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ARTICLE INFO ABSTRACT

Keywords: COVID-19 highlighted the importance of considering human behavior change when modeling disease dynamics.
Endogenous behavioral feedback This led to developing various models that incorporate human behavior. Our objective is to contribute to an
Identifiability in-depth, mathematical examination of such models. Here, we consider a simple deterministic compartmental
Human behavior model with endogenous incorporation of human behavior (i.e., behavioral feedback) through transmission in
Stability analysis

Sensitivity analysis a classic Susceptible-Exposed-Infectious—Recovered (SEIR) structure. Despite its simplicity, the SEIR structure

Early COVID-19 dynamics with behavior (SEIRb) was shown to perform well in forecasting, especially compared to more complicated
models. We contrast this model with an SEIR model that excludes endogenous incorporation of behavior. Both
models assume permanent immunity to COVID-19, so we also consider a modification of the models which
include waning immunity (SEIRS and SEIRSb). We perform equilibria, sensitivity, and identifiability analyses
on all models and examine the fidelity of the models to replicate COVID-19 data across the United States.
Endogenous incorporation of behavior significantly improves a model’s ability to produce realistic outbreaks.
While the two endogenous models are similar with respect to identifiability and sensitivity, the SEIRSb model,
with the more accurate assumption of the waning immunity, strengthens the initial SEIRb model by allowing
for the existence of an endemic equilibrium, a realistic feature of COVID-19 dynamics. When fitting the model
to data, we further consider the addition of simple seasonality affecting disease transmission to highlight the
explanatory power of the models.

1. Introduction Individuals tended to adhere to these interventions more strictly when

perceived risk of infection was high, and individuals relaxed their ad-

The COVID-19 pandemic left the world reeling, driving the need herence when perceived risk of infection was low, ultimately affecting

for further scientific understanding of disease dynamics, allowing for disease spread [4]. Thus, considering change in human response over

better preparedness for the next pandemic. Central to this preparedness the course of a pandemic, as affected by changes in the state of the

is the ability to develop and implement policies which can mitigate disease, is crucial for developing a better understanding of disease
the effects of the disease. To this end, mathematical models allow us spread and constructing more effective policies.

to test and simulate the effects of potential policies [1]. One aspect
of disease modeling that the recent pandemic brought to light was
the strength of the impact of human behavior on disease dynamics.
Along with policy implementation, human response affected the spread
of the disease in massively different ways in different parts of the
world [2,3]. Human behavior during disease outbreak manifests in
a myriad of forms, including change in mobility, willingness to test
for infection, willingness to vaccinate, adherence fatigue, and many
others. One particular form of human behavior which was observed
during the pandemic was the willingness of individuals to adopt and
adhere to non-pharmaceutical interventions (NPIs), such as masking,
social distancing, self-quarantining, even when not required to do so.

A common model structure used in disease modeling is the de-
terministic, compartmental Susceptible-Infectious—Removed (SIR) or-
dinary differential equation (ODE) model [5-7]. In this model, the
population is divided into three non-overlapping sub-populations based
on disease status — Susceptible, Infectious, or Removed/Recovered —
and the model simulates disease spread through these populations. The
standard SIR model always indirectly makes assumptions on human
behavior, particularly with respect to disease transmission. For exam-
ple, through the ODE formulation, it inherently assumes a well-mixed
population, and that human behavior remains unchanged throughout
an epidemic [6]. While simple and easy to simulate, this is generally
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not how humans actually respond [8]. To relax this assumption, some
SIR models instead assume that transmission changes through an ex-
ternal factor, e.g. as a function of time or some other measure [9,10].
However, human behavior instead tends to change in response to
understanding of the state of the disease and changes in perceived risks
(“risk perception”) [4,11,12]. If risk perception is modeled internally,
i.e. endogenously, a behavioral feedback mechanism emerges which is
often referred to as a risk-response feedback loop, or human behavior
adaptation [13]. The feedback loop couples change in the state of the
disease with change in human behavior.

In recent years, and particularly in response to the COVID-19 pan-
demic, modelers attempted to account for human behavior in order
to forecast future disease outbreaks [14]. However, not all models
considered human behavior changes occurring internal to the model.
Those without internal changes due to human behavior, referred to
as exogenous models [15], lacked predictive power [4]. Other models
incorporated human behavior endogenously in various ways. Model
types and methods include network and agent-based models [16-19],
game theory and optimization [20-23], opinion dynamics [24-26],
and deterministic compartmental models [4,27,28]. Explored in several
reviews articles [13,14,29-31], some of these models allow for endoge-
nously driven disease waves. In particular, the systematic review by
Hamilton et al. [31] characterized models which included endogenous
human behavior (taking a variety of forms — masking, social distanc-
ing, vaccination, etc.) either as feedback loops, game theory/utility
theory, and information/opinion spread. The vast majority of these
models used feedback loops and compartmental models. Overall, the
review concluded that endogenous incorporation of human behavior
in infectious disease models could aid in better prediction of outcomes,
allowing for better epidemic preparedness and response [31].

A recent review study from our group focuses on models incorpo-
rating human behavior in the form of risk response in deterministic,
compartmental models [32]. The study pointed to a particular SIR-type
model (defined below), developed by Rahmandad and colleagues [4],
for its simplicity and ability to outperform a significant portion of
remarkably more complex models. Rahmandad et al.’s model is an
extension of the aforementioned SIR model, considering a latent pop-
ulation (E), which includes individuals who are infected but are not
yet infectious. Furthermore, the model takes the standard constant
transmission (usually denoted as #) and reconstructs it as a function of
either prevalence, deaths, perceived prevalence, or perceived deaths.
This results in the endogenous SEIRb (b for behavior) model. The
model’s considerable forecasting performance was mainly due to the
endogenous consideration of human behavior changes occurring in
response to changes in disease dynamics [4]. Recent studies examined
various policy or practical insights emerging from the SEIRb model [33,
34].

In this paper, we provide an in-depth analysis of the mathematical
properties of epidemic models incorporating human behavior. These
models are simple in structure, not taking into account the impact
of mobility, vaccinations, or outbreaks occurring from new strains.
Specifically we explore the mathematical structure of the SEIRb model
to further understand the driving factors of its forecasting strength.
We primarily compare two versions of the model: one which con-
siders permanent immunity (SEIRb) and one which considers waning
immunity (SEIRSb) and also observe key differences between these en-
dogenous models and their well-studied exogenous counterparts (SEIR
and SEIRS). In Section 2, we introduce the SEIRb and SEIRSb models,
including definitions for the variables and parameters. To help with
further analyses, we scale the system to a total population size of
one. In Section 3, we perform equilibria and identifiability analyses
on the models as well as determine the basic reproductive number.
In Section 4, we assess the sensitivity of the infectious population to
the parameters. We also compare numerical simulations of the models
and validate models by fitting them to COVID-19 data across a wide
range of regions covering different US states and districts, and over
multiple waves of the pandemic. Finally, in Section 5, we summarize
our findings and their implications.
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Table 1
State variables and parameters for SEIRb model, found in System (1), and SEIRSb
model, found in System (3).

Variables
N Population of susceptible individuals
E Population of exposed (and infected) individuals
I Population of infectious individuals
R Population of recovered individuals
F Number of perceived/lagged infections
Parameters
p Base transmission rate
a Sensitivity to (risk of) infection
y (infection) risk diminishing impact
N Total population size (N =S+ E+1+R)
Tg Exposure period, average time in state E
7, Infectious period, average time in state I
T Time lag between infections awareness
and actual infection occurrence
7" Period of immunity, average time in state R

@ Only appears in System (3).

2. Models

We consider two simple models incorporating endogenous human
behavior feedback: one with permanent immunity, SEIRb, and one with
waning immunity, SEIRSb. Both models build upon an underlying SEIR
framework with susceptible (.5), exposed (E), infectious (/) and recov-
ered (R) individuals. All variables and parameters for these models are
described in Table 1.

The models we developed primarily focus on the impact of hu-
man behavior on transmission. More specifically, this is assumed to
represent the adherence of individuals to NPIs, where the level of
adherence is a result of perceived risk of infection. The type of NPI
used to reduce transmission can represent many actions — from social
distancing and self-isolation to masking or reducing mobility. From a
biological perspective, these are all distinct; however, mathematically,
these are equivalent in the SEIRb/SEIRSb model as they ultimately
result in reduction of transmission when implemented. Choosing a
specific type of NPI to model, such as social distancing, may need to
be employed differently if additional complexities exist in the model,
such as the inclusion of age structure. Given the general nature of the
SEIRbD structure from [4], the model can represent multiple NPIs, any
of which result in the reduction of transmission.

2.1. Epidemic model with permanent immunity: SEIRb

We begin by considering the SEIRb model with permanent immu-
nity, given by

dsS B 1

PR T oA

dE _ B I E

dr ~ (I+aFY N 715

dl _E I

@ T (€]
arR _ I

at 1’

dF _I—F

dr T 1

In addition to the four state variables in the standard SEIR model, there
is an additional state variable, F, the number of perceived infections,
which is how risk perception is incorporated. The state variable F is a
simple exponential first-order delay of I, modulated by the difference
between perceived prevalence (F) and actual prevalence (/). In addi-
tion, compared to the standard SEIR model, this model incorporates a
transmission function in terms of the state variable F, g(F) = (HW%)V’
rather than simply using a constant parameter (often f). These two key
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(a) Permanent immunity (SEIRb) model
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F [

(b) Waning immunity (SEIRSb) model

Fig. 1. Flow diagram describing the general structure of the SEIRSb model. Red dashed lines indicate influences on disease transmission. Solid black lines denote movement of
individuals. The compartments are S, susceptible; E, exposed; I, infectious; R, removed; F, perceived/lagged infectious.

components are essential to the realistic epidemic dynamics this model
can produce.

