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Abstract

Aim: Intraspecific genetic variation is key for adaptation and survival in changing environ-
ments and is known to be influenced by many factors, including population size, dispersal 
and life- history traits. We investigated genetic variation within Neotropical amphibian 
species to provide insights into how natural history traits, phylogenetic relatedness, cli-
matic and geographic characteristics can explain intraspecific genetic diversity.
Location: Neotropics.
Taxon: Amphibians.
Methods: We assembled data sets using open- access databases for natural history 
traits, genetic sequences, phylogenetic trees, climatic and geographic data. For each 
species, we calculated overall nucleotide diversity (π) and tested for isolation by dis-
tance (IBD) and isolation by environment (IBE). We then identified predictors of π, IBD 
and IBE using random forest (RF) regression or RF classification. We also fitted phylo-
genetic generalized linear mixed models (PGLMMs) to predict π, IBD and IBE.
Results: We compiled 4052 mitochondrial DNA sequences from 256 amphibian species 
(230 frogs and 26 salamanders), georeferencing 2477 sequences from 176 species that 
were not linked to occurrence data. RF regressions and PGLMMs were congruent in iden-
tifying range size and precipitation (σ) as the most important predictors of π, influencing 
it positively. RF classification and PGLMMs identified minimum elevation as an impor-
tant predictor of IBD; most species without IBD tended to occur at higher elevations. 
Maximum latitude and precipitation (σ) were the best predictors of IBE, and most species 
without IBE occur at lower latitudes and in areas with more variable precipitation.
Main Conclusions: This study identified predictors of genetic variation in Neotropical 
amphibians using both machine learning and phylogenetic methods. This approach 
was valuable to determine which predictors were congruent between methods. We 
found that species with small ranges or living in zones with less variable precipitation 
tended to have low genetic diversity. We also showed that Western Mesoamerica, 
Andes and Atlantic Forest biogeographic units harbour high diversity across many 
species that should be prioritized for protection. These results could play a key role in 
the development of conservation strategies for Neotropical amphibians.
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1  |  INTRODUC TION

Characterizing genetic variation within species and understanding 
the processes that maintain that diversity are important goals in 
evolutionary biology (Ellegren & Galtier, 2016). Genetic variation 
is essential for natural populations to develop new traits and adapt 
to future environmental changes (Stange et al., 2021), making it a 
fundamental aspect of biodiversity conservation efforts (DeWoody 
et al., 2021). Intraspecific genetic variation includes both the vari-
ation within populations and the distribution of spatial genetic 
variation between populations. These two components provide in-
sights into demographic history and evolutionary processes such as 
changes in effective population size (Ne) or the pattern of genetic 
exchange between populations (Paz- Vinas et al., 2018). Therefore, 
investigating the forces that drive genetic diversity within species 
and how this diversity is distributed and influenced spatially can help 
explain the processes underlying the patterns of genetic variation 
that we observe in nature.

Levels of genetic variation vary greatly in natural populations 
and among species (see Romiguier et al., 2014); however, deter-
minants of intraspecific genetic variation remain poorly under-
stood. For decades, many studies have considered Ne to be the 
most important evolutionary parameter that has a significant 
impact on genetic variation within and between populations (e.g. 
Frankham, 1996). For example, small, isolated populations tend 
to have low genetic variation due to increased genetic drift and 
reduced gene flow. Under neutral theory, genetic variation is ex-
pected to increase with population size (Kimura, 1983), due mainly 
to reduced genetic drift in large populations (Buffalo, 2021). 

Several empirical studies have shown results consistent with the 
neutral theory, in which species with higher population abun-
dances have higher genetic diversity (e.g. Grundler et al., 2019; 

Hague & Routman, 2016). However, genetic diversity does not 
necessarily correlate with population size in all cases (e.g. Bazin 
et al., 2006), and genetic variation levels across species have been 
observed to be much narrower than their variation in population 
size (the so- called Lewontin's paradox; Lewontin, 1974). In nature, 
genetic variation within species can be influenced by several ad-
ditional factors, including environmental and intrinsic characteris-
tics (e.g. Nevo, 1978).

Distinct geographic, climatic and life- history factors can de-
termine intraspecific genetic variation and influence the diversi-
fication and extinction of populations and species. For example, 
species with larger ranges are expected to have higher genetic 
diversity, low inbreeding and reduced genetic drift because of the 
direct relationship between geographic range size and population 
size (see Leffler et al., 2012). García- Rodríguez et al. (2021) found 
that abiotic factors and geographical features affected the genetic 
diversity of nine co- distributed amphibian species in Isthmian 
Central America. In addition, habitat fragmentation can lead to 
reduced gene flow and increased genetic differentiation among 
populations, ultimately reducing genetic diversity within popula-
tions because of genetic drift (see Dixo et al., 2009). Life- history 

traits influence genetic variation, providing a connection between 
different demographic processes (Duminil et al., 2007). For ex-
ample, species with shorter life spans and higher fecundity may 
have higher genetic diversity because there are more chances 
for mutation and recombination, and to cover the full gradient of 
environmental pressures experienced by the species (Romiguier 
et al., 2014). Evaluating body size as a predictor of genetic varia-
tion, Brüniche- Olsen et al. (2019) found that genetic diversity de-
creases with increasing size in Darwin's finches, with the possible 
explanation that species abundance is expected to decrease with 
increasing size (White et al., 2007). Larger bodied species may also 
have higher dispersal ability resulting in differences in spatial ge-
netic variation, as has been demonstrated in bees (López- Uribe 
et al., 2019) and frogs (Paz et al., 2015).

