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A B S T R A C T

COVID-19 highlighted the importance of considering human behavior change when modeling disease dynamics.
This led to developing various models that incorporate human behavior. Our objective is to contribute to an
in-depth, mathematical examination of such models. Here, we consider a simple deterministic compartmental
model with endogenous incorporation of human behavior (i.e., behavioral feedback) through transmission in
a classic Susceptible–Exposed–Infectious–Recovered (SEIR) structure. Despite its simplicity, the SEIR structure
with behavior (SEIRb) was shown to perform well in forecasting, especially compared to more complicated
models. We contrast this model with an SEIR model that excludes endogenous incorporation of behavior. Both
models assume permanent immunity to COVID-19, so we also consider a modification of the models which
include waning immunity (SEIRS and SEIRSb). We perform equilibria, sensitivity, and identifiability analyses
on all models and examine the fidelity of the models to replicate COVID-19 data across the United States.
Endogenous incorporation of behavior significantly improves a model’s ability to produce realistic outbreaks.
While the two endogenous models are similar with respect to identifiability and sensitivity, the SEIRSb model,
with the more accurate assumption of the waning immunity, strengthens the initial SEIRb model by allowing
for the existence of an endemic equilibrium, a realistic feature of COVID-19 dynamics. When fitting the model
to data, we further consider the addition of simple seasonality affecting disease transmission to highlight the
explanatory power of the models.
1. Introduction

The COVID-19 pandemic left the world reeling, driving the need
for further scientific understanding of disease dynamics, allowing for
better preparedness for the next pandemic. Central to this preparedness
is the ability to develop and implement policies which can mitigate
the effects of the disease. To this end, mathematical models allow us
to test and simulate the effects of potential policies [1]. One aspect
of disease modeling that the recent pandemic brought to light was
the strength of the impact of human behavior on disease dynamics.
Along with policy implementation, human response affected the spread
of the disease in massively different ways in different parts of the
world [2,3]. Human behavior during disease outbreak manifests in
myriad of forms, including change in mobility, willingness to test
or infection, willingness to vaccinate, adherence fatigue, and many
thers. One particular form of human behavior which was observed
uring the pandemic was the willingness of individuals to adopt and
dhere to non-pharmaceutical interventions (NPIs), such as masking,
ocial distancing, self-quarantining, even when not required to do so.
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Individuals tended to adhere to these interventions more strictly when
perceived risk of infection was high, and individuals relaxed their ad-
herence when perceived risk of infection was low, ultimately affecting
disease spread [4]. Thus, considering change in human response over
the course of a pandemic, as affected by changes in the state of the
disease, is crucial for developing a better understanding of disease
spread and constructing more effective policies.

A common model structure used in disease modeling is the de-
terministic, compartmental Susceptible–Infectious–Removed (SIR) or-
dinary differential equation (ODE) model [5–7]. In this model, the
population is divided into three non-overlapping sub-populations based
on disease status – Susceptible, Infectious, or Removed/Recovered –
and the model simulates disease spread through these populations. The
standard SIR model always indirectly makes assumptions on human
behavior, particularly with respect to disease transmission. For exam-
ple, through the ODE formulation, it inherently assumes a well-mixed
population, and that human behavior remains unchanged throughout
an epidemic [6]. While simple and easy to simulate, this is generally
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not how humans actually respond [8]. To relax this assumption, some
SIR models instead assume that transmission changes through an ex-
ternal factor, e.g. as a function of time or some other measure [9,10].
However, human behavior instead tends to change in response to
understanding of the state of the disease and changes in perceived risks
(‘‘risk perception’’) [4,11,12]. If risk perception is modeled internally,
i.e. endogenously, a behavioral feedback mechanism emerges which is
often referred to as a risk-response feedback loop, or human behavior
adaptation [13]. The feedback loop couples change in the state of the
disease with change in human behavior.

In recent years, and particularly in response to the COVID-19 pan-
demic, modelers attempted to account for human behavior in order
to forecast future disease outbreaks [14]. However, not all models
considered human behavior changes occurring internal to the model.
Those without internal changes due to human behavior, referred to
as exogenous models [15], lacked predictive power [4]. Other models
incorporated human behavior endogenously in various ways. Model
types and methods include network and agent-based models [16–19],
game theory and optimization [20–23], opinion dynamics [24–26],
and deterministic compartmental models [4,27,28]. Explored in several
reviews articles [13,14,29–31], some of these models allow for endoge-
nously driven disease waves. In particular, the systematic review by
Hamilton et al. [31] characterized models which included endogenous
human behavior (taking a variety of forms — masking, social distanc-
ing, vaccination, etc.) either as feedback loops, game theory/utility
theory, and information/opinion spread. The vast majority of these
models used feedback loops and compartmental models. Overall, the
review concluded that endogenous incorporation of human behavior
in infectious disease models could aid in better prediction of outcomes,
allowing for better epidemic preparedness and response [31].

A recent review study from our group focuses on models incorpo-
rating human behavior in the form of risk response in deterministic,
compartmental models [32]. The study pointed to a particular SIR-type
model (defined below), developed by Rahmandad and colleagues [4],
for its simplicity and ability to outperform a significant portion of
remarkably more complex models. Rahmandad et al.’s model is an
extension of the aforementioned SIR model, considering a latent pop-
ulation (E), which includes individuals who are infected but are not
yet infectious. Furthermore, the model takes the standard constant
transmission (usually denoted as 𝛽) and reconstructs it as a function of
either prevalence, deaths, perceived prevalence, or perceived deaths.
This results in the endogenous SEIRb (b for behavior) model. The
model’s considerable forecasting performance was mainly due to the
endogenous consideration of human behavior changes occurring in
response to changes in disease dynamics [4]. Recent studies examined
various policy or practical insights emerging from the SEIRb model [33,
34].

In this paper, we provide an in-depth analysis of the mathematical
properties of epidemic models incorporating human behavior. These
models are simple in structure, not taking into account the impact
of mobility, vaccinations, or outbreaks occurring from new strains.
Specifically we explore the mathematical structure of the SEIRb model
to further understand the driving factors of its forecasting strength.
We primarily compare two versions of the model: one which con-
siders permanent immunity (SEIRb) and one which considers waning
immunity (SEIRSb) and also observe key differences between these en-
dogenous models and their well-studied exogenous counterparts (SEIR
and SEIRS). In Section 2, we introduce the SEIRb and SEIRSb models,
including definitions for the variables and parameters. To help with
further analyses, we scale the system to a total population size of
one. In Section 3, we perform equilibria and identifiability analyses
on the models as well as determine the basic reproductive number.
In Section 4, we assess the sensitivity of the infectious population to
the parameters. We also compare numerical simulations of the models
and validate models by fitting them to COVID-19 data across a wide
range of regions covering different US states and districts, and over
multiple waves of the pandemic. Finally, in Section 5, we summarize
2

our findings and their implications.
Table 1
State variables and parameters for SEIRb model, found in System (1), and SEIRSb
model, found in System (3).
Variables

𝑆 Population of susceptible individuals
𝐸 Population of exposed (and infected) individuals
𝐼 Population of infectious individuals
𝑅 Population of recovered individuals
𝐹 Number of perceived/lagged infections

Parameters

𝛽 Base transmission rate
𝛼 Sensitivity to (risk of) infection
𝛾 (infection) risk diminishing impact
𝑁 Total population size (𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝑅)
𝜏𝐸 Exposure period, average time in state E
𝜏𝐼 Infectious period, average time in state I
𝜏𝐹 Time lag between infections awareness

and actual infection occurrence
𝜏𝑅a Period of immunity, average time in state 𝑅

a Only appears in System (3).

2. Models

We consider two simple models incorporating endogenous human
behavior feedback: one with permanent immunity, SEIRb, and one with
waning immunity, SEIRSb. Both models build upon an underlying SEIR
framework with susceptible (𝑆), exposed (𝐸), infectious (𝐼) and recov-
ered (𝑅) individuals. All variables and parameters for these models are
described in Table 1.

The models we developed primarily focus on the impact of hu-
man behavior on transmission. More specifically, this is assumed to
represent the adherence of individuals to NPIs, where the level of
adherence is a result of perceived risk of infection. The type of NPI
used to reduce transmission can represent many actions — from social
distancing and self-isolation to masking or reducing mobility. From a
biological perspective, these are all distinct; however, mathematically,
these are equivalent in the SEIRb/SEIRSb model as they ultimately
result in reduction of transmission when implemented. Choosing a
specific type of NPI to model, such as social distancing, may need to
be employed differently if additional complexities exist in the model,
such as the inclusion of age structure. Given the general nature of the
SEIRb structure from [4], the model can represent multiple NPIs, any
of which result in the reduction of transmission.

2.1. Epidemic model with permanent immunity: SEIRb

We begin by considering the SEIRb model with permanent immu-
nity, given by
𝑑𝑆
𝑑𝑡

= −
𝛽

(1 + 𝛼𝐹 )𝛾
𝑆 𝐼
𝑁

,

𝑑𝐸
𝑑𝑡

=
𝛽

(1 + 𝛼𝐹 )𝛾
𝑆 𝐼
𝑁

− 𝐸
𝜏𝐸

,

𝑑𝐼
𝑑𝑡

= 𝐸
𝜏𝐸

− 𝐼
𝜏𝐼

,

𝑑𝑅
𝑑𝑡

= 𝐼
𝜏𝐼

,

𝑑𝐹
𝑑𝑡

= 𝐼 − 𝐹
𝜏𝐹

.

(1)

In addition to the four state variables in the standard SEIR model, there
is an additional state variable, 𝐹 , the number of perceived infections,
which is how risk perception is incorporated. The state variable 𝐹 is a
simple exponential first-order delay of 𝐼 , modulated by the difference
between perceived prevalence (𝐹 ) and actual prevalence (𝐼). In addi-
tion, compared to the standard SEIR model, this model incorporates a
transmission function in terms of the state variable 𝐹 , 𝛽(𝐹 ) = 𝛽

(1+𝛼𝐹 )𝛾 ,
rather than simply using a constant parameter (often 𝛽). These two key
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Fig. 1. Flow diagram describing the general structure of the SEIRSb model. Red dashed lines indicate influences on disease transmission. Solid black lines denote movement of
individuals. The compartments are 𝑆, susceptible; 𝐸, exposed; 𝐼 , infectious; 𝑅, removed; 𝐹 , perceived/lagged infectious.
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omponents are essential to the realistic epidemic dynamics this model
an produce.
The incorporation of risk perception drives the appearance of mul-

iple waves in simulations on the time scale of an epidemic (see
ection 4), a feature missing in models which consider transmission as
onstant or a function of factors external to the model [32]. In a steady
tate, 𝐼 = 𝐹 , so 𝑑𝐹

𝑑𝑡 = 0 and 𝐹 remains constant. Perturbing the system
ith an increase in 𝐼 , such that 𝐼 > 𝐹 , results in 𝑑𝐹

𝑑𝑡 becoming positive,
ncreasing 𝐹 , and lowering 𝛽(𝐹 ). As 𝛽(𝐹 ) declines enough (such that
𝑑𝐸
𝑑𝑡 < 0), the size of 𝐸 declines as well, which leads to 𝑑𝐼

𝑑𝑡 < 0 and a
ecrease in 𝐼 . Once 𝐼 < 𝐹 , 𝑑𝐹

𝑑𝑡 becomes negative, 𝐹 declines, and in
turn, 𝛽(𝐹 ) increases. This mechanism is known as a negative feedback
loop (see Fig. 1) and is the central feature of the model’s predictive
power.

The formulation of risk perception in the transmission term can
take multiple forms [35–37]. We choose our transmission function
s a modification from Rahmandad et al. [4], who consider that
eaths/perceived deaths, as a function of prevalence/perceived preva-
ence, drive transmission dynamics. For the sake of simplicity, we
ssume transmission is driven by prevalence/perceived prevalence.
ompared to the transmission term in [4], the changes made involve
xclusion of the seasonality term 𝑤 (considered again during model
alidation in Section 4) and a re-scaling of 𝐹 in the final equation,
which does not qualitatively impact overall model dynamics.

For generalizability and to avoid losing model dynamics in the
magnitude difference between total population size 𝑁 and the rela-
tively small size of the latent, infectious, and recovered populations,
we re-scale the model. Letting 𝑎 = 𝛼𝑁 and

𝑠 = 𝑆
𝑁

, 𝑒 = 𝐸
𝑁

, 𝑖 = 𝐼
𝑁

, 𝑟 = 𝑅
𝑁

, 𝑓 = 𝐹
𝑁

,

ives the normalized SEIRb system
𝑑𝑠
𝑑𝑡

= −
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠𝑖,

𝑑𝑒
𝑑𝑡

=
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠𝑖 − 𝑒

𝜏𝐸
,

𝑑𝑖
𝑑𝑡

= 𝑒
𝜏𝐸

− 𝑖
𝜏𝐼

,

𝑑𝑟
𝑑𝑡

= 𝑖
𝜏𝐼

,

𝑑𝑓
𝑑𝑡

=
𝑖 − 𝑓
𝜏𝐹

.

(2)

The corresponding exogenous (SEIR) system can be found in Ap-
endix A in Eq. (A.1). Compared to the SEIRb model in Eq. (2), the
EIR model has constant transmission: 𝛽 rather than 𝛽(𝑓 ). As a result,
he equation for perceived infections, 𝑓 , is no longer necessary.