The incorporation of risk perception drives the appearance of mul-
tiple waves in simulations on the time scale of an epidemic (see
Section 4), a feature missing in models which consider transmission as
constant or a function of factors external to the model [32]. In a steady
state, [ = F, so % =0 and F remains constant. Perturbing the system
with an increase in I, such that 7 > F, results in ar becoming positive,
increasing F, and lowering A(F). As f(F) declines enough (such that
% < 0), the size of E declines as well, which leads to % < 0and a
decrease in I. Once I < F, % becomes negative, F declines, and in
turn, B(F) increases. This mechanism is known as a negative feedback
loop (see Fig. 1) and is the central feature of the model’s predictive
power.

The formulation of risk perception in the transmission term can
take multiple forms [35-37]. We choose our transmission function
as a modification from Rahmandad et al. [4], who consider that
deaths/perceived deaths, as a function of prevalence/perceived preva-
lence, drive transmission dynamics. For the sake of simplicity, we
assume transmission is driven by prevalence/perceived prevalence.
Compared to the transmission term in [4], the changes made involve
exclusion of the seasonality term w (considered again during model
validation in Section 4) and a re-scaling of F in the final equation,
which does not qualitatively impact overall model dynamics.

For generalizability and to avoid losing model dynamics in the
magnitude difference between total population size N and the rela-
tively small size of the latent, infectious, and recovered populations,
we re-scale the model. Letting a = a N and

S E . 1 R F
s=—,e=—,i=—,r=—, f=—,
N N N N N
gives the normalized SEIRb system
s ____ B |
dt — (A +afy
de _ B, e
dt  (1+af) T’
di e i
TR 2
dr i
prim
df _i—-f
dr T e

The corresponding exogenous (SEIR) system can be found in Ap-
pendix A in Eq. (A.1). Compared to the SEIRb model in Eq. (2), the
SEIR model has constant transmission: § rather than g(f). As a result,
the equation for perceived infections, f, is no longer necessary.

2.2. Simple epidemic model with waning immunity: SEIRSb

Waning immunity creates an additional pathway between the re-
covered (R) and susceptible (.$) compartments with a flow of 15. Thus,
R

the revised system of ODEs has much the same structure as System (1)
except the first and fourth compartments are changed by the addition
and subtraction of waning immunity term Ti, respectively, to form

R

as ___ B I R

di ~ (I+aFy N 14

dE _ B I E

dr ~ (+aFY N 715

a_L£ _1 ®)
dt 1y 1,

daR _ I R

dt 1, 1R

dF _I-F

dr T 1

With the same rescaling as for System (1), we obtain the normalized
SEIRSb system

ds [/ .

— =it —,
dt (1+af) TR
de _ B e
dt ~ (+afy
di e i
T @
dr _ i r

di

df _i-f

PR

The corresponding exogenous (SEIRS) system can be found in Ap-
pendix A in Eq. (A.2). Compared to the standard model in Eq. (4), the
SEIRS model has constant transmission: # rather than g(f), such that
the equation for perceived infections, f, is also no longer necessary.

3. Theory and calculation
3.1. Equilibrium analysis

We begin our analysis by deriving the various equilibria for both
models (SEIRb and SEIRSb), giving conditions on existence and unique-
ness. For completeness, we summarize the equilibria for corresponding
exogenous models (SEIR and SEIRS) in Appendix A.

Theorem 1. Disease free equilibria.

Given biologically relevant parameters, i.e., {f,a,y,7p, 7, Tp. T} > 0,
and biologically realistic initial conditions, i.e., {s(0), e(0),i(0),r(0), f(0)} €
[0,1],

1. the permanent immunity (SEIRb) model, found in System (2), has a
line of disease free equilibria given by 5 = 1 — F, where the precise
value of the equilibrium depends on the initial condition.

2. the waning immunity model (SEIRSb) model, found in System (4),
has a unique disease free equilibrium (DFE) (1,0,0,0,0).
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Proof. First, notice that both models are closed with respect to move-
ment of individuals, and thus the following relationship holds:

s@®) +e(t)+i(t)+r@) = 1. (5)

Item (1) follows from Eq. (5) combined with the fact that % =0
results in i = 0; thus, with % = 0, this results in ¢ = i = 0, with no
requirements on the values of 5 and 7. As L = 0 and7 =0, 7 = 0.

dr

Item (2) follows from Eq. (5) and the fact that % =5 = 0 results in

e=i=rF=0.As ‘Z—{=Oand7=0,}=0. O

We derive the basic reproduction number R, (the number of sec-
ondary infections produced by a single infectious individual in a fully
susceptible population). For the permanent immunity model, R, gives
information about initial disease dynamics (whether the infectious
population grows or declines), but the disease always dies out. For
the waning immunity model, R, gives information about conditions
driving the disease to extinction [38]. In both cases, we use the next-
generation method [39] to derive R, using the e-i infectious subsystem.
We calculate the Jacobian J of the e-i subsystem evaluated at the
equilibrium (5,e,1,7, f) as

L

Ty (+afy
J =

.

TE T

In the case of permanent immunity, where we have infinitely many
DFE, the basic reproduction number is calculated using the DFE (1, 0,0,
0,0), i.e. the DFE where no outbreak has occurred. Thus, 5 = 1 and
¢=i=F= f =0 in the calculation of R, for both models, resulting in

— T_ ﬁ
E
J =
(5=1,6=0,i=0,7=0,7=0) 1 1
TE T

Splitting apart into a matrix of new infections and a matrix of transi-
tions between states, we write J = F — V with

1

0
(V) TE
F = =
<0 0> . 1 1

TE Ty

The basic reproduction number R, is the spectral radius of FV !,
i.e. the eigenvalue with largest real part (in magnitude), given by

1 _(TB TP
FV —(0 0).

Thus,
Ro = ﬂTI,

for both the permanent immunity (SEIRb) model and the waning
immunity (SEIRSb) model.

For the latter model, as the DFE is unique, the DFE will be locally
asymptotically stable when R < 1 and unstable when R, > 1 [39-41].

In the case of permanent immunity, System (2), the only equilibria
present are the line of disease free equilibrium. No endemic equilibria
can exist since the susceptible compartment only contains a decay
function and no growth. Thus, eventually the susceptible population
will become too small to sustain the disease. In the case of waning
immunity, the additional pathway between recovered and susceptible
allows for a richer set of equilibria, i.e. the existence of an endemic
equilibria.

Theorem 2. Endemic equilibrium for SEIRSb model.

Given biologically relevant parameters, ie., {f,a,y,7g, 7, Tp,Tg} > 0,
and biologically realistic initial conditions, i.e., {s(0), e(0),i(0),(0), f(0)} €
[0, 1], there exists a unique endemic equilibrium (EE) for System (4) if and
only if Ry > 1.
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Proof. Using System (4), we write all compartments in terms of i:

_ (0 4a) _ Tg. . TRe - =
S=——,=—i, F=—Ii, f=1I.
Brr 75 Ty

Using Eq. (5), with the equations above, results in

(ai + 1) + f(rp + 77 + 7R)i — fr; =0,

which we rewrite as

(14 ai)! = pr; — f(zg + 77 + TRI. (6)

Given the assumption that all parameters are positive (consistent with
the biologically relevant region), then the left hand side of Eq. (6) is
increasing monotonically from 1 as i increases and the right hand side
in decreasing linearly from fz; as i increases. When R, = fz; > 1,
these two curves will intersect at exactly one point in the positive
quadrant, indicating a unique EE. When R, = fr; < 1, these two
curves will not intersect in the positive quadrant, and thus there will
be no endemic equilibrium in the biologically relevant region. When
pr; exactly equals one, these two curves will intersect exactly at one,
when i = 0. This is equivalent to the DFE, and hence the EE does not
exist when Ry < 1. [

For the SEIRSb model, as the DFE becomes unstable when R, > 1
and there is a unique EE, we expect this EE to be stable. However, due
to our implicit solution of the EE, we can only numerically show that
the EE is stable for R, > 1. For example, using LHS sampling across a
wide range of biologically realistic parameters, where R, > 1, always
yields negative eigenvalues for the Jacobian evaluated at the EE. We
include the Jacobian matrix, evaluated at the EE, below:

J'<(1+ai)7 T_E??TRTTRﬁ>
pry Tt T

< 1 1 1 1 ay 7

- i - — _ - = 4
(1+ai)r TR TR 77 TR (I+ai)ry
b3 1 1 __ar
_ (1+ai)r E T (1+ai)rg
- 1 1 i
0 = o 0
1 1
0 0 - -

where i is the solution to Eq. (6). While it is possible to derive a
condition for the local asymptotic stability of the EE using the Routh—
Hurwitz Criteria, it is not obviously associated with R, and is too
algebraically complex to be useful for determining stability (except
numerically).

We summarize the results from this section in Table 2.

