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Ramsey numbers of sparse digraphs
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Abstract

Burr and Erdés in 1975 conjectured, and Chvatal, Rédl, Szemerédi and Trotter later proved, that
the Ramsey number of any bounded degree graph is linear in the number of vertices. In this paper,
we disprove the natural directed analogue of the Burr—Erd&s conjecture, answering a question of Bucié,
Letzter, and Sudakov. If H is an acyclic digraph, the oriented Ramsey number of H, denoted r—f(H), is
the least N such that every tournament on N vertices contains a copy of H. We show that for any A > 2
and any sufficiently large n, there exists an acyclic digraph H with n vertices and maximum degree A
such that

r_f(H) > nQ(A2/3/10g5/3 A)
This proves that r—f(H ) is not always linear in the number of vertices for bounded-degree H. On the other
hand, we show that 7'_1>(H ) is nearly linear in the number of vertices for typical bounded-degree acyclic
digraphs H, and obtain linear or nearly linear bounds for several natural families of bounded-degree
acyclic digraphs.

For multiple colors, we prove a quasi-polynomial upper bound ﬁ(H) — 9ogm) k™ o1 a1l bounded-
degree acyclic digraphs H on n vertices, where H(H ) is the least N such that every k-edge-colored
tournament on IV vertices contains a monochromatic copy of H. For k£ > 2 and n > 4, we exhibit an
acyclic digraph H with n vertices and maximum degree 3 such that Q(H) > pftllogn/loglogn) ghowing
that these Ramsey numbers can grow faster than any polynomial in the number of vertices.

1 Introduction

The k-color Ramsey number of a (simple undirected) graph H, denoted 7 (H), is the minimum N such that
every k-edge-coloring of the complete graph K contains a monochromatic copy of H. Broadly speaking,
the main question in graph Ramsey theory is to understand how r,(H) depends on H and k. The most
well-studied case is that of two colors, k = 2. For H on n vertices, it is known [10, 36] that ro(H) grows
exponentially in n if and only if H has Q(n?) edges.

However, it has long been observed that the Ramsey number of a sparse graph H is much smaller than
exponential in |[V(H)|. In their foundational paper on the topic, Burr and Erdds [6] conjectured that this
phenomenon is quite general and that any sparse graph has linear Ramsey number. Here, the appropriate
notion of sparsity is degeneracy: H is said to be d-degenerate if every subgraph of H has a vertex of degree at
most d, and the degeneracy of H is the minimum d such that H is d-degenerate. Burr and Erdés conjectured
that ri,(H) = O q(n) for any n-vertex graph H with degeneracy d. Here and throughout we use the standard
asymptotic notation where the implicit constant is allowed to depend only on the subscripts of O(+). Major
progress towards this conjecture was made by Chvatal, Rodl, Szemerédi, and Trotter [8], who proved the
Burr-Erdés conjecture under the stronger assumption that H has bounded degree (rather than bounded
degeneracy), that is, that r,(H) = Ok a(n) for any n-vertex graph H with maximum degree A. Finally,
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building on many prior developments (e.g. [19, 28]), the full Burr—Erdés conjecture was proved by Lee [30]
in 2017.

There are many analogous questions and results for directed graphs (henceforth digraphs). We assume
all digraphs are simple and oriented, so they do not contain self-loops, parallel edges or anti-parallel edges.
For a digraph H, define the k-color oriented Ramsey number ﬂ(H ) to be the minimum N such that any
k-edge-colored tournament on N vertices contains a monochromatic copy of H. Note that if H contains a
directed cycle, then H does not appear in any transitive tournament, so H(H ) only exists for acyclic H.
Henceforth, we work exclusively with acyclic digraphs H.

Unlike undirected Ramsey numbers, oriented Ramsey numbers are interesting even in the case of one
color, k = 1, where r—f(H ) is simply the minimum N such that any tournament on N vertices contains a
copy of H. Let TT,, denote the transitive tournament on n vertices. The study of oriented Ramsey numbers
was initiated by Stearns [35] in 1959 and Erdés and Moser [18] in 1964, who showed the upper and lower
bounds, respectively, in

2"/2=1 < F(TT,) < 2"~ L. (1.1)

The exponential constants in these bounds have not been improved, similar to the classical case of the
diagonal undirected Ramsey number ro(K,,) [10, 33, 34]. This may not be surprising, given that r_f(TTn) <
ro(Ky). Thus, improving the lower bound in (1.1) is at least as difficult as improving the lower bound on
) (Kn)

Somewhat more is known about the oriented Ramsey number 74 (H) when H is sparse. When H = P, is
the directed path on n vertices, Chvatal [7] and Gyérfds and Lehel [22] determined that 77 (P,) = (n—1)*+1
using the Gallai-Hasse-Roy—Vitaver theorem [20, 24, 32, 38]. In the case of one color, it was more generally
conjectured by Sumner in 1971 that for any oriented tree T on n > 2 vertices, r_f(T) < 2n — 2. Sumner’s
conjecture has received a considerable amount of attention over the years (see e.g. [15, 16, 23, 25, 26, 29, 37]);
it was proven for n sufficiently large by Kiithn, Mycroft, and Osthus [29], and Dross and Havet [15] showed
that 77 (T) < 2lp — 4% for all n > 2. In more colors, it was shown by Buci¢, Letzter, and Sudakov [4] that
7 (T) = Or(JV(T)|*) for any oriented tree T and all k > 1. In the same paper, they asked a natural directed
analogue of the classical Burr—Erdds problem.

Problem 1.1 ([4]). Is it true that 71 (H) = Oa(n) for every acyclic digraph H with n vertices and maximum
degree A?

Here we write N (v) for the out-neighborhood and N~ (v) for the in-neighborhood of a vertex v € V(H),
and say that a digraph H has maximum degree A if max,cv ) (|N1(v)] + [N~ (v)]) = A.

Yuster [40] recently initiated the study of the special case of Problem 1.1 when H = P’ is the ¢-th power
of a directed path P,,, which is the digraph on vertex set [n] whose edges are the ordered pairs (i, j) satisfying
1 < j—i < (. This case was recently settled by Dragani¢ et al. [14], who showed that 71 (P!) = Og(n).
Letting the bandwidth of an acyclic digraph H on n vertices be the minimum £ such that P! contains a copy
of H, this aforementioned result implies that 71 (H) = Oy(n) if H has n vertices and bandwidth £.

In this paper, we answer Problem 1.1 in the negative, and show that in fact r_f(H ) can grow faster than
any fixed power of n, as long as the maximum degree is a sufficiently large constant.

Theorem 1.2. For any A > 2 and n sufficiently large in terms of A, there exists an acyclic digraph H on
n vertices and mazximum degree at most A for which

r—f(H) > n(l(A2/3/10g5/3 A)

The power A?/3 seems to be best possible with our method, but the power of log A can be improved.
Although the answer to Problem 1.1 is negative, we prove an almost linear upper bound on r_f(H ) for almost
all H, in the following sense. Define 8(11, d) to be the orientation of the random regular graph G(n,d) on
vertex set [n] with all edges pointing to the right.



Theorem 1.3. Ifd > 2 is fixed and H = 8(n,d), then w.h.p.t (as n — o)
7 (H) < n(logn)!1os4.

It is not difficult to extend Theorem 1.3 to show 71 (H) = n(logn)®2() w.h.p. if H is the forward acyclic
orientation of a uniformly random graph with any fixed degree sequence A = d; > dy > -+ > d,, and
therefore also for the forward acyclic orientation of a uniformly random bounded-degree graph. We also
prove a similar bound 71 (H) < n(logn)®) when H = G (n,p) is the forward acyclic orientation of an
Erdés—Rényi random graph of constant average degree d = pn.

Although we are able to show that r—f(H ) is w.h.p. almost linear for a random bounded-degree acyclic
digraph, we have not determined the worst-case behavior of this Ramsey number. For general acyclic digraphs
H on n vertices with maximum degree A, the best upper bound we are able to prove is r_f(H ) < nOa(logn)
(see Theorem 1.7 below). Nonetheless, we are able to prove stronger (and in some cases linear) upper bounds
on r_f(H ) in case H lies in certain natural families. We now give two examples of such families.

Let the height of H be the number of vertices on the longest directed path in H. Equivalently, the height
can be seen as a directed analogue of the chromatic number: H has height at most & if and only if V(H)
can be partitioned into independent sets Si, ..., S, such that every edge between S; and \S; is oriented from
S; to S;, for every ¢ < j. For acyclic digraphs of bounded height and bounded degree, we are able to prove
the following linear bound on 71 (H).

Theorem 1.4. If H is an acyclic digraph on n vertices with maximum degree A and height h, then
T—f(H) < (Ah)lOAlog hn'
In particular, 7 (H) = O a(n).

Note that this theorem also implies the aforementioned n©2(°2") ypper bound on r_f(H ) for any bounded-
degree acyclic digraph H, since the height of an acyclic digraph is at most its vertex count.

Next, we say that an acyclic digraph H of height & is graded if its vertex set can be partitioned into h
independent sets S1, ..., Sy such that every edge in H is directed from some S; to S;4+1. Equivalently, H is
graded if for every pair of vertices (u, v), all directed paths from u to v have the same length (the equivalence
of the definitions follows e.g. from [31, Proposition 4.4]). A natural example of a graded digraph is a grid
(in any dimension) with all edges oriented towards the first orthant. In general, a graded digraph can be
obtained from any graded lattice (in the sense of partially ordered sets) L by orienting every edge = < y
of the Hasse diagram of L from x to y. For graded digraphs of bounded degree, we are able to prove a
polynomial bound on 71 (H).

Theorem 1.5. If H is a graded digraph on n vertices with mazimum degree A and height h, then
T'_1>(H) < thAlogAn'
In particular, since h < n, we have that r_f(H) < pO(Alogd)

Our methods are motivated by those used by Conlox, Fox, Lee, and Sudakov [11] to prove bounds on
ordered Ramsey numbers, and the two problems are especially closely related when the number of colors is
at least 2. Using this connection, we are able to give a super-polynomial lower bound for ﬁ(H ) when k > 2.

Theorem 1.6. For any n > 4, there exists an acyclic digraph H on n vertices with mazimum degree 3 for
which
ﬁ(H) > nlogn/QOloglogn

for all k > 2.

Thus, for acyclic digraphs of bounded degree, r_;z(H ) can grow super-polynomially if k¥ > 2. In the other
direction, for any number of colors we have the following quasi-polynomial upper bound.

L As usual, we say that an event £ happens with high probability (w.h.p.) if Pr(£) — 1 as n — co.



Theorem 1.7. If k> 1 and H is any acyclic digraph with n vertices and mazimum degree A, then

2k—1
ﬁ(H) S 2Ok,A ((IOgn)2 )

For one color, there is still a gap between the polynomial lower bound and the super-polynomial upper
bound.

We remark that there is another well-studied analogue of ordinary Ramsey numbers in the directed
setting, namely the directed Ramsey number ¥y (H), introduced by Bermond [2]. This is defined as the

minimum N such that a monochromatic copy of H exists in every k-coloring of the edges of Ev) , the digraph
with edges in both directions between all pairs of vertices. There are similarities and differences between the
two theories (see e.g. [4]), and several of our results on oriented Ramsey numbers can be extended to the
setting of directed Ramsey numbers. We expand on these connections in our concluding remarks, Section 6.

