The main challenge of using DMPO for
detecting SO4

•− is the low water stability of DMPO•−SO4,
since it easily reacts with H2O/OH− to form DMPO•−OH (t1/2
of DMPO•−SO4 = 95 s in water12) and consequently the
DMPO•−SO4 peak intensity decreases over time.
In the radical pathway, similar to dissolved metal ion-

persulfate interactions, one electron is transferred from the
single metal atom site to the coordinated O atom of the
persulfate molecule due to the stronger electronegativity of O
than TMs. This one-electron transfer leads to bond elongation
and breakage of the O−O bond, generating either SO4

•− or
•OH.40 For PMS, type I and II adsorptions lead to the formation
of a surface-bound SO4

2− and a free •OH radical, while type III
leads to the formation of a surface-bound OH− and a free SO4

•−

radical (Figure 4a). The oxygen that is coordinated with the
single atom receives one electron, forming anions (SO4

2− or
OH−), while the other side is released in the form of free radicals
(SO4

•− or •OH) (reactions (1) and (2), Figure 4c). For PDS

Figure 4. (a) Radical generation pathway of the SAC-PMS system. (b) Radical generation pathway of the SAC-PDS system. (c) Reaction steps in SAC-
persulfate to generate radicals, and standard redox potentials (E0) of the PMS and PDS reactions.13,198
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(Figure 4b), types I and II all lead to the formation of a surface-
bound SO4

2− and a free SO4
•− radical (reaction (3)).

For PMS, it is noteworthy that the types of free radicals
generated depend on the PMS alignment configuration.
However, this may not necessarily dictate which radical,
SO4

•− or •OH, plays the most dominant role in pollutant
degradation, as it also depends on the reactivity, selectivity, and
lifetime of the radical. For example, •OH has approximately 1−2
orders of magnitude higher second-order rate constants (M−1

s−1) than SO4
•− toward alcohols, acids, and aromatics,5 despite

the 2−4 orders of magnitude shorter lifetime than SO4
•−. In

addition, the selectivity of •OH is lower than SO4
•− as it is highly

reactive and can be scavenged by abundant inorganic anions in
wastewater including chloride, bicarbonate, bromide, iodide,
and nitrite.5 Other chain reactions can also affect the availability
of SO4

•−/•OH such as quenching of SO4
•− by OH− from water

(reaction (6)) and the reaction of SO4
•− or •OH with �Mn+ to

form �M(n+1)+ (reactions (7) and (8)).24,185

From the perspective of the metal single atom (�Mn+),
during the one-e− charge transfer process, �Mn+ becomes
oxidized to form �M(n+1)+, similar to the case of homogeneous
catalysis.52 Once the surface-bound SO4

2− or OH− detaches, the
�M(n+1)+ can be reduced back to �Mn+ by the persulfate
molecule to complete the redox cycle (reactions (4) and
(5)).24,185 As far as we know, the reduction of �M(n+1)+ to �
Mn+ by PMS or PDS has not yet been experimentally confirmed.
The redox potentials of common �Mn+/�M(n+1)+ groups are
Co3+/Co2+ (E0 = 1.82 V), Fe3+/Fe2+ (E0 = 0.77 V), Cu2+/Cu+
(E0 = 0.17 V), Mn3+/Mn2+ (E0 = 1.51 V), and Ag2+/Ag+ (E0 =
1.98 V). The redox potentials of PMS oxidation are SO5

•−/
HSO5

− (E0 = 1.1 V) and SO5
•−/SO5

2− (E0 = 0.81 V) (Figure
4c).186 The E0 value of S2O8

•−/S2O8
2− is not yet available in the

literature. Thermodynamics suggest that the oxidation of

HSO5
− by Fe3+ and Cu2+ is difficult, while Co3+, Mn3+, and

Ag2+ can be readily reduced by HSO5
−.