.2. Simple epidemic model with waning immunity: SEIRSb

Waning immunity creates an additional pathway between the re-
overed (𝑅) and susceptible (𝑆) compartments with a flow of 𝑅 . Thus,
3

𝜏𝑅
the revised system of ODEs has much the same structure as System (1)
except the first and fourth compartments are changed by the addition
and subtraction of waning immunity term 𝑅

𝜏𝑅
, respectively, to form

𝑑𝑆
𝑑𝑡

= −
𝛽

(1 + 𝛼𝐹 )𝛾
𝑆 𝐼
𝑁

+ 𝑅
𝜏𝑅

,

𝑑𝐸
𝑑𝑡

=
𝛽

(1 + 𝛼𝐹 )𝛾
𝑆 𝐼
𝑁

− 𝐸
𝜏𝐸

,

𝑑𝐼
𝑑𝑡

= 𝐸
𝜏𝐸

− 𝐼
𝜏𝐼

,

𝑑𝑅
𝑑𝑡

= 𝐼
𝜏𝐼

− 𝑅
𝜏𝑅

,

𝑑𝐹
𝑑𝑡

= 𝐼 − 𝐹
𝜏𝐹

.

(3)

With the same rescaling as for System (1), we obtain the normalized
SEIRSb system

𝑑𝑠
𝑑𝑡

= −
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠𝑖 + 𝑟

𝜏𝑅
,

𝑑𝑒
𝑑𝑡

=
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠𝑖 − 𝑒

𝜏𝐸
,

𝑑𝑖
𝑑𝑡

= 𝑒
𝜏𝐸

− 𝑖
𝜏𝐼

,

𝑑𝑟
𝑑𝑡

= 𝑖
𝜏𝐼

− 𝑟
𝜏𝑅

,

𝑑𝑓
𝑑𝑡

=
𝑖 − 𝑓
𝜏𝐹

.

(4)

The corresponding exogenous (SEIRS) system can be found in Ap-
pendix A in Eq. (A.2). Compared to the standard model in Eq. (4), the
EIRS model has constant transmission: 𝛽 rather than 𝛽(𝑓 ), such that
he equation for perceived infections, 𝑓 , is also no longer necessary.

. Theory and calculation

.1. Equilibrium analysis

We begin our analysis by deriving the various equilibria for both
odels (SEIRb and SEIRSb), giving conditions on existence and unique-
ess. For completeness, we summarize the equilibria for corresponding
xogenous models (SEIR and SEIRS) in Appendix A.

heorem 1. Disease free equilibria.
Given biologically relevant parameters, i.e., {𝛽, 𝑎, 𝛾, 𝜏𝐸 , 𝜏𝐼 , 𝜏𝐹 , 𝜏𝑅} > 0,

nd biologically realistic initial conditions, i.e., {𝑠(0), 𝑒(0), 𝑖(0), 𝑟(0), 𝑓 (0)} ∈
0, 1],

1. the permanent immunity (SEIRb) model, found in System (2), has a
line of disease free equilibria given by 𝑠̄ = 1 − 𝑟̄, where the precise
value of the equilibrium depends on the initial condition.

2. the waning immunity model (SEIRSb) model, found in System (4),
has a unique disease free equilibrium (DFE) (1, 0, 0, 0, 0).
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Proof. First, notice that both models are closed with respect to move-
ent of individuals, and thus the following relationship holds:

(𝑡) + 𝑒(𝑡) + 𝑖(𝑡) + 𝑟(𝑡) = 1. (5)

Item (1) follows from Eq. (5) combined with the fact that 𝑑𝑟
𝑑𝑡 = 0

results in 𝑖̄ = 0; thus, with 𝑑𝑖
𝑑𝑡 = 0, this results in 𝑒̄ = 𝑖̄ = 0, with no

equirements on the values of 𝑠̄ and 𝑟̄. As 𝑑𝑓
𝑑𝑡 = 0 and 𝑖̄ = 0, 𝑓̄ = 0.

Item (2) follows from Eq. (5) and the fact that 𝑑𝑖
𝑑𝑡 = 𝑑𝑟

𝑑𝑡 = 0 results in
𝑒̄ = 𝑖̄ = 𝑟̄ = 0. As 𝑑𝑓

𝑑𝑡 = 0 and 𝑖̄ = 0, 𝑓̄ = 0. □

We derive the basic reproduction number 0 (the number of sec-
ondary infections produced by a single infectious individual in a fully
susceptible population). For the permanent immunity model, 0 gives
information about initial disease dynamics (whether the infectious
population grows or declines), but the disease always dies out. For
the waning immunity model, 0 gives information about conditions
driving the disease to extinction [38]. In both cases, we use the next-
generation method [39] to derive 0 using the 𝑒-𝑖 infectious subsystem.
We calculate the Jacobian 𝐽 of the 𝑒-𝑖 subsystem evaluated at the
equilibrium (𝑠̄, 𝑒̄, 𝑖, 𝑟̄, 𝑓̄ ) as

𝐽 =

⎛

⎜

⎜

⎜

⎜

⎝

− 1
𝜏𝐸

𝛽
(1+𝑎𝑓̄ )𝛾 𝑠̄

1
𝜏𝐸

− 1
𝜏𝐼

⎞

⎟

⎟

⎟

⎟

⎠

.

n the case of permanent immunity, where we have infinitely many
FE, the basic reproduction number is calculated using the DFE (1, 0, 0,

0, 0), i.e. the DFE where no outbreak has occurred. Thus, 𝑠̄ = 1 and
𝑒̄ = 𝑖̄ = 𝑟̄ = 𝑓̄ = 0 in the calculation of 0 for both models, resulting in

𝐽
|

|

|

|(𝑠̄=1,𝑒̄=0,𝑖̄=0,𝑟̄=0,𝑓̄=0)
=

⎛

⎜

⎜

⎜

⎜

⎝

− 1
𝜏𝐸

𝛽

1
𝜏𝐸

− 1
𝜏𝐼

⎞

⎟

⎟

⎟

⎟

⎠

.

plitting apart into a matrix of new infections and a matrix of transi-
ions between states, we write 𝐽 = 𝐹 − 𝑉 with

=
(

0 𝛽
0 0

)

, 𝑉 =

⎛

⎜

⎜

⎜

⎜

⎝

1
𝜏𝐸

0

− 1
𝜏𝐸

1
𝜏𝐼

⎞

⎟

⎟

⎟

⎟

⎠

.

he basic reproduction number 0 is the spectral radius of 𝐹𝑉 −1,
i.e. the eigenvalue with largest real part (in magnitude), given by

𝐹𝑉 −1 =
(

𝜏𝐼𝛽 𝜏𝐼𝛽
0 0

)

.

Thus,

0 = 𝛽𝜏𝐼 ,

for both the permanent immunity (SEIRb) model and the waning
immunity (SEIRSb) model.

For the latter model, as the DFE is unique, the DFE will be locally
asymptotically stable when 0 < 1 and unstable when 0 > 1 [39–41].

In the case of permanent immunity, System (2), the only equilibria
present are the line of disease free equilibrium. No endemic equilibria
can exist since the susceptible compartment only contains a decay
function and no growth. Thus, eventually the susceptible population
will become too small to sustain the disease. In the case of waning
immunity, the additional pathway between recovered and susceptible
allows for a richer set of equilibria, i.e. the existence of an endemic
equilibria.

Theorem 2. Endemic equilibrium for SEIRSb model.
Given biologically relevant parameters, i.e., {𝛽, 𝑎, 𝛾, 𝜏𝐸 , 𝜏𝐼 , 𝜏𝐹 , 𝜏𝑅} > 0,

and biologically realistic initial conditions, i.e., {𝑠(0), 𝑒(0), 𝑖(0), 𝑟(0), 𝑓 (0)} ∈
[0, 1], there exists a unique endemic equilibrium (EE) for System (4) if and
only if  > 1.
4

0

Proof. Using System (4), we write all compartments in terms of 𝑖̄:

𝑠̄ =
(1 + 𝑎𝑖)𝛾

𝛽𝜏𝐼
, 𝑒̄ =

𝜏𝐸
𝜏𝐼

𝑖̄, 𝑟̄ =
𝜏𝑅
𝜏𝐼

𝑖̄, 𝑓̄ = 𝑖̄.

Using Eq. (5), with the equations above, results in

(𝑎𝑖 + 1)𝛾 + 𝛽(𝜏𝐸 + 𝜏𝐼 + 𝜏𝑅)𝑖̄ − 𝛽𝜏𝐼 = 0,

which we rewrite as

(1 + 𝑎𝑖)𝛾 = 𝛽𝜏𝐼 − 𝛽(𝜏𝐸 + 𝜏𝐼 + 𝜏𝑅)𝑖̄. (6)

iven the assumption that all parameters are positive (consistent with
he biologically relevant region), then the left hand side of Eq. (6) is
increasing monotonically from 1 as 𝑖̄ increases and the right hand side
in decreasing linearly from 𝛽𝜏𝐼 as 𝑖̄ increases. When 0 = 𝛽𝜏𝐼 > 1,
these two curves will intersect at exactly one point in the positive
quadrant, indicating a unique EE. When 0 = 𝛽𝜏𝐼 < 1, these two
curves will not intersect in the positive quadrant, and thus there will
be no endemic equilibrium in the biologically relevant region. When
𝛽𝜏𝐼 exactly equals one, these two curves will intersect exactly at one,
when 𝑖̄ = 0. This is equivalent to the DFE, and hence the EE does not
exist when 0 ≤ 1. □

For the SEIRSb model, as the DFE becomes unstable when 0 > 1
and there is a unique EE, we expect this EE to be stable. However, due
to our implicit solution of the EE, we can only numerically show that
the EE is stable for 0 > 1. For example, using LHS sampling across a
wide range of biologically realistic parameters, where 0 > 1, always
yields negative eigenvalues for the Jacobian evaluated at the EE. We
include the Jacobian matrix, evaluated at the EE, below:

𝐽
|

|

|

|

( (1 + 𝑎𝑖)𝛾

𝛽𝜏𝑖
,
𝜏𝐸
𝜏𝐼

𝑖̄,𝑖,
𝜏𝑅
𝜏𝐼

𝑖̄,
𝜏𝑅
𝜏𝐼

𝑖̄,𝑖̄

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

− 𝛽
(1+𝑎𝑖̄)𝛾 𝑖̄ −

1
𝜏𝑅

− 1
𝜏𝑅

− 1
𝜏𝐼

− 1
𝜏𝑅

𝑎𝛾
(1+𝑎𝑖̄)𝜏𝐼

𝑖̄
𝛽

(1+𝑎𝑖̄)𝛾 𝑖̄ − 1
𝜏𝐸

1
𝜏𝐼

− 𝑎𝛾
(1+𝑎𝑖̄)𝜏𝐼

𝑖̄

0 1
𝜏𝐸

− 1
𝜏𝐼

0

0 0 1
𝜏𝐹

− 1
𝜏𝐹

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where 𝑖̄ is the solution to Eq. (6). While it is possible to derive a
condition for the local asymptotic stability of the EE using the Routh–
Hurwitz Criteria, it is not obviously associated with 0 and is too
algebraically complex to be useful for determining stability (except
numerically).

We summarize the results from this section in Table 2.

3.2. Identifiability analysis

An important aspect of model development is the parameterization
of the system. Often a model is parameterized by searching through
the literature for viable parameter values. Another popular approach
for parameterization is to use a fitting procedure such as least squares
to fit the model to observable data. When fitting to data, one must
verify if the model structure is formulated in a way that allows for the
model parameters to be uniquely identified given perfectly observed
data. We refer to this process as structural identifiability [42–44]. Math-
ematically, we say that a model is globally structurally identifiable for
the set of parameters 𝐩𝟏 if for every parameter set 𝐩𝟐, the relationship
𝑦(𝑡,𝐩𝟏) = 𝑦(𝑡,𝐩𝟐) implies 𝐩𝟏 = 𝐩𝟐. If there is a neighborhood in which
the equation above holds true, we say the model is locally identifiable.
A model is classified as unidentifiable if the definitions above are not
met. Assessing the structural identifiability of a model provides insights
on the practical identifiability of a model by determining whether it is
possible given any amount of data to recover the model parameters. A
parameter that is deemed structurally unidentifiable can lead to inaccu-
rate estimates when using numerical methods, which is why it is crucial

to conduct structural identifiability first. The practical identifiability
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Table 2
Equilibria for SEIRb model, found in System (2), and SEIRSb model, found in System (4), assuming biologically relevant parameters, i.e.,
{𝛽, 𝑎, 𝛾, 𝜏𝐸 , 𝜏𝐼 , 𝜏𝐹 , 𝜏𝑅} > 0, and biologically realistic initial conditions, i.e., {𝑠(0), 𝑒(0), 𝑖(0), 𝑟(0), 𝑓 (0)} ∈ [0, 1].
Model Equilibrium type Values Existence, uniqueness, and stability

SEIRb Disease free (DFE) (𝑠̄, 0, 0, 𝑟̄, 0), 𝑠̄ + 𝑟̄ = 1 There always exists a line of DFE.

