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Abstract— The rapid advancement of automatic control tech-

nology has sparked significant interest among researchers in

creating more reliable and simplified models of unmanned

aerial vehicles (UAVs). This interest is motivated by the need

to enhance the performance and resilience of these systems in

challenging conditions, such as wind gusts and adverse weather.

This paper presents novel strategies for enhancing the resilience

of unmanned aerial systems (UAS) with fault-tolerant control

(FTC) by learning-oriented control and a constructive fault esti-

mation with Proportional-Integral (PI) observer. The learning-

control is deep-deterministic policy gradient (DDPG) which is

trained in only one state but used beyond its environment for

other states to control. The faults are designed in three divergent

conditions and the augmented PI observer is responsible in

capturing them. The success of estimating the faults is used for

this FTC to compensate the faulty system with learning-oriented

control as the advancement of the FTC. The proposed approach

has the potential to enhance the performance and resilience of

UAVs, thus contributing to the development of more robust and

reliable systems.

I. INTRODUCTION

Unmanned aerial systems (UAS) have become a vital
part of military and civilian applications [1], [2]. However,
UAS face significant challenges when flying under adverse
weather conditions, such as wind gusts, which can pose
hazards to the UAS and its payloads. The development of
resilient and fault-tolerant control systems for UAS is crucial
to ensure the reliability and safety of these systems [3]. Fault
detection in UAS is an essential area of research that has
received significant attention in recent years [4]–[6]. Faults
in the UAS system can lead to loss of control, instability,
and even crashes. One of the main challenges in developing a
fault-tolerant control system for UAS is the high-dimensional
and complex control system architecture that requires the
integration of various sensors and controllers to achieve the
desired control objectives.

Furthermore, the dynamics of unmanned aerial vehicles
(UAVs) are a critical component in developing a fault-
tolerant controller for the UAV/quadcopter. The reliability
and safety of UAS remain a major concern due to the
risk of system failures and malfunctions. Thus, the system
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models should be well-identified so as to cover the suitable
control methods, from the conservative canonical form to
advanced approaches [7]. This is due to the fact that signal
communications of UAV, both in-use local scenarios and
grounding data-transferring, are becoming more crucial in
response to failures. Moreover, the optimal navigation to
moving objects [8], efficient and selective channel designs
of UAV to ground communications [9]–[11], and the booster
joint-spectrum mobile-based to fasten the UAV communica-
tions both single [12] and multi-UAV with security [13] are
the recent instances to maintain the true-signals to prevent
failures.

To achieve this goal, the PI observer [14]–[16] is chal-
lenged to track the system states when control engineering-
related faults occur, such as sensor and actuator faults [17],
[18]. The key idea is to capture the faults and to feed into
faulty system so that the system becomes free-fault. Further-
more, the advancement comes from the deep reinforcement
learning (DRL) [19] which is then used for fault-tolerant
control [20]–[22]. However, we offer to train the DRL only
in single state and use the control agent for other states to
see the behaviour beyond its environment.

This paper is structured as follows: In Section II, we begin
by presenting the dynamical systems of the UAV/Quadcopter.
Section III describes the FTC scheme, followed by the PI
observer in Section IV. We then delve into the learning-
oriented control approach of DDPG reinforcement learning
in Section V. In Section VI, we present our numerical
simulations being ended by the conclusion in Section VII.