The S2O8
2− oxidation by �M(n+1)+ (reaction (5)) is still in

debate. Some claimed that it is not thermodynamically favorable
under the environmental conditions,13,14 while others proposed
this reaction can occur with Fe(III)- and Mn(IV)-containing
oxides.187,188 One challenge for confirming the formation of
S2O8

•− is that it easily reacts with dissolved oxygen, H2O, or �
M(n+1)+.189 Transient absorption spectra or EPR has been used
to identify S2O8

•−, but their accuracy is questionable, since there
is no standard reference to compare.190,191 Some studies also
proposed that the metal redox cycle can be completed by
electron transfer from pollutant degradation intermediates (�
M(n+1)+ + pollutant intermediates → �Mn+).192−194 Co3+,
Mn3+, and Ag2+ can also be reduced by H2O (E0(O2/H2O) =
1.23 V). In the future, the active �Mn+ site regeneration
pathway during persulfate activation by SACs and counterparts
should be more carefully studied using in situ valence state
characterization techniques and computational simulations.
This is an important aspect, as it determines whether the
catalyst can continuously perform in the long term, and whether
external auxiliary reduction approaches (e.g., electric cathodic
reduction,195 chemical reductants such as hydroxylamine196,197)
should be used to assist the metal redox cycle completion.

1O2 Generation Pathway on SAC. Singlet oxygen is
another commonly observed ROS in persulfate activation
systems.5 Several studies have found that 1O2 was the main
contributor in SAC-persulfate systems,46,74,199,200 and some
observed that almost 100% PMS was converted to 1O2 on single
atom sites.54,174,201 Similar with previous nanoparticle or oxide
persulfate systems, 1O2 scavengers including NaN3 (k1O2/NaN3 =
1 × 109 M−1 s−1), furfuryl alcohol (FFA, k1O2/FFA = 1.2 × 108
M−1 s−1), or L-histidine (k1O2/L‑histidine = 3.2 × 107 M−1

Figure 5. (a) Self-decay pathway from PMS to generate 1O2. (b) Pathway of 1O2 generation from catalyzed PMS self-decay by R2C�O groups on
carbon supports. (c) Persulfate oxidation and hydrolysis pathways to form 1O2. (d) Proposed 1O2 generation pathway in the SAC-PMS system.
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s−1),202 are used to identify the contributing roles of 1O2 in SAC-
persulfate systems. However, we would like to point out that
these three scavengers also rapidly react with PMS. For example,
it was shown that 10 mM NaN3 and L-histidine caused the
complete decomposition of 1 mM PMS in 30 min, and 100 μM
FFA led to 30% degradation of 1 mM PMS after 175 min.203

This suggests that when using these three scavengers, especially
NaN3 and L-histidine, the PMS decay over time should be taken
into consideration to partially contribute to the inhibited
pollutant degradation. In addition, •OH also reacts with these
scavengers: k•OH/NaN3 = 1.2 × 1010 M−1 s−1,204 k•OH/FFA = 1.5 ×
1010 M−1 s−1,203 k•OH/L‑histidine = 5.0 × 109 M−1 s−1,204 with
1−2 orders of magnitude higher k values than 1O2. This posts
another concern on using them as specific 1O2 scavengers in
persulfate systems where •OH exists. For EPR, 2,2,6,6-
tetramethylpiperidine (TEMP) is used as the trapping agent
to capture 1O2. Strong triplet signals with an intensity ratio of
1:1:1 indicate the generation of 1O2.

74,200 The evidence of 1O2
contribution can also be achieved by using deuterium oxide
(D2O) as the solvent.202 As the lifetime of 1O2 in D2O (22−70
μs) is much longer than that in H2O (2.9−4.6 μs),205 the
degradation of pollutants would be enhanced after replacing
H2O by D2O.
The aforementioned methods provide qualitative identifica-

tions of 1O2. In order to quantify 1O2 concentrations, 9,10-
diphenylanthracene (DPA) has been widely used as a
probe,206,207 based on the rapid reaction with 1O2 (k1O2/DPA =
1.3 × 106 M−1 s−1).208 A stable DPA endoperoxide (DPAO2
EPO) product can be measured using high-performance liquid
chromatography (HPLC). Numerous other chemical probes
have been employed for 1O2,

