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Somatostatin (SST) plays diverse physiological roles in vertebrates, particularly in
regulating growth hormone secretion from the pituitary. While the function of
SST as a neuromodulator has been studied extensively, its role in fish and
mammalian reproduction remains poorly understood. To address this gap, we
investigated the involvement of the somatostatin system in the regulation of
growth and reproductive hormones in tilapia. RNA sequencing of mature tilapia
brain tissue revealed the presence of three SST peptides: SST6, SST3, and low
levels of SST1. Four different isoforms of the somatostatin receptor (SSTR)
subfamily were also identified in the tilapia genome. Phylogenetic and synteny
analysis identified tiSSTR2-like as the root of the tree, forming two mega clades,
with SSTR1 and SSTR4 in one and SSTR2a, SSTR3a, and SSTR5b in the other.
Interestingly, the tiSSTR-5 isoforms 5x1, 5x2, and 5x3 were encoded in the sstr3b
gene and were an artifact of misperception in the nomenclature in the database.
RNA-seq of separated pituitary cell populations showed that SSTRs were
expressed in gonadotrophs, with sstr3a enriched in luteinizing hormone (LH)
cells and sstr3b significantly enriched in follicle-stimulating hormone (FSH) cells.
Notably, cyclosomatostatin, an SSTR antagonist, induced cAMP activity in all
SSTRs, with SSTR3a displaying the highest response, whereas octreotide, an SSTR
agonist, showed a binding profile like that observed in human receptors. Binding
site analysis of tiSSTRs from tilapia pituitary cells revealed the presence of
canonical binding sites characteristic of peptide-binding class A G-protein-
coupled receptors. Based on these findings, we explored the effect of
somatostatin on gonadotropin release from the pituitary in vivo. Whereas
cyclosomatostatin increased LH and FSH plasma levels at 2 h post-injection,
octreotide decreased FSH levels after 2 h, but the LH levels remained unaffected.
Overall, our findings provide important insights into the somatostatin system and
its mechanisms of action, indicating a potential role in regulating growth and
reproductive hormones. Further studies of the complex interplay between SST,
its receptors, and reproductive hormones may advance reproductive control and
management in cultured populations.
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1 Introduction

The two fundamental biological processes of energy
homeostasis and reproduction are intimately related. As
reproduction is an energy-intensive process, the activities of the
regulators of these processes must be tightly coordinated (1). Both
energy balance and reproduction are regulated by somatostatin, a
critical 14 amino acid peptide hormone first isolated in 1973 from
the sheep hypothalamus (2). In addition to the hypothalamus,
somatostatin is produced in the gastrointestinal tract, liver,
pancreas, and other tissues in all vertebrates, including fish.
Somatostatin has many physiological effects, including inhibition
of the secretion of growth hormone (GH), prolactin, and
gonadotropins from the pituitary gland (3). Negative control of
GH by somatostatin has been shown in vivo and in vitro in several
fish species, including salmon, goldfish, rainbow trout, and tilapia
(4=7). In the mammal brain, somatostatin also acts as a
neuromodulator, regulating motor activity (8, 9), probably by
affecting dopaminergic systems (10), and recent evidence suggests
it also has significant brain neutroprotective effects (11).
Somatostatin also influences the reproductive axis by inhibiting
the secretion of luteinizing hormone (ILH) from the pituitary (12)
and reducing gonadotropin hormone-releasing hormone (GnRH)
activity in goldfish, common carp, and grass carp [reviewed in (13)].
The diverse functions of somatostatin are reflected in the
complexity of the somatostatin receptor (SSTR) family and their
peptide ligands. The development of SST's and their receptors, like
many other neuropeptides and their corresponding receptors, was
influenced by various rounds of whole-genome duplication (14). In
vertebrates, six paralogous genes of SSTR have been identified
(SSTR1-6) (15); five of them also exist in medaka, stickleback, and
takifugu (16) and even in cartilaginous fishes (14). SST initiates the
inhibition of pituitary hormone secretion by activating G protein-
coupled receptors (GPCRs), which trigger a cascade of adenyl cyclase
inhibition as well as reductions in intracellular cAMP, protein kinase
A (PKA) activity, and Ca?" channel function, while K* channels are
activated (17, 18). Some SSTRs reported in trout and goldfish show
ligand selectivity (18), while activation of SSTR2a in goldfish has been
linked to inhibition of GH release (19).

Vertebrate somatostatin genes group into six distinct clades
when subjected to phylogenetic analysis. The somatostatin 1 (SST1)
gene is ubiquitous across all vertebrate classes, spanning from
agnathans to mammals, and it has served as the progenitor for
SST2 and SST5 through two rounds of genome duplications (2R).
SST4, an SST1 paralog, emerged from a third genome duplication
(3R) observed in most teleost fish. SST3 and SST6 arose from
tandem duplications of SST1 and SST2 (16, 20).