II. DYNAMICS OF QUADCOPTER

A. Mathematical Model of Quadcopter

The analyzed dynamics of the quadcopter is shown in
Fig. 1 with respect to two reference frames, the inertial and
body along with the respected forces and torques from four
divergent rotors, 8i = 1, 2, 3, 4. The fixed earth-inertial (E)
perspective is denoted as regards to gravity directing to the
opposite of z�axis while the corresponding axes of the body
frame (B) are attached to the fixed arms. For each of the
arms, the propellers are placed on the four motors to generate
thrust with the inlet !i and outlet ⌧mi from the perspective of
north-south directions such that !1,!3 and !2,!4 move in
the counter� and clockwise direction in turn. Furthermore,
the absolute center of quadcopter mass position with respect
to inertial structure (x, y, z) is denoted by ⇣ while the attitude
of three Euler angles (�, ✓, ) with the same frame is denoted
by ⌘ which rotates associated to ⇣, � ! x, ✓ ! y, and
 ! z, where
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Fig. 1: The figure shows the structural frames of a quadcopter as viewed from both
the inertial and body perspectives.
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Note that µp and µv combine the terms of positions and
velocities information. The origin fixed-body attaching to the
arms has linear VB and angular # velocities from the three
axes. The rotational relationship between the two frames is
shown as R in which the bold c, s, and t define the cosine,
sine and tangent notation where cx = cos(x). Keep in mind
that R is an orthogonal matrix, meaning its inverse equals
to the transpose, R�1 = R

>, therefore
⇥
Rx(�) Ry(✓) Rz( )

⇤
2

4
1 0 0 c✓ 0 s✓ c �s 0
0 c� �s� 0 1 0 s c 0
0 s� c� �s✓ 0 c✓ 0 0 1

3

5 .
(3)

The following rotation from fixed-body to earth is

RB!E := Rz( ) ·Ry(✓) ·Rx(�), (4)

and the complete rotational matrix of two frames constitutes

R =

2

4
c c✓ c s✓s� � s c� c s✓c� + s s�

s c✓ s s✓s� + c c� s s✓c� � c s�

�s✓ c✓s� c✓c�

3

5 . (5)

The propellers mounted on the motor are assumed to be
identical so that the mathematical dynamics is with respect
to only one. The thrust T generating from them is driven by
the momentum forces fi,

fi =
�
Cd⇢Ar

2
�
!
2
i �! T =

X

i

fi = k

X

i

!
2
i , (6)

where Cd, ⇢, A, and r explain the thrust parameter, the
air density, the propeller cross-sectional area, and the rotor
radius in turn, while !i express the angular velocity for
certain i�th rotor direction. The k�lift value is then used
to simplify the first four fixed variables to get the net-thrust
from them. The angular velocity !i and its acceleration !̇i

drive the torque ⌧mi

⌧mi = b!
2
i + Im!̇i, and !̇i ⇡ 0, (7)

where b and Im is the drag parameter and rotor inertial
moment. With equal velocities, the quadcopter will go�up,
�down and hover in z�direction corresponding to the mag-
nitude applied relative to gravity while the moments generate
the motions of roll��, pitch�✓, and yaw� . Therefore, the
net-thrust TB in the z�axis and the torques ⌧B from three
angles perspective are indicated below,

TB =

2

4
0
0
T

3

5 , ⌧B =

2

4
⌧�

⌧✓

⌧ 

3

5 =

2

4
L(f4 � f2)
L(f3 � f1)P4

i ⌧mi

3

5 , (8)

where L is the length of propeller and center of mass. The
roll and pitch movement are produced by thrust difference,
described with negative term from �1,�2, of a pair from 2�4
and 1� 3 rotor, respectively. Regarding the yaw, the angular
velocities ! of an opposite pair should be decimated while
the two counterparts are escalated. To conclude the deriva-
tion, we assume that the quadcopter is exactly symmetrical,
which leads to Ixx = Iyy , and gives us diag([Ixx, Iyy, Izz]),
in which diag(•) denotes the diagonal matrix of entry (•).
This inertia matrix is diagonal and describes the linear time-
invariant (LTI) characteristics of the system. The equation of
motions with the rigid-body assumption is presented here.
The force to drive the mass acceleration mV̇B and the
centrifugal force # ⇥ (mVB) are on par with those of the
gravity R