An improved understanding of these factors can provide insights 
into how genetic variation is shaped in natural populations. One ap-
proach is to collect new genetic data for a set of taxa of interest and 
analyse linear models of genetic variation with possible predictors 
(e.g. Dixo et al., 2009). An alternative approach, which can enable 
comparisons of many more species, is to use repurposed data that 
were previously collected for a different research purpose and that 
can be reanalysed in a common framework. These two approaches 
converge in macrogenetics (sensu Blanchet et al., 2017), a field that 
focuses on the integration of genetic data sets from multiple species 
at large scales with environmental data sets to identify drivers of 
intraspecific genetic variation (Leigh et al., 2021). Recently, Pelletier 
and Carstens (2018) applied a machine learning framework to repur-
pose georeferenced DNA sequences from more than 8000 species 
and found that geographic range size and latitude were the most 
important predictors of genetic structure. Another approach to ad-
dress how landscapes contribute to the evolution of genetic varia-
tion quantifies the effects of geography and ecology using multiple 
matrix regression with randomization (MMRR; Wang, 2013). For 
example, Wieringa et al. (2020) used this approach and found that 
geographic and environmental distance were significant factors in 
several species in the southeastern United States.

Amphibians have been a preferred study system for several eco-
logical and evolutionary studies because they exhibit a wide variety 
of natural history traits (e.g. complex life cycles) and distributional 
patterns (e.g. species with limited dispersal capabilities that lead 
to high levels of genetic differentiation). Many studies have ex-
plored the patterns of diversity in amphibians (e.g. Ochoa- Ochoa 
et al., 2020). Global genetic diversity patterns also appear to follow 
a latitudinal gradient in amphibians (Miraldo et al., 2016), but less is 
known about the predictors of intraspecific genetic variation. In a 
study of Nearctic amphibian species, the most important predictors 
of genetic diversity were taxonomic family, number of sequences, 
and for salamander species (N = 98), those at more northern latitudes 
had lower genetic diversity (Barrow et al., 2021). In the same region, 
Schmidt et al. (2022) analysed microsatellite data from 19 amphibian 
species; they found that genetic diversity was not predicted by the 
environmental variables they used and that areas with high species 
richness also had high genetic structure, but low genetic diversity.
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    |  3AMADOR et al.

The Neotropical Region includes almost 50% of the world's total 
amphibian species, which is greater than any other comparable area 
on the planet (Menéndez- Guerrero et al., 2020). This exceptionally 
high diversity is possibly due to a combination of factors, including 
the geological history of the region (e.g. the formation of the Isthmus 
of Panama, Andean uplift), climate change, ecological interactions 
and biotic diversification (see Antonelli, 2022; Elmer et al., 2013). For 
decades, the origins and maintenance of diversity in this region have 
been an important focus of research in amphibian ecology and sys-
tematics (e.g. Castroviejo- Fisher et al., 2014). Recently, Tobar- Suárez 
et al. (2022) found that amphibian species richness in Neotropical 
cloud forests increased towards the equator, with frog and caecilian 
species richness increasing towards lower latitudes, while salaman-
ders showed the opposite pattern. Despite this active research focus 
on species- level diversity, very little is known about the determi-
nants of intraspecific genetic variation in Neotropical amphibians.

Here, we investigated what factors predict genetic variation 
within Neotropical frog and salamander species. We gathered ge-
netic sequences, natural history traits, phylogenetic relationships 
and climatic and geographic information for each species from 
open- access databases and literature. We estimated nucleotide di-
versity (π) and tested for isolation- by- distance (IBD) and isolation- 
by- environment (IBE) from repurposed DNA sequences. To identify 
potential hotspots of intraspecific diversity, we built maps of nucleo-
tide diversity across the Neotropics. We then applied machine learn-
ing and phylogenetic linear models to investigate the predictors of π, 
IBD and IBE within Neotropical amphibians.

2  |  MATERIAL S AND METHODS

2.1  |  DNA sequences and associated geographic 
coordinates

We obtained sequences of the mitochondrial gene cytochrome- b 
(Cytb) from open access databases. We chose Cytb since this was 
the most abundant gene in Neotropical amphibian studies and it 
has informative variation within species (van den Burg et al., 2020; 

Zeisset & Beebee, 2008). We downloaded sequences from three 
sources: phylogatR (Pelletier et al., 2022), ACDC (van den Burg 
et al., 2020) and GenBank (National Center for Biotechnology 
Information). Although these sources include Cytb sequences for 
hundreds of species, we chose those species with at least five se-
quences for further analyses to more adequately represent genetic 
variation within species (Barrow et al., 2021). Alignments were saved 
in FASTA format and were edited and aligned using AliView v.1.28 
(Larsson, 2014) with the MUSCLE aligner v.3.8.31 (Edgar, 2004) using 
default settings. Geographic coordinates from each sequence were 
obtained from phylogatR and GenBank when available, which cor-
responded to 1575 sequences (38.87% of the total sequences) from 
80 species (31.25% of the total species). We linked 2477 additional 
sequences from 176 species to geographic coordinates using either 
(1) the GeoNames (geonames.org) and GEOLocate (geo- locate.org) 

databases by entering the associated location name of the sequence 
to obtain an approximate occurrence for that sequence or (2) infor-
mation from manuscripts (e.g. the original species description, dis-
tributional records or systematic and phylogeographic works; see 
Appendix S1).