209 which form an endoperoxide
bridge structure (−O−O−) that exhibits unique (i) UV−vis
absorption (e.g., anthracenes modified with hydrophilic
groups,210 furans which are commercially available211); (ii)
photoluminescence (including 1,3-diphenylisobenzofuran
(DPBF, k1O2/DPBF = 9.6× 108M−1 s−1),212 modified anthracenes
and tetracenes,213 and commercial products such as the Singlet
Oxygen Sensor Green,214 AlphaScreen,215 and AlphaLISA);216

and (iii) chemiluminescence (including spirodioxetanes217 and
lanthanide complexes).218 Future studies may consider
comparing chemical probes to quantify 1O2 concentrations

with and without pollutants and other potentially interfering
species including reactive radicals.
Three common pathways have been proposed for 1O2

generation for persulfate activation by carbon or metal catalysts:
(i) the catalyzed persulfate self-decay pathway (e.g., HSO5

− +
SO5

2−→ HSO4
− + SO4

2− + 1O2) (Figure 5a, reaction 10)
219,220

[In carbonaceous systems, the ketonic groups (R2C�O) are
reported to accelerate the 1O2 formation from PMS self-decay at
alkaline conditions with a dioxirane intermediate (Figure 5b,
reaction 11).154,220−222 Since the proton in the −OH part of
PMS needs to be deprotonated to form 1O2 eventually, alkaline
conditions are preferred.]; (ii) the persulfate oxidation pathway
involving SO5

•− radical (HSO5
− → SO5

•− + H+ + e−; SO5
•− +

SO5
•− → 2SO4

2− + 1O2) (Figure 5c, reactions 12 and
13);145,223,224 (iii) the hydrolysis pathway involving superoxide
radical (O2

•− or HO2
•, pKa = 4.8) (e.g., S2O8

2− + 2H2O→HO2
−

+ 2SO4
2− + 3H+; S2O8

2− + HO2
− → SO4

•− + SO4
2− + H+ +

O2
•−) (Figure 5c, reactions 14 and 15).225 Superoxide is

believed to be an intermediate precursor for 1O2 through the
proton-promoted disproportionation reaction (O2

•− + HO2
• →

1O2 +HO2
−) (Figure 5c, reaction 16).226 Benzoquinone (BQ), a

selective radical scavenger of O2
•− (kO2•−/BQ = 2.9 × 109 M−1

s−1),227 can be used to quench O2
•− and verify the generation of

1O2 from O2
•−.74,200 All three pathways have been reported to

exist in SAC-persulfate systems.46,74,199,200 Note that in the
catalyzed persulfate decay or oxidation, two O atoms in 1O2
originate from two separate PMS molecules, while, in the
hydrolysis pathway, the two O atoms in 1O2 originate from H2O
instead of PDS.
The mechanism of how SACs catalyze 1O2 generation

remains to be established. Some recent DFT studies investigated
the possible generation pathways of 1O2 on single atom
sites.174,201,228 For example, a metal−O complex structure,
which results from the persulfate decay on the SAC site, was
proposed to be an important intermediate in forming 1O2.

182,209

However, the exact configuration of this metal−O complex
structure is unknown and needs more experimental or
theoretical validation. It is possible that the SAC may catalyze
persulfate self-decay through a metal−dioxirane intermediate
pathway (Figure 5d), analogously to the generation of 1O2 on
ketonic groups on carbon supports. First, PMS molecular

Figure 6. (a) Mediated electron transfer in the SAC-persulfate system. (b) High-valent species generation in the SAC-persulfate system.
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adsorption on the SAC site (�Mn+) can lead to the formation of
�M(n+2)+�O through two-e− transfer (①) or consecutive one-
e− transfers (② and ③). The �M(n+2)+�O then acts similarly as
R2C�O, catalyzing 1O2 generation from PMS decay with a
metal−dioxirane intermediate (④ and ⑤). If this hypothesis is
true, this mechanism may explain why 1O2 was reported to be
predominant in some SAC-persulfate systems.54,174,201 As
compared to nanoparticle counterparts, SACs may be more
prone to form the �M(n+2)+�O structure when reacting with
peroxides.
It should also be pointed out that the reaction kinetics