>
% and the net-thrust TB , therefore

mV̇B + #⇥ (mVB) = R
>
%+ TB . (9)

where in the inertial�translational structure, the leverage
of centrifugal could be neglected. However, in the inertial
frame, the centrifugal force is nullified. Thus, only the
gravitational force, the magnitude and the direction of the
thrust are contributing in the acceleration of the quadcopter,
such that m⇣̈ = %+RTB , or

2

4
ẍ

ÿ

z̈

3

5 = �g

2

4
0
0
1

3

5+
T

m

2

4
c s✓c� + s s�

s s✓c� � c s�

c✓c�

3

5 . (10)

Likewise, as for body�rotational structure, the inertia angu-
lar acceleration I#̇ along with the forces of both centripetal
#⇥ (I#) and gyroscopic � yield the torque ⌧ ,

I#̇+ #⇥ (I#) + � = ⌧, (11)

where for more detail equation, it constitutes

#̇ = I
�1

0

@�#⇥

2

4
Ixxp

Iyyq

Izzr

3

5� Ir#⇥

2

4
0
0
1

3

5⌦� + ⌧

1

A , (12)

which could be elaborated as follows by considering the ⌦�

as !1, �!2, !3, and �!4 from the yaw movement,

ṗ =
(Iyy � Izz)qr

Ixx
� Ir

q

Ixx
⌦� +

⌧�

Ixx
,

q̇ =
(Izz � Ixx)pr

Iyy
+ Ir

p

Iyy
⌦� +

⌧✓

Iyy
,

ṙ =
(Ixx � Iyy)pq

Izz
+
⌧ 

Izz
.

(13)
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However, this angular acceleration from the rotational frame
could then be extracted and transformed to the translational
frame using the transformation matrix W

�1
⌘ and vice versa

using W⌘ , in terms of ⌘̇ and #,

⌘̇ = W
�1
⌘ #,
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(14)

Moreover, the partial derivative of ⌘̇ constitutes the following
two terms, such that

⌘̈ =
d

dt

�
W

�1
⌘ #

�
=

d

dt

�
W

�1
⌘

�
#+W

�1
⌘ #̇, (15)

where Ẇ
�1
⌘ is expressed as follows,

Ẇ
�1
⌘ =

2

4
0 �̇c�t✓ + ✓̇s�/c

2
✓ ��̇s�c✓ + ✓̇c�/c

2
✓

0 ��̇s� ��̇c�

0 �̇c�/c✓ + �̇s�t✓/c✓ ��̇s�/c✓ + ✓̇c�t✓/c✓

3

5

B. Alternative Lagrangian Derivation of Motions

Beyond Newtonian-Euler derivation, the Lagrangian as a
energy collective of translation ET and rotation ER being
subtracted from potential energy EP is written as follows,

L(µ, µ̇) =
m

2
⇣̇
>
⇣̇ +

1

2
#
>
I#�mgz, (16)

while as studied in [10], the Euler-Lagrangian formulations
considering the external forces f torques ⌧ comprise,


f

⌧

�
=

d

dt

✓
@L

@µ̇

◆
� @L

@µ
, (17)

Since these two quantities are independent, the derivation
can be handled separately. First, the translational force is
determined as the net thrust acting on the propellers as

f = RTB = m⇣̈ +mg
⇥
0 0 1

⇤>
, (18)

which is the same as (10), while the Jacobian matrix J(⌘),
from # to ⌘̇ constitute J(⌘) := J = W

>
⌘ IW⌘ , where

J(⌘) =

2

4
Ixx 0 �Ixxs✓

0 Iyyc
2
� + Izzs

2
� ⇠1

�Ixxs✓ ⇠1 ⇠2

3

5, (19)

with the terms ⇠1 and ⇠2 equal to ⇠1 := (Iyy � Izz)c�s�c✓

and ⇠2 = Ixxs
2
✓+Iyys

2
�c

2
✓+Izzc

2
�c

2
✓. Therefore the rotational

energy ER can be denoted in terms of inertial frame,

ER =
1

2
#
>
I# =

1

2
⌘̈
>
J ⌘̈, (20)

since the torques of the rotors act as the external angular
force, then the angular Euler-Lagrange formula is written as
follows, with C(⌘, ⌘̇) defined as Coriolis term, consisting of
gyroscopic and centripetal equations.