3.2. Identifiability analysis

An important aspect of model development is the parameterization
of the system. Often a model is parameterized by searching through
the literature for viable parameter values. Another popular approach
for parameterization is to use a fitting procedure such as least squares
to fit the model to observable data. When fitting to data, one must
verify if the model structure is formulated in a way that allows for the
model parameters to be uniquely identified given perfectly observed
data. We refer to this process as structural identifiability [42—-44]. Math-
ematically, we say that a model is globally structurally identifiable for
the set of parameters p, if for every parameter set p,, the relationship
y(t,py) = ¥(t,p,) implies p; = p,. If there is a neighborhood in which
the equation above holds true, we say the model is locally identifiable.
A model is classified as unidentifiable if the definitions above are not
met. Assessing the structural identifiability of a model provides insights
on the practical identifiability of a model by determining whether it is
possible given any amount of data to recover the model parameters. A
parameter that is deemed structurally unidentifiable can lead to inaccu-
rate estimates when using numerical methods, which is why it is crucial
to conduct structural identifiability first. The practical identifiability



L. LeJeune et al.

Table 2
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Equilibria for SEIRb model, found in System (2), and SEIRSb model, found in System (4), assuming biologically relevant parameters, i.e.,
{B,a,y,7tg, 77, 7. Tg} > 0, and biologically realistic initial conditions, i.e., {s(0),e(0),i(0),r(0), f(0)} € [0, 1].

Model Equilibrium type Values Existence, uniqueness, and stability

SEIRb Disease free (DFE) (5,0,0,7,0), s+7=1 There always exists a line of DFE.
Disease free (DFE) (1,0,0,0,0) Always exists and is a unique DFE

SEIRSb Locally asymptotically stable when R, < 1

Endemic (EE) ﬁfﬁiaﬁnﬁaa,

, f
Ry 7 T

i€ (0, 1), A:=(+ai)

Unstable when R, > 1

Exists and is a unique, stable” EE when R, > 1
Does not exist when R, <1

2 As described in the text, the stability condition is determined numerically.

of a model can be determined by implementing several methodologies
such as the Monte Carlo algorithm [45], Likelihood Profiles [46], and
Sensitivity Analysis [34]. In this manuscript, we focus on conducting
the structural identifiability of SEIRb and SEIRSb models. In particular,
we focus our efforts on output measures, e.g. prevalence or number of
deaths data. Identifiability for the analogous exogenous models (SEIR
and SEIRS) are found in Appendix B. Although we do not conduct
practical identifiability in this manuscript, the results that we attain
from structural identifiability will guide our future work by informing
which parameters we should target and what type of data we will need
when we perform practical identifiability.

There exist an array of user friendly and powerful software that test
the structural identifiability of models [47]. For this paper, we use the
Julia package Structuralldentifiability.jl developed by Dong et al. [48].
Structuralldentifiability.jl is an open-access package that uses a differen-
tial algebra approach to assess the identifiability properties of a model
by describing the input-output equations via projections. The software
also provides informative metrics such as functions for identifiable state
variables and model parameters, and it has the ability to assess local
identifiability.

3.2.1. Permanent immunity: SEIRb

For tractability, we focus on integer values of y (in particular, y =
1,2,3,4,5) such that the denominator of the function g is a polynomial.
With these restrictions, the SEIRb model with all initial conditions for
state variables known and unknown parameters is globally identifiable
(Theorem 3). When the initial conditions for the state variables and
model parameters are unknown, the SEIRb model is globally identifi-
able for a, f, and 7 and locally identifiable for 5 and z; (Theorem 4).
For completeness, we summarize results of identifiability analysis for
corresponding exogenous models (SEIR and SEIRS) in Appendix B.

Theorem 3. Identifiability of SEIRb model with initial conditions.

The SEIRb model given by System (2) is globally structurally identifiable
when all initial conditions for the state variables are known, the model
parameters are unknown, and prevalence (size of class i) is the output
measure.

Proof. Define the parameters sets p;, = {a,f,7p, 77,75} and p, =
{a, B, g, T, T }. Let y(t,p;) = y(t,p;). Then we obtain the following
functional relationships from Structuralldentifiability.jl:

a=a, f=p, tp=7Tp, T=7;, Tp=171fg.

Thus, p; = p, which entails that the SEIRb model is globally structurally
identifiable with respect to prevalence data. []

Theorem 4. Identifiability of SEIRb model without initial conditions.

The SEIRb model (2) is locally structurally identifiable when initial
conditions for the state variables are unknown, the model parameters are un-
known, and prevalence (size of class i) is the output measure. In particular,
7 and t; are locally identifiable while a, §, 7y are globally identifiable.

Table 3
Identifiability of SEIRb and SEIRSb models for y € {1,2,3,4,5)} using Julia package.

Model 4 Globally Identifiable Locally Identifiable Unidentifiable
1 a,p,tp TEsTr
2 a,p,tp Tp, T;

SEIRb 3 a,p,tp Tp, Ty
4 a,p,tp Tp. Ty
5 a,f,tp Tp, T;
1 a,p,tp. TR Tp, Ty
2 a,p,tp. TR TE, Ty

SEIRSb 3 * * *
4 * * *
5 * * *

* Indicates the software ran out of memory when performing the computation.

Proof. As in the proof for Theorem 4, define the parameters sets
p; = {ap,tp,tp, 7} and p, = {a,p, %, T, 2 ). Let y(t,pp) = y(t,py)-
Then, we obtain the following functional relationships from Structurall-
dentifiability.jl:

p=p.

Solving the System (7) using Mathematica, we obtain two set of solu-
tions:

a=a, Tp =%p, Ttp=%tp, Tp+T=%p+7;. )

fa=a, p=p, 1y =%, g =71, 7p =1p},
{a=&,ﬁ=ﬂ, T[=%], TE:%E’ TFZ%F}~ (€))]

From the set of solutions in (8), we conclude that the SEIRb model is
locally identifiable. []

3.2.2. Waning immunity: SEIRSb

As with the SEIRb model, for tractability purposes, we focus on
integer values of y. For y = 1,2, 3 the SEIRSb model with known initial
conditions for the state variables and model parameters is globally
identifiable (Theorem 5). With unknown initial conditions for the
state variables and unknown model parameters, the SEIRSD is globally
identifiable for a, B, v, and 7z and locally identifiable for z; and
7; (Theorem 6). The software ran out of memory performing the
computation for y = 3,4,5 so no identifiability could be determined
(see Table 3).

Theorem 5. Identifiability of SEIRSb model with initial conditions.

The SEIRSb model given by System (4) is globally identifiable when all
initial conditions for the state variables are known and prevalence (size of
class i) is the output measure.

Proof. Let p, = {a,f,7p, 7, 75,7} and p, = {a,B, 7, %), 75, Tr)-
Suppose that y(z, p;) = ¥(t, p,). Then we obtain the following functional
relationships from Structuralldentifiability.jl:

a=a, p=p

Hence, p; = p,. This means that the SEIRSb model is globally struc-
turally identifiable with respect to prevalence data. []

tp=1%p, Ty =7, Tp=1f, Tp=T7p.
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Fig. 2. Comparison of dynamics of the infectious populations. Initial conditions for susceptible, exposed, and infectious populations differ here from Table 4 in order to observe
differing model dynamics in a shorter time frame: s(0) = 1 —0.002; ¢(0) = 0.001; i(0) = 0.001. Figure (a) Dynamics of the exogenous models, which clearly differ for the SEIR and
SEIRS models. (b) Initial and (c) long-term dynamics of the outbreak of the SEIRb and SEIRSb models.

Theorem 6. Identifiability of SEIRSb model without initial conditions.

The SEIRSb model (4) is locally structurally identifiable when the state
variables are unknown, the model parameters are unknown, and prevalence
(size of class i) is the output measure. In particular, tr and 7; are locally
identifiable while a, p, T, Ty are globally identifiable.

Proof. Once more, define the parameters sets p, = {a, f, 7p, 77, T, TR}
and p, = {&, B, %, 2, 2. 2g ). Let y(t,py) = ¥(t, p,). Using Structurallden-
tifiability.jl, we attain the functional relationships:

a=a, f=p,

T+t =Tp+1g.
(C)]

Solving the System (9) using Mathematica, we generate two set of
solutions:

tp=%tp, Tp=1%g, 157 =1%[%E,

la=a, p=P, 1, =%, 1p = tp, Tp = £p, Tp = TR} (10)

The set of solutions in (10) imply that SEIRSb model is locally
identifiable. [

4. Results and discussion
4.1. Numerical simulations

To show the time-varying dynamics of our model systems, we
numerically simulate all models, found in Systems (2), (A.1), (4), and
(A.2), in Matlab 2019a (time-varying sensitivity analysis and numerical
simulations) and 2024a (global sensitivity analysis) using the ode45
solver with the NonNegative flag for all equations. Table 4 gives
initial conditions and parameter values used in simulations, unless
otherwise specified.

Fig. 2 shows the disease dynamics of all models. In Section 3, we
observed that the SEIRb (and SEIR) models only exhibit disease free
equilibria due to the lack of growth in the susceptible compartment,
while the SEIRSb (and SEIRS) models have the capacity to reach an
endemic equilibrium. Both the SEIR and SEIRS models reach their
respective equilibrium very quickly, within about 200 days. However,
for the endogenous models, the infectious population sizes are virtually
indistinguishable initially, and the decay of the infectious population in
the SEIRb model may take a very long time to occur (dependent on the
size of the initial outbreak versus the size of the susceptible population).
It may even look like an endemic equilibrium is reached (Fig. 2(b)).
Given enough time, the disease does indeed die out (Fig. 2(c), nearly
400,000 days until apparent die out), as compared to the SEIRSb model,
with its more biologically consistent inclusion of waning immunity,
which allows for a true endemic equilibria. The appearance of an
endemic equilibrium when there is not one is not necessarily contra-
dictory to the behavior we observe in the current pandemic. Certainly,

we see COVID-19 persisting but at a significantly reduced level from
the first few years. It is possible that COVID-19 could die out over time,
although this is unlikely given what we know about its features [52].
This does not reduce the usefulness of the SEIRb model as forecasting
occurs within a relatively short window compared to disease dynamics;
forecasting periods considered as long-term could fall within the time
frame spanned by just one epidemic wave [4]. Nonetheless, a model
which considers more characteristics of human behavior and disease
dynamics produces more accurate results regarding disease behavior
over time. For example, in Section 4.4, we also consider the addition
of seasonality and observe how this further improves model validity.