To conclude this introduction, we remark on an interesting phenomenon brought to light by our re-
sults. An important “meta-question” driving many advances in Ramsey theory asks which graph parameters
roughly determine a Ramsey number. In the Ramsey theory of undirected graphs, this question has been
more or less resolved, at least in a qualitative sense. Namely, for an undirected graph H, the degeneracy
and the number of vertices are the main parameters that determine the growth of ro(H) (we focus on the
two-color case to be concrete). This is easiest to see in the lower bounds: if H has n vertices, then certainly
ro(H) > n. Additionally, if H has degeneracy d, then it is a simple exercise to show that a random 2-edge-
coloring on 2%4/2 vertices does not contain a monochromatic copy of H w.h.p., implying that ro(H) > 24/2
Putting these two facts together, we find that

logra(H) = Q(d + logn).

Conlon, Fox, and Sudakov [12, Conjecture 2.16] conjectured that this bound is tight up to the implicit
constant, namely that
logre(H) = O(d + logn)

for any graph H with n vertices and degeneracy d. Moreover, this conjecture is known to be true up to a
multiplicative factor of log®d [19, Theorem 3.1]. Because of these results, one can say that the degeneracy
and the vertex count of H roughly determine its Ramsey number.

For acyclic digraphs, we do not know what parameters determine the growth order of r_f(H ) (indeed, we
don’t even know if r—f(H ) is polynomial or super-polynomial in n when H has bounded degree). Nonetheless,
our results indicate that one parameter, which we call “multiscale complexity,” is relevant. Namely, suppose
we order the vertices of H as vy, ..., v, so that every edge is oriented to the right, that is v; — v; is an edge
only if ¢ < j (such an ordering is often called a topological sorting of H). Under this ordering we may assign
every edge v; — v; a length j — i. Here, if w,v € V(H), we write u — v to signify that there is a directed
edge from u to v, and similarly v < v for an edge in the other direction.

In graphs of bounded bandwidth, every edge is short and has length O(1). At the other extreme, if H
has bounded height, then most edges of H are long and have length Q(n). The same is true in the random

model G (n,d), where most edges have length Q(n). Some other acyclic digraphs have intermediate edge-
length statistics, such as the directed grid whose vertex set is [y/n]? and all edges are oriented towards the
lexicographically larger ordered pair. For every acyclic ordering of such a grid, there are many edges in most
dyadic length scales between 1 and Q(y/n).

Loosely, let us say that H has high multiscale complexity if, for most dyadic intervals I, = [2¢,2!+1)
with 0 < t < logn, there are many edges in H whose length is in I;. Conversely, if most edge lengths of
H are concentrated in a small number of dyadic intervals, then we loosely say that H has low multiscale
complexity. At a high level, all of our upper bound results prove upper bounds on r_f(H ) in terms of n, A,
and the multiscale complexity of H; if the multiscale complexity is low, then these bounds are stronger,
and one can prove linear, nearly linear, or polynomial bounds on r—f(H ) (depending on the precise context).
Conversely, our lower bound construction for Theorem 1.2 is a family of digraphs which we call interval
meshes. We delay the precise definition to Section 2, but interval meshes are in some sense designed to
maximize multiscale complexity among all graphs of maximum degree at most A.



We stress that we have not fully solved the problem of which natural parameters determine the growth
order of r_f(H ), and we think this problem deserves further research. Nonetheless, our results do make it
clear that some notion of multiscale complexity is one of these parameters, and we believe this notion is
fundamental. As such, we state and prove many of our technical upper bounds in greater generality than
is needed to deduce our main theorems, in order to demonstrate how notions of multiscale complexity arise
naturally from our techniques.

The rest of the paper is laid out as follows. Section 2 carries out the construction of interval meshes
to prove the lower bound Theorem 1.2. Section 3 uses the greedy embedding technique to prove the main
technical lemmas needed for the upper bounds Theorems 1.3, 1.4, and 1.5. Section 4 completes the proofs
of these results, as well as a more general upper bound in terms of “multiscale complexity.” Using the
connection to ordered Ramsey numbers, Section 5 proves Theorems 1.6 and 1.7. Finally, in our concluding
remarks, Section 6, we collect a few of the tantalizing open problems that remain in this area.

Notation and terminology. By an embedding H — T, we mean an injective function V(H) — V(T
such that edges of H are mapped to edges of T, with edge orientations preserved. We say that a digraph T is
H-free if there is no embedding H — T'. All logarithms are to base 2. For the sake of clarity of presentation,
we sometimes omit floor and ceiling signs when they are not crucial.

2 Lower bounds

In this section, we prove the lower bound Theorem 1.2, which states that for any A > 1 there exists a family
of acyclic digraphs { H,, } ,>1 with maximum degree A for which |V (H,,)| = n and 71 (H,,) > nUA /10872 A),
The lower bound consists of three ingredients: constructing a bounded degree acyclic digraph H that is hard
to embed, constructing a Ramsey tournament 7' that is hard to embed H into, and proving that there is no
embedding H — T

The next three subsections separately provide these three ingredients. Section 2.1 defines a class of
digraphs H with edges “at all scales,” which we call interval meshes, and proves the existence of bounded-
degree H with this property. Section 2.2 defines the Ramsey tournament 7" as a lexicographic power of
a tournament R with no large transitive subtournament, and shows that embeddings H — T correspond
to certain highly constrained walks on R which we call (R, f, s)-walks. Section 2.3 completes the proof by
showing that long (R, f, s)-walks do not exist, and therefore large interval meshes H cannot be embedded
into small powers T'= R™.

2.1 Interval meshes

Our proof of Theorem 1.2 is motivated by the lower bound construction for ordered Ramsey numbers proved
by Conlon, Fox, Lee, and Sudakov [11]. They prove a lower bound on the ordered Ramsey number of a
random matching on [n]; see Theorem 5.1 and the surrounding discussion for details. The main property
they need of the random matching is that most pairs of long intervals have an edge between them. We need
the following stronger property of the same form for our acyclic digraph H.

Definition 2.1. If f: N — Ry is a nondecreasing function, we define an f-interval mesh to be an acyclic
digraph H whose vertex set is an interval I C N such that any edge (i,7) € E(H) has i < j and for all pairs
of intervals (a1, b1], (ag, b2] C I with b; < az and

ag — bl S f(mln(b1 — aq, bg — ag)), (21)

there exists an edge in H between (a1, b1] and (az, be]. When the function f is clear from context, we simply
call H an interval mesh.

The notion of an interval mesh is one way of formalizing the notion from the introduction of “high
multiscale complexity”, since interval meshes have many edges in every length scale. We construct interval
meshes of bounded degree using a greedy algorithm.



Lemma 2.2. For any nondecreasing function f : N — Ryg with S = Y, o f(2™F2) - 272™ < oo, there
exists an f-interval mesh H on verter set N with maximum degree at most 25 + 17.

Proof. Starting from an empty digraph on N, we construct H by using a greedy algorithm to add edges. All
edges introduced point to the right, so the resulting digraph must be acyclic. Define I,,, ; to be the dyadic
interval (5 -2™,(j + 1) - 2™] with length 2™.
Let m > 0 range through the nonnegative integers. On subroutine m, we iterate through all pairs
(i,7) € N2 satisfying
1<j—i< f(emt?).27m 14 (2.2)

and add an edge between the (currently) lowest degree vertex of I, ; and the (currently) lowest degree vertex
of I, j, if an edge does not exist between I,,, ; and I,,, ; already. Writing d(U) for the sum of the degrees of
the vertices in a set U, we see that for any given ¢, subroutine m increases d(I,, ;) by a total of at most

2[f(2mT2) . 27 ™ 4 4] = 27 L. f(omT2) g,

Let H be the digraph produced from this infinite process. Explicitly, H is the edge union of all the graphs
H()  where H™ is the graph produced after subroutine m. It has the property that every pair of dyadic
intervals I, ;, I ; satisfying (2.2) has an edge between them.

We first check that H has maximum degree at most 25 + 17. Since I, ; is a union of 2m=* dyadic
intervals of length 2*, we have that after subroutine m,

ALy i) <Y 2m 7RI p(26F2) 4 8) < oMt § 4 2m L8 = 27™(25 + 16).
k=0

In particular, the average degree in I,,; is less than 25 + 17 at the end of subroutine m. However,
subroutine m only adds edges incident to vertices of I,,,; which have at most average degree, so no new
vertex of degree at least 25 + 18 can appear on subroutine m. Thus, no vertex of degree at least 25 + 18
ever appears, as desired.

Next, we check that H is an f-interval mesh. Suppose two intervals (a1,b:1], (ag,bs] with by < ag
satisfy (2.1) and let m be the largest positive integer such that (a1, b1] and (ag,bs] both contain dyadic
intervals of length 2. Note that in any interval (a, b] of integers, a longest dyadic subinterval I ; has length
2% € 252 b — a], so in particular 2™ > min(b; — ay, by — as). Next, pick ¢ maximal and j minimal such
that Imz g (al,bl] and Im,j g (CLQ,bQ].

Using (2.1), we find
ag — b1 f(mln(b1 — aq, bQ — ag))

f(2m+2)
<4 <44 —>
2m = + 2m =4t om

J—i<4+

and so there is an edge in H between I,,, ; and I, ;, and therefore between (a1, b1] and (a2, bo] as well. O

The acyclic digraphs H,, we use are induced subgraphs on intervals of the infinite interval mesh con-
structed in Lemma 2.2, for an appropriate choice of f.

2.2 Walks in tournaments

Next, we construct the large tournament 7' which is difficult to embed H into. Again, the construction is
motivated by the lower bound argument of Conlon, Fox, Lee, and Sudakov [11] for ordered Ramsey numbers,
although its analysis requires new techniques.

Recall that the lexicographic product G - H of two digraphs G and H is the digraph on vertex set
V(G)xV (H) with an edge (g1, h1) — (g2, he) iff g1 = g2 in G or g1 = g2 and by — hs in H. Henceforth, write
G™ for the m-fold lexicographic product of G with itself. Note that lexicographic powers of tournaments
are tournaments. By (1.1), there exists for any r > 3 a tournament R on r vertices with no transitive



subtournament of size 2logr + 2. We take T'= R™ and show that an interval mesh H is difficult to embed
into T.

To this end, let H be an interval mesh. We relate embeddings H <— R™ to certain constrained walks on
the tournament R.

Definition 2.3. For a tournament R, a nondecreasing function f : N — Rs(, and s > 1, define an
(R, f,s)-walk to be a sequence of ordered pairs {(v;, a;)}¢_, (¢ possibly infinite) where for each i, v; € V(R),
1 <a; <s, v; # vi41, and for any pair ¢ < j for which v; < v; in R, we have

a(i,z) > f(min(a;, a;)),

where ar := ), ., ag if I is an interval of integers and the empty sum equals 0. We define the length of an
(R, f,s)-walk to be ap 4.

Let Lg, ¢(s) be the length of the longest (R, f, s)-walk if such a maximum exists, and +oo otherwise. The
next lemma reduces Theorem 1.2 to showing asymptotic upper bounds on Lg f(s).

Lemma 2.4. Suppose there exists r > 1, a nondecreasing f : N — Rsq, and a tournament R on r vertices
for which limsup,_,. Lr ¢(s)s™" = a. If H is an f-interval mesh on n vertices, then

(H) > pioea—o(l)
Proof. For each n > 1, let m = m(n) be the minimum positive integer for which there exists an f-interval
mesh H with vertex set [n] and an embedding ¢ : H < R™.

Let 7 : R™ — R be the projection onto the first coordinate. Consider the sequence {7 o ¢(5) [y
Consecutive terms of this sequence may repeat, so we block the sequence into consecutive runs of identical
vertices. Suppose there are ¢ total runs I; U --- U I, = [n] and run I; consists of a; repetitions of vertex
v; € V(R). We claim that {(vi,a;)}_, is an (R, f,s)-walk, where s := max(a;). It is easy to see that
1 < a; < s for all 4, and that v; # v;41 since we already blocked consecutive identical vertices together. It
remains to check the key condition, that if i < j and v; < v; in R, we must have

a,;) > f(min(as, ay)).