between 1O2 and many organic compounds (k = ∼102−108 M−1

s−1), including phenolic and pharmaceutical compounds, are
much slower than radicals (k = ∼106−1011 M−1 s−1) and more
dependent on pH.5 Despite many recent studies that focus on
promoting 1O2 generation from persulfate activation, including
those that employ SAC as a catalyst, the relative ineffectiveness
of 1O2 as a pollutant oxidant leaves a question mark over
designing new persulfate systems with such focus.
Mediated Electron Transfer on SACs. A persulfate

activation mechanism based on mediated electron transfer has
been proposed for many nanoparticles28,229 and carbonaceous
catalysts.143,220,230 Similarly, it has been proposed also for
SACs,55,60,62,63,231 in which the electrons are transferred from
the pollutant to the single atom site and further to the persulfate
molecules (Figure 6a). Unlike the radical generation pathway in
which persulfate abstracts one electron from the single atom site
to form radicals, here persulfate abstracts two electrons from
organic compounds to form sulfate ions with the single metal
site serving as the electron transfer conduit.
Several complementary experiments can be carried out to

verify this mechanism: (i) both the scavenging and the EPR tests
prove the lack of radicals or 1O2; (ii) in situ Raman spectra show
the peak of adsorbed peroxo species (e.g., PMS* at around 830
cm−1), confirming the PMS molecular binding on the catalyst
surface;60,62,63 (iii) the open-circuit potential (OCP) of the
electrode loaded with catalyst shows a significant alteration after
the addition of PMS and pollutant;60,62 (iv) chronoamperom-
etry (CP) measurements show that, at a certain applied voltage,
the current through the catalyst increases when both PMS and
pollutant exist.60,62 Note that carbonaceous supports themselves
are often conductive; it is thus important to isolate the role of
metal catalysts.63

SACs have been shown to possess enhanced metal−support
interaction that facilitates charge transfer to/from sub-
strate.55,62,231,232 DFT is particularly useful in providing the
electron density and charge accumulation surrounding the single
atom site and at the SAC-substrate junction. An increased total
density of states (TDOS)231 around the Fermi level can reduce
the interfacial Schottky junction barrier between the metal
catalyst and the support and consequently induce more free
electrons at the metal site.233 For SACs on carbons, studies
suggested that the TODS near the Fermi level was higher for the
M−N−C site than neighboring C or N atoms, with dominant
contributions from the metal d orbitals (e.g., 3d for Fe, Co, Cu,
Ni, 4d for Pd, Ag, and Ru, and 5d for Pt and Au).233−235 Previous
analysis also suggested that the Fermi level of SAC-loaded
carbon shifted more negatively compared to pristine carbon
supports (Figure 6a).62,231 This is consistent with literature on
nanoparticles where the Fermi level of smaller semiconductor
particles would become more negative, i.e., closer to the
conduction band and becoming a better electron donor.236

Consistently, DFT suggested a higher charge accumulation

centered at the single atom site as well as between the single
metal atom and coordinated-N(C),55,232 which would facilitate
persulfate reduction.

High-Valent Species Generations on SAC. High-valent
metal-oxo species (M(n+2)+�O), including Mn5+,237 Ru5+,238

Co4+,239 and Fe4+,240−242 have been reported as the main
contributors in some dissolved metal ion or metal oxide/
nanoparticle systems. Recently, the same species have also been
proposed as the main contributors for Fe SACs using both
experiments and DFT calculations (Figure 6b).59,68,243−245 To
identify the role ofM(n+2)+�O, sulfoxides such as methyl phenyl
sulfoxide (PMSO) can be used. PMSO can be selectively
oxidized to sulfones (e.g., methyl phenyl sulfone, PMSO2) by
M(n+2)+�O.239 In addition, the 18O isotope-labeling technique
can be used to verify the existence of M(n+2)+�O via the oxygen
atom exchange (OAE) reaction between M(n+2)+�O and
H2

18O.239,246 Using H2
18O as the matrix, the 18O can be

transported to M(n+2)+�16O to form M(n+2)+�18O, which can
then react with PMS16O to form PMS16O18O.239,246 Therefore,
the detection of PMS16O18O frommass spectrometry character-
ization provides critical evidence for M(n+2)+�O.
Despite some literature discussion, two key questions remain:

(1) what the actual oxidation state of the metal in metal-oxo
species is and (2) how SAC differs from nanoparticle and
dissolved ion in forming high-valent metal-oxo species. To
answer the first question, some studies have employed ex situ
XANES to examine the oxidation states of the metal after the
reaction.59,240 This is based on the unverified hypothesis that the
high-valent metal-oxo species can stably remain on the catalyst
surface after the reaction instead of being reduced back to low-
valent species to complete the redox cycle. However, high-valent
species can (i) react with low-valent species to median-valent
species (e.g., FeIVO2+ + Fe2+ + 2H+→ 2Fe3+ + H2O, k = 1.4 × 105
M−1 s−1, pH = 1);247,248 (ii) self-decay in H2O (e.g., 4FeIVO2+ +
4H+ → 4Fe3+ + O2 + 2H2O, k = 0.1 s−1);249 or (iii) react with
persulfate (e.g., 2FeIVO2+ + S2O8

2− → 2Fe3+ + 2SO4
2− +O2, k = 1

× 104 M−1 s−1).250 In fact, ex situ methods likely measure the
transformation products of high-valent species such as their
protonated/hydrolyzed metal-oxo forms (e.g., FeN4−OH/
FeN4−O−) rather than the forms that participate in the actual
persulfate reaction (e.g., FeN4�O).59 Therefore, more accurate
characterization should involve in situ XANES to identify, for
example, the oxidation state increase during persulfate
reaction.241,251−253 High-valent metal-oxo references such as
ferrates or oxo-iron porphyrin complexes should be used in such
studies.254

The answer to the second question relates to persulfate decay
pathways. Studies thus far provide some clues based on
experimental observations but without firmmechanistic insights
such as the impact of persulfate molecular alignment and
detailed pathways toward �M(n+2)+�O formation. For
dissolved ions, the overall reaction between Fe2+ and PMS/
PDS to generate Fe4+ is Fe2+ + HSO5

− → FeIVO2+ + SO4
2− +H+,

k = 3 × 104 M−1 s−1;255 Fe2+ + S2O8
2− + H2O → FeIVO2+ +

2SO4
2− + 2H+, k = 2 × 101 M−1 s−1.250 A recent DFT analysis

showed that homogeneous Co2+ and PMS interact via the type
III configuration and generate high-valent Co4+�Oγ through
the Oβ−Oγ bond cleavage and the deprotonation.253 The
mechanisms of SAC �M(n+2)+�O formation may be similar as
those in dissolved ions, i.e., through the type III alignment
configuration for SAC-PMS, with two-e− transfer forming �
M(n+2)+�Oγ (Figure 6b). It was recently suggested that the SAC
metal average oxidation state would determine whether the
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radical pathway or high-valent species pathway is preferred in
the Fe SAC-PMS system.246 The Fe2+−N4 in the high-spin state
(S = 2) tends to activate PMS to form SO4

•− and •OH radicals
via an one-e− transfer, while the Fe3+−N4 (S = 5/2) is prone to
Fe5+=O generation via two-e− transfer.253 This points toward
the possibility that the SAC’s synthesis method (e.g., precursor
choice, annealing or reduction conditions) may affect its mode
of interaction with persulfate. Furthermore, it was suggested
that, in the dissolved ion system, the persulfate activation to
either high-valent species or radicals is also dependent on
catalyst/persulfate relative amount and pH,256 which should
also be evaluated in SAC-persulfate systems in the future.
Similar to the literature on 1O2, there exist some controversies

around the high-valent species mechanism. For example, in the
Fe2+/PDS system, the rate constant of Fe2+ oxidation by PDS to
form FeIVO2+ (k = 2 × 101 M−1 s−1) is 3 orders of magnitude
lower than that of FeIVO2+ reduction by PDS to form Fe3+ (k = 1
× 104M−1 s−1).250 In addition, high-valent metal-oxo species are
also known to exhibit much lower kinetics (k = 102−104 M−1

s−1)248,249,257 toward common organic pollutants than radicals
(k = 106−1011 M−1 s−1), even slower than 1O2 (k = ∼102−108

M−1 s−1).5 Other metal-oxo species such as �M(n+1)+−OH/�

M(n+1)+−O− (formed by one-e− transfer) and �M(n+2)+�O
(formed by two-e− transfer) are also critical intermediates in
determining the mechanisms, which should be further
characterized.