⌧ = ⌧B = j⌘̈ +

✓
d

dt
J

◆
⌘̇ � 1

2

@

@⌘
⌘̇
>
J ⌘̇, (21)

which equals to J ⌘̈ + C(⌘, ⌘̇)⌘̇ and from (21), the angular
accelerations are equivalent to the equation written in (15),

⌘̈ = J
�1 [⌧B � C(⌘, ⌘̇)⌘̇] . (22)

To capture more realistic issues of this UAS, the drag force
from the air resistance should be considered, such that

mV̇B + #⇥ (mVB) = R
>
%+ TB �R

>
TD, (23)

m⇣̈ = %+RTB � TD, (24)

where TD makes up the drag coefficients for velocities which
are associated to certain directions (x, y, z),

TD = A⇣̇ =

2

4
Ax 0 0
0 Ay 0
0 0 Az

3

5

2

4
ẋ

ẏ

ż

3

5 . (25)

Finally, the correct angular velocities of rotors !i can be
calculated from equations (7) and (8)

!
2
1 =

T

4k
� ⌧✓

2kL
� ⌧ 

4b
, !

2
2 =

T

4k
� ⌧�

2kL
+
⌧ 

4b
,

!
2
3 =

T

4k
+

⌧✓

2kL
� ⌧ 

4b
, !

2
4 =

T

4k
+

⌧�

2kL
+
⌧ 

4b
.

(26)

In the estimation section, we consider linearizing this non-
linear system and augmenting the state-space to include the
faulty states and the disturbance to be used in the estimation
and fault-tolerant learning-oriented control.

C. Linearized System and Control Inputs

There are six primary states [x, y, z,�, ✓, ] of the twelve
states to control and measure. The inner loop of [z,�, ✓, ]
deals with the attitude variables while [x, y] are for the
outer position variables. For the sake of attitude control, we
consider a linear sub-model of x = [z,�, ✓, , w, p, q, r] 2
Rn with measurement of the first four states y = [z,�, ✓, ].
The discretized linearized system is done with equilibrium
point x

⇤ = [z, 0 2 Rn�1] to the nonlinear system ẋ(t) =
f(x, t)x+ g(x, t)u and transform into discrete systems. For
the control scenario, we apply a hybrid control uc(k) of PID
up by decoupling the attitude dynamics and providing inde-
pendent control action for every state and the reinforcement
learning ur := µ✓(x), where uc = [up, ur], to the MIMO
sub-model system defined later,

u =

2

664

T

⌧�

⌧✓

⌧ 

3

775 =

2

664

m
c�c✓

0 0 0

0 Ixx 0 0
0 0 Iyy 0
0 0 0 Izz

3

775

2

664

up

up

up

ur

3

775 . (27)

III. FAULT-TOLERANT CONTROL

Given that the discrete-time model of the system is used
for the implementation of the controller in the UAV ex-
perimental set-up, we formulate the linearized systems in
the discrete-time mode. The state-space representation of a
system affected by actuator and sensor fault is written as

xk+1 = Axk +Buk + Fafa, yk = Cxk + Fsfs, (28)

where x 2 Rn, u 2 Rm, y 2 Rp represent the states, control
input and the output in turn. The A 2 Rn⇥n, B 2 Rn⇥m,
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Fig. 2: Fault-tolerant control scheme with faults f = [fa, fs]
> using PI Observer.