SEIRSb

Disease free (DFE) (1, 0, 0, 0, 0) Always exists and is a unique DFE
Locally asymptotically stable when 0 < 1
Unstable when 0 > 1

Endemic (EE)
(

𝐴
0

,
𝜏𝐸
𝜏𝐼

𝑖̄, 𝑖̄,
𝜏𝑅
𝜏𝐼

𝑖̄,
𝜏𝑅
𝜏𝐼

𝑖̄, 𝑖̄
)

,

𝑖̄ ∈ (0, 1), 𝐴 ∶= (1 + 𝑎𝑖)𝛾

Exists and is a unique, stablea EE when 0 > 1
Does not exist when 0 ≤ 1

a As described in the text, the stability condition is determined numerically.
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f a model can be determined by implementing several methodologies
uch as the Monte Carlo algorithm [45], Likelihood Profiles [46], and
ensitivity Analysis [34]. In this manuscript, we focus on conducting
he structural identifiability of SEIRb and SEIRSb models. In particular,
e focus our efforts on output measures, e.g. prevalence or number of
eaths data. Identifiability for the analogous exogenous models (SEIR
nd SEIRS) are found in Appendix B. Although we do not conduct
ractical identifiability in this manuscript, the results that we attain
rom structural identifiability will guide our future work by informing
hich parameters we should target and what type of data we will need
hen we perform practical identifiability.
There exist an array of user friendly and powerful software that test

he structural identifiability of models [47]. For this paper, we use the
ulia package StructuralIdentifiability.jl developed by Dong et al. [48].
StructuralIdentifiability.jl is an open-access package that uses a differen-
tial algebra approach to assess the identifiability properties of a model
by describing the input–output equations via projections. The software
also provides informative metrics such as functions for identifiable state
variables and model parameters, and it has the ability to assess local
identifiability.

3.2.1. Permanent immunity: SEIRb
For tractability, we focus on integer values of 𝛾 (in particular, 𝛾 =

1, 2, 3, 4, 5) such that the denominator of the function 𝛽 is a polynomial.
With these restrictions, the SEIRb model with all initial conditions for
state variables known and unknown parameters is globally identifiable
(Theorem 3). When the initial conditions for the state variables and
model parameters are unknown, the SEIRb model is globally identifi-
able for 𝑎, 𝛽, and 𝜏𝐹 and locally identifiable for 𝜏𝐸 and 𝜏𝐼 (Theorem 4).
or completeness, we summarize results of identifiability analysis for
orresponding exogenous models (SEIR and SEIRS) in Appendix B.

heorem 3. Identifiability of SEIRb model with initial conditions.
The SEIRb model given by System (2) is globally structurally identifiable

hen all initial conditions for the state variables are known, the model
arameters are unknown, and prevalence (size of class 𝑖) is the output
easure.

roof. Define the parameters sets 𝐩1 = {𝑎, 𝛽, 𝜏𝐹 , 𝜏𝐼 , 𝜏𝐸} and 𝐩2 =
𝑎̂, 𝛽̂, 𝜏𝐹̂ , 𝜏𝐼̂ , 𝜏𝐸̂}. Let 𝑦(𝑡,𝐩𝟏) = 𝑦(𝑡,𝐩𝟐). Then we obtain the following
unctional relationships from StructuralIdentifiability.jl:

= 𝑎̂, 𝛽 = 𝛽̂, 𝜏𝐹 = 𝜏̂𝐹 , 𝜏𝐼 = 𝜏̂𝐼 , 𝜏𝐸 = 𝜏̂𝐸 .

hus, 𝐩1 = 𝐩2 which entails that the SEIRb model is globally structurally
dentifiable with respect to prevalence data. □

heorem 4. Identifiability of SEIRb model without initial conditions.
The SEIRb model (2) is locally structurally identifiable when initial

onditions for the state variables are unknown, the model parameters are un-
nown, and prevalence (size of class 𝑖) is the output measure. In particular,
and 𝜏 are locally identifiable while 𝑎, 𝛽, 𝜏 are globally identifiable.
5

𝐹 𝐼 𝐹 t
able 3
dentifiability of SEIRb and SEIRSb models for 𝛾 ∈ {1, 2, 3, 4, 5} using Julia package.
Model 𝛾 Globally Identifiable Locally Identifiable Unidentifiable

1 𝑎, 𝛽, 𝜏𝐹 𝜏𝐸 , 𝜏𝐼
2 𝑎, 𝛽, 𝜏𝐹 𝜏𝐸 , 𝜏𝐼

SEIRb 3 𝑎, 𝛽, 𝜏𝐹 𝜏𝐸 , 𝜏𝐼
4 𝑎, 𝛽, 𝜏𝐹 𝜏𝐸 , 𝜏𝐼
5 𝑎, 𝛽, 𝜏𝐹 𝜏𝐸 , 𝜏𝐼
1 𝑎, 𝛽, 𝜏𝐹 , 𝜏𝑅 𝜏𝐸 , 𝜏𝐼
2 𝑎, 𝛽, 𝜏𝐹 , 𝜏𝑅 𝜏𝐸 , 𝜏𝐼

SEIRSb 3 ⋆ ⋆ ⋆

4 ⋆ ⋆ ⋆

5 ⋆ ⋆ ⋆

⋆ Indicates the software ran out of memory when performing the computation.

Proof. As in the proof for Theorem 4, define the parameters sets
𝐩1 = {𝑎, 𝛽, 𝜏𝐹 , 𝜏𝐼 , 𝜏𝐸} and 𝐩2 = {𝑎̂, 𝛽̂, 𝜏̂𝐹 , 𝜏̂𝐼 , 𝜏̂𝐸}. Let 𝑦(𝑡,𝐩𝟏) = 𝑦(𝑡,𝐩𝟐).
hen, we obtain the following functional relationships from StructuralI-
entifiability.jl:

= 𝑎̂, 𝛽 = 𝛽̂, 𝜏𝐹 = 𝜏̂𝐹 , 𝜏𝐼𝜏𝐸 = 𝜏̂𝐼 𝜏̂𝐸 , 𝜏𝐸 + 𝜏𝐼 = 𝜏̂𝐸 + 𝜏̂𝐼 . (7)

olving the System (7) using Mathematica, we obtain two set of solu-
ions:

𝑎 = 𝑎̂, 𝛽 = 𝛽̂, 𝜏𝐼 = 𝜏̂𝐸 , 𝜏𝐸 = 𝜏̂𝐼 , 𝜏𝐹 = 𝜏̂𝐹 },

{𝑎 = 𝑎̂, 𝛽 = 𝛽̂, 𝜏𝐼 = 𝜏̂𝐼 , 𝜏𝐸 = 𝜏̂𝐸 , 𝜏𝐹 = 𝜏̂𝐹 }. (8)

rom the set of solutions in (8), we conclude that the SEIRb model is
ocally identifiable. □

.2.2. Waning immunity: SEIRSb
As with the SEIRb model, for tractability purposes, we focus on

nteger values of 𝛾. For 𝛾 = 1, 2, 3 the SEIRSb model with known initial
onditions for the state variables and model parameters is globally
dentifiable (Theorem 5). With unknown initial conditions for the
tate variables and unknown model parameters, the SEIRSb is globally
dentifiable for 𝑎, 𝛽, 𝜏𝐹 , and 𝜏𝑅 and locally identifiable for 𝜏𝐸 and
𝐼 (Theorem 6). The software ran out of memory performing the
omputation for 𝛾 = 3, 4, 5 so no identifiability could be determined
see Table 3).

heorem 5. Identifiability of SEIRSb model with initial conditions.
The SEIRSb model given by System (4) is globally identifiable when all

nitial conditions for the state variables are known and prevalence (size of
lass 𝑖) is the output measure.

roof. Let 𝐩1 = {𝑎, 𝛽, 𝜏𝐹 , 𝜏𝐼 , 𝜏𝐸 , 𝜏𝑅} and 𝐩2 = {𝑎̂, 𝛽̂, 𝜏𝐹̂ , 𝜏𝐼̂ , 𝜏𝐸̂ , 𝜏̂𝑅}.
uppose that 𝑦(𝑡,𝐩𝟏) = 𝑦(𝑡,𝐩𝟐). Then we obtain the following functional
elationships from StructuralIdentifiability.jl:

= 𝑎̂, 𝛽 = 𝛽̂, 𝜏𝐹 = 𝜏̂𝐹 , 𝜏𝐼 = 𝜏̂𝐼 , 𝜏𝐸 = 𝜏̂𝐸 , 𝜏𝑅 = 𝜏̂𝑅.

ence, 𝐩1 = 𝐩2. This means that the SEIRSb model is globally struc-

urally identifiable with respect to prevalence data. □
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Fig. 2. Comparison of dynamics of the infectious populations. Initial conditions for susceptible, exposed, and infectious populations differ here from Table 4 in order to observe
differing model dynamics in a shorter time frame: 𝑠(0) = 1 − 0.002; 𝑒(0) = 0.001; 𝑖(0) = 0.001. Figure (a) Dynamics of the exogenous models, which clearly differ for the SEIR and
EIRS models. (b) Initial and (c) long-term dynamics of the outbreak of the SEIRb and SEIRSb models.
heorem 6. Identifiability of SEIRSb model without initial conditions.
The SEIRSb model (4) is locally structurally identifiable when the state

ariables are unknown, the model parameters are unknown, and prevalence
size of class 𝑖) is the output measure. In particular, 𝜏𝐹 and 𝜏𝐼 are locally
dentifiable while 𝑎, 𝛽, 𝜏𝐹 , 𝜏𝑅 are globally identifiable.

roof. Once more, define the parameters sets 𝐩1 = {𝑎, 𝛽, 𝜏𝐹 , 𝜏𝐼 , 𝜏𝐸 , 𝜏𝑅}
nd 𝐩2 = {𝑎̂, 𝛽̂, 𝜏̂𝐹 , 𝜏̂𝐼 , 𝜏̂𝐸 , 𝜏̂𝑅}. Let 𝑦(𝑡,𝐩𝟏) = 𝑦(𝑡,𝐩𝟐). Using StructuralIden-
tifiability.jl, we attain the functional relationships:

𝑎 = 𝑎̂, 𝛽 = 𝛽̂, 𝜏𝐹 = 𝜏̂𝐹 , 𝜏𝑅 = 𝜏̂𝑅, 𝜏𝐼𝜏𝐸 = 𝜏̂𝐼 𝜏̂𝐸 , 𝜏𝐸 +𝜏𝐼 = 𝜏̂𝐸 + 𝜏̂𝐼 .

(9)

olving the System (9) using Mathematica, we generate two set of
olutions:

𝑎 = 𝑎̂, 𝛽 = 𝛽̂, 𝜏𝐼 = 𝜏̂𝐸 , 𝜏𝐸 = 𝜏̂𝐼 , 𝜏𝐹 = 𝜏̂𝐹 , 𝜏𝑅 = 𝜏̂𝑅},

{𝑎 = 𝑎̂, 𝛽 = 𝛽̂, 𝜏𝐼 = 𝜏̂𝐼 , 𝜏𝐸 = 𝜏̂𝐸 , 𝜏𝐹 = 𝜏̂𝐹 , 𝜏𝑅 = 𝜏̂𝑅}. (10)

he set of solutions in (10) imply that SEIRSb model is locally
identifiable. □

4. Results and discussion

4.1. Numerical simulations

To show the time-varying dynamics of our model systems, we
numerically simulate all models, found in Systems (2), (A.1), (4), and
(A.2), in Matlab 2019a (time-varying sensitivity analysis and numerical
imulations) and 2024a (global sensitivity analysis) using the ode45
olver with the NonNegative flag for all equations. Table 4 gives
nitial conditions and parameter values used in simulations, unless
therwise specified.
Fig. 2 shows the disease dynamics of all models. In Section 3, we

bserved that the SEIRb (and SEIR) models only exhibit disease free
quilibria due to the lack of growth in the susceptible compartment,
hile the SEIRSb (and SEIRS) models have the capacity to reach an
ndemic equilibrium. Both the SEIR and SEIRS models reach their
espective equilibrium very quickly, within about 200 days. However,
or the endogenous models, the infectious population sizes are virtually
ndistinguishable initially, and the decay of the infectious population in
he SEIRb model may take a very long time to occur (dependent on the
ize of the initial outbreak versus the size of the susceptible population).
t may even look like an endemic equilibrium is reached (Fig. 2(b)).
iven enough time, the disease does indeed die out (Fig. 2(c), nearly

400,000 days until apparent die out), as compared to the SEIRSb model,
with its more biologically consistent inclusion of waning immunity,
which allows for a true endemic equilibria. The appearance of an
endemic equilibrium when there is not one is not necessarily contra-
dictory to the behavior we observe in the current pandemic. Certainly,
6

we see COVID-19 persisting but at a significantly reduced level from
the first few years. It is possible that COVID-19 could die out over time,
although this is unlikely given what we know about its features [52].
This does not reduce the usefulness of the SEIRb model as forecasting
occurs within a relatively short window compared to disease dynamics;
forecasting periods considered as long-term could fall within the time
frame spanned by just one epidemic wave [4]. Nonetheless, a model
which considers more characteristics of human behavior and disease
dynamics produces more accurate results regarding disease behavior
over time. For example, in Section 4.4, we also consider the addition
of seasonality and observe how this further improves model validity.

4.2. Time-varying sensitivity analysis

We follow the methods from [7] to analyze the local sensitivity
of model output with respect to base transmission rate, 𝛽; modified
sensitivity to risk of infection, 𝑎 = 𝛼𝑁 ; infection risk impact, 𝛾; and
period of immunity, 𝜏𝑅.