Suppose this is not true, so there exists some i < j with v; < v; and a(; ;) < f(min(a;, a;)). By the
definition of v;, v;, we have that m(¢(1;)) = {vi}, m(¢(I;)) = {v;}. By the definition of the lexicographic
power, if v; < v; then w; < w; for all w; € 77 (v;),w; € 7~ (v;). Thus, all edges between ¢(I;) and
¢(I;) are oriented from ¢(I;) to ¢(I;). For ¢ to be a homomorphism, this means that H has no edge
oriented from I; to I;. On the other hand, |I;| = a;, |;| = a;, and the distance between the two intervals is
ag,;) < f(min(as,a;)), so since H is an f-interval mesh there is such an edge. This is a contradiction, and
we see that {(v;,a;)}e_; is an (R, f, s)-walk of length n.

Fix any € > 0. We are given that Lg ¢(s) < (a + €)s for sufficiently large s, so we get s > (a+¢)"'n
using the fact that n < Lg ¢(s) since we have found an (R, f, s)-walk of length n. Since s = max(a;), this
means that there is some subinterval I; C [n] of length at least (o + €)~!n for which 7 o ¢ is constant on
I;, i.e. the image ¢(I;) C {v;} x R™ ! lies in a copy of R™~!. Putting this together, we have shown that
for large enough n, the existence of an embedding ¢ : H — R™ implies the existence of an embedding
¢ H — R™! for some f-interval mesh H' on (o + &)~ 1n vertices. In other words,

m(n) >m((a+e)"'n)+1

for all n sufficiently large. Applying this recursively, we obtain that m(n) > loé(()%s) — O(1). By the

definition of m(n), any f-interval mesh H on n vertices has no embedding into R™™ =1 and so
T‘_1>(H) > |V(Rm(n)—1)| > T.logk()iisj —0:(1) _ Q. (nfogl?i«:{)> ,
which proves the lemma. o

To finish the proof of Theorem 1.2, it remains to bound the asymptotic growth rate of Ly, r(s), which
we do in the next section.



2.3 Completing the proof
The next lemma is a simple observation that is helpful for analyzing the structure of (R, f, s)-walks.

Lemma 2.5. If R is a tournament without a transitive t-subtournament, then any sequence vi,...,v: of t
vertices either contains a back-edge v; <= v; with ¢ < j or two consecutive elements v; = vi11.

Proof. If the vertices are all distinct, then since R has no transitive ¢t-subtournament there must exist a
back-edge. Suppose v; = v; and i < j but j # i+ 1. Then either v; < v;4; or v;y1 < v; is a back-edge. [

We now prove a recursive upper bound on Lg ;(s). Given an implicit parameter ¢ > 3, tournament R,
and nondecreasing function f : N — Ry, we say that a positive integer s is short if Lg ¢(s) < 2st and
L ¢(s") < f(s") for all s <.

Lemma 2.6. Suppose s > 1,t > 3, R is a tournament without a transitive t-subtournament, and f : N —
R~ is a nondecreasing function satisfying f(s) > 6st?. If s is short, then every s' € [2st, 4st] is short.

Proof. Suppose s < s’ < 4st, {(v;,a;)}f_; is an (R, f, s')-walk, and let 4; < --- < i, be the sequence of all
indices where aj; > s.

Our first goal is to show that u < ¢. If not, by Lemma 2.5 there is either a back-edge v;, < v;, with
z <y <torsomex <t—1for which v;, = v;,,,. We show that neither of these situations is possible.

In the first case, there is an edge v;, < v;, with x <y <t. By the definition of an (R, f, s')-walk,

(i, i, > f(min(ai,, ai,)) > f(s). (2.3)
On the other hand,

Aiy,iy) = Z a;; + Z Aizij41) < s't+t- LR_’f(S) < 68t2,
JE(z,y) JElz,y)
since for each j = x,...,y — 1, the subsequence {(’Uz,al)}igili is an (R, f,s)-walk with length at most
Lp,¢(s) < 2st. But f(s) > 6st?, so this contradicts (2.3) and the back-edge v;, < v;, cannot exist.

Next, suppose for some x <t — 1 that v;, = v;,,,. The subsequence {(v;, al)}iziﬁ is an (R, f, s”)-walk
where s is the maximum value of a; in this subsequence. Pick some z for which a, = s”. Either v;, + v,
or v, < v;,,, is a back-edge, and without loss of generality assume it is the former. Applying the definition

of the (R, f,s”)-walk on the two indices i, and z,
ai, =) > f(min(as,, az)) = f(s").
viwsr)s Weknow ag, ;) < Lrp(s”) < f(s”) because

{(vi, az)}zziﬁ is an (R, f,s")-walk and s > s” is short, so we have another contradiction. Thus u < t.

‘We obtain

On the other hand, this sum is bounded above by a;,

afrg < Zaij + Za’(i]‘)ij+l) <st4t- LRJ(S) <s't+ 2St2, (2.4)

Jj=1 Jj=0

for all s < s’ < 4st and any (R, f, s’)-walk {(v;, a;)}i_,. Here we let ig = 0 and 4,1 = ¢+ 1 for convenience.

Inequality (2.4) implies that Lg ¢(s’) < 2s't for all s’ € [2st,4st]. It also implies that Lg ¢(s”) < 6st? <
f(s) < f(s") for all s” € (s,4st]. We have verified both conditions for s’ to be short for every s’ € [2st, 4st],
as desired. (|

It remains to pick a function f for which Lemma 2.6 bootstraps successfully. Define
10s2¢3/2 logt >4
f(S) — log? s s (25)
4063/ logt s < 4,

where the values of f(1), f(2), f(3) are chosen just to make f nondecreasing. Recall that all logarithms are
to base 2.



Lemma 2.7. Ift > 10°, f : N — Ry is defined by (2.5), and R is a tournament without a transitive
t-subtournament, then Lg r(s) < 2st for all s sufficiently large.

Proof. We apply Lemma 2.6 inductively to show that s is short for all s sufficiently large. This implies the
desired result.

For the base case, we claim that s is short for all s < so := 40t'/2logt. Indeed, suppose s < sq and
{(viya;)}i_; is an (R, f,s)-walk. By Lemma 2.5, if £ > ¢ then there is either a back-edge v; < v; with
1 < j <t or two consecutive elements v; = v;11. The latter contradicts the definition of an (R, f, s)-walk,
so assume the former holds. But a(; ;) < st < f(1) < f(min(as, a;)), so this contradicts the definition of an
(R, f,s)-walk again. We have shown that ¢ < ¢, so Lg ;(s) < st < f(s) for all s < sg. This proves s is short
for every s < sp.

Next, we check that f(s) > 6st? for all s > sq. Indeed, f(s)/s is increasing for s > so, and log sy < logt
since t > 10°. We get
10s2t%/2 log t

o > 1000t>/2logt > 6s0t2,
0g" So

f(s0) =
proving that the conditions of Lemma 2.6 are satisfied. By induction, Lemma 2.6 then implies that s is short

for s € [(2t)¥sq, (4t)*so] for all k > 0. All sufficiently large integers lie in some such interval, so Lg, ;(s) < 2st
for all sufficiently large s, as desired. O

Putting everything together, we have a proof of the general lower bound.

Proof of Theorem 1.2. We may assume that A is sufficiently large as we always have r—f(Hn) > n, which
proves the theorem for small A by picking the implicit constant factor in the exponent appropriately. Let
t = A2/3/(20010g?/® A); we may assume ¢ > 10%. Define f : N — Rs by (2.5). We have

S = Z F@m2) 27 < f(1) - Z m~2 < 80t3/%logt.

m>0 m>1

Lemma 2.2 implies that there exists an f-interval mesh H on N with maximum degree at most 25 + 17 <
200t%/21ogt < A. For any n > 1, let H, be the induced subgraph of H on the interval [n], so that H,, has
n vertices and is also an f-interval mesh of maximum degree at most A.

There exists a tournament R on r = 2() vertices with no transitive ¢-subtournament. By Lemmas 2.4
and 2.7 applied with these choices of R, f and H,,, we find that

log r
r—l)(Hn) > nﬁ—o(l) > nQ(t/lOgt),

which proves the theorem, by our choice of t. O

We remark that the polylogarithmic factor in A = Q(t2/3/ logz/ 3 A) can be easily improved. Indeed, the
growth rate of f(s) = ©(s?/log”s) is chosen so that

Z f(2m+2) .972m 0,

m>0

and we may take f(s) = O(s%/log" " s) for any fixed £ > 0 instead, leading to a slightly smaller A.

3 Greedy embedding

In this section we prove the main lemmas needed for all of the upper bounds in this paper. We use the
greedy embedding technique, motivated by similar arguments for ordered graphs from [11].

Framework. Let H be an acyclic digraph on n vertices vy, ..., v,. We would like to find an embedding
¢ : H — T into an ambient tournament 7. In addition we specify n sets Uy,...,U, C V(T) and aim to
satisfy ¢(v;) € U; for all i. Embedding then proceeds in n rounds, where round ¢ determines the image ¢(v;).



After round ¢, we keep track of the shrinking sets U ft), ceey 7(;) of “valid candidates” for each vertex, where

initially UZ-(O) = U, for all i. On round t, ¢(v;) is a carefully chosen vertex in Ut(t_l), and Ut(t) = {p(ve)}.
The other candidate sets are updated as follows:

UL AN\ {8} e o,
TUAN @\ S} e
U {own)} clse.

The process fails if there is an empty Ut(tfl)7 as there would be no valid choice for ¢(v;). Otherwise,
it succeeds if ¢(v:) is chosen successfully for each ¢ < n. Note that after round ¢, {¢p(v1),...,¢(v4)} is an

embedded copy of H[{v1,...,v:}] in T, and these vertices have been removed from the other candidate sets,

so the update rule guarantees that U J(t) = {¢(v;)} remains a singleton when ¢ > j. If the greedy embedding

process succeeds, it exhibits the existence of a copy of H in T. See Figure 3.1 for a schematic illustration of
the greedy embedding process.

Target graph H Step 0

~ 0 e
V1 Vo V3 (2 "
"‘<f> m é ; :4 ¥

o(v1) ¢2) U UP d(v1)  Bv2) dlvs) UPY d(v1)  @(v2)  dvs)  @(va)

Figure 3.1: Illustration of the greedy embedding process for an acyclic orientation of the four-cycle. A
directed arrow from a vertex to a set indicates that the vertex is complete to the set. All edges point forward
in this example, but we do not always make this assumption.

For the upper bounds described in the introduction (Theorems 1.3, 1.4, and 1.5), we apply greedy
embedding in two separate stages, which we call the outer stage and the inner stage. Roughly speaking, in
the outer stage, we run the greedy embedding procedure many times to show that if T" is H-free, then T
contains a large “approximate blowup of H.” In the inner stage, we use greedy embedding one final time
within this “approximate blowup” to guarantee the existence of a copy of H in T. In either case, we can
conclude that T' contains a copy of H—either it is found directly by the greedy embedding strategy, or else
the failure of the greedy embedding yields the “approximate blowup” of H, in which a copy of H can be
found directly.