4.2. Time-varying sensitivity analysis

We follow the methods from [7] to analyze the local sensitivity
of model output with respect to base transmission rate, f; modified
sensitivity to risk of infection, a = aN; infection risk impact, y; and
period of immunity, 7.

We calculate sensitivity by the partial derivative of the solutions to
the system with respect to the parameter of interest. For example, in
the case of base transmission rate, , we aim to determine

ds 0de 0i odr Of
0p> 0p” p’ 9f op’

We numerically approximate these partial derivatives by solving the
system created by differentiating each of the previous partial deriva-
tives with respect to ¢ and also consider semi-relative sensitivity, which
shows the partial derivatives scaled by the respective parameter, to
allow for ease of comparison across parameters which differ in magni-
tude. We numerically solve the sensitivity systems (see Appendix C for
equations) to obtain plots of the sensitivity of each solution with respect
to parameters of interest (8, 4, v, ), compared with the solution to the
original systems and the semi-relative sensitivity in Fig. 3 (no behavior)
and Fig. 4 (with behavior).

We can interpret the sensitivity plots by noting two characteristics:
first, curve steepness in the sensitivity plots corresponds to changes in a
solution’s magnitude as the parameter values change, and (2) positivity
(negativity) of partial derivatives in the sensitivity plots corresponds
to solution magnitude increasing (decreasing) as the parameter values
increase. For example, with the exogenous models (Fig. 3), the mag-
nitude of solutions is increasing as f increases, up until about day 50.
This corresponds to the initial positive portion of the sensitivity graphs.
Then, between roughly days 50 and 80, the solutions begin to intersect,
until the order is reversed around day 80. The magnitude of solutions
now decreases as f increases, corresponding to the negative portion of
the sensitivity graphs. For the SEIR model, the solutions do not intersect
again before achieving the DFE (Fig. 3(d)), and the corresponding sen-
sitivity graph changes from negative to zero (Figs. 3(b) and 3(c)). For
the SEIRS model, the solutions oscillate and intersect again (Fig. 3(e)),
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Table 4
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Parameter values and ranges used in simulations and numerical sensitivity analyses. Any values used which differ from the values listed here

are stated in the relevant figure captions.

Symbol Initial conditions and parameters Range Value Source

s(0) Initial amount of susceptible individuals 1-(2x107%) a

e(0) Initial amount of exposed individuals 1x1073 a

i(0) Initial amount of infectious individuals 1x107 a

r(0) Initial amount of recovered individuals 0 a

f(0) Initial amount of perceived infections 0 a

B Base transmission rate [0.1,4] 0.7 [4]

y (infection) risk diminishing impact [0,5] 2 [4]

a Sensitivity to (risk of) infection [0, 100] 1/30 4]

N Total population size [103,10%] 100 a

a Rescaled parameter, a = aN [0,10'0] 10°/3 a

T Exposure period [1,5] 5 [49]

7, Infectious period [1,14] 10 [50]

T Time lag between infection awareness and infection occurrence [1,200] 20 [4]

TR Period of immunity [1,365] 90 [51]

2 Values chosen to represent initial outbreak size similar to those seen per 10° in the data (see Fig. 7).
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Fig. 3. Sensitivity of SEIR and SEIRS models to changes in parameters. (a) Solutions to, (b) sensitivity of, and (c) semi-sensitivity of SEIR and SEIRS models. For (a)-(c), SEIR
model in black and SEIRS model in red. Model solutions for differing values of (d) g (SEIR), (e) g (SEIRS), and (f) v (SEIRS). For (d)-(f), standard parameter values are shown

with a dashed line. For ease of visibility, we use the following notation to represent partial derivatives in (b) and (c): x, := = o

resulting in continued sign changes in the sensitivity plots (Figs. 3(b)
and 3(c)), before finally achieving the endemic equilibrium, which
corresponds to the sensitivity plots reaching zero. While the SEIR and
SEIRS model are sensitive to changes in f early in the infections (for
roughly the first 100 and 200 days, respectively), the SEIRS model is
not sensitive to changes in 7 until roughly day 50 (after the outbreak
peak is reached). Then, changes in 7 primarily determine the size of
the endemic equilibrium.

For the endogenous models, we use the plots displaying semi-
relative sensitivity with respect to f as an example (Figs. 4(c) and 4(f)).
Additionally, Fig. C.1 in Appendix C help illustrate the written inter-
pretation of these results. The sensitivity curves for f initially display
steep growth before hitting a maximum. As the steepness of this curve
increases, the difference in magnitude of the solutions corresponding
to different g values also increases. Once the sensitivity curves pass the
first peak and begin to decrease, the difference in solutions decreases
for differing g values. After the sensitivity curves pass the first trough
and begin to increase again, the difference in solutions again increases
for differing g values. This pattern continues as the sensitivity curves

oy’

oscillate. As the oscillations dampen, there are smaller changes in the
difference in solutions for differing f values; when oscillations cease,
the solutions for differing f values remain a fixed distance apart. In
addition, values that are negative (i.e. sensitivity with respect to y and
semi-relative sensitivity with respect to y and a) represent an inverse
relationship between parameter size and prevalence. For example, as
a, the modified sensitivity to (risk of) infection, increases, infection
numbers decrease.

Over the first 300 days, the SEIRb model is sensitive to changes
in all three parameters, with a similar amount of sensitivity to f and
y (Fig. 4(c)). Although not as influential as the other two, a also
influences model dynamics. We repeat our time-varying sensitivity
analysis with the SEIRSb model and find nearly identical results for
B, v and a, and essentially no sensitivity to changes in the additional
parameter 7 (Figs. 4(e), 4(f)). This is expected as the loss of immunity
occurs much slower than behavioral response, and does not dominate
over the course of 350 days, the time-frame considered in Fig. 4.

One key difference between the exogenous and endogenous models
with waning immunity is the sensitivity to z, the period of immunity.
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Fig. 4. Sensitivity of SEIRb and SEIRSb models to changes in parameters. (a) Solution to, (b) sensitivity of, and (c) semi-sensitivity of SEIRb model (black). (d) Solution to, (e)
sensitivity of, and (f) semi-sensitivity of SEIRSb model (red). (a)-(c), the SEIR model, are essentially identical to (d)-(f), the SEIRSb model. The corresponding solutions for changes
in parameters,as in Fig. 3(d)-(f), are found in Appendix C. Note that i, and i, are overlapping in Figure 4(e).

The SEIRS model shows slight sensitivity to 7z (although primarily
when the outbreak reaches the endemic equilibrium), but the SEIRSb
model does not show any effect from changes to the period of im-
munity, indicating that the inclusion of behavior overrides influences
of waning immunity in the model, at least across one year. With
respect to disease control, changes to the period of immunity would not
significantly alter initial outbreak dynamics, and with the inclusion of
human behavior, any impacts would not be apparent on the time scale
of a single wave.

Another difference between the exogenous and endogenous models
(regardless of the immunity mechanism considered) is in sensitivity
with respect to f. With the exogenous models, # substantially controls
solution magnitude, peak timing, and peak widths, and has a minor
impact on the endemic equilibrium. As g changes, all of these change as
well. However, in the endogenous models, only solution magnitude and
the endemic equilibrium change as f changes; peak timing and width
remain relatively the same (Fig. C.1 in Appendix C). Once again, the
inclusion of behavior is sufficient to override these specific influences
of p on the model. This indicates that controlling base transmission
rate, when considering the effects of human behavior, will only serve
to change outbreak magnitude and will not affect the timing of the
outbreak peak or flatten the curve.

The most influential parameters on disease dynamics for both en-
dogenous models are the transmission rate f and the infection risk
diminishing impact, y, and both endogenous models show the most
sensitivity to these parameters early in an outbreak. Thus, mitigation
strategies that reduce the base transmission rate or diminish the impact
of infection risk can aid in controlling the magnitude and speed of an
outbreak. This is consistent with intuition of outbreak control: decreas-
ing transmission and increasing the impact of the risk of infection can
slow the spread of the disease. This reinforces the need for continued
focus on these by policy makers to mitigate the impact of an outbreak.

4.3. Global sensitivity analysis
We next perform global sensitivity analysis via Latin Hypercube

Sampling with Partial Rank Correlation Coefficients (LHS/PRCC) [53]
to obtain results on which parameters have stronger influence on model

outputs. We use the same sampling of 10,000 parameter sets for all
models, chosen uniformly from the ranges indicated in Table 4 and
use the partialcorr function in MATLAB, using a Spearman coef-
ficient, to calculate PRCC. Prior to finding the PRCC, we confirm the
monotonicity of relationships between the parameters and respective
quantities of interest (not shown). Note that parameter a from the re-
scaled models depends on both « and N, so we consider the latter two
parameters separately in this sensitivity analysis, noting that we can
obtain results for a through the relationships ¢ = aN. We consider
three specific quantities of interest (QOIs) to give a picture of disease
dynamics over time: (1) maximum size of the infectious population;
(2) infectious population size at 50 days; (3) infectious population
size at 2 years. To aid in interpretation of the results, it is helpful to
note that a positive (negative) PRCC indicates a positive (negative)
correlation between change in parameter size and QOI magnitude,
when controlling for linear effects of other parameters [53]. Larger
PRCC values indicate stronger impacts of parameter change on QOI
magnitude, and a p-value > 0.05 is not considered significant. In Fig. 5,
all parameters have significant p-values, with the exception of 7 in the
SEIRSb model (all QOI) and 7 in the SEIRS model (QOI 3).