2.2  |  Metrics of genetic variation

To evaluate genetic diversity within species, we calculated nu-
cleotide diversity (π) from each mtDNA alignment of species 
and localities using the function nuc.div() in the pegas R package 
(Paradis, 2010). To evaluate spatial genetic variation within amphib-
ian species, we calculated IBD and IBE for each species. The ‘raw’ 
genetic distance (gendist; the proportion of sites that differ between 
each pair of sequences) was calculated using the function dist.dna() 
in the ape R package (Paradis & Schliep, 2019). Topographic distance 
(geodist) was calculated between coordinates associated with each 
sequence using the function topoDist() implemented in the topoDis-

tance R package (Wang, 2020). Environmental distance (envdist) was 
calculated based on 19 bioclimatic variables from the WorldClim da-
tabase (Hijmans et al., 2005) and tree cover data derived from the 
ESA WorldCover database (Zanaga et al., 2021). These layers were 
retrieved at 30- s spatial resolution using the function landcover() 
of the geodata R package (Hijmans et al., 2023). We extracted val-
ues of each variable in each locality for all species in the analyses 
using the extract() function in the raster R package (Hijmans, 2022). 

Then using the scale() function in R, we standardized the data to 
have comparable values to analyse. Finally, we performed a principal 
components analysis with the prcomp() function in R, and calculated 
envdist between localities using the first principal component. We 
conducted Multiple Matrix Regression with Randomization analy-
ses with the MMRR function in R (Wang, 2013) using the three 
distances, gendist, geodist and envdist, to determine whether each 
species showed significant IBD and IBE. Regression coefficients of 
geography (IBD, βD) and ecology (IBE, βE) and their significance were 
calculated after 10,000 permutations. MMRR analyses require data 
sets with n > 4 and assume that >3 samples show differences in their 
distances. Based on this premise, we used 194 species for this analy-
sis. After classifying each species as having significant IBD or not 
and significant IBE or not, we used these binary classifications as 
response variables in subsequent analyses.

2.3  |  Trait and geographic data compilation

We obtained information on traits from the AmphiBIO data set 
(Oliveira et al., 2017), AmphibiaWeb (2022) and specific data 
from manuscripts (Appendix S1; Table 1). Body size (snout–vent 
length), the type of habitat predominantly used by adults, activ-
ity (diurnal or nocturnal) and development mode (larval or di-
rect development) were included since these traits are involved 
in the dispersal capacity of amphibian species and can impact 
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4  |    AMADOR et al.

intraspecific genetic differentiation (Hillman et al., 2014). We col-
lected elevational and latitudinal data (mean, maximum and mini-
mum) from Rolland et al. (2018), who generated this information 
from the Global Biodiversity Information Facility, the International 
Union for Conservation of Nature (IUCN) and WorldClim 
(Fick & Hijmans, 2017). From the latter, we also obtained 

temperature (BIO1 = Annual Mean Temperature) and precipitation 
(BIO12 = Annual Precipitation). We also obtained latitudinal and 
elevational data from specific manuscripts. Elevational data were 
also recovered from species accounts in the Amphibian Species 
of the World 6.1 Online Reference (ASW database; Frost, 2021). 

The geographical range as a shapefile (.shp) for each species was 

TA B L E  1  Variables used in this study to predict nucleotide diversity, isolation- by- distance and isolation- by- environment in Neotropical 
amphibians. Variables with an asterisk (*) indicate non- biologically motivated variables and were not used in all analyses. The rationale for 
considering each variable is provided as an example prediction and is not meant to be an exhaustive explanation.

Variable Value Rationale

Habitat Aquatic, arboreal, burrowing, 
semi- aquatic, semi- arboreal, 
terrestrial

Some habitats may have more natural barriers (e.g. fully aquatic species would 
have lower dispersal), leading to genetic differentiation of populations

Activity Diurnal, nocturnal Diurnal or nocturnal activity could restrict or promote gene flow, leading to 
genetic variation between populations

Body size Millimetre (mm) Larger bodied species are expected to have higher dispersal ability, facilitating 
gene flow between populations. Larger bodied species also may have 
limits on population abundance

Development mode Direct, larval Species with larval development may have lower dispersal ability since they 
are tied to water bodies

Sampling effort* Number of sequences >5 Sampling effort can be considered as a proxy of abundance (population 
size). Species with more sequences sampled are expected to have higher 
genetic variation

Sequence length* Number of base pairs Species with longer cytochrome- b fragments may have more variable sites 
sampled

Elevation (mean, minimum, 
maximum)

Metres above sea level (m a.s.l.) Species at higher elevations may experience physical barriers or occur in more 
isolated populations, increasing genetic differentiation

Latitude (mean, minimum, 
maximum)

Decimal degrees Latitudinal gradients in climatic variables can influence patterns of 
distribution and abundance within species

Precipitation (mean, σ) Precipitation millimetre (mm) Amphibian diversity is directly affected by precipitation, e.g. species living in 
areas with high precipitation may have higher abundances

Temperature (mean, σ) Average temperature (°C) Temperature may not have strong influence on Neotropical species due to the 
relatively stable and mild temperatures of the region

Range size Area in square kilometres (km2) Species with larger ranges are expected to have higher genetic variation due 
to larger population sizes and more chances of dispersal

Order Anura, Caudata Order- level classification may be associated with characteristics (e.g. 
reproductive mode, body size) that influence genetic diversity

Family Anura (17 families), Caudata 
(Plethodontidae)

Family- level classification may be associated with characteristics (e.g. 
reproductive mode, distribution) that influence genetic diversity

Biogeographic unit 17 units shown in Figure 1a Biogeographic units are associated with different climates, geologic features 
or total area that can affect population sizes and gene flow between 
populations leading to genetic differentiation

Conservation status NE = not evaluated Threatened species with small population sizes are expected to have low 
genetic diversity; least concern species are expected to have large range 
sizes and associated high genetic diversity