This section is split into three subsections. The first covers the basic results that follow from the greedy
embedding framework described above, namely how a failure to greedily embed H in a tournament 7" implies
that T' contains a certain nice structure, namely a pair of large vertex sets such that most edges between
them have the same orientation. The tools built in this first subsection are then used as basic building
blocks and iterated in the subsequent subsections. In the second subsection, we use them to build the outer
stage of the embedding. In the third subsection, we explain how to use this outer stage construction of an
“approximate blowup of H” to finally embed H itself.

In some of these greedy embedding arguments, we are concerned with partitioning an acyclic digraph H
into a number of parts and embedding the parts one at a time, so the following definition will be useful.
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Definition 3.1. If H is an acyclic digraph, we say that a collection {P;}7_, of vertex subsets of H is a
directed partition of H if LU P, U---UP. = V(H), and any edge of H between two distinct parts P;, P;
with ¢ < j is oriented from P; to P;.

In particular, the height of H is exactly the least h for which there exists a directed partition of H into
h independent sets.

3.1 The basic greedy embedding building blocks

Recall that an undirected graph G is said to be d-degenerate if there exists an ordering vi,...,v, of the
vertices of G such that each |N(v;) N {v1,...,v;—1}| < d, and such an ordering is called a d-degenerate
ordering of G. A d-degenerate ordering is a natural order for greedily embedding an undirected graph G,
since each candidate set U;t) in the greedy embedding strategy only shrinks in size by more than one at most
d times. We say that a digraph H is d-degenerate if its underlying undirected graph is d-degenerate. Note
that if H has maximum degree A then it is A-degenerate, but d-degenerate digraphs can have arbitrarily
large maximum degree.

Define a d-dense pair (W1, Ws) in a tournament T to be a pair of vertex subsets such that at least
0|W1||Wa| of the edges between Wi and Wa point from Wi to Wa. The size of the pair is defined to be
min(|Wy|, [Wa|). We do not require W3 and W3 to be disjoint, although the assumption of d-density implies
that W7 N W5 cannot be too large if ¢ is close to 1.

The first lemma in this subsection uses greedy embedding to show that if T' doesn’t contain a copy of
a given d-degenerate H, then T contains some large dense pair. The undirected analogue of this lemma is
well-known, and goes back at least to work of Erdés and Hajnal [17, Lemma 1.5].

Lemma 3.2. Let H be a d-degenerate digraph with n vertices and mazimum degree A, and let 0 < ¢ < %
If T is an H-free tournament on N > 2Ac~9n vertices, then T contains a (1 — c)-dense pair (Wy, Wa) with
size at least cIN/(2A).

Proof. We use the greedy embedding framework described above. Let us label the vertices of H according
to the d-degenerate ordering as v1,vs, ..., v,. We initialize Ul-(o) = V(T) for all 1 <i < n. We now attempt
to embed the vertices of H one at a time in T, in the d-degenerate ordering. For j > ¢, let N;(v;) denote the

set of vertices v; with ¢ < ¢ such that v; and v; are connected by an edge (in some direction). We inductively

)

pick the values of ¢(v¢) € V(T') and maintain vertex sets Ui(t with the following properties.

1. For every ¢ < t, we have Ui(t) = {¢(vi)}
2. For every j > t, we have |U;t)| > NI N — ¢
3. For i < t, if v; — v; then ¢(v;) — z for every = € U;t)
zeu®?
P

, and if v; < v; then ¢(v;) < x for every

From these properties, we see that if the process continues through step ¢t = n, then we will have embedded a
copy of H in T, contradicting our assumption that 7" is H-free. Moreover, all three properties are vacuously
true for t = 0. Now, suppose we have maintained this process up through step ¢t — 1. Suppose there exists
wy € Ut(t_l) such that for every j >t with v; — v; (resp. vy + v;), we have |[N*(w;) N U;t_l)| > c|UJ(t_1)|
(resp. [N~ (wi) N U;t71)| > c|UJ§t71)|). Then we may define ¢(vi) = wy, Ut(t) = {¢(v)}, and update the
remaining sets as

Y ANF )]\ {o(w)} if v = vy,

U;t) = [U;_l) AN~ ()] \{d(v)} if v; = vy,
thfl) \ {o(v4)} else,
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for all j > t. Properties 1 and 3 above continue to hold automatically after round ¢, and all that remains to
check is Property 2. For those j > ¢ for which v, is not adjacent to v;, Ny(v;) = Ny—1(v;) and at most one

vertex is removed from U;til) to obtain U;t). Therefore,

U > (US| 1> N @DIN — (1 1) =1 = Vel g,
On the other hand, if v; is adjacent to v, then |Ny(v;)| = |Ny—1(v;)| + 1, and therefore
|U;t)| > C|U;t_1)| —1>c (NN — (1)) = 1> NIy — ¢,

Thus, all three properties are maintained if such a w; exists.

Since we assumed that T was H-free, this process cannot continue until step ¢ = n, and therefore must
fail at some step 1 <t <n —1. Let Wy = Ut(t_l). Since the process fails at this step, for every w € Wy,
we can assign some j > ¢ such that either v, — v; and |[NT(w) N U;t71)| < c|UJ§t71)|7 or vy < v; and

|IN~(w) N U;t71)| < c|UJ§t71)|. Since v; has at most A neighbors in total, at least |Wy|/A choices of w are
assigned the same j > t by the pigeonhole principle. Fix such a “popular” j.

Suppose first that vy — v;. Let Wy = U;til), and let W7 be the set of all w € Wy which have fewer than
¢|Ws| out-neighbors in Wa. Then (W1, Ws) is a (1 — ¢)-dense pair. Similarly, if v; € N~ (v;), then we would
similarly find that (Wa, W7) is a (1 — ¢)-dense pair.

It remains to verify the lower bound on the sizes of W; and Wa. Recall that the greedy embedding
process succeeded up through step ¢t — 1, meaning that

|Ut(t71)| > clNe—1 ()l y (t — 1) > AN —n > —,

and similarly for U ;t_l), where we use the d-degeneracy assumption to conclude that |Ny—1(v:)| < d, and our
assumption that t < n < ¢?N/2. Since |Ws| = |U;t_1)| and |[Wq| > |Ut(t_1)|/A, this completes the proof. O

The second lemma proves a much stronger bound when H is 1-degenerate and weakly connected, i.e.
some orientation of a tree (recall that a digraph is called weakly connected if its underlying undirected graph
is connected). Note that a 1-dense pair in a tournament is just a pair of sets W7, Wy with all edges directed
from W7 to Wa.

Lemma 3.3. Let H be a weakly connected 1-degenerate digraph with maximum degree A on m vertices
ViyenoyUm, and let T be an arbitrary tournament. If there exist sets Uy,...,U, C V(T), each of size
M > 2mA such that if there is no embedding ¢ : H — T satisfying ¢(v;) € U;, then T contains a 1-dense
pair with size at least M/(m(A + 1)).

Proof. We begin by picking subsets Vi C Uy, ..., V;, C U, each of size M/m, such that Vi,...,V,, are
pairwise disjoint. We can do this greedily, by first picking an arbitrary subset V4 C U; of size M/m, then
picking an arbitrary subset Vo C Uy \ V] of size M/m, then picking V5 C Us \ (V4 U V2), and so on. At the
ith step, we have deleted at most (i — 1)M/m < (m — 1)M/m elements from U;, so at least M/m elements
remain, from which we pick V; arbitrarily.

The remainder of the proof is very similar to that of the previous lemma, though it will be more convenient
to work with a slightly different setup than before. Let the vertices of H be ordered so that each v; has
at most one neighbor v; with j > 4 (this is the reverse of the usual degenerate ordering). For each ¢, let
S; denote the set of vertices v; with ¢ < ¢ that are connected to v; by a path of vertices whose indices are
monotonically increasing, including v; itself. In other words, we set S1 = {v1}, let N¢(v;) denote the set of
vertices v; adjacent to v, (in either orientation) with ¢ < ¢, and set

S = {’Ut} U U S;.

1EN(ve)
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We define W; C V; to be the set of all w € V; for which there exists an embedding ¢ : H[S;] — T
mapping each v; into V; for v; € S;, and mapping v; to w. We know W,, = &, since otherwise there is an
embedding of H into the sets Vi,...,V,,, contradicting our assumption. Let ¢ < n be the minimum index
such that [W;| < M/(m(A + 1)); note that ¢t > 1 since W7 = Vj has size M/m. Let Ny(vi) = {viy, ..., v, }-
Our maximum degree assumption implies s < A, while if s = 0, then Wy = V;, contradicting our assumption
that |W;| < M/(m(A +1)). Thus, 1 <s <A.

By definition, W; is precisely the set of w € V; adjacent in the appropriate orientation to at least one
vertex in each of W ,..., W, . Let X1,...,Xs C V; denote the choices of w which do not have any edge in
the appropriate orientation to W;,, ..., W;_, respectively. We get V; = W, U X3 U---U X,. Since s < A and
[Wy| < M/(m(A + 1)), we see that there exists some j for which |X;| > M/(m(A + 1)). Moreover, since t
was taken to be minimal, we have that |W;,| > M/(m(A 4 1)) as well. This yields a pair of sets (X;, W)
where all edges between them are oriented the same way, and both sets have size at least M/(m(A + 1)).
This is the desired 1-dense pair. O

We remark that we expect the m dependence in Lemma 3.3 to be unnecessary, and proving this would
improve our results for random digraphs; for details, see Conjecture 6.5 and the surrounding discussion.

We do not use Lemma 3.3 directly, but only the following simple corollary. It allows us to find a large
1-dense pair in T whenever T' does not contain a copy of some fixed oriented forest with small maximum
degree and small weakly connected components.

Lemma 3.4. Let H be a 1-degenerate digraph with mazximum degree A and vertices vy, ..., vy,, and suppose
that every weakly connected component of H has at most m vertices. Let T be an arbitrary tournament. For
any collection of sets Vi,...,V, C V(T), each of size M > 3nA, either there is an embedding ¢ : H — T
satisfying ¢(v;) € Vi, or T contains a 1-dense pair with size at least M/(4mA).

Proof. Let the weakly connected components of H be C1,...,C,.. We prove the result by induction on r.
The base case, r = 1, follows immediately from Lemma 3.3, since n > m and A +1 < 2A. For the inductive
step, let H' be the induced subgraph of H consisting of the weakly connected components C1,...,C,_1.
By the inductive hypothesis, either T contains a 1-dense pair of size at least M/(4mA), in which case we
are done, or else there is an embedding ¢ of H' into T satisfying that ¢(v;) € V; for all v; € V(H'). Let
T’ be the tournament obtained by deleting the image of ¢ from T, and similarly let V{,..., V. be obtained
by deleting the image of ¢ from Vi,...,V,. Since we have deleted at most n < nA vertices, each V; has
size at least M’ > 2nA > 2mA. Therefore, by Lemma 3.3, either T” contains a 1-dense pair of size at least
M'/(2mA) > M/(4mA), in which case so does T, or else there is an embedding of H[C,] into 7" mapping
each v; € C,. into V/. Since we deleted the image of ¢ from T to define T”, such an embedding yields an
embedding of H into T', completing the induction. O

Our final basic greedy embedding lemma is the following, which shows that if we assume appropriate
density conditions on the sets in which we are trying to greedily embed H, then we are guaranteed not to
fail in the embedding. In Subsection 3.3, we use this lemma as a basic building block. Again, the undirected
analogue of this lemma is well-known, e.g. [21, Lemma 2.

Lemma 3.5. Let H be an acyclic digraph with maximum degree A on n vertices v1,...,v,, and let T be a
tournament containing subsets Vi,...,V, C V(T), each of size at least 4n. If for every edge v; — v; in H,
(Vi, V;) is a (1 — gxz)-dense pair, then T contains a copy of H.