As with the time-varying sensitivity analysis, we see very similar
results for parameter influence between models with waning immunity
and models which exclude waning immunity, i.e. between the SEIR and
SEIRS models, and between the SEIRb and SEIRSb models. Only the
models with waning immunity (SEIRS and SEIRSb models) include the
parameter 7y, which measures the period of waning immunity.

We first focus on the exogenous model comparisons (Fig. 5, left
column). For the maximum size of the infectious population (QOI
1), each parameter has essentially the same PRCC value for both the
SEIR and SEIRS models. For all three QOIs, 7; has the largest positive
impact and is the most influential parameter for QOIs 1 and 2. For the
infectious population size at 2 years (QOI 3), z; and 7 are close in
magnitude, although opposite in sign, for the SEIR model. The impact
of 7 diminishes with each successive QOI, and loses significance for
the SEIRS model at two years (QOI 3). Base transmission rate, g, has
a large positively correlated impact on the peak size of an outbreak
(QOI 1), but for infectious population at 50 days (QOI 2), g has a
negative impact, supported by observations from Figs. 3(d) and 3(e).
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Fig. 5. Global sensitivity analysis for all models with three different quantities of interest (QOI). Left column shows SEIR/SEIRS model results; right column shows SEIRb/SEIRSb
model results. QOIs are: maximum size of infectious population (a)—(b); infectious population at 50 days (c)-(d); and infectious population at 2 years (e)—(f), when most parameter
sets have reached a (quasi-) equilibrium. p-values are given above/below each respective bar. *indicates p-values below 0.001.

For the SEIRS model, as the time point of model output progresses
(QOI 1 to QOI 2 to QOI 3), the impact of 7y increases. This agrees
with observations from Fig. 3(f) which only shows change in solution
magnitude around the endemic equilibrium as 7, changes.

The infectious population at two years (QOI 3) gives an indication of
how parameters affect the approach to the disease free equilibria (SEIR)
and endemic equilibrium (SEIRS). All four parameters for the SEIRS
model have strong impact on the value of the endemic equilibrium,
supported by observations from Figs. 3(e) and 3(f) and the closed form
solution of the endemic equilibrium found in Appendix A. Interestingly,
for the SEIR model, the three parameters appear to affect the magnitude
of the disease free equilibrium (approximated by QOI 3), an apparent
contradiction since i should be, by definition, approach zero. This is due

to the fact that the solution never truly reaches zero in finite time. The
approach to zero (as measured at two years in QOI 3) is impacted by
the parameters. When we assume that very small infectious populations
(< 10719) can be considered to be zero and examine a later time point,
there is no significant impact of any of the three parameters on the
disease free equilibrium of the SEIR model, as expected.

Next, we examine the endogenous SEIRb and SEIRSb model results
(Fig. 5, right column). For QOIs 1 and 2, these models display essen-
tially the same PRCC values for nearly all parameters (Note that 7 only
appears in the SEIRSb model and is never significant). However, for the
infectious population at two years (QOI 3), we observe differing results
as each model begins to approach its respective equilibrium (disease
free equilibria for the SEIRb and endemic equilibrium for the SEIRSb).
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Additionally, the most influential parameters (z; f, y, and N) remain
the same for each QOI, although for QOI 3, the order of 7; and g is
reversed and 7 has a similar impact in magnitude to z;, §, and y. The
parameters N and « show roughly the same negative influence for each
QOI, with « showing about 50% of effect of N.

Interestingly, 7, is negative for QOI 1, positive for QOI 2, and
rather small (albeit still statistically significant) for QOI 3, supported
by dynamics in Fig. C.1. This is because increases in the latent period,
7p, increase initial peak height and shorten the timing to the initial
peak (positive correlations for QOI 1), but the ordering reverses by 50
days (QOI 2) because earlier and larger peaks decline more quickly.
Additionally, increases in the lag between infection and response, 7,
also flip the direction of influence from QOI 1 and 2 (positive) to QOI
3 (negative) and has the strongest, but negative, influence on QOI 3.
Larger 7, indicating longer delay between infection occurrence and
response, lengthens the periods between oscillations, which lengthens
the time until oscillations damp out (Fig. C.1).

When comparing the models without the endogenous behavior com-
ponent (SEIR and SEIRS) to the models with the endogenous behavior
component (SEIRb and SEIRSb), we observe key differences in all three
QOIs. For maximum infectious peak (QOI 1), all parameters have a
stronger affect on the exogenous models, but impact all four models the
same with respect to direction (positive and negative correlations). For
the infectious population size at 50 days (QOI 2), the exogenous models
begin to differ in sensitivity (SEIR vs. SEIRS), whereas the endogenous
models show the same sensitivity to all parameters (SEIRb vs. SEIRSb).
Furthermore, the base transmission rate f§ exhibits negative PRCC for
the exogenous models but positive PRCC for the endogenous models,
as peak timing changes with g in the exogenous models but not in
the endogenous ones. For infectious population size at two years (QOI
3), the infectious period, 7;, remains more significant than g in the
exogenous models, but the reverse holds for the endogenous models.
The effect of 7 is small in QOI 3 for all models. Finally, rz has a much
stronger impact on all QOIs for the exogenous models, while it never
has a significant impact on endogenous models.

This global sensitivity analysis supports several results from the
time-varying sensitivity analysis. First, 7z has virtually no influence on
endogenous SEIRSb model dynamics but strongly impacts the dynamics
at later time points for the SEIRS model. However, as 7z impacts the
endemic equilibrium of both SEIRS and SEIRSb models, the additional
assumption of waning immunity, which better reflects reality, provides
richer equilibria dynamics for both models. Biologically, the impact
of waning immunity is minimal in the short time frame of two years
considered in this sensitivity analysis, especially when considering
behavior. Despite this, it has the potential to show more long-term
affects in the endogenous models that what is explored here. Second,
base transmission rate, g, and infection risk diminishing impact, y,
strongly influence disease dynamics, but sensitivity to risk of infection,
a, only has a small impact. Note that in the time-varying sensitivity
analysis, a’s impact is inflated by multiplication by N. The global
sensitivity analysis also indicates that duration of infectiousness, z;, has
a very strong effect on outbreak size. Thus, reducing infectiousness,
e.g. through masking and self-quarantine, is highly instrumental in
decreasing the number of infections that occur throughout the timeline
of the disease. Lastly, focusing on keeping awareness of infection risk
high (i.e. maintaining large y values) will greatly aid in reduction of
infections.

4.4. Model validation with COVID-19 data

We demonstrate each model’s fidelity in replicating COVID-19 data
across each state of the United States, as well as the District of Columbia
(totaling 51 US regions). The inclusion of a large number of regions
ensures rigorous testing against various pandemic patterns, considering
regions with different populations, behavioral responses, and poten-
tially differing regional government policies. Our testing is limited to
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Table 5
Model performance (R-squared) in replicating summary US data.
SEIRS SEIRS with SEIRSb SEIRb with SEIRSb with
seasonality seasonality ~ seasonality
Regional average 0.19 0.19 0.65 0.78 0.79
Regional median 0.02 0.02 0.70 0.83 0.84
Combined USA 0.04 0.42 0.93 0.94 0.95
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Fig. 6. Distribution of R-squared of 5 different models across 51 US regions. Red line is
the median, blue box is 25%-75% percentile, and whiskers represent the 95% interval.

the period up to May 1st, 2021. We chose this endpoint to exclude the
effects of vaccinations, which predominantly became available during
and after the summer of 2021, as well as the Delta and Omicron
variants, which exhibited different infectivity and fatality rates. Using a
data range spanning over one year allows us to go beyond a single wave
and test the model’s ability to recreate multiple waves of the pandemic
endogenously. We focus on replicating death data (seven-day rolling
average) as it is more accurately reported than the COVID-19 case data.

We tested both the rescaled SEIRb and SEIRSb models (Systems
(2) and (4), respectively) and compared their performance against
base models of SEIR or SEIRS that exclude the behavioral feedback
loop. To account for changes in infectivity due to seasonality, we also
incorporated a simple sinusoidal seasonality pattern into infectivity
with a period of 365 days (See Appendix D for details). Given that
government policies are implemented in response to changes in risk
levels, the behavioral feedback loop represents the aggregate societal
response (government and people). Thus, we did not need to include
government inputs to the model but rather have the model replicate
the overall societal response endogenously. To estimate the unknown
parameters, we minimized the mean square errors between simulation
and daily death data (per capita) for each state. In the model, we
calculate daily per capita death, d, as

d=IFR<i>,
T

where IFR is the infection fatality rate, which we assume is 0.5% [54].
The parameters that were fitted and the range of values assumed during
the model calibration process are reported in Appendix D and listed in
Table D.1.