DD = data deficient

LC = least concern

NT = near threatened

VU = vulnerable

EN = endangered

CR = critically endangered

EX = extinct

Land cover (mean) 0/1, 1 indicates forest presence Species living in forested areas (greater number of trees) are expected to 
have higher abundances and more genetic variation than species living in 
deforested areas
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    |  5AMADOR et al.

downloaded from the IUCN portal. We obtained the shapefile for 
24 species (e.g. Allobates hodli, Bolitoglossa awajun) not included 
in IUCN by calculating minimum convex polygons based on the 
sequence coordinates and using the function mcp() with the ade-

habitatHR R package (Calenge & Fortmann- Roe, 2023). When 

necessary, we corrected the polygon for species recently split and 
not included in IUCN, for example, Rhinella marina–Rhinella horribi-

lis (Acevedo et al., 2016). The range area was calculated in square 
kilometres (km2) using the functions shapefile() of the raster pack-
age and areaPolygon() of the geosphere package (Hijmans, 2021) in 

F I G U R E  1  (a) Neotropical biogeographic units used in this study. Limits of the biogeographic regionalization of the neotropical region 
follows Morrone (2014), biogeographic unit classification was adapted from Josse et al. (2003), Morrone (2014) and Antonelli et al. (2018). (b) 
Number of observations/sequences per grid cell. (c) Amphibian genetic diversity patterns in the Neotropics. The (b) and (c) maps use equal- 
area grid cells of 350 km.
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6  |    AMADOR et al.

R 4.2.2 (R Core Team, 2022). The IUCN Red List Category was also 
recorded for each species (IUCN, 2022). We tested for multicollin-
earity of the continuous variables using variance inflation factors 
(VIF) implemented in the R package car (Fox & Weisberg, 2019) 

using a threshold of VIF < 5 to detect evidence of collinearity be-
tween variables.

2.4  |  Geographic framework

To evaluate and visualize how amphibian genetic diversity is dis-
tributed in the Neotropical Region, we divided our study area 
into 17 biogeographic units adapting the classifications proposed 
by Morrone (2014), Antonelli et al. (2018) and Josse et al. (2003) 

(Figure 1a). We calculated and mapped intraspecific nucleotide di-
versity first with a single value of π per species (mean value of π) and 

second with a value of π per locality within each species. Each local-
ity consisted of at least two individuals, and we assigned sequences 
to the same locality when they shared the same coordinates. In cases 
when the sequences were from different geographic coordinates, 
we combined sequences based on the distance between points 
(150 km or less) and shared habitat characteristics (e.g. occurring in 
the same mountain range or river). Although this approach involved 
arbitrarily choosing a somewhat coarse resolution, it allowed us to 
maximize the species and geographic area included to provide an 
initial picture of spatial genetic diversity given the data available. We 
visualized π for three different resolutions (grid cell size of 150, 250 
and 350 km2; Figure 1c; Figure S1b,d) which corresponds to 3640, 
1326 and 673 grid cells, respectively. We also visualized the number 
of sequences per grid cell for the three resolutions to present the 
sampling effort and distribution of sequences available. All mapping 
analyses were performed in R. To test for spatial autocorrelation in 
sampling effort (number of observations) and π, we computed the 
Moran's I statistic by using the moran.test() function of the spdep 

package (Bivand, 2022).

2.5  |  Identifying predictors of genetic variation 
with random forests

We used the random forests (RF) machine learning algorithm 
(Breiman, 2001) to build predictive models and identify variables 
(e.g. body size, habitat, elevation, range size; see Table 1) that are im-
portant predictors of π, IBD and IBE in Neotropical amphibians. RF 
uses independent variables to create many individual decision trees 
(a forest) that act as an ensemble to predict a response. Each deci-
sion tree in the RF uses a subset of the independent variables and 
returns a response, and variable importance is determined based 
on the increase in model error when that variable is not included 
(Kabacoff, 2015). RF regression (for π) and classification (for IBD and 
IBE) models were created using the randomForest() function in the 
randomForest R package (Liaw & Wiener, 2002), with 5000 trees 
and 100 permutations. We split the data into training (90%) and test 

(10%) data sets and created RF models with the training data. We 
used the tuneRF() function to find the optimal mtry value (number of 
variables to randomly sample as candidates at each split), and a new 
model was built using the best mtry value. We made predictions on 
the training and test (unseen data values in the models) data sets 
that were evaluated with the mean squared error and R2 metrics in 
the RF regression analysis and with the confusion matrix in RF clas-
sification analyses. Relative importance for each independent vari-
able was measured and printed using the importance() function in 
the randomForest package, and visualized with the vip() function of 
the vip R package (Greenwell & Boehmke, 2020) for each model. To 
evaluate the effect the number of sequences per species and the 
number of base pairs (bp) in each alignment might have on the find-
ings, we also created RF models with two different reduced data 
sets: (1) a data set with at least 10 sequences per species (114 spe-
cies) and (2) a data set with at least 400 bp in each species alignment 
(197 species).