Note that the sets V; are allowed to overlap? or even be identical. This is crucial; for instance, if H has
height h then our choice of V;’s will take only h distinct values.

Proof. Every acyclic digraph has a vertex ordering where all edges point forward, so we may reorder the
vertices to assume all edges v; — v; satisfy ¢ < j. We now run the greedy embedding process for H into
T with the given U;, using essentially the same framework as we used in Lemma 3.2. The key difference

1

2However, if v; — vj, then the assumption that (V;,V;) is (1 — SAZ

)-dense implies that V; NV} cannot be too large.
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is that before, the greedy embedding process could fail and terminate prematurely, whereas the additional
assumptions here guarantee that greedy embedding runs to completion.

We begin by refining the sets V1,...,V,,. Namely, for every edge v; — v; in H, let V; ; C V; be the set of
vertices w € V; with [N~ (w) N'V;| > [V;|/(4A). Since the pair (V;,V;) is (1 — gxz)-dense, there are at most
[Vi||V;]/(8A%) edges directed from V; to V; in total, so

Vil . Wl
Visl Ga = a7
and thus |V; j| < [Vi]/(2A). Each v; has at most A out-neighbors v;, which implies that [, V; ;| < [Vi[/2.
Therefore, if U; == V;\ (U; Vi,;), then |U;| > |Vi|/2, and every vertex in U; has at most [V;|/(44) < |U;|/(24)
in-neighbors in U; for every j such that v; — v;.

Now, we exhibit an embedding ¢ : H < T by picking ¢(v;) € U; inductively for each t € [n], as follows.
Having picked ¢(v1),. .., d(vi—1), we claim that there is at least one valid candidate for ¢(v;) € Uy which is
consistent with the previous choices. Indeed, there are at most A choices of i < ¢ such that v; — v;. For
every such ¢, we have that ¢(v;) € U;, which means that ¢(v;) has at most |U;|/(2A) in-neighbors in U.
Hence, at least |Uy|/2 vertices in U, are out-neighbors of ¢(v;) for all ¢ such that v; — v;. Moreover, at most
t — 1 vertices of U; have been picked as outputs of ¢, and thus the number of possible candidates for ¢(v;)
is at least

|[Jt| |Lt|
= (t = >t >
( 1) n+1 1,

by our assumption that |Vj| > 4n. This shows that at every step ¢ < n we can pick vertex ¢(v;) such
that {¢(v1),...,é(v)} is a copy of H[{v1,...,v}] in T, and so T contains a copy of the entirety of H, as
desired. O

We remark that one can prove a strengthening of Lemma 2.4, where the assumption is weakened to each
pair (V;,V;) being merely (1 — Q(%))-dense. This can be done by replacing the greedy embedding argument
by a random embedding technique, using the Lovész local lemma. For details, we refer the reader to [13,
Lemma 4.5], where the analogous undirected result is proved using this technique.

3.2 The outer stage

In this subsection, we show how two of our basic building blocks, Lemmas 3.2 and 3.4, can be iterated to
construct, in any H-free tournament 7', an “approximate blowup” of H. This will be a large collection of
vertex sets which correspond to the vertices of H, such that the edges between sets are mostly oriented in
the correct direction. Before stating the result precisely, we need some definitions.

Let {0,1}* denote the set of all finite binary strings. Recall that a prefiz code is a set C' C {0,1}* with
the property that no element of C is a prefix of another element of C. The depth of C' is defined as the
maximum length of an element of C. Let < denote the lexicographic ordering on {0, 1}*, namely the ordering
in which & < y if « is a proper prefix of y or if x; < y; where i is the first index for which z; # y;.

Definition 3.6. Given an acyclic digraph H, a prefiz labeling of H is a surjective map p : V(H) — C for
some prefix code C' C {0, 1}*, with the property that if v; — v; is an edge of H, then either p(v;) = p(v;) or
p(v;) < p(v;). The map p naturally defines a graph structure on C, where we say that two codewords z,y
are adjacent under p if there exists some edge between the sets p~1(x) and p~1(y). By the mazimum degree
of p, we mean the maximum degree of this graph on C. If p~!(x) is an independent set for every x € C, then
we call p a prefiz coloring. Less stringently, we call p a forest prefiz labeling if p~!(z) is a directed forest (or
equivalently, a 1-degenerate digraph) for every « € C. By the mazimum component size of p, we mean the
maximum number of vertices of any weakly connected component in p~!(x), over all z € C. Thus, p is a
prefix coloring if and only if its maximum component size is 1.

Thus, we see that prefix colorings of H correspond to colorings of the underlying undirected graph of
H, with the property that the palette of colors C' is a prefix code, and that the lexicographic order on C'is
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consistent with the edge directions in H. Similarly, a forest prefix labeling is in particular a partition of the
underlying undirected graph into sets which induce forests, which corresponds to the undirected problem of
vertex arboricity. However, for both concepts, we will crucially use the additional structure given both by
the edge directions of H and by the structure of the prefix code C.

For a binary string z, let us denote by 0 and x1 the strings obtained by appending a 0 or 1, respectively,
to the end of z. For a prefix code C, we denote by Cy(x) the set of all elements y € C' which have z0
as a prefix, and by Ci(x) the set of elements that have x1 as a prefix. Suppose that p : V(H) — C is a
prefix labeling of an acyclic digraph H. For binary string x, let us denote by ag(x) the number of codewords
y € Cy(x) which are adjacent under p to some codeword z € Cy(z). Similarly, a;(x) is the number of
codewords z € Cy(x) that are adjacent under p to some codeword y € Cy(x). Finally, we let

a(z) =7 if ag(z) = 0 or a1 (z) =0,
min(ag(z),a1(z)) otherwise.

In particular, a(x) = 1 if = is not a proper prefix of any element of C. With this notation, we can now define
the key parameters of p that we later use to bound Ramsey numbers.

Definition 3.7. Let H be an acyclic digraph and p : V(H) — C some prefix labeling of H. We define the
dyadic complexity of p to be the quantity

comp(p) := max H | a(x).
x a prefix of y

Additionally, the depth of p, denoted depth(p), is defined as the depth of C, i.e. the maximum length of an

element of C.

To understand these definitions, it is helpful to think of {0,1}* as the vertices of the infinite binary tree.
In this setup, the elements of a prefix code C correspond to the leaves of some subtree. A prefix labeling
p: V(H) — C is then a partition of the vertices of H into sets labeled by the leaves of this subtree. Two
codewords (leaves) are adjacent under p if there is an edge between the corresponding vertex subsets of
H. For a binary string x, which should be thought of as a non-leaf vertex of the subtree, a(z) roughly
records the “cost” of separating the descendants of z: it measures how many pairs of codewords adjacent
under p there are between its descendants on the left and on the right. Because of the structure of the
proof, this cost function is somewhat unnatural: it is the minimum of two quantities, each of which is the
number of descendants on one side which are adjacent under p to any number of descendants on the other
side. Moreover, this cost function should be thought of as multiplicative, so that the ultimate cost of the
whole labeling—namely the dyadic complexity comp(p)—is the product of the costs of all ancestors of y,
maximized over all y € C.

We remark that the dyadic complexity of a prefix coloring of H is one possible formalization of the notion
of multiscale complexity discussed in the introduction. Indeed, if every prefix coloring of H has high dyadic
complexity, then H has many edges at “many different dyadic scales”. All of our upper bounds on oriented
Ramsey numbers depend on the dyadic complexity of some prefix labeling of H, making formal the intuition
that the strength of our upper bound results depends on whether H has high or low multiscale complexity.

In order to embed some acyclic digraph H in a tournament 7', we first build a certain structure of vertex
subsets of T' with high forward edge density between many of the pairs. Then, in the inner stage of the
embedding process, we use such a structure to find a copy of H. The structure we build depends on a
parameter § € [0, 1], as well as on a prefix labeling p of H. We now define this structure, and next prove a
lemma showing how to find such a structure.

Definition 3.8. Let 6 € [0,1] be some parameter, let H be an acyclic digraph, and let p : V(H) — C be
some prefix labeling of H, for some prefix code C. Let T be any tournament. A (p, §)-skeleton is a collection
{Vz}zec of (not necessarily disjoint) vertex subsets of T', indexed by the codewords in C, with the property
that if z < y are elements of C' that are adjacent under p, then (V,, V) is a d-dense pair. We define the size
of a (p, d)-skeleton to be mingec |Vz|.
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Our next lemma shows how to iterate Lemma 3.2 to construct a (p, d)-skeleton in any sufficiently large
H-free tournament 7. Roughly speaking, since the structure of a (p, d)-skeleton is based on the binary tree
structure of C', we may construct such a skeleton by performing a depth-first search, and applying Lemma
3.2 every time we need to split an existing node into two daughter nodes in this binary tree.

Lemma 3.9. Let ¢ € (0,1) be some parameter, let H be a d-degenerate acyclic digraph with mazimum degree
A, and let p: V(H) — C be some prefix labeling of H, for some prefiz code C. Suppose that T is an H-free

tournament on N vertices, with
4d+1A depth(p)
N > ( o ) comp(p)?n.

depth(p)
Then T contains a (p,1 — c)-skeleton of size at least (ﬁ)

comp(p)"¢N.

Proof. For every binary string z € {0,1}* which is a prefix of some codeword in C, let H, denote the
subgraph of H induced by the vertices v for which z is a prefix of p(v). We will construct, for every such
x € {0,1}*, a vertex subset V,, C V(T'), with

e
Vol 2 H 4d+1Aq(z)d N.
z a proper prefix of x
We initialize Vi = V(T'), where & € {0, 1}* denotes the empty string, and observe that this property holds
vacuously for Vg since @ has no proper prefixes. In order to construct these vertex sets for other z, we
proceed via a depth-first search along the binary tree, as follows. Recall that for any binary string z, the
numbers ag(x) and a;(z) are the number of codewords in C' beginning with 20 and x1, respectively, such that
some vertex labeled by that codeword has an edge to Hy1 and Hyo, respectively. If min(ag(x),a1(z)) = 0,
then we define Vo = V1 = V,,, and observe that our desired inequality holds, since a(z) = 1 in this case. In
particular, if z € C is a codeword, then we stop the inductive process, since we only wished to define such
vertex subsets for strings x that are the prefix of some codeword. Now, suppose that min(ag(x), a1 (z)) > 1,
and assume without loss of generality® that ag(x) < aj(x). We will first show how to define Vo C V,
satisfying the desired inequality on its cardinality. We will then proceed to recursively define vertex subsets
Vy C Vo for every binary string y prefixed by 0. Note that we have not yet defined the set V;1: we are
proceeding in a depth-first fashion, so we will not define V,; until we have defined V), for every y prefixed
by 20. This will eventually happen, since we already described above how to define V}, if y is a codeword of
C; therefore, we eventually reach the bottom of our depth-first search (namely a codeword y € C), at which
point we stop going down the tree, and begin to retrace our steps and traverse back up the tree.
Recall that we assumed that ag(z) < ai(x), and let ¢, = ¢/(4ap(z)). Since

d

C
z a proper prefix of x
4A (4a(z))? c?
= _— N
cd H 4d+1 Aa(z)d

z a proper prefix of 20
(e /(@41 2)) P comp(p) 4

- c?/(4A(4a(x))?)
> 4Ac; ', (3.1)

N

and since T contains no copy of H, we may apply Lemma 3.2 with parameter ¢,. Then this lemma says that
V, contains a (1 — ¢, )-dense pair (Wy, W), where min(|Wy|, |[W1]) > c?|V,|/(24). Let Vo € Wy denote the

31f a1(z) < ap(z), then we swap the roles of 0 and 1 and the roles of in- and out-neighbors in this construction.
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set of vertices in Wy whose in-degree to W7 is at most 2¢,|Wi|; since there are at most (1 — ¢, )|Wpl||Wi|
edges directed from W; to Wy, we see that |V| > |Wy|/2. Therefore,

c? c? c?
Vool > 2 |Vo| = ———|Vo| > ——— | N 3.2
[Vzol = 4A| ¢! 4d+1Aa(:17)d| = 2 H 4d+1 Aq(z)d ’ (3-2)
z a proper prefix of z0
since the proper prefixes of 20 are just x, in addition to all the proper prefixes of x itself.