The best-performing model is the SEIRSb model with a simple sea-
sonality effect. Overall, our analysis indicates that the model exhibits
excellent performance in replicating most of the states of the US with
average and median R-squared values across US regions of 0.79 and
0.84, respectively (Table 5 and Fig. 6). To demonstrate how each model
fits to the data, Fig. D.2 shows fits for all models to the combined US

(1)
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Fig. 7. A sample of replication of COVID-19 daily death (seven day rolling average) across US regions and the US selected to show a range of performance in replicating varying
modes of outcomes. Blue lines are reported death data (per capita), and red lines are model death data (per capita). See Appendix Fig. D.3 for all US regions.

data. The R-squared results for each of the 51 regions are reported
in Appendix D, Table D.2. Results from a sample of 8 regions and
the overall United States daily deaths are presented in Fig. 7. The
regions shown were selected to include a range of regions with varying
populations, shapes of graphs, and model performance. Specifically, in
this sample of 8 states, the model performs very well in replicating the
states of New York and South Dakota, even though they have different
patterns and populations. The model’s performance in high-population
states such as California and Texas is reasonable even though we note
that a relatively small wave is missed in both cases. The performance
of the model in the lower population states of Vermont and Wyoming
is also very good. A few states, such as Hawaii, had corrections to their
data (note the large spike in early 2021) which resulted in a few outliers
in their reports, thus bringing down the R-squared. We intentionally did
not change the reported raw data of states. Adding all 50 states and the
District of Columbia closely replicates US data (R-squared of 0.95). The
graphs for all regions are available in Appendix D, Fig. D.3.

The results from the SEIRb model - that does not include waning
immunity — are only slightly weaker that SEIRSb, holding an average
R-squared of 0.78. Both SEIRSb and SEIRb models outperform the base
model that excludes behavioral feedback considerably in R-squared
(Fig. 6). The results from all tested models for each region in the United
States, as well as additional details on the model fitting are reported in
Appendix D.

Overall, these tests underscore two key points: (1) the model’s
capability to replicate pandemic data across a large sample of regions
and over multiple waves of a pandemic, and (2) the significance of the
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behavioral feedback loop in improving the fit between simulation and
data.

5. Conclusions

In this work, we consider two influences on COVID-19 spread which
can strengthen epidemic models: endogenous incorporation of human
behavior and the addition of waning immunity. We analyze, simulate,
and validate simple epidemic models, both exogenous and endogenous,
with permanent immunity (SEIR and SEIRb) and with waning immunity
(SEIRS and SEIRSb). The core mechanism in both endogenous models
is a negative feedback loop that represents change in societal risk
response over the course of a pandemic: as the disease prevalence
increases, perceived risk increases leading to compliance with public
health measures that lowers new cases and prevalence. This feedback
loop leads to the cycles of compliance and complacency, creating
oscillatory patterns in prevalence.

The inclusion of human behavior through such a feedback loop
strongly affects model dynamics, as shown in our sensitivity anal-
ysis. While exogenous model dynamics are sensitive to changes in
parameters base transmission rate, f, and waning immunity period,
7g, with the inclusion of behavior (through the addition of parameters:
sensitivity to risk of infection, g, risk diminishing impact, y, and time
lag between occurrence of and response to infection, r), endogenous
models exhibit less sensitivity to changes in p and virtually no sensi-
tivity to changes in 7. Additionally, the endogenous incorporation of
behavior allows these simple models (SEIRb and SEIRSb) to provide
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better fits and ability to forecast than models that do not explicitly
include human behavior or do so exogenously.

With the inclusion of behavior, distinctions are much more subtle
between the permanent immunity and waning immunity models in
numerical simulations, sensitivity analysis, and identifiability analysis.
Differences between these endogenous models appear when consider-
ing long-term dynamics, due to the existence of an endemic equilibrium
in the SEIRSD (SEIRS) model which is not present in the SEIRb (SEIR)
model. Other than providing the existence of an endemic equilibrium,
waning immunity does not strongly influence short-term model dynam-
ics. Indeed, sensitivity analyses show that r has essentially no impact
on the SEIRSb model over the first two years. Model validation shows
that the SEIRSb model gives only slightly more realistic predictions and
has a marginally better fit to the COVID-19 data than the SEIRb model.
However, given that it provides the existence of an endemic equilib-
rium, with little to no trade off in model complexity, indicates that
the inclusion of waning immunity is valuable when formulating models
for long-term forecasting, but may not be necessary for short-term
parameter estimation.

Models with similar endogenous transmission mechanisms to the
SEIRb and SEIRSb models exist [27,28,55], many of which are catego-
rized in the review [32]. While these models can be classified according
to the mechanism used to represent human behavior, the assumptions
surrounding other aspects of model structure can result in different
outcomes between models which have the same type of behavior
mechanism. For example, Weitz et al. [28] use a similar fractional
formulation of transmission to the SEIRb model; however, transmission
is formulated as a function of deaths rather than prevalence. They
also include a time lag between infections and fatalities, similar to the
time lag included in the SEIRb model (see Section 2). However, these
formulations result in differing disease dynamics: in [28], outbreak
peaks are asymmetric, with a sharp increase to the peak followed by
a slow decline while the SEIRb model retains more symmetry within
outbreak waves. Weitz et al. additionally include adherence fatigue
and long-term behavior change to adjust the model to show consistent
results with data with respect to pre-peak increases in mobility. These
additions to model structure go beyond those behavior considerations
incorporated in the SEIRb model. This leads to a key question addressed
throughout this work: what level of complexity needs to be considered
in model structure to result in good model fit to data? Section 4.4
discusses this through the addition of human behavior, seasonality, and
disease death when fitting to data.

Future studies can benefit from expanding risk response mecha-
nisms in several ways. These include incorporating different demo-
graphics and age structures, considering other behavioral feedback
loops such as the willingness to vaccinate, health policy compliance,
and adherence fatigue, as well as conducting statistical examinations
of factors that affect human behavior. Additionally, understanding how
these factors impact the spread of the disease can provide valuable
insights.

In conclusion, incorporation of human behavior into epidemic mod-
els provides for more realistic feedback loops that react on the time
scale of infection dynamics. Thus, when using models to inform policy,
endogenous incorporation of human behavior is highly recommended,
but inclusion of waning immunity can depend upon the relevant time
period being considered.
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Appendix A. Equations and equilibria for exogenous models: SEIR
and SEIRS

The SEIR and SEIRS models without behavioral feedback are similar
to Egs. (2) and (4), respectively, except that the transmission term is
constant rather than a function of F, i.e., f(F) = p. Thus, there is no
need for an equation for perceived infectious, f

With permanent immunity, the normalized SEIR model is given by

ds .
i —PBsi,
de _ psi— =,
dt TE
di e i a1
i
ar_ &
dt 71
With waning immunity, the normalized SEIRS model is given by
ds .
—= =—fsi+ —,
dt Psi TR
ge = psi- <,
TE
di_ e 1 2
dt 1’
ar_ 1 _r
dr T TR

We summarize the equilibria and their existence and stability in
Table A.1, which have been previously described in other contexts [7].
The basic reproductive number, R, = fr;, is identical for the SEIR,
SEIRS, SEIRb and SEIRSb models.

Appendix B. Identifiability of exogenous models: SEIR and SEIRS

The SEIR and SEIRS models with all initial conditions for state
variables known and unknown parameters are globally identifiable
(Theorem B.1 and Theorem B.3, respectively). When the initial con-
ditions for the state variables and model parameters are unknown,
the SEIR and SEIRS models are locally identifiable (Theorem B.2 and
Theorem B.4, respectively).

Theorem B.1. Identifiability of SEIR model with known initial conditions.

The SEIR model given by System (A.1) is globally identifiable when all
initial conditions for the state variables are known and prevalence (size of
class i) is the output measure.
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Table A.1
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Equilibria for SEIR model and SEIRS model assuming biologically relevant parameters, i.e., {f,a,y,7z,7;,7p,7x} > 0, and biologically realistic

initial conditions, i.e., {s(0),e(0),i(0),r(0)} € [0,1].

Model Equilibrium type Values Existence, uniqueness, and stability

SEIR Disease free (DFE) (5,0,0,7,0), 5+7=1 There always exists a line of DFE.
Disease free (DFE) (1,0,0,0,0) Always exists and is a unique DFE

SEIRS Locally asymptotically stable when R, < 1

Endemic (EE) (% 27, i, LR?>, i=
0 7 Tr

Ry — Dz,
Ry(te + 7+ 7p)

Unstable when R, > 1

Exists and is a unique stable EE when R > 1
Does not exist when R, <1

Proof. Letp, = {f,7;,7¢} and p, = (B, 77,7 }. Suppose that y(z,p;) =
¥(t,p,). Then we obtain the following functional relationships from
Structuralldentifiability.jl:

p=p.

Thus, p, = p, which entails that the SEIR model is globally structurally
identifiable with respect to prevalence data. []

g =1tg, 17=7%. (B.1)

Theorem B.2. Identifiability of SEIR model with unknown initial condi-
tions.

The SEIR model given by System (A.1) is locally identifiable when all
initial conditions for the state variables are unknown and prevalence (size
of class i) is the output measure.

Proof. Letp, = {f,7;,7¢} and p, = (B, 7;, 7 }. Suppose that y(z,p;) =
y(t,p,). Then we obtain the following functional relationships from
Structuralldentifiability.jl:

p=p.

Solving the System (B.2) using Mathematica, we generate two set of
solutions:

TpTy =1Tgty, Tp+t=1Tp+1;. (B.2)

{B=PB. 1 =tg. tp =2/}
(p=

This means that the SEIR model is locally identifiable with respect to
prevalence data. []

Bty =%, tp=tp). (B.3)

Theorem B.3. Identifiability of SEIRS model with known initial condi-
tions.