2.6  |  Testing predictors of genetic variation with 
phylogenetic comparative methods

RF can handle large numbers of variables to build predictive mod-
els, but do not explicitly incorporate phylogenetic relationships 
(other than taxonomic level as a possible predictor). Therefore, we 
also fitted PGLMMs to determine relationships between natural 
history traits, geographic and climatic variables and genetic vari-
ation of Neotropical amphibians. We pruned the maximum clade 
credibility tree from Jetz and Pyron (2018) to create a phylogeny 
that includes only the species in our data set using the phylo4() 
function in the phylobase R package (Hackathon et al., 2020). This 
resource is the most complete phylogeny available (7238 species), 
covering ≈83% of the known amphibian diversity. Of the 256 spe-
cies in our data set, 15 species were not included in the phylog-
eny of Jetz and Pyron (Appendix S2); therefore for phylogenetic 
analyses, we used a subset consisting of 241 species. We mapped 
π as a continuous trait using the contMap() function in the phy-

tools R package (Revell, 2012; Figure S14), and the distribution 
of IBD and IBE was mapped at the tips on the tree. We tested 
for phylogenetic signal in π using two metrics, Pagel's λ (lambda; 
Pagel, 1999) and Blomberg's K (Blomberg et al., 2003), calculated 
with the phylosig() function implemented in phytools. We tested 
for phylogenetic signal in IBD and IBE using the phylo.d() function 
that calculates the D statistic, a measure of phylogenetic signal in 
a binary trait (Fritz & Purvis, 2010), implemented in the R package 
caper (Orme et al., 2018).

Finally, we used PGLMMs (Ives & Helmus, 2011) implemented 
in the MCMCglmm R package (Hadfield, 2010) to investigate rela-
tionships between a subset of the predictors and three responses: 
(1) π, (2) IBD and (3) IBE, while accounting for phylogeny. For these 
models, we included species ‘random effects’, which account for the 
variability caused by species- specific effects, and phylogenetic ran-
dom effects, which consider the phylogenetic relationship between 
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species, by transforming the phylogeny into a variance–covariance 
matrix of relatedness between species (Garamszegi, 2014). We de-
fined priors for models with no random effects, with either species 
or phylogenetic random effects, and with both species and phylo-
genetic random effects. For each response variable (π, IBD and IBE), 
we compared 10 models that were generated with different combi-
nations of predictors based on the results of RF analyses (Table S2). 

These models included: (1) an intercept- only null model, (2) a model 
with both species and phylogenetic random effects and no pre-
dictors, (3) a model with six predictors and no random effect, (4) a 
model with six predictors and species as a random effect, (5) a model 
with six predictors and a phylogenetic random effect, (6) a model 
with six predictors and species and phylogenetic random effects, 
(7) a model with 12 predictors and no random effects, (8) a model 
with 12 predictors and a species random effect, (9) a model with 12 
predictors and a phylogenetic random effect and (10) a model with 
12 predictors and with both species and phylogenetic random ef-
fects. We ran each model four times with 2 × 106 MCMC iterations, 
thinning interval = 100 and burn- in = 200,000. For Bayesian model 
selection, we used the deviance information criterion. MCMCglmm 

results were verified by checking model diagnostics using trace and 
density plots of the MCMC samples.

3  |  RESULTS

3.1  |  Data compilation

We compiled 4052 Cytb mtDNA sequences from 256 Neotropical 
amphibians (Figure S2), of which only 80 species had associated oc-
currences (we retrieved occurrences for 50 species from phylogatR 
and 30 species from GenBank). Occurrences for the sequences of 
the other 176 species were recovered by us in the present work by 
retrieving coordinates from published literature or by georeferencing 
localities. To visualize sampling effort across the region, we mapped 
the number of sequences per grid cell (Figure 1b; Figure S1a,c). There 
was weak positive spatial autocorrelation of number of sequences 
(Moran's I = 0.0569, p- value = 0.019), suggesting that the number 
of sequences sampled is somewhat clustered together. The total 
occurrences represented all 17 Neotropical biogeographic units 
(Figure S3). The final data set included 230 frogs in 17 families and 
26 salamanders in family Plethodontidae, three response variables 
(π, IBD and IBE) and 22 predictor variables (Table 1; Table S1). We did 
not detect correlation among predictor variables in the model (VIF 
values <5) except for the three elevation variables (mean, minimum 
and maximum) (Figure S4).

3.2  |  Distribution of genetic variation 
in the Neotropics

The calculated π ranged from 0 (10 species) to 0.156 (Boquete 
rocket frog, Silverstoneia nubicola, family Dendrobatidae) with 

a mean of π = 0.025 (Table S1). When we visualized nucleo-
tide diversity per locality, we found higher π values in western 
Mesoamerica, central Andes, Atlantic Forest and a few areas of 
the Amazon region, compared to their adjacent biogeographic 
units. The southern Andes and the southern portion of South 
America showed low genetic diversity (Figure 1c). Mean values 
of π per species were higher in southern Mesoamerica, the Chocó 
region, northern Andes and Atlantic Forest region (Figure S5). 

Spatial autocorrelation analysis suggests that π values are not 
randomly distributed in geographic space (Moran's I = 0.0662, p- 
value = 0.009). With respect to spatial genetic variation, we found 
that 89 Neotropical amphibian species showed significant IBD, 
while 105 species did not (Table S1). Species following an IBD 
pattern were mostly found in Mesoamerica (n = 18), the Antillean 
Subregion (n = 13), the Atlantic Forest (n = 13) and the Andes re-
gion (n = 13). The Amazon included the most species that did not 
present IBD (n = 28), followed by the Atlantic Forest and Andes 
region (Figure S6). We found that most species did not show IBE 
(n = 124) and only 70 species showed significant IBE. Species with 
IBE were found mostly in the Antillean region (n = 14), Andes 
(n = 13) and Amazonia (n = 12). The Amazon region also included 
the most species with no IBE patterns (n = 27), followed by the 
Atlantic Forest and Mesoamerica (Figure S7).