We calculate sensitivity by the partial derivative of the solutions to
the system with respect to the parameter of interest. For example, in
the case of base transmission rate, 𝛽, we aim to determine
𝜕𝑠
𝜕𝛽

, 𝜕𝑒
𝜕𝛽

, 𝜕𝑖
𝜕𝛽

, 𝜕𝑟
𝜕𝛽

,
𝜕𝑓
𝜕𝛽

.

We numerically approximate these partial derivatives by solving the
system created by differentiating each of the previous partial deriva-
tives with respect to 𝑡 and also consider semi-relative sensitivity, which
shows the partial derivatives scaled by the respective parameter, to
allow for ease of comparison across parameters which differ in magni-
tude. We numerically solve the sensitivity systems (see Appendix C for
equations) to obtain plots of the sensitivity of each solution with respect
to parameters of interest (𝛽, 𝑎, 𝛾, 𝜏𝑅), compared with the solution to the
original systems and the semi-relative sensitivity in Fig. 3 (no behavior)
and Fig. 4 (with behavior).

We can interpret the sensitivity plots by noting two characteristics:
first, curve steepness in the sensitivity plots corresponds to changes in a
solution’s magnitude as the parameter values change, and (2) positivity
(negativity) of partial derivatives in the sensitivity plots corresponds
to solution magnitude increasing (decreasing) as the parameter values
increase. For example, with the exogenous models (Fig. 3), the mag-
nitude of solutions is increasing as 𝛽 increases, up until about day 50.
This corresponds to the initial positive portion of the sensitivity graphs.
Then, between roughly days 50 and 80, the solutions begin to intersect,
until the order is reversed around day 80. The magnitude of solutions
now decreases as 𝛽 increases, corresponding to the negative portion of
the sensitivity graphs. For the SEIR model, the solutions do not intersect
again before achieving the DFE (Fig. 3(d)), and the corresponding sen-
sitivity graph changes from negative to zero (Figs. 3(b) and 3(c)). For
the SEIRS model, the solutions oscillate and intersect again (Fig. 3(e)),
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Table 4
Parameter values and ranges used in simulations and numerical sensitivity analyses. Any values used which differ from the values listed here
are stated in the relevant figure captions.
Symbol Initial conditions and parameters Range Value Source

𝑠(0) Initial amount of susceptible individuals 1 − (2 × 10−5) a

𝑒(0) Initial amount of exposed individuals 1 × 10−5 a

𝑖(0) Initial amount of infectious individuals 1 × 10−5 a

𝑟(0) Initial amount of recovered individuals 0 a

𝑓 (0) Initial amount of perceived infections 0 a

𝛽 Base transmission rate [0.1, 4] 0.7 [4]
𝛾 (infection) risk diminishing impact [0, 5] 2 [4]
𝛼 Sensitivity to (risk of) infection [0, 100] 1/30 [4]
𝑁 Total population size [103 , 108] 106 a

𝑎 Rescaled parameter, 𝑎 = 𝛼𝑁 [0, 1010] 105∕3 a

𝜏𝐸 Exposure period [1, 5] 5 [49]
𝜏𝐼 Infectious period [1, 14] 10 [50]
𝜏𝐹 Time lag between infection awareness and infection occurrence [1, 200] 20 [4]
𝜏𝑅 Period of immunity [1, 365] 90 [51]

a Values chosen to represent initial outbreak size similar to those seen per 106 in the data (see Fig. 7).
Fig. 3. Sensitivity of SEIR and SEIRS models to changes in parameters. (a) Solutions to, (b) sensitivity of, and (c) semi-sensitivity of SEIR and SEIRS models. For (a)–(c), SEIR
model in black and SEIRS model in red. Model solutions for differing values of (d) 𝛽 (SEIR), (e) 𝛽 (SEIRS), and (f) 𝜏𝑅 (SEIRS). For (d)–(f), standard parameter values are shown
with a dashed line. For ease of visibility, we use the following notation to represent partial derivatives in (b) and (c): 𝑥𝑦 ∶=

𝜕𝑥
𝜕𝑦
.

o
d
t
a
s
r
𝑎
n

i
𝛾
i
a
𝛽
p
o
o

w

resulting in continued sign changes in the sensitivity plots (Figs. 3(b)
and 3(c)), before finally achieving the endemic equilibrium, which
corresponds to the sensitivity plots reaching zero. While the SEIR and
SEIRS model are sensitive to changes in 𝛽 early in the infections (for
roughly the first 100 and 200 days, respectively), the SEIRS model is
not sensitive to changes in 𝜏𝑅 until roughly day 50 (after the outbreak
peak is reached). Then, changes in 𝜏𝑅 primarily determine the size of
the endemic equilibrium.

For the endogenous models, we use the plots displaying semi-
relative sensitivity with respect to 𝛽 as an example (Figs. 4(c) and 4(f)).
dditionally, Fig. C.1 in Appendix C help illustrate the written inter-
retation of these results. The sensitivity curves for 𝛽 initially display
teep growth before hitting a maximum. As the steepness of this curve
ncreases, the difference in magnitude of the solutions corresponding
o different 𝛽 values also increases. Once the sensitivity curves pass the
irst peak and begin to decrease, the difference in solutions decreases
or differing 𝛽 values. After the sensitivity curves pass the first trough
nd begin to increase again, the difference in solutions again increases
or differing 𝛽 values. This pattern continues as the sensitivity curves
7

scillate. As the oscillations dampen, there are smaller changes in the
ifference in solutions for differing 𝛽 values; when oscillations cease,
he solutions for differing 𝛽 values remain a fixed distance apart. In
ddition, values that are negative (i.e. sensitivity with respect to 𝛾 and
emi-relative sensitivity with respect to 𝛾 and 𝑎) represent an inverse
elationship between parameter size and prevalence. For example, as
, the modified sensitivity to (risk of) infection, increases, infection
umbers decrease.
Over the first 300 days, the SEIRb model is sensitive to changes

n all three parameters, with a similar amount of sensitivity to 𝛽 and
(Fig. 4(c)). Although not as influential as the other two, 𝑎 also

nfluences model dynamics. We repeat our time-varying sensitivity
nalysis with the SEIRSb model and find nearly identical results for
, 𝛾 and 𝑎, and essentially no sensitivity to changes in the additional
arameter 𝜏𝑅 (Figs. 4(e), 4(f)). This is expected as the loss of immunity
ccurs much slower than behavioral response, and does not dominate
ver the course of 350 days, the time-frame considered in Fig. 4.
One key difference between the exogenous and endogenous models

ith waning immunity is the sensitivity to 𝜏 , the period of immunity.
𝑅
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The SEIRS model shows slight sensitivity to 𝜏𝑅 (although primarily
when the outbreak reaches the endemic equilibrium), but the SEIRSb
model does not show any effect from changes to the period of im-
munity, indicating that the inclusion of behavior overrides influences
of waning immunity in the model, at least across one year. With
respect to disease control, changes to the period of immunity would not
significantly alter initial outbreak dynamics, and with the inclusion of
human behavior, any impacts would not be apparent on the time scale
of a single wave.

Another difference between the exogenous and endogenous models
(regardless of the immunity mechanism considered) is in sensitivity
with respect to 𝛽. With the exogenous models, 𝛽 substantially controls
solution magnitude, peak timing, and peak widths, and has a minor
impact on the endemic equilibrium. As 𝛽 changes, all of these change as
well. However, in the endogenous models, only solution magnitude and
the endemic equilibrium change as 𝛽 changes; peak timing and width
emain relatively the same (Fig. C.1 in Appendix C). Once again, the
nclusion of behavior is sufficient to override these specific influences
f 𝛽 on the model. This indicates that controlling base transmission
ate, when considering the effects of human behavior, will only serve
o change outbreak magnitude and will not affect the timing of the
utbreak peak or flatten the curve.
The most influential parameters on disease dynamics for both en-

ogenous models are the transmission rate 𝛽 and the infection risk
iminishing impact, 𝛾, and both endogenous models show the most
ensitivity to these parameters early in an outbreak. Thus, mitigation
trategies that reduce the base transmission rate or diminish the impact
f infection risk can aid in controlling the magnitude and speed of an
utbreak. This is consistent with intuition of outbreak control: decreas-
ng transmission and increasing the impact of the risk of infection can
low the spread of the disease. This reinforces the need for continued
ocus on these by policy makers to mitigate the impact of an outbreak.

.3. Global sensitivity analysis

We next perform global sensitivity analysis via Latin Hypercube
ampling with Partial Rank Correlation Coefficients (LHS/PRCC) [53]
o obtain results on which parameters have stronger influence on model
8

utputs. We use the same sampling of 10,000 parameter sets for all
odels, chosen uniformly from the ranges indicated in Table 4 and
se the partialcorr function in MATLAB, using a Spearman coef-
icient, to calculate PRCC. Prior to finding the PRCC, we confirm the
onotonicity of relationships between the parameters and respective
uantities of interest (not shown). Note that parameter 𝑎 from the re-
caled models depends on both 𝛼 and 𝑁 , so we consider the latter two
arameters separately in this sensitivity analysis, noting that we can
btain results for 𝑎 through the relationships 𝑎 = 𝛼𝑁 . We consider
hree specific quantities of interest (QOIs) to give a picture of disease
ynamics over time: (1) maximum size of the infectious population;
2) infectious population size at 50 days; (3) infectious population
ize at 2 years. To aid in interpretation of the results, it is helpful to
ote that a positive (negative) PRCC indicates a positive (negative)
orrelation between change in parameter size and QOI magnitude,
hen controlling for linear effects of other parameters [53]. Larger
RCC values indicate stronger impacts of parameter change on QOI
agnitude, and a 𝑝-value > 0.05 is not considered significant. In Fig. 5,
ll parameters have significant 𝑝-values, with the exception of 𝜏𝑅 in the
EIRSb model (all QOI) and 𝜏𝐸 in the SEIRS model (QOI 3).
As with the time-varying sensitivity analysis, we see very similar

esults for parameter influence between models with waning immunity
nd models which exclude waning immunity, i.e. between the SEIR and
EIRS models, and between the SEIRb and SEIRSb models. Only the
odels with waning immunity (SEIRS and SEIRSb models) include the
arameter 𝜏𝑅, which measures the period of waning immunity.
We first focus on the exogenous model comparisons (Fig. 5, left

olumn). For the maximum size of the infectious population (QOI
), each parameter has essentially the same PRCC value for both the
EIR and SEIRS models. For all three QOIs, 𝜏𝐼 has the largest positive
mpact and is the most influential parameter for QOIs 1 and 2. For the
nfectious population size at 2 years (QOI 3), 𝜏𝐼 and 𝜏𝐸 are close in
agnitude, although opposite in sign, for the SEIR model. The impact
f 𝜏𝐸 diminishes with each successive QOI, and loses significance for
he SEIRS model at two years (QOI 3). Base transmission rate, 𝛽, has
large positively correlated impact on the peak size of an outbreak
QOI 1), but for infectious population at 50 days (QOI 2), 𝛽 has a
egative impact, supported by observations from Figs. 3(d) and 3(e).
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Fig. 5. Global sensitivity analysis for all models with three different quantities of interest (QOI). Left column shows SEIR/SEIRS model results; right column shows SEIRb/SEIRSb
model results. QOIs are: maximum size of infectious population (a)–(b); infectious population at 50 days (c)–(d); and infectious population at 2 years (e)–(f), when most parameter
sets have reached a (quasi-) equilibrium. 𝑝-values are given above/below each respective bar. *indicates 𝑝-values below 0.001.
For the SEIRS model, as the time point of model output progresses
(QOI 1 to QOI 2 to QOI 3), the impact of 𝜏𝑅 increases. This agrees
with observations from Fig. 3(f) which only shows change in solution
agnitude around the endemic equilibrium as 𝜏𝑅 changes.
The infectious population at two years (QOI 3) gives an indication of

ow parameters affect the approach to the disease free equilibria (SEIR)
nd endemic equilibrium (SEIRS). All four parameters for the SEIRS
odel have strong impact on the value of the endemic equilibrium,
upported by observations from Figs. 3(e) and 3(f) and the closed form
solution of the endemic equilibrium found in Appendix A. Interestingly,
for the SEIR model, the three parameters appear to affect the magnitude
of the disease free equilibrium (approximated by QOI 3), an apparent
contradiction since 𝑖 should be, by definition, approach zero. This is due
9

to the fact that the solution never truly reaches zero in finite time. The
approach to zero (as measured at two years in QOI 3) is impacted by
the parameters. When we assume that very small infectious populations
(< 10−10) can be considered to be zero and examine a later time point,
there is no significant impact of any of the three parameters on the
disease free equilibrium of the SEIR model, as expected.

Next, we examine the endogenous SEIRb and SEIRSb model results
(Fig. 5, right column). For QOIs 1 and 2, these models display essen-
tially the same PRCC values for nearly all parameters (Note that 𝜏𝑅 only
appears in the SEIRSb model and is never significant). However, for the
infectious population at two years (QOI 3), we observe differing results
as each model begins to approach its respective equilibrium (disease
free equilibria for the SEIRb and endemic equilibrium for the SEIRSb).
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Additionally, the most influential parameters (𝜏𝐼 𝛽, 𝛾, and 𝑁) remain
the same for each QOI, although for QOI 3, the order of 𝜏𝐼 and 𝛽 is
reversed and 𝜏𝐹 has a similar impact in magnitude to 𝜏𝐼 , 𝛽, and 𝛾. The
parameters 𝑁 and 𝛼 show roughly the same negative influence for each
QOI, with 𝛼 showing about 50% of effect of 𝑁 .