The SEIRS model given by System (A.1) is globally identifiable when all
initial conditions for the state variables are known and prevalence (size of
class i) is the output measure.

Proof. let p, = {f,7;,75,7x) and p, = {B, 7,75, r}. Suppose that
¥(t,py) = y(t, p,)- Then we obtain the following functional relationships
from Structuralldentifiability.jl:

p=5

Thus, p; = p, which entails that the SEIRS model is globally structurally
identifiable with respect to prevalence data. []

tp =%, T =7%;, TR=7%x (B.4)

Theorem B.4. Identifiability of SEIRS model with unknown initial condi-
tions.

The SEIRS model given by System (A.2) is locally identifiable when all
initial conditions for the state variables are unknown and prevalence (size
of class i) is the output measure.

Proof. let p, = {f,7;,75,7g} and p, = (B, 7,75, 7x}. Suppose that
¥(t,py) = y(t,p,)- Then we obtain the following functional relationships
from Structuralldentifiability.jl:

p=h.

Solving the System (B.5) using Mathematica, we generate two set of
solutions:

TpTy =Tpty, tp+1,=Tg+7%;, 1Tp=7p. (B.5)

{ﬂ=ﬂ, Tr =%E’ T =’?1sz = %R}v
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{(B=p, 1) =%, tp =%p,7g = T} (B.6)

This means that the SEIRS model is locally identifiable with respect to
O

prevalence data.

Appendix C. Time-varying sensitivity equations and reference
plots

Here, we include the time-varying sensitivity equations used in the
simulation of Figs. 3 and 4.

C.1. Permanent immunity, exogenous: SEIR

Sensitivity equations with respect to g:

i(ﬁ)=ﬂ+%§+ﬁk+ﬂﬂ+ﬁﬂ,
dt\op) 0p  09sdf  dedp diap orap

=—si—ﬁi£—ﬁs£,

o op

d [ oe . 0s 1 de di
E(ﬁ)‘”’”ﬁ';ﬁ P on
i<ﬂ>_L%_iﬂ
dt \op) tpof 1,08
d (or) _ 1 di
i (5)-%5

C.2. Waning immunity, exogenous: SEIRS

Sensitivity equations with respect to g:

1<ﬁ>:_si_,,,ﬂ_ﬁsﬁ+iﬂ,
dt \ 0p ap of 1,00
i<%>:si+ﬂiﬂ—i%+ﬂsﬂ,
dt \ 0 0 1 of ap
d (di\ _ 1 ode 1 di
E(ﬁ)‘iﬁ_ﬁa_ﬂ’
d (or) _ 1 9di 1 or
Z(ﬁ)“?ﬁ_r_,ﬁ'

Sensitivity equations with respect to 7:

d < 0s> r . 0s 0i 1 or
()L g2 g 2 O
dt \ drp 7122 otg Jotgp  Tg O1p
4 ()t Loy

dt \ oty oty 7p OTg oy’

d (o) _1oe 1o

dt <()‘L’R> T 1 oy B Ty 0T
d(L) tolo Lo

dt TR T2 T, 0tg TR 0Tk



L. LeJeune et al.

C.3. Permanent immunity, endogenous: SEIRb

Sensitivity equations with respect to :

() = T e - T
dt \ 0p (1+af)y (IL+af)y 0 (L+af) op
afy 6f
(1+af)V+l 0ﬁ
1(& =Ll gy P 12
dt \ 0 (1+af)y (I+af)y of 75 op
6 aby si%
(1+af)7 aﬂ T Utafyt 0p
i<ﬂ>_L%_iﬂ
dt \op) 1z 0 1708
i<ﬂ>_iﬂ
dt\op) 7,08
i<%>_ 1 (ﬂ_%>
dt\op )~ o op )’
Sensitivity equations with respect to a:
d(as) Brf B ;08 _ B (o0
dt \ da (1+af)r+1 T (+af)y da (Q+af)y’ *9a
afy Saf
(A +afy+'" oa’
i(%)? Prf 4B 95 1 0e
dt \oda (1+af)r+l A +af)y 6a TE da
00 afy of

+
(+af)y 9a  (I+afy+  oa’
d (o) 1de 10i
dt -

da Tp da T 0a
d(xy_ Lo
t \da 7 0a

N L (o _9f
dt \da) 1z \da da)’

i<ﬁ>=Lsiln(l+af)— 4 iﬁ— s sﬁ
dt \ ay (1 +af) (+af)y dy (+af)y oy
__abr 91
(I+afy+t " or’
d ( de p . p ds 1 de
E(?) =Tarany M Ty o T o
s P o _ abr 0f
(1 +af)y oy (1+af)Y+‘ o
i<ﬂ>_Lz_iﬂ
dt \dy) tpdy 1,0y
i<ﬂ>_iﬂ
dt \oy ) 07’
i<%>_L<ﬂ_ﬂ>
dt \dy )~ 7 \dy oy
C.4. Waning immunity, endogenous: SEIRSb
Sensitivity equations with respect to f:
i<§>=_ !\ 4 _F jos B o, Llor
dr \ op A +afy (A+af)y of (L+af)y 08 =, 08
apr __ ;of
(A+afy " op’
i(ﬁ ol G P 9 1oe
dt \ o0 (1 +af) (taf)y o 7,08
6 aby siﬂ
(1+af)7 6ﬂ (1+af)7+1 op’
i<ﬁ>_L%_L@_f
dt\op) tz 08 ;08
i<z>_Lﬂ_Lﬂ
dt\op) 7,08 tx0p’
i (5)=% (G -%)
dt \0p ) t \0p p
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Sensitivity equations with respect to a:

i(as) Brf p__,os ___ B o 1or
dt \oa (l+af)7+1 (1+af)7 da (1+af) da 1g0a
afy of
Arary da
i(%)z_ br/ o P95 _ 1 0e
dt \oda (1+af)r+! A +af)y 6a TE da
+ i— apr staf
p ' 1(la+af)lVaﬁa (1+af)y+!" oda’
i e i
it e e
d (or

d
(‘)_> 1o _1or
t \da 7y 0a 1R oa’

Oy _ L (o _9f
dt \da ) 1z \da da)’

i<@>=Lsiln(l+af)— b iﬁ— s sﬂ
di \ oy (A +af) A+af)y oy (A +afy oy
1 or afy N
—_——t i,
R Iy (L+afy+t oy
i<ﬁ :——ﬂ siln(1+af)+—ﬁ 95 _ L e
dt y A +af)y (I+af)y oy 7tgoy
LB o apr  of
(I +afy oy (1+af)V+1 Yor
i(ﬂ) 1 de 100
dt \ oy _TE();/ T; Oy
1(&) Loi_1or
dt \oy ) t; 0y gy
i (5)-%(5-%)
dt \dy )~ \dy oy
Sensitivity equations with respect to 7
i(ﬁ)__L_ p__,os B 0 1 or
dt \ dtg 1122 (I+afy org  (+af) aTR TR OTR
apy szaf
(1 +afyr+! " org’
1<£>_ [ 05 _ 1 oe
At \otg ) ~ U +af) ot  17p 0tx
b ol o _abr  or
(taf) org  (+afyt oy’
1<1>_L£_io:
dt \ drg _TE()TR 7, 0tg’
d<ar _r 1L 1 or
i)~ oo
i<£>_i<ﬂ_£>
dt \org )~ tp \0rg  d1x /)’

To clarify the time-varying sensitivity and semi-relative sensitivity
results found in Fig. 4, we show dynamics of the infectious population
for various choices of f, a, y, and 7, as well as for parameters not
considered in the time-varying sensitivity analysis (zy, 7;, and )
in Fig. C.1. We do not show SEIRb model solutions as Figs. C.1(a)-
C.1(f) are visually identical between the SEIRb and SEIRSb models and
7g is not included in the SEIRb model. As g increases, the infectious
population exhibits higher values, while as a and y increase, the in-
fectious population obtains lower values. This is due to the placement
of  in the numerator of the transmission term and a and y in the
denominator. With respect to changes in g, the difference in solutions
increases for the first 30 days as the solutions approach the peak of
the first oscillation. Following the peak, the difference in solutions
then decreases as solutions approach the first trough (at about day
75), increasing again after the trough for about 50 days until the
next peak. This pattern continues, with the difference between solution
sizes approaching a constant value as oscillations dampen. There is
similar behavior in the difference in solutions with respect to changes
in a (Fig. C.1(b)) and y (C.1(c)). Notably, as these two parameters
increase, the magnitude of solutions decreases, in contrast to g, and
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Fig. C.1.

SEIRSb model solutions for differing values of (a) g, (b) a, (¢) v, (d) 7, (€) 7;, (f) 7, and (g) 7,. Standard parameter values are shown with a dashed line. Note

that all lines can be found in (g) but as r; does not appreciably affect the model solution in the first 350 days, the lines lie on top of each other. We do not show SEIRb model
solutions as (a)—(f) are visually identical between the SEIRb and SEIRSb models and r is not included in the SEIRb model.

correspondingly, the sensitivities for g are positive but are negative for
a and y (Fig. 4). Furthermore, the difference between solutions signifi-
cantly decreases as these two parameters increase. Solutions show little
change with respect to changes in 7y, indicating that solutions for the
SEIRSb infectious population size i are not sensitive to changes in the
period of immunity, at least across the first 350 days.