As discussed above, we can now recursively define Vj, for all y prefixed by 0. It thus only remains to
define V1 C V;, under the assumption that we have defined V;, C Vo C W, for all y prefixed by 0.

To do so, let y1, . .., Yay(x) denote the set of codewords prefixed by 20 with the property that some vertex

in p~1(y;) is adjacent to some vertex in H,i, noting that there are exactly ag(x) such codewords by the
definition of ag(x). Let Wl(i) denote the subset of W consisting of vertices in W; whose out-degree to V,
is at least ¢|V,,|. Since every vertex in V,, C Vo has at most 2¢;|W1| in-neighbors in W7, we see that the
total number of edges directed from Wi to V,, is at most 2¢,|W1]||V,, |, and therefore |W1(l)| < (2¢x/0)|Wh].
Because of this, we have that

ao () aop(x)

i i 2¢y W
Wi < S0 ) < ao() 2w = L
1 =1

2

i=

Therefore, we can define V3 = Wi \ (Ufi(lx) Wl(i)), and we have that |V,1| > |W;p|/2. By the same

computation as in equation (3.2), we see that this definition of V, satisfies our desired lower bound on the
size of V1.

We claim that in this construction, if y < z are codewords that are adjacent under p, then the pair
(V4, V) is (1 — ¢)-dense. To see this, let 2 be the longest common prefix of y and z. In the construction at
level z, we first proceeded to either V.o or V.1 in the depth-first search, depending on the relative sizes of
ao(x) and aq(z). In the former case, we ensured that every vertex in V1 had out-degree at most ¢|V,| to V,,
while in the latter case, we ensured that every vertex in Vo had in-degree at most ¢|V| to V,. In either case,
we see that (V,, V) is (1 — ¢)-dense, since V,, C Vo and V, C V1. Additionally, by the same computation

depth(p)
as in equation (3.1), we see that |V,| > (ﬁ comp(p) 4N for every y € C. This verifies all the
properties of a (p,1 — ¢)-skeleton, and concludes the proof. O

Our next two lemmas are very similar to Lemmas 3.2 and 3.9. Namely, the first shows us how to find
a l-dense pair in an H-free tournament 7', and the second then iterates the first to form a skeleton of 1-
dense pairs. The main difference between these and the previous results are that for these lemmas, we need
strengthened assumptions on H (namely that it has a directed partition into forests). Moreover, the first
step in the proof is an application of Lemma 3.9, and we find the 1-dense pair by failing to greedily embed
H in the skeleton given by Lemma 3.9.

Lemma 3.10. Let d > 2, and suppose that H is a d-degenerate acyclic digraph on n vertices with mazximum
degree A, and suppose that p : V(H) — C is some forest prefix labeling with mazimum degree A and mazimum
component size m. Let T be an H-free tournament on N > (20 AA2)?4ePth(r) comp(p)?n wvertices. Then T
contains a 1-dense pair (U1, Us) of size at least m~" (210 AA2)=@dePth(p) comp(p)~N.

Proof. We first apply Lemma 3.9 to the prefix labeling p and with parameter ¢ = 1/(16AA). This lemma
outputs a (p, 1 — 15z )-skeleton {V }zec in T of size at least

ol depth(p)
(m> comp(p) "IN > 12An.

For every pair of codewords < y that are adjacent under p, let V; , denote the set of vertices in V, whose
in-degree to Vj, is at least g |V,|. Since at most tzx |Vz||Vy| of the edges between V, and V), are directed
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from V,, to V,, we see that |V, | < 55 |Va|. Therefore, if we define V) =V, \ (Uy>-m Ve ) then we see that

V| > 2|V |, since there are at most A choices for y > = with z,y adjacent under p. Additionally, every
vertex in V; has in-degree at most gk|V,| < A|V’| from any V’ with y = 2 such that z,y are adjacent
under p. We now attempt to greedily embed H in these sets {V }zec

Let the codewords of C' be x4, ..., z,, sorted so that ¢ < j if and only if x; < z;. Let P; = p~(z;), so that
P; is an oriented forest, each of whose weakly connected components has at most m vertices. Additionally,
Py U U P, forms a directed partition of V(H), which we recall means that every edge of H is oriented

from P; to P; where i < j. For every vertex v € P;, we initialize a set of candidates U<O) = V.. Inductively,

having defined Ufﬁ? for each ¢ > ¢ and each v € P;, we attempt to pick an embedding ¢; : H[P] < V! , such

that for every v € Py, ¢:(v) € Ut(t Y 1f such a ¢ exists, then for each ¢ > ¢ and each v € P;, we let

U = {ue UL N\Gu(P) : Yw € N~ (v) N Py (w) — u}.

Note that by the structure of the sets V! ®)

w5+, Vg , we only change U, as follows. First, in at most A steps,

we embed an in-neighbor of v, and we decrease |U1(tv)| by at most x| $1| Additionally, we remove at most n

additional vertices from Uz-(fv),

at most A+ - |V/ | +n < 1|V | vertices. We thus see that |U, t)| > 1|V, | for all ¢.

If we are able to run this process for all 1 <t < r, then we have embedded a copy of H in T, so we may
assume that the process fails at some step ¢. This means that there is no embedding ¢; : H[P;] — T such
that every vertex v € P, is mapped to U,f()tlfl). Therefore, by applying Lemma 3.4 to H[P;], we conclude that
T contains a 1-dense pair (Uy, Us) of size at least

corresponding to vertices that were picked as images of ¢;. In total, we remove

1)
[ AN

yr—Y 16mA (210AA2) d depth(p) comp(p)_dN. 0

Our next result shows how we can iterate the previous lemma to construct many 1-dense pairs. The
iteration is nearly identical to the one in Lemma 3.9, where we iterated the construction of one dense pair
to the construction of a (p, 1 — c¢)-skeleton. This lemma takes as input two (not necessarily distinct) prefix
labelings on H, one of which is a forest labeling. The reason to have two separate labelings is that it may
be useful to use the failure of embedding of H according to one labeling to construct a good embedding
structure for the other labeling.

Lemma 3.11. Let d > 2, and suppose that H is a d-degenerate acyclic digraph on n vertices with maximum
degree A. Let p1 : V(H) — Cy and py : V(H) — Cy be two prefix labelings, such that p1 is a forest prefix
labeling of mazimum degree A1 and mazimum component size my. Let

—1
v = (ml (2104, A%)ddepthlpr) Comp(m)d>

— depth(

If T is an H-free tournament on N > ~ P2)n vertices, then T contains a (pa,1)-skeleton of size at

least ’ydepth(p? IN

Proof. As in the proof of Lemma 3.9, we construct our skeleton by assigning a set V,, C V(T') for every
x € {0,1}* that is a prefix of some codeword in Cs, with the property that Vo, V1 are both subsets of V.
We guarantee inductively that

[Va| > 4#IN, (3.3)

where |z] is the length of 2. To begin the induction, we set Vi = V(T'), which satisfies our size hypothesis
since |&| = 0. Inductively, suppose we've defined V,.. If x € Cs, we stop. If not, we apply Lemma 3.10 to
the induced subtournament on V,,, which we may do since

|V;E| > ,7|m|N > ,ydepth(pg)—lN > (210A1A2)ddepth(p1) comp(pl)dn
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This allows us to find a 1-dense pair (Uy,Us) of size at least v|V,|. We then set Vo = Uy and V1 = Us,
which we see satisfy (3.3) inductively. We continue in this way until we define V, for every z € Cy. To
conclude, suppose that y,z € Cy are adjacent under ps, and let z be their longest common prefix. Then
Vy € Vg and V, C V1, and we know that every edge between V.o and V. is oriented from Vg to V1,
which implies that (V,, V,) is 1-dense, as claimed. O

3.3 The inner stage

In this subsection, we will see how to use the various structures built in the previous subsection to successfully
embed a copy of H in any sufficiently large tournament 7. The basic idea is that the (p,J)-skeletons
constructed in Lemmas 3.9 and 3.11 are precisely the structures we need in order to apply Lemma 3.5 and
find a copy of H.

Recall that a prefix coloring is a prefix labeling where the preimage of every codeword is an independent
set. Our first result here shows a general upper bound on r—f(H ) in terms of the depth and complexity of a
prefix coloring of H.

Theorem 3.12. Let H be an acyclic digraph on n wvertices with maximum degree A > 1. Then for any
prefiz coloring p : V(H) — C, we have 1 (H) < N, where

N = (25A+4A2A+1)dcpth(f)) comp(p)®n.

Proof. Let T be a tournament on N vertices, and suppose for contradiction that T is H-free. By Lemma

3.9 applied with d = A and ¢ = ¢&z, we can find in T a (p, 1 — gxz)-skeleton {V; }zec of size at least

—AN depth(p)
(SAQ) 4 - — depth(p) _
<m comp(p) AN = (25A+2A2A+1) comp(p) AN > 4n.
Now, for any vertex v; € V(H), let V; = V,(,,). Then since p~*(x) is an independent set for any z € C, we
see that if v; — v; is an edge of H, then (V;,V;) is a (1 — 8&2 )-dense pair. Therefore, by Lemma 3.5, we
conclude that T' contains a copy of H. O

The second result of this subsection uses the (p, 1)-skeletons we constructed in case we are given a forest
prefix labeling. Using this skeleton, we are able to prove the following result, which takes as input a forest
prefix labeling and any arbitrary prefix labeling (which may be the same as the forest prefix labeling). The
output is a bound on the Ramsey number, in terms of the depth and complexity of the first labeling, and in
terms of the maximum Ramsey number of the parts in the partition induced by the second prefix labeling.

Theorem 3.13. Let d > 2, and let H be a d-degenerate acyclic digraph on n vertices with maximum degree
A. Suppose that py : V(H) — Cy is a forest prefix labeling of H and that py : V(H) — Cs is any prefic
labeling. Let A1 and my be the maximum degree and mazimum component size of p1, respectively. Then
T (H) < N, where

depth(pz2)
N = (i (2104, A2) 92000 comp(pr)?) T max <n,m%xﬁ<ﬂ[p;1<x>]>).
rxeCs

Proof. Let T be a tournament on N vertices, and suppose that T is H-free. We apply Lemma 3.11 to T,
which allows us to find a (p2, 1)-skeleton {V, }.ecc, where

V| = Q%EW(H[pil(y)]) > 71 (H[py " (x)])
for all z € Cy. In other words, this is a collection of disjoint sets {V;}zec, such that if = precedes y in the
lexicographic ordering, then every edge is oriented from V, to V,,. By the definition of the Ramsey number,

we see that the induced subtournament T[V,] must contain a copy of H[py ' (z)] for all z € Cy. We pick such
a copy arbitrarily for each = € Cy, and observe that their union forms a copy of H in T O
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4 Upper bounds on oriented Ramsey numbers

4.1 Upper bounds in terms of height

Theorem 3.12, which bounds r_f(H ) in terms of the dyadic complexity and depth of a prefix coloring, allows
us to prove bounds on r_f(H ) in terms of other, more natural, parameters. For instance, the next lemma
relates the height of an acyclic digraph to its dyadic complexity and depth.