The involvement of the SST/SSTR system in GH production
and release has been well studied; however, little is known about its
effect on reproduction, especially in gonadotropin-producing cells.
We have recently used transgenic tilapia with fluorescent-labeled
gonadotrophs to perform RNA-seq on specific populations of LH
and FSH cells. Our analysis revealed new candidates, including
somatostatin receptors, that may directly regulate these hormones

(21). In the present study, we investigated the influence of
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somatostatin on the regulation of gonadotropins in tilapia. RNA-
seq of mature tilapia brain tissue revealed three SST peptides and
nine SSTR subtypes, including receptors that were enriched
specifically in either LH or FSH cells. We then explored the effect
of an SSTR agonist and antagonist on SSTRs to analyze the binding
sites. We also analyzed the in vivo effects of SST on LH and FSH
release. Our findings provide valuable insights into the role of
somatostatin in the mechanisms governing fish reproduction and
may guide the development of novel approaches for reproductive

control in fish populations.

2 Materials and methods
2.1 Animals

Sexually mature Nile tilapia (Oreochromis niloticus; body weight,
89.29 + 32.93 o) were kept and bred in the fish facility unit at the
Hebrew University of Jerusalem in 500 L tanks at 26°C, with 14L:10D
photoperiod. Fish were fed daily with commercial fish pellets (Raanan
Fish Feed, Miluot, Istacl). The Gonadosomatic Index (GSI), which
was calculated as gonad weight/body weight X 100, was 0.24 £ 0.40%.
All  experimental procedures were approved by the Hebrew

University administrative panel for laboratory animal care.

2.2 RNA-seq for SST receptors and ligands

The RNA-seq library and gene expression were previously
published (21, 22). To conduct the LH and FSH cell RNA-seq,
pituitaries from 20 mature male and 20 mature female transgenic-
O. niloticus (tg(FSH: GFP; LH: RFP) were hatvested and validated
using fluorescence microscopy for GFP (FSH)- and RFP (LH)-
labeled cells (23, 24). The pituitaries were digested with trypsin into
single-cell suspensions according to Biran et al. (25) and Levavi-
Sivan and Yaron (20). The cell suspensions were sorted using a
FACS Aria III sorter and 488 nm and 561 nm lasers to excite the
GFP- and RFP-labeled cells, respectively. Three fractions were
collected: a GFP-positive fraction enriched in FSH cells, an RFP-
positive fraction enriched in LH cells, and a negative fraction
consisting of all the pituitary cells except LH and FSH cells. After
sorting, the cells were immediately centrifuged, and total RNA was
extracted using TRizol reagent (Thermo Fisher), according to the
manufacturer’s instructions. The total RNA samples were sent for
RNA-seq library preparation and sequencing.

Due to the low amount of RNA extracted from the sorted cells,
RNA libraries were prepared using the SMARTer® Stranded Total
RNA-seq Kit v2- Pico Input Mammalian (Takara Bio, Mountain
View, CA, USA), which is adaptable for low-quality RNA samples.
The libraries were subjected to next-generation sequencing using
Illumina® chtch® 500 system (Illumina, Inc., San Diego, CA,
USA). In the FACS-sorted cells, each library contained at least 24 M
reads. Of the total identified genes in the RNA-seq libraties, an
average of 45% were uniquely mapped reads to the O. niloticus
genome (assembly O._niloticus_ UMD_NMBU GCA_001858045.3).
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The average number of reads that were assigned to known genes in
the O. niloticus genome were 12.3 M reads for LH cells, 2.85 M reads
for FSH cells, and 3.5 M reads for negative cells. The FASTQ files and
the results of DESeq analysis discussed in this study are available on
the National Center for Biotechnology Information (NCBI) Gene
Expression Omnibus (GEO) through accession number GSE159470.
Cell-specific expression was identified by analyzing ecach LH or FSH
library against the negative library. More than 3K genes with
normalized read counts greater than 100 were identified.

For RNA-seq of the brain, complete brain tissues were collected
from six mature tilapia. The tissues were transferred directly into
TRIzol reagent (Thermo Fisher), and total RNA isolation was
immediately performed using miRNeasy Mini Kit (QIAGEN)
according to the manufacturer’s instructions. RNA quality and
quantity were verified using the 2100 Bioanalyzer instrument
(Agilent Technologies), and only samples with RIN. 8 were
processed. Total RNA samples were sent to the Technion Genome
Center (Haifa, Israel), where they were prepared for sequencing using
the TruSeq RNA Sample Preparation Kit v2 (Illumina, San Diego,
CA, USA) and subjected to next-generation sequencing using an
Tllumina Genome Analyzer (HighSeq 2500; Illumina, San Diego, CA,
USA), which performed 100 bp single-end read sequencing. The
brain RNA-seq samples contained between 18 and 32 million aligned
reads (to the O. niloticus genome) in each sample; of those, more than
82% were assigned to a known gene. An average of 24.95 M reads
were assigned to known genes. FASTQ files and the results of the
DESeq analysis discussed in this study are available on the National
Center for Biotechnology Information (NCBI) Gene Expression
Omnibus (GEO) through accession number GSE169272.