C 2 Rp⇥n are the constant real matrices while Fa ✓ B and
Fs := Ip is assumed to be known. The faulty signals fa and
fs denote the magnitude and are modeled as sf = ↵s + �

where ↵ and � represent the multiplicative and additive of
the fault in turn. The real fault fk := [fa, fs]> equals to
the difference between the faulty signal sf and the nominal
signal s where fk = sf�s. The output y experiences a sensor
fault where yf = y+fs and when a control fault occurs, the
control signal is written as u = uf + fa as shown in Fig. 2.
Let we introduce an augmented state zk to bring the sensor
fault fs into single faulty vector fk,

zk+1 := M [yk � zk] = M [Cxk + Fsfs � zk] , (29)

therefore the extended state-space of (28) and (29), defining
x̄k = [xk, zk]> and fk, results in

x̄k+1 = Aax̄+Bauk + Eafk

=


A 01

MC �M

�
x̄+


B

02

�
uk +


Fa 04
03 MFs

�
fk,

yk = Cax̄ =
⇥
0p⇥n Ip

⇤
x̄k, (30)

where 01 2 Rn⇥p, 02 2 Rp⇥m, 03 2 Rp⇥r1 , and 04 2 Rn⇥r2

represents the zeros matrices. The dimension of r1 + r2 =
r  p. Keep in mind the stable matrix M should be chosen
properly. Here, we insert the fault fk+1 = fk into the state x̄k

in order to easily estimate the fault, where x̃k = [x̄k, fk]>,

x̃k+1 = Ãx̃k + B̃uk =


Aa Ea

0r⇥v Ir

�
x̃k +


Ba

0r⇥m

�
uk,

yk = C̃x̃k =
⇥
Ca 0p⇥r

⇤
x̃k, (31)

where v = n+ p and (31) is the equation used for the state
estimation methods, especially f̂k, to compensate the faulty
state in the fault-tolerant control mechanism. However, (28)-
(30) is adjustable yet the rank of Ca is greater or equal to
that of Ea, where ⇢(Ca) � ⇢(Ea). In this paper, two models
of faults are applied to the system, with m actuator faults
f = fa 2 Rm and combined actuator and sensor faults such
that f = [fa, fs] 2 Rm with PI observer.

IV. PI OBSERVER STATE ESTIMATION

This section is dedicated to the application of proportional-
integral (PI) observer as an alternative method for estimating
faults. The design of PI observer for continuous-time systems
has been established [14]–[16]. First, we construct the system
for m actuator faults, which are modeled as follows:

xk+1 = Axk +Buk + Efk, y = Cxk. (32)

We ensure a sufficiently small sampling interval T such that
the fault does not vary significantly between two consecutive
sampling instances. In other words, the magnitude of fk+1�
fk is of the order O(T 2), 8k. Then there exists a discrete-
time PI observer of the form

x̂k+1 = (A� LPC)x̂k + LP yk +Buk + Ef̂k,

f̂k+1 = f̂k + LI(yk � Cx̂k),
(33)

such that the state and fault estimation errors are constrained
in the small region of O(T 2) if and only if the pair (A,C)
is observable and

rank

A� I E

C 0

�
= n+ r,

where LP and LI are proportional and integral gains of PI
observer, rank C = p and rank E = r with p � r. Defining
ex(k) = xk � x̂k, ef (k) = fk � f̂k, and ✏k = fk+1 � fk,
it is not difficult to derive the error dynamic as ek+1 =
(Ā� L̄C̄)ek + Ī✏k where ek = [ex(k), ef (k)]>, and

Ā =


A E

0 Ir

�
, C̄ =

⇥
C 0

⇤
, L̄ =


LP

LI

�
, Ī =


0n⇥r

Ir

�
,

using the rank condition, one can conclude that the pair
(Ā, C̄) is observable. Therefore, a gain L̄ can be found such
that Ā � L̄C̄ is stable. If ✏k = 0 then the convergence of
the observer is guaranteed i.e. ex(k) ! 0 and ef (k) ! 0
as k !1. However, based on the assumption ✏k 2 O(T 2),
the estimation error can be constrained in the small region of
O(T 2) which also guarantee the reliable estimation of fault.