To aid in interpretation of the global sensitivity results (Fig. 5), we
also show dynamics of the infectious population for various choices of
Tg, 77, and 7y (Figs. C.1(d)-C.1(f)). Increases in 7 result in a decrease
in solution magnitude and a delay in peak occurrence of the first and
subsequent peaks. In contrast, increases in z; result in increases in
solution magnitude and a slight delay in peak timing as well as clear
increases in the endemic equilibrium. Increases in z, result in stronger
oscillatory behavior: solutions have higher, wider peaks and lower,
wider troughs. Furthermore, oscillatory behavior lasts longer before
dampening to the equilibrium.

Lastly, we clarify our choice of parameter values for Figs. 3 and
C.1. The choice of parameters is based on the values listed in Table 4.
Perturbations of a fixed size were chosen for each parameter (for
example, all values of g differ by 0.3) to display an assortment of values
that falls within the range given in Table 4. The exception here is
parameter y, where the value of y = 9 is included to show the negligible
difference between y = 5 and y = 9. This supports the choice of y =5
as the upper bound for the range of y values.
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Appendix D. Methods for model validation

For data replication, we use data from [56]. The model formulation
is similar to that described in the main text using the modified scaled
models, based on Systems (2) and (4). For model validation of models
with human behavior, we use the following for the SEIRb and SEIRb
with seasonality

ds; b .

—_ = ——_0.5.1.,

dt A+a;fpyi 77

de; i e;

= a0

dt A +a; f) TE

dij e; i ®.1)
T '
dr; i

L =a-1FR)L,

dt Tr

af; -1

dr T

and the following for the SEIRSb and SEIRSb with seasonality

ds; B; o
— = 0;s;i; + —,
dr (A +a;f)) Tr
de; ) ¢

5

= — 0.5, — —
(1+al~fj)y/ SR g
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Table D.1

Parameters estimated for each model when fitting to US region data. Note that c,, the fitted time of the appearance of case zero in the region,
and w, the size of the seasonal effect, are not found in our original model. Parameters not found below in the table are fixed to their standard
values: 7, =5 and 7; = 10. Initial conditions are s(cy) = 1, e(cy) = 107, i(cy) = r(cy) = f(c,) = 0. For each region, model output d;, described
in Eq. (D.6), was fitted to each region’s daily per capita death per million. For illustrative purposes in Figs. 7 and D.3, simulation output and
data were scaled to the population size for each region.

Models
Parameter Range Local vs. SEIRS SEIRS with SEIRSb SEIRb with SEIRSb with
global seasonality seasonality seasonality
p [0.15,0.7] Local Yes Yes Yes Yes Yes
y [0,4] Local Yes Yes Yes
a [0,0.01] Local Yes Yes Yes
Tr [7,200] Local Yes Yes Yes
TR [60, 365] Global Yes Yes Yes Yes
¢ [0, 120] Local Yes Yes Yes Yes Yes
w [0,1] Local Yes Yes Yes
Table D.2
Model performance (R-squared) in replicating different US region data.
US region SEIRS SEIRS with SEIRSb SEIRb with SEIRSb with
seasonality seasonality seasonality

Alabama 0.61 0.61 0.68 0.79 0.80

Alaska 0.01 0.01 0.49 0.48 0.49

Arizona 0.57 0.57 0.35 0.59 0.77

Arkansas 0.63 0.63 0.67 0.74 0.74

California 0 0.01 0.83 0.90 0.90

Colorado 0.02 0.02 0.43 0.83 0.83

Connecticut 0.03 0.03 0.96 0.97 0.97

Delaware 0.02 0.02 0.72 0.84 0.85

District of Columbia 0.02 0.03 0.94 0.95 0.95

Florida 0 0 0.70 0.82 0.84

Georgia 0 0 0.34 0.49 0.51

Hawaii 0 0.01 0.29 0.41 0.41

Idaho 0.02 0.03 0.82 0.85 0.85

Illinois 0.03 0.04 0.48 0.96 0.96

Indiana 0.71 0.71 0.83 0.94 0.94

Iowa 0.02 0.03 0.64 0.68 0.68

Kansas 0.74 0.74 0.79 0.81 0.82

Kentucky 0.03 0.03 0.53 0.54 0.54

Louisiana 0.08 0.10 0.64 0.71 0.68

Maine 0 0 0.69 0.75 0.75

Maryland 0.02 0 0.62 0.65 0.67

Massachusetts 0.03 0.03 0.91 0.92 0.91

Michigan 0.01 0.01 0.65 0.78 0.79

Minnesota 0.01 0.02 0.27 0.92 0.92

Mississippi 0.43 0.43 0.35 0.73 0.75

Missouri 0.01 0.02 0.76 0.80 0.80

Montana 0 0 0.75 0.78 0.77

Nebraska 0.04 0.04 0.80 0.85 0.85

Nevada 0.02 0.03 0.78 0.78 0.82

New Hampshire 0 0.01 0.43 0.90 0.90

New Jersey 0.02 0.01 0.96 0.97 0.96

New Mexico 0.77 0.77 0.87 0.88 0.89

New York 0.01 0.01 0.96 0.97 0.96

North Carolina 0 0.01 0.71 0.84 0.84

North Dakota 0.86 0.86 0.90 0.91 0.91

Ohio 0.76 0.76 0.91 0.97 0.97

Oklahoma 0.05 0.10 0.18 0.19 0.19

Oregon 0 0 0.74 0.74 0.74

Pennsylvania 0.54 0.54 0.40 0.93 0.93

Rhode Island 0.28 0.28 0.71 0.95 0.96

South Carolina 0.01 0.02 0.46 0.68 0.67

South Dakota 0.86 0.86 0.93 0.94 0.94

Tennessee 0.71 0.71 0.78 0.85 0.84

Texas 0.01 0.02 0.54 0.81 0.85

Utah 0 0.01 0.84 0.89 0.87

Vermont 0 0 0.33 0.86 0.86

Virginia 0 0 0.13 0.28 0.28

Washington 0 0.01 0.33 0.63 0.66

West Virginia 0 0.01 0.69 0.69 0.69

Wisconsin 0.01 0.02 0.87 0.88 0.88

Wyoming 0.70 0.70 0.85 0.86 0.86
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Fig. D.1. Distribution of mean absolute error of 5 different models across 51 US
regions. Red line is the median, blue box is 25%-75% percentile, and whiskers represent
the 95% interval.
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Fig. D.2. Comparisons of fits of each model (SEIRSb + seasonality, SEIRb + seasonality,
SEIRSD, SEIRS + seasonality, SEIRS, SEIR) for all US data. All US graphs are generated
after fitting each state simulation to its corresponding data. Note we also include the
exogenous SEIR and SEIRS models with fixed base transmission rate, g, for comparison.

di; e; i

J J
=2 _ 1 D.2
dt T Tp 0.2)
dr; i;
—L =q-I1FRL -2,
dt T; TR
df; ;=1
T T

where j is the index for the US region, IFR is the infection fatality rate,
0; incorporates seasonality (described below) and other parameters are
found in Table D.1.

The variable 6 is added to include seasonality. We intentionally use
a simple sinusoidal equation given by

27r(t+91)>

365 (B-3)

9j=1+szin<
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where 7 is time (in days) since January 1st, 2020, and 0 < w ;< 1is the
size of seasonal effect, which is estimated through model calibration for
each US region. The shift in the sinusoidal function by 91/365 (about
one quarter of a year) is used to adjust the phase such that its maximum
value occurs on January 1st. Based on Eq. (D.3), then 1—-w < 6 < 1+w,
and for w = 0, then (¢) = 1, representing no seasonality effect.

For the models without human behavior (SEIRS and SEIRS with
seasonality), we use the following

ds; ) r;
PTIRUR
de; e;
j _ . J
= =Pt
di; e; i £ (0.4
S _ L
dr g T )
. i. r.
L =-I1FR)L - L,
dt T, TR

where j is the index for the US region, IFR is the infection fatality
rate, and other parameters are found in Table D.1. In the case without
seasonality (SEIRS), 6 =1, while with seasonality, 6 ; is the same as in
Eq. (D.3). Note that as there is no feedback into the base transmission
rate, such that f; is a constant for each region. There is no need for
the state variable f in these models as f does not feedback on other
variables.

For the models without human behavior (SEIR and SEIR with sea-
sonality), we use the following

ds; :
- = b0t
de; e;
J . J
= = PBiYsiti - P
d & ®9
dt  tp 1,
drj i
L —(1-I1FRZL,
dt Tr

where j is the index for the US region. In the case without seasonality
(SEIR), 6; = 1, while with seasonality, 0, is the same as in Eq. (D.3).
Similar to the SEIR model, as there is no feedback into the base
transmission rate, such that f; is a constant for each region, there is
no need for the state variable f in these models.

For model calibration we estimate parameters to maximize the fit
between the simulation and data for each US region by minimizing the
mean square error using daily death data (per capita) per million. As
mentioned in Section 4.4, in the model, we calculate daily per capita
death, d ;» as

i
d;=I1FR( L),
T

where j is the index for the US region (50 states and District of

(D.6)

Columbia) and IFR is the infection fatality rate, which we assume is
0.5% [54]. The parameters fitted for each model are found in Table D.1.

Performance of the five models in replicating overall US data are
reported in Table 5, Figs. 6 and D.1. The final model performance in
replicating each of the 51 US regions is reported in Table D.2 and
Fig. D.3.

Appendix E. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.mbs.2024.109250.
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Fig. D.3. Simulation results against data for daily death per capita per million in 51 US regions as well as the entire country. Blue lines are data, and red lines are model outcome.
Note: The y-axis differs for each region. Some states have daily death below zero because of corrections to the data.
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