■ CHALLENGES AND RESEARCH DIRECTIONS
Our analysis on past studies suggest that many SACs achieve 3 to
4 times faster pollutant degradation kinetics compared to NP
counterparts including metals and metal oxides (Figure 7a).
Note that it is impossible to normalize the kinetics considering
widely varying material properties and experimental conditions,
and therefore, the comparison here should be taken only as a
very rough estimate. The averaged kinetics among the papers we
examined followed the order of: SACs > NPs > ions ≈ carbon
substrates. The improved kinetics were achieved generally using
much lower metal loading with SAC than other catalysts.
Consequently, SACs exhibit significantly higher turnover
frequencies (TOFs, min−1) than NP counterparts and dissolved
ions (Figure 7b). This collectively suggests that the original
intent of combining the high atomic efficiency of homogeneous
catalysts and the benefits of heterogeneous catalysts can be
achieved. In addition, high TOF is beneficial to lower the cost of

Figure 7. (a) First-order rate constant k (min−1) comparisons of SAC, nanoparticle (NP), dissolved ion, and carbon support for persulfate activation.
Data used for the analysis are collected frommore than 50 publications for each system. (b) TOF (min−1) comparisons of SAC, NP, and dissolved ion
for persulfate activation. (c) Metal leaching (ppb) comparisons of SAC and NP during persulfate activation. Inset lines indicate the 50 ppb of Co and
300 ppb of Fe limitation in drinking water.91,258 (d) Material structural design and performance improvement. (e) Experiments and simulations:
machine learning using AI simulations for rational design of persulfate catalysts. (f) Engineering consideration of real water treatment using SAC-
persulfate technology.
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materials especially for precious noble metals used for persulfate
activation. We also note that the averaged metal leaching (ppb)
from SACs is over 1 order of magnitude lower than nanoparticle
counterparts (Figure 7c), even lower than the 50 ppb of Co and
300 ppb of Fe limits in drinking water.91,258 Most benchmark
nanoparticle catalysts (e.g., Co NPs, Fe NPs, CoOx, FeOx,
CoFeOx, and MnOx) for persulfate would lead to ppm levels of
metal dissolution. The significantly improved stability of SACs,
which likely results from a stronger interaction of SACs with the
support via surface defects or N/O atom structure anchoring, is
also crucial in lessening the impact of leached metal ions on
water safety and ensuring long-term stability. With these initial
promising findings, we below further discuss priority research
areas to advance SACs for persulfate activation and ultimately
toward practical application.
Mechanistic Investigation.We find that uncertainties still

exist in consolidating different mechanisms in SAC-persulfate
systems. For example, some key questions remain such as (i)
whether the �M(n+1)+ can be readily reduced back to �Mn+ to
complete the redox cycle in the radical pathway; (ii) whether the
�M−O intermediate on the SAC forms the 1O2 intermediate;
and (iii) how the higher oxidation state of the metal forms to
drive the high-valent species pathway. Detailed studies into
these key questions can help prove whether these activation
mechanisms are valid or not. A better understanding of these
mechanisms can help design catalysts that maximize the
intended activation kinetics and selectivity.
We observe from our literature survey (Table S1) that more

diverse activation mechanisms have been identified in SAC-
persulfate systems in comparison with conventional catalysts for
which the radical pathway has been mostly considered as the
dominant mechanism. We also notice more frequent claims on
mediated electron transfer and high-valent species mechanisms
with SACs. Although this trend still requires future con-
firmations by additional studies, we speculate that the reasons
could be related to the fact that the overall loading percentages
of SACs on the support are typically much lower than
nanoparticles. Consequently, the electron transfer by substrate
material might contribute more to the overall activation
mechanism than intended. One notable example would be
SACs on carbon support, wherein carbon plays a significant role
in activating persulfate via electron transfer. In addition, SACs
are likely to form the high-valent �M(n+2)+�O structure
considering their similarity to dissolved ions. We also believe
that there is a vast uncertainty in how SACs function differently
under different environmental conditions (e.g., pH, pollutant
characteristics). Perhaps more importantly, SACs’ properties
may change significantly depending on their synthesis method,
loading amount, and coordination environment. The exper-
imental matrix considering all these factors appears extremely
large, requiring further extensive and systematic research in
understanding the role of SACs in persulfate activation.
Improved Material Design. The current designs of SACs