3.3  |  Important predictors of genetic variation 
based on RFs

RF regressions showed that range size was the most important 
predictor of π for Neotropical amphibians (Figure 2a). Precipitation 
standard deviation (σ) was another important predictor of π, fol-
lowed by body size and mean temperature (Figure 2a). The overall 
variance explained by the RF regression model shown was 20.31%. 
RF classification found that body size was the most important 
predictor of IBD, followed by mean precipitation, IUCN rank and 
minimum elevation (Figure 2b). The most important predictor for 
IBE was maximum latitude, followed by precipitation (σ) and lati-
tude (mean and minimum) (Figure 2c). The model error for the RF 
classification model for IBD was 37.21% and for IBE was 40.21%. 
When we evaluated the effect of the sampling effort (number of 
sequences) per species (at least 10 sequences), and the sequence 
length (number of bp) in each alignment (at least 400 bp) on our 
results, we found that range size was the best predictor of π for 
all models analysed (Figure S8) as in the model using the complete 
data set. For IBD, body size remained one of the most important 
predictors for the ‘at least 10 sequences’ data set, but not the ‘at 
least 400 bp’ data set. Instead, mean temperature was the most 
important predictor of IBD in all the models using reduced data 
sets (Figure S9). Mean temperature was also the best predictor 
of IBE in the ‘at least 400 bp’ data set, while microhabitat was the 
best predictor for the ‘at least 10 sequences’ data set (Figure S10). 

For IBE, latitude was still among the most important predictors for 
both reduced data sets.

 1
3
6
5
2
6
9
9
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/jb

i.1
4
7
9
5
 b

y
 U

n
iv

ersity
 O

f N
ew

 M
ex

ico
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

8
/0

3
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



8  |    AMADOR et al.

3.4  |  Relationships between predictors and genetic 
variation based on PGLMMs

The best- fit model for π was the one with a reduced number of 
predictors and with both species and phylogenetic random effects 
(Table 2). This model indicated that range size and precipitation (σ) 

predicted π, consistent with our RF results. Both range size and pre-
cipitation (σ) had positive relationships with π (Figure 2d). Neotropical 
amphibian species with larger ranges and living in areas with more 
variable precipitation tended to have higher π (Figure 3a–c). For IBD, 
the best- fit MCMCglmm model was the full model with 12 predictors 
and species and phylogenetic random effects (Table 2). MCMCglmm 

F I G U R E  2  Top ranked predictors according to their variable importance for random forest models in explaining (a) π, (b) isolation- by- 
distance (IBD) and (c) isolation- by- environment (IBE). Effect sizes of π (d), IBD (e) and IBE (f) across predictors in MCMCglmm analyses. The 
associated 95% credible intervals do not cross zero for range size and precipitation in π, for minimum elevation in IBD and precipitation and 
maximum latitude in IBE; indicating that these predictors are statistically significant.

(a) (b) (c)

(d) (e) (f)

TA B L E  2  Model comparison with deviance information criterion (DIC) scores from each MCMCglmm model for nucleotide diversity (π), 
isolation- by- distance (IBD) and isolation- by- environment (IBE). Comparisons were made with a major and reduced number of predictors and 
without predictors; with no random effects; and with species and phylogenetic (phylo) random effects. For each model, four different runs were 
performed; we present the average DIC score with the standard deviation (SD). Bold DIC scores indicate the best model for each response.

Model detail Response variables

Predictors Random effects

π—DIC (SD) IBD—DIC (SD) IBE—DIC (SD)None Reduced Major Species Phylo

X −1002.391 (0.013) 250.5857 (0.012) 244.9121 (0.009)

X X X −1101.188 (0.399) 35.5618 (16.544) 83.9517 (31.095)

X −1041.873 (0.028) 247.7395 (0.054) 245.0202 (0.033)

X X −1043.356 (0.124) 5.3151 (0.497) 8.0073 (0.599)

X X −1051.133 (0.035) 248.1518 (0.020) 245.8697 (0.008)

X X X −1125.022 (0.302) 5.4907 (0.756) 8.6062 (3.430)

X −1027.762 (0.039) 253.1265 (0.073) 257.0998 (4.340)

X X −1031.574 (0.219) 4.8898 (0.578) 4.6792 (0.359)

X X −1032.643 (0.036) 252.0281 (0.032) 259.9906 (0.037)

X X X −1116.827 (0.698) 4.6857 (0.269) 5.1812 (0.501)
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also identified minimum elevation as a significant predictor of IBD, 
and their relationship was negative (Figure 2e). Neotropical amphib-
ians living at higher elevations tended to have no IBD, and those with 
significant IBD tended to live at lower elevations (Figure 3d). Similar 
to RF analyses, precipitation (σ) and maximum latitude predicted IBE 
in PGLMM analyses (Figure 2f; Table 2). Species living at southern 
latitudes in the Neotropics tended to have no IBE, contrary to am-
phibians in northern latitudes that tended to exhibit IBE (Figure 3e). 

Species following an IBE pattern mostly occur in areas with lower 
precipitation (σ) (Figure 3f).

3.5  |  Testing phylogenetic signal

We found significant phylogenetic signal in π (Pagel's λ = 0.7684, p- value 
(based on LR test) < 0.0001; Blomberg's K = 0.1509, p- value (based on 
1000 randomizations) = 0.002) (Figure 4; Figure S11a,b). We found clus-
ters of closely related genera that had dissimilar π values; for example, 
within Bufonidae, Atelopus species had low π (average = 0.006, range: 
0.001–0.010) while toads of genus Rhinella presented a higher aver-
age π (average = 0.020, range: 0.006–0.054). The same pattern was also 

observed in poison frogs of the family Dendrobatidae, where Ameerega 

species showed high π (average π = 0.024; range: 0.003–0.059) in con-
trast to species in the genus Andinobates which had very low π (average 
π = 0.003; range: 0.000–0.009). We did not find significant phyloge-
netic signal in IBD or IBE, with values of D that were greater than 1 
and were overdispersed compared to a Brownian threshold model 
(Estimated DIBD = 1.008, p- value = 0.53; Estimated DIBE = 1.047, p- 
value = 0.685) (Figure S11c,d).