Defining the combined faults, the augmented states used
is (30) instead of (32) where p � r and the observer gain L̄

is computed such that the poles of (31) is inside the unite
circle. Then the n terms of L̄ which is LP is to stabilize the
states x̂ whereas the r terms, LI , belongs to the fault states
f̂ such that (33) is stabilizable.

V. LEARNING-ORIENTED CONTROL

We consider deep-deterministic policy gradient (DDPG)
as outlined in [23]. This method uses the deterministic
direct mapping states to action u = µ✓(x) instead of the
probabilistic ones ⇡✓(u|x) = P[u|x; ✓]. The two terms x and
u represent the spaces of the states x ✓ SX and the control
actions u ✓ SA. The policy µ✓ can be optimized by tuning
the policy parameter ✓ towards the direction of the gradient
of the expected rewards with J(µ✓) = E[r�t |µ✓] as follows,

J(µ✓) =

Z

SX

⇢
µ(x)

Z

SA

µ✓(x, u)r(x, u) du dx. (34)

By contrast, the policy gradient is updated via ✓ applying
gradient ascent such that ✓  ✓ + ↵`r✓J(µ✓) where the
term ↵` denotes the learning rate. Keep in mind, solving
r✓J(µ✓) where the state and action distribution depending
on it is computationally expensive. To solve, the expectation
of the control u and the logarithmic of µ✓ is proposed as

r✓J(µ✓) = Ex,u [r✓ logµ✓(u|x)Qµ(x, u)] , (35)
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Fig. 3: Scheme of training for DRL on single state y4 =  .

where the Q
µ(x, u) can be estimated through the sample

return (batch) r�t:T defined as the sum of the discounted future
rewards from time instant t onwards,

r
�
t = r1 + �r2 + �

2
r3 + · · · =

1X

k=t

�
k�t

r(xk, uk), (36)

with the discount factor � 2 (0, 1). If the policy µ✓ and
the associated cost function J(µ✓) are taken such that it
maximizes the function, 8x 2 R, 8t 2 [0, T ], then J(µ✓) =
J(µ⇤

✓) and µ✓ = µ
⇤
✓ . Furthermore, the updated of the current

rule according to the batch r
�
t:T is given by,

✓  ✓ + ↵` logµ✓(u|x)r�t:T . (37)

However, due to unbiased gradient estimate and the stochas-
ticity of Monte-carlo r

�
t:T , the policy gradient is less sensitive

to high variance of gradient estimates. Therefore, the critic
emerges by approximating the term Q

µ(x, u) in (35) with a
parameter # such that Q#(x, u), written as

r✓J(µ✓) = Ex,u

⇥
r✓ logµ✓(u|x)Q#(x, u)

⇤
, (38)

yielding the bias as a consequence of the variance reduction.
This DDPG is closely related to the DQN in which the value
function of the state-action Q

µ(x, u) is expressed as the
expected return given by (x, u, µ✓) and the discounted state
distribution ⇢µ(x0). Since the action is continuous, the value
function Q

⇤(x, u) is assumed as differentiable over action
argument and it leads to construct the gradient-based rule
for µ✓(x). DDPG is constructed with two neural networks
of actor µ✓ for delivering a deterministic policy and critic
Q
# for estimating action-value function. This Q

# is used to
update the actor µ✓(x) in the direction of the gradient of
Q
#(x, µ✓(x) := u),

r✓J(µ✓) = Ex

⇥
r✓µ✓(x)ruQ

#(x, u)|u=µ✓(x)

⇤
, (39)

where r✓µ✓(x) and ruQ
#(x, u) comprise the gradient of

µ✓ and Q
# subject to ✓ and action u in turn. Finally the

parameter ✓ is stochastically updated via the gradient ascent,

✓  ✓ + ↵`r✓µ✓(x)|x=xtruQ
#(x, u)|x=xt,u=µ✓(x). (40)

The learning control for this UAV is conducted for y4 =  

and the agent is also applied beyond the environment for
y2, y3 with the estimation scheme and the designed faults.
The observed state of DDPG is xr = [y4, e, ei] where ei is
the integral of e and the rt = 10, 8e < ✏ and 1 otherwise.