for persulfate AOPs largely focus on varying types of TMs,
supports (which are mainly constrained in carbon supports,
Table S1), and persulfates. It is difficult to gauge how much the
current material designs have achieved SACs’ full potential for
persulfate activation. Considering the experience that we have
gained from designing nanoparticles for persulfate AOPs, there
are likely several strategies to further improve the catalytic
performance, and here we present three potentially impactful
research directions (Figure 7d). First, similar to efforts in
developing bimetallic NP catalysts,259,260 SACs with more than

one metal can be explored. In spinel ferrites (MFe2O4, M = Cu,
Co, Ni, etc.)261,262 or other weight combinations of bimetallic
oxides,263−265 the Fe site was shown to be able to offer
synergistic effects including enhanced pollutant adsorption,265

strong metal−metal magnetic interactions,266−268 and facili-
tation of the redox cycle of the neighboring active metal (e.g., �
Fe2+ + �Cu3+→ �Fe3+ + �Cu2+,264 �Fe2+ + �Mn3+→ �
Fe3+ + �Mn2+265). Similarly, some recent studies have made
early efforts in designing bimetallic SACs for PMS activations
(e.g., Co−Fe, Bi−Fe),172,269 yet the synergistic effects from two
SACs require further investigation. The accurate control of
material morphology would be a critical step, as to how two
SACs are spatially distributed and how they collaborate toward
synergistic effects (e.g., enhancing redox cycle). A material
architecture may be expanded to SAC embedded or anchored
on another metal NP/oxide support, forming a single atom alloy
(SAA).
Second, we note that most SACs studied for persulfate

activation were built upon the M−N−C structure, while SACs
can be coordinated to other heteroatoms such as O, S, P, or B
(e.g., S/N codoping for Co SAC,270 N/B or N/P codoping for
Cu SAC271). The electronegativities of these elements follow
the order: O (χO = 3.44) >N (χN = 3.04) > S (χO = 2.58) >C (χC
= 2.55) > P (χP = 2.19) > B (χB = 2.04). Consequently, these
atoms can either donate or withdraw electrons from SACs,
exerting either synergistic or antagonistic effects.272−274 For
example, O-, N-, S-, and B-doping were found to enhance
persulfate activation by enhancing the persulfate ion adsorption
via Lewis acid−base bonding, faster electron transfer, and/or a
combination of these effects.275−281 P-doping instead might
scavenge SO4

•− or •OH, resulting in inhibition of the catalyst
activity.282,283 In all these cases, careful synthesis and character-
ization with changing dopant concentrations and controlled
spatial distribution appear as prerequisites for further advancing
the discussion on the kinetic benefits.
Finally, we would like to propose further focused research on

strategies to drastically increase the weight loading of SACs. In
fact, this would be the common goal for SAC research for all
application fields, not just for persulfate activation. Some recent
studies showed that when further increasing the SA wt % from
∼1% (a typical loading of current SACs) to∼5%, SACs can form
clusters without metal−metal bonding, which are often referred
to as neighboring SACs or SAC ensembles.284,285 This SAC
architecture partially resembles nanoparticles but still maintains
the benefits of single atom dispersion such as high atomic
efficiency and unique coordination environment. Further
increasing the transition-metal SAC wt % to nearly 40% has
recently been achieved using graphene quantum dots as the
carbon support.286 In addition to more catalytic sites available
for both persulfate activation and pollutant degradation, the
evolution of different, potentially selective persulfate activation
pathways is an additional expected benefit.