4  |  DISCUSSION

In this study, we investigated the predictors of genetic variation 
(π, IBD and IBE) in Neotropical amphibians using repurposed data 
including mtDNA sequences, natural history traits and geographic 
information gathered from open- access databases. Our analyses 
revealed that geographic range size, precipitation, elevation and lat-
itude were significant predictors of different aspects of genetic vari-
ation within species. Specifically, we found that amphibian species 
inhabiting smaller ranges and places with lower variation in precipi-
tation had lower intraspecific π; species living at higher elevations 

F I G U R E  3  (a) Range size (log2) and mtDNA π for all amphibian species in our data set; (b) precipitation (σ) and π relationship; (c) range 
size (log2) and π relationship without outliers, the colours indicate precipitation (σ) of occurrences in each species. (d) Minimum elevation 
for species with and without of isolation- by- distance. (e, f) Maximum latitude and precipitation (σ) for species with and without isolation- by- 
environment. Each box–whisker plot indicates the median (bold lines), the interquartile range (boxes) and dots represent outliers.

(a) (b) (c)

(d) (e) (f)
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10  |    AMADOR et al.

F I G U R E  4  Phylogeny of neotropical amphibians (downloaded and subset from Jetz & Pyron, 2018) with values of cytochrome- b π 

presented as light blue bars, and presence (black dots) or absence (grey dots) of isolation- by- distance (IBD) and isolation- by- environment 
(IBE) in neotropical amphibians. Silhouettes of frogs and salamanders were obtained from phylopic.org.
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(e.g. mountain ranges) tended not to exhibit IBD, and species living 
in southern latitudes tended not to exhibit IBE.

Geographic range size was the top predictor of π, but did not 
predict IBD and IBE, that is, Neotropical amphibian species with and 
without IBD or IBE can inhabit small or large geographic ranges. We 
suspect that environmental heterogeneity within the geographic 
range rather than range size may have a greater influence on IBD 
and IBE patterns of species in the Neotropics, as has been observed 
in other vertebrate studies (e.g. Quiroga- Carmona & D'Elía, 2022). 

Geographic range size has also emerged as an important predic-
tor of genetic variation in other taxonomic groups such as squa-
mates (Larkin et al., 2023) and Darwin's finches (Brüniche- Olsen 
et al., 2019). Interestingly, the relationship between genetic diversity 
and geographic range is not always straightforward, as evidenced by 
the case of butterflies (Mackintosh et al., 2019) and other non- model 
animal species (Romiguier et al., 2014). These discrepancies highlight 
the need for continued study of a variety of taxonomic groups and 
regions to better understand the ecological and geographic context 
of genetic variation. Geographically restricted species are expected 
to have less genetic variation, which may also indicate an increased 
risk of extinction (Levy et al., 2016). In amphibians, Caviedes- Solis 
et al. (2020) found that Neotropical treefrogs living in high eleva-
tions were more likely to be classified with threatened status. Our 
analysis of Neotropical amphibians from several taxonomic families 
confirmed expected differences between geographic range sizes 
based on IUCN conservation status, with Least Concern amphibian 
species occurring in larger ranges and Data Deficient, Endangered 
and Critically Endangered species occurring in smaller ranges. Based 
on our estimates, however, IUCN conservation status did not have 
as clear of an association with π, suggesting that IUCN status may 
not currently capture this important parameter for population per-
sistence (Appendix S4). Regardless, populations of threatened spe-
cies with low π such as harlequin frogs of the genus Atelopus should 
be closely monitored.

Precipitation and temperature, along with associated gradients of 
elevation, have significant impacts on genetic variation across animal 
species (De Kort et al., 2021). Our study identified minimum elevation 
as a significant predictor of IBD (and it was also one important predic-
tor of π), and precipitation as one of the best predictors of π, IBD and 
IBE. We observed that species inhabiting higher elevations did not 
usually exhibit IBD, while those living in lower elevations tended to 
have both significant IBD patterns and larger geographic range sizes. 
The absence of IBD patterns, and in turn low π, in species living at 
higher elevations could be attributed to their smaller ranges, leading 
to smaller population sizes. Our findings partially agree with those 
reported by Pelletier and Carstens (2018), who found that geographic 
range size, elevation and latitude predicted IBD in several taxonomic 
groups. In our case, latitude (maximum) was the most important 
predictor of IBE. Species with a significant IBE pattern occurred at 
higher latitudes than species without IBE. Although latitude was not 
a significant predictor of π, analysing mean latitude with π and geo-
graphical range size revealed that amphibians near the equator have 
larger ranges, and diversity increases near the equator and slowly 

decreases towards higher latitudes (Appendix S4). This pattern of ge-
netic diversity forms a plateau around the equator, a pattern noted by 
Pereira (2016) in his perspective about a global study mapping am-
phibian genetic diversity by Miraldo et al. (2016).

The nucleotide diversity map of Neotropical amphibians clearly 
shows areas of high π, such as Chocó, northern Andes and Atlantic 
Forests in South America, and an area of high diversity in the 
Mesoamerica region located in Central America. Biogeographic 
units identified with higher π values are areas that also have high 
precipitation rates. Therefore, precipitation could explain genetic 
variation in the Neotropics; however, this hypothesis needs to be 
tested in future studies with more species homogeneously distrib-
uted throughout the region. Other studies have previously shown 
the important role of annual precipitation in explaining species rich-
ness, phylogenetic diversity and functional diversity in Neotropical 
amphibians (Amador et al., 2019; Ochoa- Ochoa et al., 2019). 