Interestingly, 𝜏𝐸 is negative for QOI 1, positive for QOI 2, and
rather small (albeit still statistically significant) for QOI 3, supported
by dynamics in Fig. C.1. This is because increases in the latent period,
𝜏𝐸 , increase initial peak height and shorten the timing to the initial
peak (positive correlations for QOI 1), but the ordering reverses by 50
days (QOI 2) because earlier and larger peaks decline more quickly.
Additionally, increases in the lag between infection and response, 𝜏𝐹 ,
also flip the direction of influence from QOI 1 and 2 (positive) to QOI
3 (negative) and has the strongest, but negative, influence on QOI 3.
Larger 𝜏𝐹 , indicating longer delay between infection occurrence and
response, lengthens the periods between oscillations, which lengthens
the time until oscillations damp out (Fig. C.1).

When comparing the models without the endogenous behavior com-
ponent (SEIR and SEIRS) to the models with the endogenous behavior
component (SEIRb and SEIRSb), we observe key differences in all three
QOIs. For maximum infectious peak (QOI 1), all parameters have a
stronger affect on the exogenous models, but impact all four models the
same with respect to direction (positive and negative correlations). For
the infectious population size at 50 days (QOI 2), the exogenous models
begin to differ in sensitivity (SEIR vs. SEIRS), whereas the endogenous
models show the same sensitivity to all parameters (SEIRb vs. SEIRSb).
Furthermore, the base transmission rate 𝛽 exhibits negative PRCC for
the exogenous models but positive PRCC for the endogenous models,
as peak timing changes with 𝛽 in the exogenous models but not in
the endogenous ones. For infectious population size at two years (QOI
3), the infectious period, 𝜏𝐼 , remains more significant than 𝛽 in the
exogenous models, but the reverse holds for the endogenous models.
The effect of 𝜏𝐸 is small in QOI 3 for all models. Finally, 𝜏𝑅 has a much
stronger impact on all QOIs for the exogenous models, while it never
has a significant impact on endogenous models.

This global sensitivity analysis supports several results from the
time-varying sensitivity analysis. First, 𝜏𝑅 has virtually no influence on
endogenous SEIRSb model dynamics but strongly impacts the dynamics
at later time points for the SEIRS model. However, as 𝜏𝑅 impacts the
endemic equilibrium of both SEIRS and SEIRSb models, the additional
assumption of waning immunity, which better reflects reality, provides
richer equilibria dynamics for both models. Biologically, the impact
of waning immunity is minimal in the short time frame of two years
considered in this sensitivity analysis, especially when considering
behavior. Despite this, it has the potential to show more long-term
affects in the endogenous models that what is explored here. Second,
base transmission rate, 𝛽, and infection risk diminishing impact, 𝛾,
strongly influence disease dynamics, but sensitivity to risk of infection,
𝛼, only has a small impact. Note that in the time-varying sensitivity
analysis, 𝛼’s impact is inflated by multiplication by 𝑁 . The global
sensitivity analysis also indicates that duration of infectiousness, 𝜏𝐼 , has
a very strong effect on outbreak size. Thus, reducing infectiousness,
e.g. through masking and self-quarantine, is highly instrumental in
decreasing the number of infections that occur throughout the timeline
of the disease. Lastly, focusing on keeping awareness of infection risk
high (i.e. maintaining large 𝛾 values) will greatly aid in reduction of
infections.

4.4. Model validation with COVID-19 data

We demonstrate each model’s fidelity in replicating COVID-19 data
across each state of the United States, as well as the District of Columbia
(totaling 51 US regions). The inclusion of a large number of regions
ensures rigorous testing against various pandemic patterns, considering
regions with different populations, behavioral responses, and poten-
10

tially differing regional government policies. Our testing is limited to f
Table 5
Model performance (𝑅-squared) in replicating summary US data.

SEIRS SEIRS with SEIRSb SEIRb with SEIRSb with
seasonality seasonality seasonality

Regional average 0.19 0.19 0.65 0.78 0.79
Regional median 0.02 0.02 0.70 0.83 0.84
Combined USA 0.04 0.42 0.93 0.94 0.95

Fig. 6. Distribution of 𝑅-squared of 5 different models across 51 US regions. Red line is
the median, blue box is 25%–75% percentile, and whiskers represent the 95% interval.

the period up to May 1st, 2021. We chose this endpoint to exclude the
effects of vaccinations, which predominantly became available during
and after the summer of 2021, as well as the Delta and Omicron
variants, which exhibited different infectivity and fatality rates. Using a
data range spanning over one year allows us to go beyond a single wave
and test the model’s ability to recreate multiple waves of the pandemic
endogenously. We focus on replicating death data (seven-day rolling
average) as it is more accurately reported than the COVID-19 case data.

We tested both the rescaled SEIRb and SEIRSb models (Systems
(2) and (4), respectively) and compared their performance against
ase models of SEIR or SEIRS that exclude the behavioral feedback
oop. To account for changes in infectivity due to seasonality, we also
ncorporated a simple sinusoidal seasonality pattern into infectivity
ith a period of 365 days (See Appendix D for details). Given that
overnment policies are implemented in response to changes in risk
evels, the behavioral feedback loop represents the aggregate societal
esponse (government and people). Thus, we did not need to include
overnment inputs to the model but rather have the model replicate
he overall societal response endogenously. To estimate the unknown
arameters, we minimized the mean square errors between simulation
nd daily death data (per capita) for each state. In the model, we
alculate daily per capita death, 𝑑, as

= 𝐼𝐹𝑅
(

𝑖
𝜏𝐼

)

, (11)

where IFR is the infection fatality rate, which we assume is 0.5% [54].
The parameters that were fitted and the range of values assumed during
the model calibration process are reported in Appendix D and listed in
Table D.1.

The best-performing model is the SEIRSb model with a simple sea-
sonality effect. Overall, our analysis indicates that the model exhibits
excellent performance in replicating most of the states of the US with
average and median 𝑅-squared values across US regions of 0.79 and
0.84, respectively (Table 5 and Fig. 6). To demonstrate how each model

its to the data, Fig. D.2 shows fits for all models to the combined US
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data. The 𝑅-squared results for each of the 51 regions are reported
in Appendix D, Table D.2. Results from a sample of 8 regions and
the overall United States daily deaths are presented in Fig. 7. The
egions shown were selected to include a range of regions with varying
opulations, shapes of graphs, and model performance. Specifically, in
his sample of 8 states, the model performs very well in replicating the
tates of New York and South Dakota, even though they have different
atterns and populations. The model’s performance in high-population
tates such as California and Texas is reasonable even though we note
hat a relatively small wave is missed in both cases. The performance
f the model in the lower population states of Vermont and Wyoming
s also very good. A few states, such as Hawaii, had corrections to their
ata (note the large spike in early 2021) which resulted in a few outliers
n their reports, thus bringing down the 𝑅-squared. We intentionally did
ot change the reported raw data of states. Adding all 50 states and the
istrict of Columbia closely replicates US data (𝑅-squared of 0.95). The
raphs for all regions are available in Appendix D, Fig. D.3.
The results from the SEIRb model – that does not include waning

mmunity – are only slightly weaker that SEIRSb, holding an average
-squared of 0.78. Both SEIRSb and SEIRb models outperform the base
odel that excludes behavioral feedback considerably in 𝑅-squared
Fig. 6). The results from all tested models for each region in the United
tates, as well as additional details on the model fitting are reported in
ppendix D.
Overall, these tests underscore two key points: (1) the model’s

apability to replicate pandemic data across a large sample of regions
nd over multiple waves of a pandemic, and (2) the significance of the
11

b

ehavioral feedback loop in improving the fit between simulation and
ata.

. Conclusions

In this work, we consider two influences on COVID-19 spread which
an strengthen epidemic models: endogenous incorporation of human
ehavior and the addition of waning immunity. We analyze, simulate,
nd validate simple epidemic models, both exogenous and endogenous,
ith permanent immunity (SEIR and SEIRb) and with waning immunity
SEIRS and SEIRSb). The core mechanism in both endogenous models
s a negative feedback loop that represents change in societal risk
esponse over the course of a pandemic: as the disease prevalence
ncreases, perceived risk increases leading to compliance with public
ealth measures that lowers new cases and prevalence. This feedback
oop leads to the cycles of compliance and complacency, creating
scillatory patterns in prevalence.
The inclusion of human behavior through such a feedback loop

trongly affects model dynamics, as shown in our sensitivity anal-
sis. While exogenous model dynamics are sensitive to changes in
arameters base transmission rate, 𝛽, and waning immunity period,
𝑅, with the inclusion of behavior (through the addition of parameters:
ensitivity to risk of infection, 𝑎, risk diminishing impact, 𝛾, and time
ag between occurrence of and response to infection, 𝜏𝐹 ), endogenous
odels exhibit less sensitivity to changes in 𝛽 and virtually no sensi-
ivity to changes in 𝜏𝑅. Additionally, the endogenous incorporation of
ehavior allows these simple models (SEIRb and SEIRSb) to provide
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better fits and ability to forecast than models that do not explicitly
include human behavior or do so exogenously.

With the inclusion of behavior, distinctions are much more subtle
between the permanent immunity and waning immunity models in
numerical simulations, sensitivity analysis, and identifiability analysis.
Differences between these endogenous models appear when consider-
ing long-term dynamics, due to the existence of an endemic equilibrium
in the SEIRSb (SEIRS) model which is not present in the SEIRb (SEIR)
model. Other than providing the existence of an endemic equilibrium,
waning immunity does not strongly influence short-term model dynam-
ics. Indeed, sensitivity analyses show that 𝜏𝑅 has essentially no impact
n the SEIRSb model over the first two years. Model validation shows
hat the SEIRSb model gives only slightly more realistic predictions and
as a marginally better fit to the COVID-19 data than the SEIRb model.
owever, given that it provides the existence of an endemic equilib-
ium, with little to no trade off in model complexity, indicates that
he inclusion of waning immunity is valuable when formulating models
or long-term forecasting, but may not be necessary for short-term
arameter estimation.
Models with similar endogenous transmission mechanisms to the

EIRb and SEIRSb models exist [27,28,55], many of which are catego-
ized in the review [32]. While these models can be classified according
o the mechanism used to represent human behavior, the assumptions
urrounding other aspects of model structure can result in different
utcomes between models which have the same type of behavior
echanism. For example, Weitz et al. [28] use a similar fractional
ormulation of transmission to the SEIRb model; however, transmission
s formulated as a function of deaths rather than prevalence. They
lso include a time lag between infections and fatalities, similar to the
ime lag included in the SEIRb model (see Section 2). However, these
ormulations result in differing disease dynamics: in [28], outbreak
eaks are asymmetric, with a sharp increase to the peak followed by
slow decline while the SEIRb model retains more symmetry within
utbreak waves. Weitz et al. additionally include adherence fatigue
nd long-term behavior change to adjust the model to show consistent
esults with data with respect to pre-peak increases in mobility. These
dditions to model structure go beyond those behavior considerations
ncorporated in the SEIRb model. This leads to a key question addressed
hroughout this work: what level of complexity needs to be considered
n model structure to result in good model fit to data? Section 4.4
iscusses this through the addition of human behavior, seasonality, and
isease death when fitting to data.
Future studies can benefit from expanding risk response mecha-

isms in several ways. These include incorporating different demo-
raphics and age structures, considering other behavioral feedback
oops such as the willingness to vaccinate, health policy compliance,
nd adherence fatigue, as well as conducting statistical examinations
f factors that affect human behavior. Additionally, understanding how
hese factors impact the spread of the disease can provide valuable
nsights.
In conclusion, incorporation of human behavior into epidemic mod-

ls provides for more realistic feedback loops that react on the time
cale of infection dynamics. Thus, when using models to inform policy,
ndogenous incorporation of human behavior is highly recommended,
ut inclusion of waning immunity can depend upon the relevant time
eriod being considered.
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Appendix A. Equations and equilibria for exogenous models: SEIR
and SEIRS

The SEIR and SEIRS models without behavioral feedback are similar
to Eqs. (2) and (4), respectively, except that the transmission term is
constant rather than a function of 𝐹 , i.e., 𝛽(𝐹 ) = 𝛽. Thus, there is no
need for an equation for perceived infectious, 𝑓

With permanent immunity, the normalized SEIR model is given by

𝑑𝑠
𝑑𝑡

= −𝛽𝑠𝑖,

𝑑𝑒
𝑑𝑡

= 𝛽𝑠𝑖 − 𝑒
𝜏𝐸

,

𝑑𝑖
𝑑𝑡

= 𝑒
𝜏𝐸

− 𝑖
𝜏𝐼

,

𝑑𝑟
𝑑𝑡

= 𝑖
𝜏𝐼

.

(A.1)

With waning immunity, the normalized SEIRS model is given by
𝑑𝑠
𝑑𝑡

= −𝛽𝑠𝑖 + 𝑟
𝜏𝑅

,

𝑑𝑒
𝑑𝑡

= 𝛽𝑠𝑖 − 𝑒
𝜏𝐸

,

𝑑𝑖
𝑑𝑡

= 𝑒
𝜏𝐸

− 𝑖
𝜏𝐼

,

𝑑𝑟
𝑑𝑡

= 𝑖
𝜏𝐼

− 𝑟
𝜏𝑅

.

(A.2)

We summarize the equilibria and their existence and stability in
Table A.1, which have been previously described in other contexts [7].
The basic reproductive number, 0 = 𝛽𝜏𝐼 , is identical for the SEIR,
SEIRS, SEIRb and SEIRSb models.