VI. NUMERICAL EXAMPLES AND SIMULATIONS

This section presents the simulation of the fault-tolerant
control using a hybrid control approach that combines PID
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Fig. 4: (a) Performance under different loss of effectiveness ↵ in actuator; (b) the
comparison of PID and DRL with only training space on y4; (c-d) faults estimation

and DRL. The key parameters are the mass m = 0.468, the
drag force coefficients Ax = 0.3;Ay = 0.3;Az = 0.25, the
rotational drag coefficient Ar = 0.2; and the inertia Ixx =
4.856⇥10�3; Iyy = Ixx; Izz = 8.801⇥10�3. The linearized
sub-model is written as

A =


04⇥4 I4

04⇥4 diag( )⇥ A

�
, B =


04⇥4

diag( )

�
,

with  = [m�1
, I

�1
xx , I

�1
yy , I

�1
zz ],  A = [Az, Ar, Ar, Ar]>.

The control is designed to combine the PID and DRL while
the only state to train for DRL is the last measurement y4.
This training is applied to control beyond its environment
for other two states, y2, y3. At first, the impact of loss of
effectiveness ↵ in actuator faults is presented in Fig. 4a while
the comparison of PID and DRL for the three states y2, y3, y4
is portrayed in Fig. 4b. Interestingly, DRL outperforms PID
in reducing the noise although the training is conducted
once for 100s in 51 episodes with random set-points yr

per episode. The reward rk = 10, 8e < ✏ := 0.01 and 1
otherwise while the upper SXu and lower SXl bound of
the space xr = [y4, e, ei] ⇢ SX are SXu = [⇡,1,1] and
SXl = [�⇡,�1, 0] in turn. The critic and actor learning rate
are ↵c = 10�3 and ↵a = 10�4 with discount factor � = 0.9
and the 64 batch size along with 1000 maximum episodes
and steps. The four faults are designed in three types:

1) the 4 � fa in 50s with loss ↵ = 0.5 and bias � =
[2, 0.3, 0.15, 0.1];

2) the 4 � fa in different time [50s,60s,70s,80s] with the
same bias � but ↵ = 0.75;

3) the 2 � fa in 50s, 2 � fs in [60s,70s] with ↵ = 1 and
bias � = [5, 0.3, 0.15, 0.01] where f = [fa, fa, fs, fs]>

The estimations of faults are shown in Fig. 4c-4d showing
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Fig. 5: These figures present the performance comparisons of with FTC and without FTC under three designed faults.

how the PI observer captures the faults to compensate the
faulty output yf and input uf . For FTC implementation, the
DRL is used to control y4 and based on the three types
of faults along with the fault estimations in Fig. 4c-4d,
the effectiveness of FTC is shown in Fig. 5. This DRL
could work together with the PI observer and the FTC as
a whole without any problem. Further experiments using
the Quanser QDrone 2 autonomous air vehicle for fault
detection in UAVs will be conducted. The QDrone 2 is an
open-architecture research-grade drone that features a robust
on-board NVIDIA Jetson Xavier NX system-on-module,
multiple high-resolution cameras, and built-in WiFi, making
it suitable for advanced research applications.

VII. CONCLUSIONS

This paper has presented novel strategies to enhance the
resilience of UAVs by proposing a constructive mathematical
dynamical system for these vehicles. The paper outlined a
fault estimation mechanism utilizing a PI observer, which
compensates for both sensor and actuator faults within three
different faulty setups. The captured faults are subsequently
used for FTC. The proposed approach has the potential to
improve the performance and resilience of UAVs, thereby
contributing to the development of more robust and reliable
systems. These systems are capable of operating safely and
efficiently under challenging conditions.
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