In Situ/Operando Characterizations. In situ techniques
such as in situ XAS,287,288 in situ Raman,60,62,63 and in situ
Mössbauer289−291 can be instrumental in revealing SACs’
chemical properties and electronic structure alteration during
redox reactions, which are difficult to evaluate using ex situ
techniques.288 For example, in situXASwas used to discover that
the Fe−N−C catalyst structure changed from an initial
nonplanar ferrous state to a planar ferric structure during the
course of the ORR due to the axial bonding with O atom,
significantly affecting the Fe SAC’s ORR activity.287,288 One can
postulate that such a change might also be possible with

ACS ES&T Engineering pubs.acs.org/estengg Review

https://doi.org/10.1021/acsestengg.2c00187
ACS EST Engg. 2022, 2, 1776−1796

1787

https://pubs.acs.org/doi/suppl/10.1021/acsestengg.2c00187/suppl_file/ee2c00187_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsestengg.2c00187/suppl_file/ee2c00187_si_001.pdf
pubs.acs.org/estengg?ref=pdf
https://doi.org/10.1021/acsestengg.2c00187?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


persulfate, since its O atom can similarly coordinate with Fe
SACs. Future in situ findings on potential alteration of SACswith
respect to their coordination environment during the course of
persulfate activation and pollutant degradation can be helpful to
explain persulfate activationmechanisms.292 In situXAS can also
be helpful in verifying the existence of the �M−O structure,
which is a critical, reactive, and possibly unstable intermediate
that has been proposed to exist in all radical, 1O2, and high-valent
pathways, as previously discussed. For example, the increase in
the intensity of the �M−N/O scattering in FT-EXAFS is a
qualitative indication of the formation of �M−OH or �M−O
structures.287,288 Quantitively comparing the fitted coordination
numbers (e.g., from CN = 4 of Fe−N4−C to CN = 5 of O−Fe−
N4−C) also confirms the �M−O structure formation.287,288

The oxidation state changes from in situ XANES can be directly
used to confirm the formation of high-valent species (�
M(n+2)+�O).
Theoretical Simulations. Understanding how reactive

species are generated and what factors affect their generation
can help design better performing catalysts. The current
theoretical simulations mainly report thermodynamic properties
such as the adsorption energies (Eads), electron density, and
charge accumulation surrounding the single atom site, the
elongation of the O−O bond, the desorption energies (Edes) of
surface-bound radicals or anions, etc. (Figure 7e). To calculate
all these parameters for each SAC on each different support, with
possible variations in water quality parameters, using DFT is
computationally too costly. Instead, rational design of persulfate
catalysts based on machine learning and high-throughput
simulations is likely a viable alternative.293

Engineering Consideration. It would not be ideal to
simply suspend SACs in a body of water, no matter which
substrates they are anchored on, due to the requirement of
mixing and subsequent separation from product water. Instead,
SAC compositematerials can be applied in a packed-bed column
reactor,294 as an electrode for electrocatalytic persulfate
activation,295 or onto membranes (Figure 7f).91,296,297 The
electrocatalytic approach appears appealing, since the atomic
H* generated from noble metal cathodes (e.g., Pd + H+ + e− →
Pd−H*) can serve as the catalyst to activate persulfate,295 and
the electrons from the cathode can reduce higher valent metal
species to complete the metal redox cycle.298 Anchoring onto
membranes, whether electrified or not, also provides additional
benefits of increased contact areas for surface reactions and the
potential nanoconfinement effect of enhancing radical exposure
in confined pores.299 In such a design, SACs provide a
compelling advantage compared to their nanoparticle counter-
part due to their size; i.e., for membranes with pores in the
dimension of nanoscale, SACs become the only option to load
catalysts inside the pores. For example, the loading of Co SAC
inside a layered-graphene oxide membrane with effective pore
sizes of 3−5 nm has recently been demonstrated.91 Finally, while
it is presumed that SACs are anchored more strongly onto
substrates than nanoparticles, no comprehensive study has yet
verified the long-term stability of SACs in real water treatment
conditions. Perhaps a more important question is how resistant
SACs are against aggregation/agglomeration (i.e., migration on
the surface of the substrate and formation of clusters) especially
under reactive conditions. Future research needs to consider
these concerns that will determine whether efforts in advancing
SACs will lead to fruition in practice.
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(257) Šisǩová, K. M.; Jancǔla, D.; Drahos,̌ B.; Machala, L.; Babica, P.;
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