Appendix B. Identifiability of exogenous models: SEIR and SEIRS

The SEIR and SEIRS models with all initial conditions for state
variables known and unknown parameters are globally identifiable
(Theorem B.1 and Theorem B.3, respectively). When the initial con-
ditions for the state variables and model parameters are unknown,
the SEIR and SEIRS models are locally identifiable (Theorem B.2 and
Theorem B.4, respectively).

Theorem B.1. Identifiability of SEIR model with known initial conditions.
The SEIR model given by System (A.1) is globally identifiable when all

initial conditions for the state variables are known and prevalence (size of
class 𝑖) is the output measure.
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Table A.1
Equilibria for SEIR model and SEIRS model assuming biologically relevant parameters, i.e., {𝛽, 𝑎, 𝛾, 𝜏𝐸 , 𝜏𝐼 , 𝜏𝐹 , 𝜏𝑅} > 0, and biologically realistic
initial conditions, i.e., {𝑠(0), 𝑒(0), 𝑖(0), 𝑟(0)} ∈ [0, 1].
Model Equilibrium type Values Existence, uniqueness, and stability

SEIR Disease free (DFE) (𝑠̄, 0, 0, 𝑟̄, 0), 𝑠̄ + 𝑟̄ = 1 There always exists a line of DFE.

SEIRS

Disease free (DFE) (1, 0, 0, 0, 0) Always exists and is a unique DFE
Locally asymptotically stable when 0 < 1
Unstable when 0 > 1

Endemic (EE)
(

1
0

,
𝜏𝐸
𝜏𝐼

𝑖̄, 𝑖̄,
𝜏𝑅
𝜏𝐼

𝑖̄
)

, 𝑖̄ =
(0 − 1)𝜏𝐼

0(𝜏𝐸 + 𝜏𝐼 + 𝜏𝑅)
Exists and is a unique stable EE when 0 > 1
Does not exist when 0 ≤ 1
Proof. Let 𝐩1 = {𝛽, 𝜏𝐼 , 𝜏𝐸} and 𝐩2 = {𝛽̂, 𝜏𝐼̂ , 𝜏𝐸̂}. Suppose that 𝑦(𝑡,𝐩𝟏) =
𝑦(𝑡,𝐩𝟐). Then we obtain the following functional relationships from
StructuralIdentifiability.jl:

𝛽 = 𝛽̂, 𝜏𝐸 = 𝜏̂𝐸 , 𝜏𝐼 = 𝜏̂𝐼 . (B.1)

Thus, 𝐩1 = 𝐩2 which entails that the SEIR model is globally structurally
identifiable with respect to prevalence data. □

Theorem B.2. Identifiability of SEIR model with unknown initial condi-
tions.

The SEIR model given by System (A.1) is locally identifiable when all
initial conditions for the state variables are unknown and prevalence (size
of class 𝑖) is the output measure.

Proof. Let 𝐩1 = {𝛽, 𝜏𝐼 , 𝜏𝐸} and 𝐩2 = {𝛽̂, 𝜏𝐼̂ , 𝜏𝐸̂}. Suppose that 𝑦(𝑡,𝐩𝟏) =
𝑦(𝑡,𝐩𝟐). Then we obtain the following functional relationships from
StructuralIdentifiability.jl:

𝛽 = 𝛽̂, 𝜏𝐸𝜏𝐼 = 𝜏̂𝐸 𝜏̂𝐼 , 𝜏𝐸 + 𝜏𝐼 = 𝜏̂𝐸 + 𝜏̂𝐼 . (B.2)

Solving the System (B.2) using Mathematica, we generate two set of
solutions:

{𝛽 = 𝛽̂, 𝜏𝐼 = 𝜏̂𝐸 , 𝜏𝐸 = 𝜏̂𝐼},

{𝛽 = 𝛽̂, 𝜏𝐼 = 𝜏̂𝐼 , 𝜏𝐸 = 𝜏̂𝐸}. (B.3)

This means that the SEIR model is locally identifiable with respect to
prevalence data. □

Theorem B.3. Identifiability of SEIRS model with known initial condi-
tions.

The SEIRS model given by System (A.1) is globally identifiable when all
initial conditions for the state variables are known and prevalence (size of
class 𝑖) is the output measure.

Proof. Let 𝐩1 = {𝛽, 𝜏𝐼 , 𝜏𝐸 , 𝜏𝑅} and 𝐩2 = {𝛽̂, 𝜏𝐼̂ , 𝜏𝐸̂ , 𝜏̂𝑅}. Suppose that
𝑦(𝑡,𝐩𝟏) = 𝑦(𝑡,𝐩𝟐). Then we obtain the following functional relationships
from StructuralIdentifiability.jl:

𝛽 = 𝛽̂, 𝜏𝐸 = 𝜏̂𝐸 , 𝜏𝐼 = 𝜏̂𝐼 , 𝜏𝑅 = 𝜏̂𝑅. (B.4)

Thus, 𝐩1 = 𝐩2 which entails that the SEIRS model is globally structurally
identifiable with respect to prevalence data. □

Theorem B.4. Identifiability of SEIRS model with unknown initial condi-
tions.

The SEIRS model given by System (A.2) is locally identifiable when all
initial conditions for the state variables are unknown and prevalence (size
of class 𝑖) is the output measure.

Proof. Let 𝐩1 = {𝛽, 𝜏𝐼 , 𝜏𝐸 , 𝜏𝑅} and 𝐩2 = {𝛽̂, 𝜏𝐼̂ , 𝜏𝐸̂ , 𝜏𝑅̂}. Suppose that
𝑦(𝑡,𝐩𝟏) = 𝑦(𝑡,𝐩𝟐). Then we obtain the following functional relationships
from StructuralIdentifiability.jl:

𝛽 = 𝛽̂, 𝜏𝐸𝜏𝐼 = 𝜏̂𝐸 𝜏̂𝐼 , 𝜏𝐸 + 𝜏𝐼 = 𝜏̂𝐸 + 𝜏̂𝐼 , 𝜏𝑅 = 𝜏̂𝑅. (B.5)

Solving the System (B.5) using Mathematica, we generate two set of
solutions:

{𝛽 = 𝛽̂, 𝜏 = 𝜏̂ , 𝜏 = 𝜏̂ , 𝜏 = 𝜏̂ },
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{𝛽 = 𝛽̂, 𝜏𝐼 = 𝜏̂𝐼 , 𝜏𝐸 = 𝜏̂𝐸 , 𝜏𝑅 = 𝜏̂𝑅}. (B.6)

This means that the SEIRS model is locally identifiable with respect to
prevalence data. □

Appendix C. Time-varying sensitivity equations and reference
plots

Here, we include the time-varying sensitivity equations used in the
simulation of Figs. 3 and 4.

C.1. Permanent immunity, exogenous: SEIR

Sensitivity equations with respect to 𝛽:

𝑑
𝑑𝑡

(

𝜕𝑠
𝜕𝛽

)

= 𝜕𝑠̇
𝜕𝛽

+ 𝜕𝑠̇
𝜕𝑠

𝜕𝑠
𝜕𝛽

+ 𝜕𝑠̇
𝜕𝑒

𝜕𝑒
𝜕𝛽

+ 𝜕𝑠̇
𝜕𝑖

𝜕𝑖
𝜕𝛽

+ 𝜕𝑠̇
𝜕𝑟

𝜕𝑟
𝜕𝛽

,

= −𝑠𝑖 − 𝛽𝑖 𝜕𝑠
𝜕𝛽

− 𝛽𝑠 𝜕𝑖
𝜕𝛽

,

𝑑
𝑑𝑡

(

𝜕𝑒
𝜕𝛽

)

= 𝑠𝑖 + 𝛽𝑖 𝜕𝑠
𝜕𝛽

− 1
𝜏𝐸

𝜕𝑒
𝜕𝛽

+ 𝛽𝑠 𝜕𝑖
𝜕𝛽

,

𝑑
𝑑𝑡

(

𝜕𝑖
𝜕𝛽

)

= 1
𝜏𝐸

𝜕𝑒
𝜕𝛽

− 1
𝜏𝐼

𝜕𝑖
𝜕𝛽

,

𝑑
𝑑𝑡

(

𝜕𝑟
𝜕𝛽

)

= 1
𝜏𝐼

𝜕𝑖
𝜕𝛽

.

C.2. Waning immunity, exogenous: SEIRS

Sensitivity equations with respect to 𝛽:

𝑑
𝑑𝑡

(

𝜕𝑠
𝜕𝛽

)

= −𝑠𝑖 − 𝛽𝑖 𝜕𝑠
𝜕𝛽

− 𝛽𝑠 𝜕𝑖
𝜕𝛽

+ 1
𝜏𝑟

𝜕𝑟
𝜕𝛽

,

𝑑
𝑑𝑡

(

𝜕𝑒
𝜕𝛽

)

= 𝑠𝑖 + 𝛽𝑖 𝜕𝑠
𝜕𝛽

− 1
𝜏𝐸

𝜕𝑒
𝜕𝛽

+ 𝛽𝑠 𝜕𝑖
𝜕𝛽

,

𝑑
𝑑𝑡

(

𝜕𝑖
𝜕𝛽

)

= 1
𝜏𝐸

𝜕𝑒
𝜕𝛽

− 1
𝜏𝐼

𝜕𝑖
𝜕𝛽

,

𝑑
𝑑𝑡

(

𝜕𝑟
𝜕𝛽

)

= 1
𝜏𝐼

𝜕𝑖
𝜕𝛽

− 1
𝜏𝑟

𝜕𝑟
𝜕𝛽

.

Sensitivity equations with respect to 𝜏𝑅:

𝑑
𝑑𝑡

(

𝜕𝑠
𝜕𝜏𝑅

)

= − 𝑟
𝜏2𝑅

− 𝛽𝑖 𝜕𝑠
𝜕𝜏𝑅

− 𝛽𝑠 𝜕𝑖
𝜕𝜏𝑅

+ 1
𝜏𝑅

𝜕𝑟
𝜕𝜏𝑅

,

𝑑
𝑑𝑡

(

𝜕𝑒
𝜕𝜏𝑅

)

= 𝛽𝑖 𝜕𝑠
𝜕𝜏𝑅

− 1
𝜏𝐸

𝜕𝑒
𝜕𝜏𝑅

+ 𝛽𝑠 𝜕𝑖
𝜕𝜏𝑅

,

𝑑
𝑑𝑡

(

𝜕𝑖
𝜕𝜏𝑅

)

= 1
𝜏𝐸

𝜕𝑒
𝜕𝜏𝑅

− 1
𝜏𝐼

𝜕𝑖
𝜕𝜏𝑅

,

𝑑
(

𝜕𝑟
)

= 𝑟
2
+ 1 𝜕𝑖 − 1 𝜕𝑟 .
𝑑𝑡 𝜕𝜏𝑅 𝜏𝑅 𝜏𝐼 𝜕𝜏𝑅 𝜏𝑅 𝜕𝜏𝑅



Mathematical Biosciences 375 (2024) 109250L. LeJeune et al.

C

C
𝜏
p
f
o
d
i
t
t
7
n
s
s
i

C.3. Permanent immunity, endogenous: SEIRb

Sensitivity equations with respect to 𝛽:

𝑑
𝑑𝑡

(

𝜕𝑠
𝜕𝛽

)

= − 1
(1 + 𝑎𝑓 )𝛾

𝑠𝑖 −
𝛽

(1 + 𝑎𝑓 )𝛾
𝑖 𝜕𝑠
𝜕𝛽

−
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠 𝜕𝑖
𝜕𝛽

+
𝑎𝛽𝛾

(1 + 𝑎𝑓 )𝛾+1
𝑠𝑖
𝜕𝑓
𝜕𝛽

,

𝑑
𝑑𝑡

(

𝜕𝑒
𝜕𝛽

)

= 1
(1 + 𝑎𝑓 )𝛾

𝑠𝑖 +
𝛽

(1 + 𝑎𝑓 )𝛾
𝑖 𝜕𝑠
𝜕𝛽

− 1
𝜏𝐸

𝜕𝑒
𝜕𝛽

+
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠 𝜕𝑖
𝜕𝛽

−
𝑎𝛽𝛾

(1 + 𝑎𝑓 )𝛾+1
𝑠𝑖
𝜕𝑓
𝜕𝛽

,

𝑑
𝑑𝑡

(

𝜕𝑖
𝜕𝛽

)

= 1
𝜏𝐸

𝜕𝑒
𝜕𝛽

− 1
𝜏𝐼

𝜕𝑖
𝜕𝛽

,

𝑑
𝑑𝑡

(

𝜕𝑟
𝜕𝛽

)

= 1
𝜏𝐼

𝜕𝑖
𝜕𝛽

,

𝑑
𝑑𝑡

(

𝜕𝑓
𝜕𝛽

)

= 1
𝜏𝐹

(

𝜕𝑖
𝜕𝛽

−
𝜕𝑓
𝜕𝛽

)

.