Differences in research and collecting efforts throughout the 
Neotropical region could be complicating the interpretation of our 
genetic diversity map, mainly because we do not have an equili-
brated sampling and our repurposed data set has a high concentra-
tion of occurrence points in certain regions (e.g. Amazonia, Atlantic 
forests or Mesoamerica). In addition, we were not able to recover 
more than five CytB sequences (our minimum number of sequences 
per species) for any Gymnophiona species, nor were we able to re-
cover genetic information for centrolenid frogs, one of the most di-
verse taxa in the Neotropics. We were also unable to recover target 
sequences for marsupial frogs of the family Hemiphractidae or for 
Neotropical microhylid frogs. These two groups have high species 
richness but are lacking in available evolutionary studies. To allevi-
ate some of these sampling issues, future studies should consider 
comparisons of other mitochondrial and nuclear genes and ideally 
standardize the markers sequenced across multiple species.

Comparing our results with those for Nearctic amphibians 
(Barrow et al., 2021), no differences in average π within species were 
evident (Nearctic amphibians: average π = 0.028, n = 137; Neotropical 
amphibians: average π = 0.025, n = 256). However, the highest values 
of intraspecific π were found in several Neotropical species; for ex-
ample, only three Nearctic species had π values >0.09 compared to 
13 Neotropical species with similar or higher values. This disparity 
between Neotropical and Nearctic species could relate to differ-
ences in demographic history between regions or could be explained 
by bias in taxonomic practices (see Chek et al., 2003). It is possible 
that the higher genetic variation we observed in Neotropical am-
phibians is partially due to taxonomic under- splitting, which could 
lead to severe conservation implications for this group. We found 
very high values of π (e.g. >0.09) for several species, suggesting the 
possibility of cryptic species in our data set. At least nine of the spe-
cies with high π values have been considered as species complexes 
or cryptic species in previous taxonomic studies (e.g. Pristimantis 

altamazonicus—Ortega- Andrade et al., 2017; Anomaloglossus degran-

villei—Vacher et al., 2017; Phyllobates lugubris—Márquez et al., 2020; 

Dendropsophus decipiens—de Oliveira et al., 2021; see Appendix S3). 

Higher environmental and climatic heterogeneity may lead to 

 1
3
6
5
2
6
9
9
, 0

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/jb

i.1
4
7
9
5
 b

y
 U

n
iv

ersity
 O

f N
ew

 M
ex

ico
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

8
/0

3
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



12  |    AMADOR et al.

diversification dynamics with higher speciation and lower extinction 
rates supporting rapid evolution in the Neotropics (Brown, 2014). 

Under this scenario, species would have accumulated faster towards 
the present mainly due to recent geological and climatic perturba-
tions (e.g. the elevation of the Andes) (Meseguer et al., 2022). The 
potential under- split species in our data set are therefore expected 
to be young or recently diverged, which is one of the mechanisms 
causing cryptic diversity (Fišer et al., 2018). We interpret the results 
of genetic variation of these species with caution because they may 
represent multiple taxa, for example, if we were able to split cryptic 
species in separate species, range sizes would be smaller impacting 
the levels of intraspecific genetic diversity.

We found that levels of π varied among families, with species in 
certain families such as Dendrobatidae and Hylidae having the high-
est π estimates and Ranidae, Rhinodermatidae and Telmatobiidae 
having the lowest (Appendix S4). In contrast, the presence of spatial 
genetic variation (IBD and IBE) within species appears to be more 
randomly distributed throughout the phylogeny of Neotropical am-
phibians. These findings highlight the value of employing different 
methodological frameworks as we did in this study. With the grow-
ing size and complexity of biodiversity data sets, machine learning 
methods such as RF prove valuable in identifying potential predic-
tors, even using both complete and reduced data sets (see Barrow 
et al., 2021; Pelletier & Carstens, 2018). Combining these methods 
with phylogenetically informed models allowed us to gain a deeper 
understanding of the relationships between predictors and genetic 
variation within species. For example, our RF (regression and classifi-
cation) and MCMCglmm models were consistent in identifying range 
size and precipitation as the best predictors of genetic variation.

Our study provides valuable insights into the distribution of 
genetic variation in Neotropical amphibians and identifies import-
ant predictors of intraspecific genetic variation. These findings un-
derscore the importance of considering both nucleotide diversity 
and spatial genetic variation in the conservation and management 
of Neotropical amphibian populations. For example, the results 
demonstrate the importance of preserving forest areas, especially 
in biogeographic areas where the intraspecific π is very low. This 
information is also valuable to assess the conservation status of 
Neotropical amphibian species and consider the impact of threats 
these taxa could be facing in the future. The current distribution of 
genetic variation could play a key role in the development of tar-
geted conservation strategies for amphibian species, particularly 
considering the diverse life histories observed among Neotropical 
amphibians. For example, certain species within the genera Atelopus 

or Telmatobius, which are highly endangered groups, require specific 
conservation measures focused on preserving aquatic habitats (e.g. 
streams, ponds or lakes). These habitats serve as crucial breeding 
grounds where frogs lay their eggs in shallow water, making their 
conservation of paramount importance. To address these and other 
subjects inherent to amphibian ecology and evolution, we suggest 
that future work should include more information such as genome- 
scale data and where possible, add more species within the region 
and globally.
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