Lemma 4.1. If H is an acyclic digraph of height h, then there exists a prefix coloring p : V(H) — C with
depth(p) < [logh] and comp(p) < hlleshl,

Proof. Recall that if H has height h, then H has a directed partition Py, ..., P,_1 into h independent sets.
This partition naturally yields a prefix coloring using the prefix code C consisting of all binary strings of
length [log h]. Namely, we can label each vertex in P; by the base-2 representation of i, and this yields a
prefix coloring with depth [log h]. To estimate the dyadic complexity of this prefix coloring, note that for
any binary string = of length ¢ < [logh], we have that a(z) < 2M°8"1=¢ since there are at most 2M1°81-¢
codewords in C' prefixed by x. Therefore,

[log h]
Comp(p) S H 2[log h] —L — 2’—10g h“272l[l:0§ h] ¢ S h’—log h]. O
=0

Then Theorem 1.4 follows as a simple corollary.

Proof of Theorem 1.4. The result is immediate if A = 1, so assume A > 2. Let p be the prefix coloring from
Lemma 4.1, which has depth(p) < [logh] and comp(p) < 8”1, By Theorem 3.12,

depth(p)

’I”—1>(H) < (25A+4A2A+1) Comp(p)An < 27A log hABA log thA log hn < (Ah)loA log hn' n

Similarly, given a graded digraph, one can find a prefix coloring with small depth and dyadic complexity.

Lemma 4.2. If H is a graded acyclic digraph of height h, then there exists a prefiz coloring p: V(H) — C
with depth(p) < [log h] and comp(p) = 1.

Proof. The proof is identical to that of Lemma 4.1, except that a(z) < 1 for every binary string x, since
the only codeword prefixed by z0 that can have edges to a codeword prefixed by x1 is the codeword
(2,0,1,1,...,1). O

As before, Theorem 1.5 follows as a corollary.

Proof of Theorem 1.5. We may again assume that A > 2. Let p be the prefix coloring from Lemma 4.2,
with depth(p) < [logh] and comp(p) = 1. Then from Theorem 3.12,

T_1>(H) < (25A+4A2A+1)depth(1’) comp(p)An < 27A log hA3A log hn < thA logAn' n

Recall from the introduction that the bandwidth of an n-vertex acyclic digraph H is the least ¢ so that
P! contains H. Using the same argument, one can obtain a bound of r_f(H ) < n%M for any n-vertex
acyclic digraph of bandwidth at most ¢, using the fact that the same binary-representation prefix coloring
have dyadic complexity at most n©1°&9) However, since the Ramsey number of bounded-bandwidth acyclic
digraphs is known to be linear [14], we omit the proof of this weaker result.
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4.2 Upper bounds for random digraphs

In this section, we prove Theorem 1.3, showing that if d > 1 is bounded, then w.h.p. r_f(H) is nearly linear

when H = 8(71, d). Additionally, we prove a nearly-linear upper bound when p = d/n and H = 8(71, D).

We will need the following result of Dross and Havet [15] mentioned in the introduction. They only state
this result for orientations of trees, but one can easily extend it to orientations of forests by adding edges to
join distinct connected components.

Theorem 4.3. Let H be a 1-degenerate digraph (i.e. an orientation of an undirected forest) on n > 2

vertices. If T is any tournament on at least Z2:n — & vertices, then T contains a copy of H.
Y 8 16 Yy

We recall that the vertex arboricity of an undirected graph is the minimum number of subsets needed to
cover the vertices of the graph, such that each subset induces a forest (see e.g. [5] for more on this undirected
graph parameter). We first define a natural directed analogue of this quantity, though for technical reasons
we also keep track of the maximum component size in such a partition.

Definition 4.4. The directed vertex arboricity 171(H ) of an acyclic digraph H is the minimum size r of a
directed partition of H into sets {P;}7_, where H[P;] is 1-degenerate for all i.

Additionally, if H has a directed partition into sets { P;}7_; such that H[P;] is 1-degenerate for all 4, and
every weakly connected component in H[P;] has at most m vertices, then we say that H has an (r,m)-forest
partition.

Both of our upper bound results for random digraphs follow from the following theorem, which yields an
upper bound on 7{ (H) in terms of the degeneracy, maximum degree, and forest partition size of H.

Theorem 4.5. Let H be an acyclic digraph on n vertices2with mazximum degree A, degeneracy d > 2, and
with an (r,m)-forest partition. Then 71 (H) < (rA)6d(ogr)®y2logry

Proof. Let s = [logr], and let C' denote the prefix code consisting of all strings of length s. Fix a partition
PoU---UP._y of V(H) into directed forests such that every edge between P, and P; is oriented from P; to
P; for all ¢ < j, and such that H[P;] has weakly connected components of size at most m. Let p: V(H) — C
be the forest prefix labeling mapping P; to the binary representation of ¢. Then the maximum degree of p
is at most |C| = 2° < 2r, the maximum component size of p is at most m, and depth(p) = s. Moreover, we
can bound the dyadic complexity of p as comp(p) < r®, since every binary string is the prefix of at most r
codewords in C. We now now apply Theorem 3.13 with p; = pa = p. We recall that since p~1(x) is a forest
for every x, we have that 71 (H[p~'(z)]) < 3n by Theorem 4.3. Therefore,

depth(ps2)
FHH) < (1 (2104, A2) 749000 comp(py)?)

max <n, gé%‘); T_1>(H[Pz_1 (@D)
< (m(211rA2)dSTds)s - (3n)

< (TA)Sd(lOgT)2m2 logrn' 0

It remains to check that both 8(71, d) and 8(71, p) satisfy the conditions of Theorem 4.5 for appropriate
A, d,m, and r. Maximum degree and degeneracy are both easy to control for these graphs, so the nontrivial
part is bounding their directed vertex arboricity, or more precisely the parameters of a forest partition.

Consider the random digraph 8(11, p), where np = d > 1. The idea for bounding 171(H ) is to equitably
divide [n] into 5d intervals I;, and note that H[I;] ~ 8(71/ 5d,p) is in the subcritical regime of the Erdés—
Rényi random graph process, so w.h.p. is a union of trees and unicyclic components, each comprising O(logn)
vertices. Each interval I; can be further divided in two to break the unicyclic components, which shows that
w.h.p. we have a (10d, O(logn))-forest partition. The analysis is broadly similar for H = 8(n,d) but
somewhat more technical.

Recall that if d > 1 and nd is even, a uniformly random undirected d-regular graph G(n,d) can be
generated using the “pairings model” (also known as the “configurations model”) of Bollobds [3], see the
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survey of Wormald [39]. The pairings model of G(n,d) generates a random d-regular multi-graph (with
self-loops allowed) by taking a uniformly random perfect matching (a “pairing”) on nd points divided into
n d-sets, and then contracting each d-set into a single vertex. There are a total of

(nd)!

such pairings, and any simple d-regular graph is equally likely to be generated. If d > 1 is fixed and n — oo,
it is known that the probability a pairing generates a simple graph is asymptotic to e(1=d)/4 To generate
an honest G(n,d), repeatedly sample from the above model (expected constant number of samples) until a
simple graph is found.

Lemma 4.6. If d > 2 is fized, nd is even, and G is the induced subgraph of G(n,d) on a fized set of 24
vertices, then w.h.p. every connected component of G has order at most 2logn and contains at most one
cycle.

Proof. We first show that w.h.p. each component contains at most one cycle.

It is not difficult to show that any minimal graph H on k vertices with at least two cycles is formed
from a path of length k by adding edges from each of its ends, see e.g. [27, Theorem 5.5]. Thus, there are at
most k2 - k! labelled graphs on k vertices with this property. For a fixed such H, we bound the probability
it appears among k fixed vertices vy, ..., v in the pairings model for G(n,d). The total number of pairings
giving such an H (without giving rise to multi-edges) can be bounded above by

P p(nd — 2(k + 1)),

since there are at most (d2)**1 ways to choose the edges between d-sets that correspond to the k + 1 edges
of H, and then at most P(nd — 2(k + 1)) ways to pair the remaining points. Let £ be the event that the

pairings model generating a simple graph, which occurs with probability (1 + o(l))e(l_d2)/ 4. We get that
2*FHDP(nd — 2(k + 1))

Pr[{vi,..., vk} isacopy of H | E] < (14 0(1))67(17(12)/4 '

P(nd)
—(1—d%/4 dk+1
< (I+o(1))e gy
Thus,
5d dFt1
Pr[some such H appears in G] < (1 + 0(1))67(17(12)/4 Z <n/§€ )> k* k! T o(1),

k>4

which completes the proof that every component of G contains at most one cycle w.h.p.

Next, we show that w.h.p. every connected component has order at most 2logn with a similar computa-
tion. For a given set size k, the number of labelled trees H on k vertices is k*~2 by Cayley’s theorem. We
bound the probability that a fixed such H appears among k fixed vertices vy, ..., vg. Similarly to before, we
obtain that the total number of pairings giving such an H without multi-edges is bounded above by

?*F=Y . P(nd — 2(k — 1)),
since there are at most (d2)*~! ways to choose the edges between d-sets that correspond to the k — 1 edges
of the tree H, and at most P(nd —2(k — 1)) ways to pair the remaining points. Conditioning on the pairings

1—d?)/4

model generating a simple graph, which occurs with probability (1 + o(1))e! , we get

(a4 d2* =D P(nd —2(k — 1))

Pr[{v1,...,vg} is a copy of H | €] < (14 o(1))e Pnd)

dkfl

_ _ g2
<(l4+o(1)e (1-d7)/4 e
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Taking a union bound over all choices of vy, ..., vk,

Pr[a tree on k vertices appears in G] < (1 + 0(1))<3_(1_d2)/4 (n

60 &

k nk—1
nk . kk72 . dkfl
(5d)k . (k/e)k .pk—1

< (14 o0(1))e~1-d)/4
<n-(e/5+0(1))",

which is o(1) for k = 2logn. This implies that w.h.p. every component of G has order at most 2logn, and
completes the proof. O

We can now prove Theorem 1.3.

Corollary 4.7. For any d > 2, we have that w.h.p., T—f(a(n, d)) < n(logn)*ed gs n — .

Proof. By Lemma 4.6, we know that w.h.p., any fixed n/(5d) vertices of 8(71, d) span a disjoint union of trees
and unicyclic components, each of which has order at most 2logn. Therefore, by applying the union bound

to 5d events, we conclude that w.h.p., 8(71, d) has a directed partition into 5d parts all with this property.
Dividing each part in two to split every cycle, we conclude that w.h.p. 8(n,d) has a (10d, 2 logn)-forest

partition. Additionally, since the underlying undirected graph of G (n,d) is d-regular, we see that G (n,d)
is d-degenerate and has maximum degree d. So by Theorem 4.5, we conclude that w.h.p. as n — oo,

ﬁ(a(n, d)) < (10d2)6d(log(10d))2 (2 log n)210g(10d)n,
which is upper-bounded by n(log n)41°gd for any fixed d and sufficiently large n. 0

Let 8(n,p) denote the orientation of the Erdés-Rényi random graph G(n,p) on vertex set [n] where
all edges are oriented to the right. Similarly to the above, we can prove a nearly-linear upper bound on

(G (n.p)).
Corollary 4.8. For any d > 2, we have that w.h.p., T—f(a(n,p)) < n - (logn)©(dloe d)z), where p = d/n.