Sensitivity equations with respect to 𝑎:

𝑑
𝑑𝑡

( 𝜕𝑠
𝜕𝑎

)

=
𝛽𝛾𝑓

(1 + 𝑎𝑓 )𝛾+1
𝑠𝑖 −

𝛽
(1 + 𝑎𝑓 )𝛾

𝑖 𝜕𝑠
𝜕𝑎

−
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠 𝜕𝑖
𝜕𝑎

+
𝑎𝛽𝛾

(1 + 𝑎𝑓 )𝛾+1
𝑠𝑖
𝜕𝑓
𝜕𝑎

,

𝑑
𝑑𝑡

( 𝜕𝑒
𝜕𝑎

)

= −
𝛽𝛾𝑓

(1 + 𝑎𝑓 )𝛾+1
𝑠𝑖 +

𝛽
(1 + 𝑎𝑓 )𝛾

𝑖 𝜕𝑠
𝜕𝑎

− 1
𝜏𝐸

𝜕𝑒
𝜕𝑎

+
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠 𝜕𝑖
𝜕𝑎

−
𝑎𝛽𝛾

(1 + 𝑎𝑓 )𝛾+1
𝑠𝑖
𝜕𝑓
𝜕𝑎

,

𝑑
𝑑𝑡

( 𝜕𝑖
𝜕𝑎

)

= 1
𝜏𝐸

𝜕𝑒
𝜕𝑎

− 𝐼
𝜏𝐼

𝜕𝑖
𝜕𝑎

,

𝑑
𝑑𝑡

( 𝜕𝑟
𝜕𝑎

)

= 1
𝜏𝐼

𝜕𝑖
𝜕𝑎

,

𝑑
𝑑𝑡

(

𝜕𝑓
𝜕𝑎

)

= 1
𝜏𝐹

(

𝜕𝑖
𝜕𝑎

−
𝜕𝑓
𝜕𝑎

)

.

Sensitivity equations with respect to 𝛾:

𝑑
𝑑𝑡

(

𝜕𝑠
𝜕𝛾

)

=
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠𝑖 ln(1 + 𝑎𝑓 ) −

𝛽
(1 + 𝑎𝑓 )𝛾

𝑖 𝜕𝑠
𝜕𝛾

−
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠 𝜕𝑖
𝜕𝛾

+
𝑎𝛽𝛾

(1 + 𝑎𝑓 )𝛾+1
𝑠𝑖
𝜕𝑓
𝜕𝛾

,

𝑑
𝑑𝑡

(

𝜕𝑒
𝜕𝛾

)

= −
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠𝑖 ln(1 + 𝑎𝑓 ) +

𝛽
(1 + 𝑎𝑓 )𝛾

𝑖 𝜕𝑠
𝜕𝛾

− 1
𝜏𝐸

𝜕𝑒
𝜕𝛾

+
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠 𝜕𝑖
𝜕𝛾

−
𝑎𝛽𝛾

(1 + 𝑎𝑓 )𝛾+1
𝑠𝑖
𝜕𝑓
𝜕𝛾

,

𝑑
𝑑𝑡

(

𝜕𝑖
𝜕𝛾

)

= 1
𝜏𝐸

𝜕𝑒
𝜕𝛾

− 1
𝜏𝐼

𝜕𝑖
𝜕𝛾

,

𝑑
𝑑𝑡

(

𝜕𝑟
𝜕𝛾

)

= 1
𝜏𝐼

𝜕𝑖
𝜕𝛾

,

𝑑
𝑑𝑡

(

𝜕𝑓
𝜕𝛾

)

= 1
𝜏𝐹

(

𝜕𝑖
𝜕𝛾

−
𝜕𝑓
𝜕𝛾

)

.

.4. Waning immunity, endogenous: SEIRSb

Sensitivity equations with respect to 𝛽:

𝑑
𝑑𝑡

(

𝜕𝑠
𝜕𝛽

)

= − 1
(1 + 𝑎𝑓 )𝛾

𝑠𝑖 −
𝛽

(1 + 𝑎𝑓 )𝛾
𝑖 𝜕𝑠
𝜕𝛽

−
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠 𝜕𝑖
𝜕𝛽

+ 1
𝜏𝑟

𝜕𝑟
𝜕𝛽

+
𝑎𝛽𝛾

(1 + 𝑎𝑓 )𝛾+1
𝑠𝑖
𝜕𝑓
𝜕𝛽

,

𝑑
𝑑𝑡

(

𝜕𝑒
𝜕𝛽

)

= 1
(1 + 𝑎𝑓 )𝛾

𝑠𝑖 +
𝛽

(1 + 𝑎𝑓 )𝛾
𝑖 𝜕𝑠
𝜕𝛽

− 1
𝜏𝐸

𝜕𝑒
𝜕𝛽

+
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠 𝜕𝑖
𝜕𝛽

−
𝑎𝛽𝛾

(1 + 𝑎𝑓 )𝛾+1
𝑠𝑖
𝜕𝑓
𝜕𝛽

,

𝑑
𝑑𝑡

(

𝜕𝑖
𝜕𝛽

)

= 1
𝜏𝐸

𝜕𝑒
𝜕𝛽

− 𝑖
𝜏𝐼

𝜕𝐼
𝜕𝛽

,

𝑑
𝑑𝑡

(

𝜕𝑟
𝜕𝛽

)

= 1
𝜏𝐼

𝜕𝑖
𝜕𝛽

− 1
𝜏𝑅

𝜕𝑟
𝜕𝛽

,

𝑑
(

𝜕𝑓
)

= 1
(

𝜕𝑖 −
𝜕𝑓

)

.
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Sensitivity equations with respect to 𝑎:
𝑑
𝑑𝑡

( 𝜕𝑠
𝜕𝑎

)

=
𝛽𝛾𝑓

(1 + 𝑎𝑓 )𝛾+1
𝑠𝑖 −

𝛽
(1 + 𝑎𝑓 )𝛾

𝑖 𝜕𝑠
𝜕𝑎

−
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠 𝜕𝑖
𝜕𝑎

+ 1
𝜏𝑅

𝜕𝑟
𝜕𝑎

+
𝑎𝛽𝛾

(1 + 𝑎𝑓 )𝛾+1
𝑠𝑖
𝜕𝑓
𝜕𝑎

,

𝑑
𝑑𝑡

( 𝜕𝑒
𝜕𝑎

)

= −
𝛽𝛾𝑓

(1 + 𝑎𝑓 )𝛾+1
𝑠𝑖 +

𝛽
(1 + 𝑎𝑓 )𝛾

𝑖 𝜕𝑠
𝜕𝑎

− 1
𝜏𝐸

𝜕𝑒
𝜕𝑎

+
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠 𝜕𝑖
𝜕𝑎

−
𝑎𝛽𝛾

(1 + 𝑎𝑓 )𝛾+1
𝑠𝑖
𝜕𝑓
𝜕𝑎

,

𝑑
𝑑𝑡

( 𝜕𝑖
𝜕𝑎

)

= 1
𝜏𝐸

𝜕𝑒
𝜕𝑎

− 1
𝜏𝐼

𝜕𝑖
𝜕𝑎

,

𝑑
𝑑𝑡

( 𝜕𝑟
𝜕𝑎

)

= 1
𝜏𝐼

𝜕𝑖
𝜕𝑎

− 1
𝜏𝑅

𝜕𝑟
𝜕𝑎

,

𝑑
𝑑𝑡

(

𝜕𝑓
𝜕𝛼

)

= 1
𝜏𝐹

(

𝜕𝑖
𝜕𝑎

−
𝜕𝑓
𝜕𝑎

)

.

Sensitivity equations with respect to 𝛾:

𝑑
𝑑𝑡

(

𝜕𝑠
𝜕𝛾

)

=
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠𝑖 ln(1 + 𝑎𝑓 ) −

𝛽
(1 + 𝑎𝑓 )𝛾

𝑖 𝜕𝑠
𝜕𝛾

−
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠 𝜕𝑖
𝜕𝛾

+ 1
𝜏𝑅

𝜕𝑟
𝜕𝛾

+
𝑎𝛽𝛾

(1 + 𝑎𝑓 )𝛾+1
𝑠𝑖
𝜕𝑓
𝜕𝛾

,

𝑑
𝑑𝑡

(

𝜕𝑒
𝜕𝛾

)

= −
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠𝑖 ln(1 + 𝑎𝑓 ) +

𝛽
(1 + 𝑎𝑓 )𝛾

𝑖 𝜕𝑠
𝜕𝛾

− 1
𝜏𝐸

𝜕𝑒
𝜕𝛾

+
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠 𝜕𝑖
𝜕𝛾

−
𝑎𝛽𝛾

(1 + 𝑎𝑓 )𝛾+1
𝑠𝑖
𝜕𝑓
𝜕𝛾

,

𝑑
𝑑𝑡

(

𝜕𝑖
𝜕𝛾

)

= 1
𝜏𝐸

𝜕𝑒
𝜕𝛾

− 1
𝜏𝐼

𝜕𝑖
𝜕𝛾

,

𝑑
𝑑𝑡

(

𝜕𝑟
𝜕𝛾

)

= 1
𝜏𝐼

𝜕𝑖
𝜕𝛾

− 1
𝜏𝑅

𝜕𝑟
𝜕𝛾

,

𝑑
𝑑𝑡

(

𝜕𝑓
𝜕𝛾

)

= 1
𝜏𝐹

(

𝜕𝑖
𝜕𝛾

−
𝜕𝑓
𝜕𝛾

)

.

Sensitivity equations with respect to 𝜏𝑅:

𝑑
𝑑𝑡

(

𝜕𝑠
𝜕𝜏𝑅

)

= − 𝑟
𝜏2𝑅

−
𝛽

(1 + 𝑎𝑓 )𝛾
𝑖 𝜕𝑠
𝜕𝜏𝑅

−
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠 𝜕𝑖
𝜕𝜏𝑅

+ 1
𝜏𝑅

𝜕𝑟
𝜕𝜏𝑅

+
𝑎𝛽𝛾

(1 + 𝑎𝑓 )𝛾+1
𝑠𝑖

𝜕𝑓
𝜕𝜏𝑅

,

𝑑
𝑑𝑡

(

𝜕𝑒
𝜕𝜏𝑅

)

=
𝛽

(1 + 𝑎𝑓 )𝛾
𝑖 𝜕𝑠
𝜕𝜏𝑅

− 1
𝜏𝐸

𝜕𝑒
𝜕𝜏𝑅

+
𝛽

(1 + 𝑎𝑓 )𝛾
𝑠 𝜕𝑖
𝜕𝜏𝑅

−
𝑎𝛽𝛾

(1 + 𝑎𝑓 )𝛾+1
𝑠𝑖

𝜕𝑓
𝜕𝜏𝑅

,

𝑑
𝑑𝑡

(

𝜕𝑖
𝜕𝜏𝑅

)

= 1
𝜏𝐸

𝜕𝑒
𝜕𝜏𝑅

− 1
𝜏𝐼

𝜕𝑖
𝜕𝜏𝑅

,

𝑑
𝑑𝑡

(

𝜕𝑟
𝜕𝜏𝑅

)

= 𝑟
𝜏2𝑅

+ 1
𝜏𝐼

𝜕𝑖
𝜕𝜏𝑅

− 1
𝜏𝑅

𝜕𝑟
𝜕𝜏𝑅

,

𝑑
𝑑𝑡

(

𝜕𝑓
𝜕𝜏𝑅

)

= 1
𝜏𝐹

(

𝜕𝑖
𝜕𝜏𝑅

−
𝜕𝑓
𝜕𝜏𝑅

)

.

To clarify the time-varying sensitivity and semi-relative sensitivity
results found in Fig. 4, we show dynamics of the infectious population
for various choices of 𝛽, 𝑎, 𝛾, and 𝜏𝑅, as well as for parameters not
considered in the time-varying sensitivity analysis (𝜏𝐸 , 𝜏𝐼 , and 𝜏𝐹 )
in Fig. C.1. We do not show SEIRb model solutions as Figs. C.1(a)–
.1(f) are visually identical between the SEIRb and SEIRSb models and
𝑅 is not included in the SEIRb model. As 𝛽 increases, the infectious
opulation exhibits higher values, while as 𝑎 and 𝛾 increase, the in-
ectious population obtains lower values. This is due to the placement
f 𝛽 in the numerator of the transmission term and 𝑎 and 𝛾 in the
enominator. With respect to changes in 𝛽, the difference in solutions
ncreases for the first 30 days as the solutions approach the peak of
he first oscillation. Following the peak, the difference in solutions
hen decreases as solutions approach the first trough (at about day
5), increasing again after the trough for about 50 days until the
ext peak. This pattern continues, with the difference between solution
izes approaching a constant value as oscillations dampen. There is
imilar behavior in the difference in solutions with respect to changes
n 𝑎 (Fig. C.1(b)) and 𝛾 (C.1(c)). Notably, as these two parameters
ncrease, the magnitude of solutions decreases, in contrast to 𝛽, and
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Fig. C.1. SEIRSb model solutions for differing values of (a) 𝛽, (b) 𝑎, (c) 𝛾, (d) 𝜏𝐸 , (e) 𝜏𝐼 , (f) 𝜏𝐹 , and (g) 𝜏𝑅. Standard parameter values are shown with a dashed line. Note
that all lines can be found in (g) but as 𝜏𝑅 does not appreciably affect the model solution in the first 350 days, the lines lie on top of each other. We do not show SEIRb model
olutions as (a)–(f) are visually identical between the SEIRb and SEIRSb models and 𝜏𝑅 is not included in the SEIRb model.
A

i
m

orrespondingly, the sensitivities for 𝛽 are positive but are negative for
and 𝛾 (Fig. 4). Furthermore, the difference between solutions signifi-
antly decreases as these two parameters increase. Solutions show little
hange with respect to changes in 𝜏𝑅, indicating that solutions for the
EIRSb infectious population size 𝑖 are not sensitive to changes in the
eriod of immunity, at least across the first 350 days.
To aid in interpretation of the global sensitivity results (Fig. 5), we

lso show dynamics of the infectious population for various choices of
𝐸 , 𝜏𝐼 , and 𝜏𝐹 (Figs. C.1(d)–C.1(f)). Increases in 𝜏𝐸 result in a decrease
in solution magnitude and a delay in peak occurrence of the first and
subsequent peaks. In contrast, increases in 𝜏𝐼 result in increases in
solution magnitude and a slight delay in peak timing as well as clear
increases in the endemic equilibrium. Increases in 𝜏𝐹 result in stronger
oscillatory behavior: solutions have higher, wider peaks and lower,
wider troughs. Furthermore, oscillatory behavior lasts longer before
dampening to the equilibrium.

Lastly, we clarify our choice of parameter values for Figs. 3 and
.1. The choice of parameters is based on the values listed in Table 4.
erturbations of a fixed size were chosen for each parameter (for
xample, all values of 𝛽 differ by 0.3) to display an assortment of values
hat falls within the range given in Table 4. The exception here is
arameter 𝛾, where the value of 𝛾 = 9 is included to show the negligible
ifference between 𝛾 = 5 and 𝛾 = 9. This supports the choice of 𝛾 = 5
15

s the upper bound for the range of 𝛾 values.
ppendix D. Methods for model validation

For data replication, we use data from [56]. The model formulation
s similar to that described in the main text using the modified scaled
odels, based on Systems (2) and (4). For model validation of models

with human behavior, we use the following for the SEIRb and SEIRb
with seasonality

𝑑𝑠𝑗
𝑑𝑡

= −
𝛽𝑗

(1 + 𝑎𝑗𝑓𝑗 )
𝛾𝑗
𝜃𝑗𝑠𝑗 𝑖𝑗 ,

𝑑𝑒𝑗
𝑑𝑡

=
𝛽𝑗

(1 + 𝑎𝑗𝑓𝑗 )
𝛾𝑗
𝜃𝑗𝑠𝑗 𝑖𝑗 −

𝑒𝑗
𝜏𝐸

,

𝑑𝑖𝑗
𝑑𝑡

=
𝑒𝑗
𝜏𝐸

−
𝑖𝑗
𝜏𝐼

,

𝑑𝑟𝑗
𝑑𝑡

= (1 − 𝐼𝐹𝑅)
𝑖𝑗
𝜏𝐼

,

𝑑𝑓𝑗
𝑑𝑡

=
𝑖𝑗 − 𝑓𝑗
𝜏𝐹

,

(D.1)

and the following for the SEIRSb and SEIRSb with seasonality

𝑑𝑠𝑗
𝑑𝑡

= −
𝛽𝑗

(1 + 𝑎𝑗𝑓𝑗 )
𝛾𝑗
𝜃𝑗𝑠𝑗 𝑖𝑗 +

𝑟𝑗
𝜏𝑅

,

𝑑𝑒𝑗 =
𝛽𝑗

𝛾 𝜃𝑗𝑠𝑗 𝑖𝑗 −
𝑒𝑗 ,
𝑑𝑡 (1 + 𝑎𝑗𝑓𝑗 ) 𝑗 𝜏𝐸
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Table D.1
Parameters estimated for each model when fitting to US region data. Note that 𝑐0, the fitted time of the appearance of case zero in the region,
and 𝑤, the size of the seasonal effect, are not found in our original model. Parameters not found below in the table are fixed to their standard
values: 𝜏𝐸 = 5 and 𝜏𝐼 = 10. Initial conditions are 𝑠(𝑐0) = 1, 𝑒(𝑐0) = 10−6, 𝑖(𝑐0) = 𝑟(𝑐0) = 𝑓 (𝑐0) = 0. For each region, model output 𝑑𝑗 , described
in Eq. (D.6), was fitted to each region’s daily per capita death per million. For illustrative purposes in Figs. 7 and D.3, simulation output and
data were scaled to the population size for each region.

Models
Parameter Range Local vs. SEIRS SEIRS with SEIRSb SEIRb with SEIRSb with

global seasonality seasonality seasonality

𝛽 [0.15, 0.7] Local Yes Yes Yes Yes Yes
𝛾 [0, 4] Local Yes Yes Yes
𝛼 [0, 0.01] Local Yes Yes Yes
𝜏𝐹 [7, 200] Local Yes Yes Yes
𝜏𝑅 [60, 365] Global Yes Yes Yes Yes
𝑐0 [0, 120] Local Yes Yes Yes Yes Yes
𝑤 [0, 1] Local Yes Yes Yes
Table D.2
Model performance (𝑅-squared) in replicating different US region data.
US region SEIRS SEIRS with SEIRSb SEIRb with SEIRSb with

seasonality seasonality seasonality

Alabama 0.61 0.61 0.68 0.79 0.80
Alaska 0.01 0.01 0.49 0.48 0.49
Arizona 0.57 0.57 0.35 0.59 0.77
Arkansas 0.63 0.63 0.67 0.74 0.74
California 0 0.01 0.83 0.90 0.90
Colorado 0.02 0.02 0.43 0.83 0.83
Connecticut 0.03 0.03 0.96 0.97 0.97
Delaware 0.02 0.02 0.72 0.84 0.85
District of Columbia 0.02 0.03 0.94 0.95 0.95
Florida 0 0 0.70 0.82 0.84
Georgia 0 0 0.34 0.49 0.51
Hawaii 0 0.01 0.29 0.41 0.41
Idaho 0.02 0.03 0.82 0.85 0.85
Illinois 0.03 0.04 0.48 0.96 0.96
Indiana 0.71 0.71 0.83 0.94 0.94
Iowa 0.02 0.03 0.64 0.68 0.68
Kansas 0.74 0.74 0.79 0.81 0.82
Kentucky 0.03 0.03 0.53 0.54 0.54
Louisiana 0.08 0.10 0.64 0.71 0.68
Maine 0 0 0.69 0.75 0.75
Maryland 0.02 0 0.62 0.65 0.67
Massachusetts 0.03 0.03 0.91 0.92 0.91
Michigan 0.01 0.01 0.65 0.78 0.79
Minnesota 0.01 0.02 0.27 0.92 0.92
Mississippi 0.43 0.43 0.35 0.73 0.75
Missouri 0.01 0.02 0.76 0.80 0.80
Montana 0 0 0.75 0.78 0.77
Nebraska 0.04 0.04 0.80 0.85 0.85
Nevada 0.02 0.03 0.78 0.78 0.82
New Hampshire 0 0.01 0.43 0.90 0.90
New Jersey 0.02 0.01 0.96 0.97 0.96
New Mexico 0.77 0.77 0.87 0.88 0.89
New York 0.01 0.01 0.96 0.97 0.96
North Carolina 0 0.01 0.71 0.84 0.84
North Dakota 0.86 0.86 0.90 0.91 0.91
Ohio 0.76 0.76 0.91 0.97 0.97
Oklahoma 0.05 0.10 0.18 0.19 0.19
Oregon 0 0 0.74 0.74 0.74
Pennsylvania 0.54 0.54 0.40 0.93 0.93
Rhode Island 0.28 0.28 0.71 0.95 0.96
South Carolina 0.01 0.02 0.46 0.68 0.67
South Dakota 0.86 0.86 0.93 0.94 0.94
Tennessee 0.71 0.71 0.78 0.85 0.84
Texas 0.01 0.02 0.54 0.81 0.85
Utah 0 0.01 0.84 0.89 0.87
Vermont 0 0 0.33 0.86 0.86
Virginia 0 0 0.13 0.28 0.28
Washington 0 0.01 0.33 0.63 0.66
West Virginia 0 0.01 0.69 0.69 0.69
Wisconsin 0.01 0.02 0.87 0.88 0.88
Wyoming 0.70 0.70 0.85 0.86 0.86
16
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Fig. D.1. Distribution of mean absolute error of 5 different models across 51 US
regions. Red line is the median, blue box is 25%–75% percentile, and whiskers represent
the 95% interval.

Fig. D.2. Comparisons of fits of each model (SEIRSb + seasonality, SEIRb + seasonality,
SEIRSb, SEIRS + seasonality, SEIRS, SEIR) for all US data. All US graphs are generated
after fitting each state simulation to its corresponding data. Note we also include the
exogenous SEIR and SEIRS models with fixed base transmission rate, 𝛽, for comparison.

𝑑𝑖𝑗
𝑑𝑡

=
𝑒𝑗
𝜏𝐸

−
𝑖𝑗
𝜏𝐼

, (D.2)
𝑑𝑟𝑗
𝑑𝑡

= (1 − 𝐼𝐹𝑅)
𝑖𝑗
𝜏𝐼

−
𝑟𝑗
𝜏𝑅

,

𝑑𝑓𝑗
𝑑𝑡

=
𝑖𝑗 − 𝑓𝑗
𝜏𝐹

,

where 𝑗 is the index for the US region, IFR is the infection fatality rate,
𝜃𝑗 incorporates seasonality (described below) and other parameters are
found in Table D.1.

The variable 𝜃 is added to include seasonality. We intentionally use
simple sinusoidal equation given by

𝑗 = 1 +𝑤𝑗 sin
(

2𝜋(𝑡 + 91)
)

, (D.3)
17

365 a
where 𝑡 is time (in days) since January 1st, 2020, and 0 ≤ 𝑤𝑗 ≤ 1 is the
size of seasonal effect, which is estimated through model calibration for
each US region. The shift in the sinusoidal function by 91/365 (about
one quarter of a year) is used to adjust the phase such that its maximum
value occurs on January 1st. Based on Eq. (D.3), then 1−𝑤 ≤ 𝜃 ≤ 1+𝑤,
and for 𝑤 = 0, then 𝜃(𝑡) = 1, representing no seasonality effect.

For the models without human behavior (SEIRS and SEIRS with
easonality), we use the following

𝑑𝑠𝑗
𝑑𝑡

= −𝛽𝑗𝜃𝑗𝑠𝑗 𝑖𝑗 +
𝑟𝑗
𝜏𝑅

,

𝑑𝑒𝑗
𝑑𝑡

= 𝛽𝑗𝜃𝑗𝑠𝑗 𝑖𝑗 −
𝑒𝑗
𝜏𝐸

,

𝑑𝑖𝑗
𝑑𝑡

=
𝑒𝑗
𝜏𝐸

−
𝑖𝑗
𝜏𝐼

,

𝑑𝑟𝑗
𝑑𝑡

= (1 − 𝐼𝐹𝑅)
𝑖𝑗
𝜏𝐼

−
𝑟𝑗
𝜏𝑅

,

(D.4)

where 𝑗 is the index for the US region, IFR is the infection fatality
rate, and other parameters are found in Table D.1. In the case without
seasonality (SEIRS), 𝜃𝑗 = 1, while with seasonality, 𝜃𝑗 is the same as in
q. (D.3). Note that as there is no feedback into the base transmission
ate, such that 𝛽𝑗 is a constant for each region. There is no need for
he state variable 𝑓 in these models as 𝑓 does not feedback on other
ariables.
For the models without human behavior (SEIR and SEIR with sea-

onality), we use the following

𝑑𝑠𝑗
𝑑𝑡

= −𝛽𝑗𝜃𝑗𝑠𝑗 𝑖𝑗 ,
𝑑𝑒𝑗
𝑑𝑡

= 𝛽𝑗𝜃𝑗𝑠𝑗 𝑖𝑗 −
𝑒𝑗
𝜏𝐸

,

𝑑𝑖𝑗
𝑑𝑡

=
𝑒𝑗
𝜏𝐸

−
𝑖𝑗
𝜏𝐼

,

𝑑𝑟𝑗
𝑑𝑡

= (1 − 𝐼𝐹𝑅)
𝑖𝑗
𝜏𝐼

,

(D.5)

where 𝑗 is the index for the US region. In the case without seasonality
(SEIR), 𝜃𝑗 = 1, while with seasonality, 𝜃𝑗 is the same as in Eq. (D.3).
Similar to the SEIR model, as there is no feedback into the base
transmission rate, such that 𝛽𝑗 is a constant for each region, there is
no need for the state variable 𝑓 in these models.

For model calibration we estimate parameters to maximize the fit
between the simulation and data for each US region by minimizing the
mean square error using daily death data (per capita) per million. As
mentioned in Section 4.4, in the model, we calculate daily per capita
eath, 𝑑𝑗 , as

𝑗 = 𝐼𝐹𝑅
( 𝑖𝑗
𝜏𝐼

)

, (D.6)

where 𝑗 is the index for the US region (50 states and District of
Columbia) and IFR is the infection fatality rate, which we assume is
0.5% [54]. The parameters fitted for each model are found in Table D.1.

Performance of the five models in replicating overall US data are
reported in Table 5, Figs. 6 and D.1. The final model performance in
eplicating each of the 51 US regions is reported in Table D.2 and
ig. D.3.

ppendix E. Supplementary data

Supplementary material related to this article can be found online

t https://doi.org/10.1016/j.mbs.2024.109250.

https://doi.org/10.1016/j.mbs.2024.109250
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Fig. D.3. Simulation results against data for daily death per capita per million in 51 US regions as well as the entire country. Blue lines are data, and red lines are model outcome.
Note: The 𝑦-axis differs for each region. Some states have daily death below zero because of corrections to the data.
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