Proof. It is easy to show that if p = d/n, then G(n,p) is O(d)-degenerate (see [19, Theorem 4.8] for a proof
of a stronger result). Additionally, it is well-known that the maximum degree of G(n,p) is O(logn/loglogn)
for any fixed d > 2. Finally, by the easier version of Lemma 4.6 (e.g. [27, Theorem 5.5]), we see that G (n,p)
has a (10d, 2 log n)-forest partition. Hence, Theorem 4.5 implies that 71 (G (n,p)) < n- (logn)C@lesd?)

5 Multiple colors and ordered Ramsey numbers

In this section we study oriented Ramsey numbers of more than one color, proving Theorems 1.6 and 1.7.

We define an ordered graph G to be an undirected graph whose vertex set comes with a total order. If
the vertex set is a subset of N, then the total order is assumed to be that of N. If Gy, ..., G}y are ordered
graphs, then the ordered Ramsey number r<(G1,...,G}) is the minimum N such that any edge-coloring of
the complete graph on [N] in colors 1,.. .,k contains a monochromatic copy of G; in color ¢ for some i. Here
an ordered copy of G; is a subgraph isomorphic to G; with vertices appearing in the same order. We write
r<(G;k) =r-(G,...,G) when all the graphs G; are the same.

5.1 The lower bound

To prove Theorem 1.6, we need the following theorem from Conlon, Fox, Lee, and Sudakov [11, Theorem
2.3].
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Theorem 5.1. If M is a random matching on vertex set [n], then w.h.p.,
re (M; 2) > nlogn/ZO log logn'

We remark that the existence of ordered matchings M with ro(M;2) > nlogn/20loglogn wag proven
independently by Balko, Cibulka, Kral, and Kynél [1]. We will only need this weaker result.

If H is an acyclic digraph with a Hamiltonian (directed) path, we say H is Hamiltonian. It has a unique
vertex ordering vy, ..., v, where consecutive vertices are adjacent and all edges point forwards. We assign
to H a natural ordered graph H™ on [n] where i ~ j if and only if v; — v; in H.

Lemma 5.2. Ifk > 1 and H is an acyclic Hamiltonian digraph, then
T (H) > re(HY; k).

Proof. If N = r(H™*; k) —1, there exists a k-edge-coloring x of the complete graph on [N] in which there is
no monochromatic copy of HT. Let T be the transitive tournament on [N] with all edges oriented forwards
(i.e. i — j if and only if ¢ < j), and the edge between i — j also colored x(%,J). Since H has a Hamiltonian
path and all edges in T point forwards in [IN], any copy of H in T corresponds to an ordered copy of HT in
X- By construction, there is no monochromatic copy of H in T, as desired. o

The two results above together can be used to prove Theorem 1.6.

Proof of Theorem 1.6. Since 7 (H) is nondecreasing in k, it suffices to prove the result for k = 2. By
Theorem 5.1, there exists a matching M on [n] which satisfies r~(M;2) > nlogn/20loglogn  Define H to be
the acyclic digraph on [n] where i — j if ¢ < j and either j = i + 1 or (¢,7) is an edge of M. By Lemma
5.2, 73(H) > r-(H*;2). On the other hand, M is a ordered subgraph of HT, so ro (H;2) > ro(M;2). Tt
follows that

T—2>(H) > ’I”<(M;2) > nlogn/2010glogn,

as desired. Note that H is the edge union of a path and a matching, so it has maximum degree 3. O

5.2 The upper bound

To prove Theorem 1.7, we upper bound k-color oriented Ramsey numbers by 2k-color ordered Ramsey
numbers. Let H~ be the ordered graph obtained from H™ by reversing the vertex order.

Lemma 5.3. If k> 1 and H is an acyclic digraph, then

M(H)<ro(HY,...,HT H,... H).
k k

Proof. Let T be a tournament on

N=r (HY,...,HY,H,...,H")
k k

vertices, with an edge-coloring x using colors 1,...,k. Arbitrarily identify V(T') with [N] and define a
(2k)-edge-coloring x’ of Ky by
. x (2,7 ifi<jandi—j
X' (i,5) = (6.1)
x(t,7) +k else.

By the definition of N, there is either some color ¢ < k where x’ has an ordered copy of HT in color ¢, or
some color ¢ > k where x’ has an ordered copy of H~ in c. In the former case, T' contains a monochromatic
copy of H in color ¢ with all vertices pointed forwards in the arbitrary ordering, and in the latter case T

contains a monochromatic copy of H in color ¢ — k with all edges pointed backwards. In either case, T
contains a monochromatic copy of H, as desired. O
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To prove an upper bound on ﬁ(H ), it remains to generalize the following upper bound of [11] on 2-color
ordered Ramsey numbers to more colors.

Theorem 5.4 ([11, Theorem 3.6]). If H is an ordered graph on at most n vertices with degeneracy d > 2,
then
re (H, Kn) < 2O(dlog2(2n/d))'

The multicolor bound can now be obtained by iterating the above theorem.

Theorem 5.5. If k,d > 2 and Hy,...,Hx—1 are d-degenerate ordered graphs on at most n vertices, then

2k:71
re(Hy,. .., Hyq, K,) < 20kalos™ n)
Proof. We prove the theorem by induction on k. The base case k = 2 is just Theorem 5.4. For the inductive
k—2
step, note that if M =r(Ha,...,Hp—1,K,) < 90(log™ " 1) then one obtains
r<(Hy,Hs,...,Hp—1,K,) <r<(Hi, Ky),

by combining the last k£ — 1 colors into one “super-color.” It follows by applying the base case that

k—1
’I”<(I{17 Ho,...,Hg 1, Kn) < 7~<(]{17 KM) < 2O(log2 M) < 2O(log2 n),
as desired. O

Theorem 1.7 follows by combining Lemma 5.3 with Theorem 5.5.

6 Concluding Remarks

In this section we collect a few appealing open problems on the Ramsey numbers of digraphs. For k&, A > 1
and n > A, let Hj, A be an acyclic digraph H with n vertices and maximum degree A maximizing the
value of ﬁ(H ). Much of this paper was devoted to understanding the growth rate of ﬁ(Hkn A) for fixed k
and A.

We first consider the one-color case. Theorem 1.2, Lemma 5.3, and Theorem 5.4 together show

nsz(A2/3/1og5/3A) < T_1>(H1,n,A) < 90(Alog?(2n/A)) (6.1)

While we do not know whether the above Ramsey number grows polynomially or super-polynomially in n
for £ = 1, we also showed that for k > 2 and A > 3, ﬁ(H;wl,A) is at least nflogn/loglogn) We conjecture
that a super-polynomial growth rate is also possible for £ = 1.

Conjecture 6.1. There exists an absolute constant A such that
1 (Hyn,n) > n*W.

In the case of k > 2 colors, Theorems 1.6 and 1.7 together imply

nQ(log n/ loglogn) < ﬁ(Hk,n,A) < 20(10g227671 n) (62)

It would be interesting to determine even the logarithmic order of H(H kA )
Problem 6.2. For any fixed kK > 1 and A > 2, determine the order of growth of log ﬂ(HkynﬁA).

To our knowledge, the only solved case of Problem 6.2 is k =1, A = 2. Here, H; ,, 2 must be a disjoint
union of arbitrarily oriented paths and non-strongly oriented cycles (an acyclic H cannot contain a strongly
oriented cycle). Thomason [37] proved that if n is large enough, 71 (C,) = n for any non-strongly oriented
cycle C,, on n vertices, which can be used to show ’I”—1>(H17n12) =n+ O(1).

It would be interesting to improve either side of (6.2) substantially. We tentatively conjecture that neither
side is close to the truth, in the following quantitative form.
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Conjecture 6.3. There exist A > 3 and constants ¢, = wi(1) and Cy = 20k) such that
Q(log® n) < log 77 (Hp.n.a) < O(log” n).

In the one-color case, another open problem we find interesting is to determine more precisely the Ramsey
number of a sparse random digraph. Theorem 1.3 shows that for fixed d, the Ramsey number of G (n,d) is
w.h.p. bounded above by n(logn)?+(!). We expect that the answer is in fact linear.

Conjecture 6.4. Ifd > 2 is fivzed and H = a(n,d), then w.h.p. T (H) = Og4(n).

This would follow from our techniques if one could prove the following strengthening of Lemma 3.3, in
which the size of the 1-dense pair depends only on the maximum degree A (and not on the number m of
vertices).

Conjecture 6.5. For every A > 1, there exists Ca > 0 such that the following holds. Let H be a 1-
degenerate digraph with maximum degree A on m vertices v1,...,Vm, and let T be an arbitrary tournament.
If there exist sets Uy, ..., Uy, C V(T), each of size M > Cam, such that there is no embedding ¢ : H — T
satisfying ¢(v;) € U;, then T contains a 1-dense pair with size at least M/Ca.

Indeed, if one could prove Conjecture 6.5, then it would imply that Lemma 3.10, Lemma 3.11, Theorem
3.13, and Theorem 4.5 would all no longer depend on m, the maximum size of a tree component in a directed
partition of H into oriented forests. In particular, this would imply Conjecture 6.4. Moreover, it is entirely
possible that Conjecture 6.5 could be proven using similar greedy embedding arguments, since the conjecture
is not hard to prove if the injectivity constraint on ¢ is removed.

We would also like to highlight one powerful digraph embedding technique that we have not used in
this paper, but are hopeful can be incorporated into our arguments to prove more general results. The
median ordering of a tournament T is the vertex ordering vq,...,v, maximizing the number of forward
edges. To see the power of the median ordering, note that v; — wv;41 for every 1 < ¢ < n — 1 in this
ordering, so this immediately exhibits a Hamiltonian path in T. Previous work showing linear upper bounds
on 71 (H) when H is an oriented tree (e.g. [16]) or an acyclic digraph of bounded bandwidth [14] all depend
on embedding H into a tournament 7' in some iterative manner according to its median ordering. We were
not able to reproduce these upper bounds using greedy embedding arguments, which seem primarily suited
for embedding digraphs H without long paths.

Finally, we recall from the introduction the directed Ramsey number ﬁ(H ), which is defined as the least
N such that every k-coloring of the edges of [<{_N> contains a monochromatic copy of H. It is easy to see that
7L (H) > ¥ (H) for any k and any acyclic H. Indeed, if N = 7{(H), then given a k-edge-coloring of E\;,
we may ignore one edge from each anti-parallel pair to obtain a k-edge-colored N-vertex tournament, which
contains a monochromatic H. There is also an inequality in the other direction, whose proof is identical
to that given in Lemma 5.3, and which states that ﬁ(H) < @(H, ...,H,H' ... H'), where there are k
copies of H and k of H', and H' is obtained from H by reversing all the edges. Thanks to these connections,
one can convert many of our results on oriented Ramsey numbers to results on directed Ramsey numbers.
For example, Theorem 1.7 immediately implies a quasi-polynomial upper bound on ﬁ(H ) for any bounded-
degree acyclic digraph H. In the other direction, since reversing the edges of any interval mesh yields another
interval mesh, Theorem 1.2 shows the existence of a bounded-degree acyclic digraph H with ﬁ(H ) which
grows faster than any fixed polynomial in the number of vertices of H. For k > 4 colors, we can similarly use
Theorem 1.6 to produce a bounded-degree acyclic digraph H such that ﬁ(H ) grows super-polynomially.
However, there is an interesting intermediate case at k = 3 colors, and we end with the following conjecture,
which may be easier than Conjecture 6.1.

Conjecture 6.6. There is an absolute constant A and an infinite sequence {Hy} of n-vertex acyclic digraphs
with mazimum degree at most A and ¥3 (H,) > n*®).
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