2.3 Genome mining and synteny analysis

Genomic and synteny analyses were performed on the studied
receptors of Nile tilapia and their duplicates using Genomics v. 110
and the ENSEMBL genome annotations. The analyses were
performed on the syntenic regions of the actinopterigyan genes
sstr2, sstr3 (named sstrba in spotted gat), and sstr5 found in the
holostean spotted gar (Lepisosteus oculatus). In the analysis, we
included the genes encoding the proteins of interest in this study, as
described in Table 1. The analysis used the neighboring genes of the
spotted gar as a reference for the whole genome duplication event,
also known as 3R, in teleosts. The genes of the duplicated
paralogons, paralogons A and B, have been studied in the Asian
bonytongue (Sclreopages formosus), European scabass
(Dicentrarchus labrax), Zebrafish (Danio rerio), Fugu (Takifugu
rubripes), and Nile tilapia (Oreochromis niloticus).

2.4 Phylogenetic tree

The phylogenetic tree was inferred using the maximum
likelihood method and JTT matrix-based model (27). The
analysis involved 153 amino acid sequences and 780 distinct

alignment patterns. The tree with the Final ML Optimization
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Likelihood (-44204.62) is shown. Initial trees for the heuristic
search were obtained automatically by applying the Neighbor-Join
and BioN] algorithms to a matrix of pairwise distances estimated
using the JTT model with 1000 bootstrap replicates and then
selecting the topology with a superior log likelihood value (28).

2.5 Homology modeling and binding
site prediction

Three-dimensional in silico models for tilapia SSTRs (tiSSTR2a,
tiSSTR3a, tiSSTR5D, and tiSSTR3b) and SSTs (tiSST6 and tiSST3)
were prepared using the I'-TASSER server (29, 30) and human (hu)
SSTR2-huSST-14 (PDB:7T10) (31) as a template. The 3D models
were selAll receptors in teleosts exhibit a monophyletected based on

structural stability, C-score, and structural similarity with the

known huSSTR2 structure (PDB: 7T10). Further structure
processing, binding site prediction, docking, and mutation
analysis were performed using Schrodinger (BioLuminate,

Schrédinger, LLC, New York, NY, 2021). These structures were

further refined and used for binding-site predictions.

2.6 In situ hybridization chain reaction and
immunofluorescence on double-labeled
pituitary tissues

Transgenic tilapia [FSH:GFP and LH:RFP (23, 24)] were
employed for the HCR and immunofluorescence assays. Fish were
anesthetized with MS-222 (Sigma) and decapitated. The pituitary
glands were removed and fixed with 4% (wt/vol) paraformaldehyde
in PBS for 6 h at 4°C, and then immersed in phosphate-buffered
saline (PBS) containing 20% (wt/vol) sucrose and 30% (vol/vol)
optimal cutting temperature (OCT) (Sakura) for about 24 h. The
pituitaries were then embedded in OCT, frozen in liquid nitrogen,
sectioned frontally at 12 mm on a cryostat at -18°C, and mounted
onto SuperfrostTM Plus glass slides (Thermo Scientific). All samples
were kept at -80°C.

The HCR protocol was adapted from Molecular Instruments
HCR v3.0 for fresh frozen or fixed frozen tissue sections, as
described by Choi et al. (32), with slight modifications. Briefly,
frozen sections were thawed to room temperatutre and then fixed in
ice-cold 4% (wt/vol) paraformaldechyde in PBS for 15 min at 4°C.
The pituitaries were then immersed in different ethanol
concentrations (50, 70, and 100%) for 5 min each at room
temperature. Fach section was then incubated with 200 ul of 10
ug/ml proteinase K solution for 10 min in a humid chamber at 37°C
and prehybridized in the probe hybridization buffer for 10 min at
37°C. The slides were incubated overnight at 37°C in a humid
chamber in the same solution containing 0.4-0.8 pmol of
denaturation probes (designed specifically for each tlapia SST
receptor by Molecular Instruments; lot numbers SSTR2a-B1,
PRJ208; SSTR5b-B1, PRJ209; SSTR3a-B1, PRJ210; SSTR3b-B1,
and PRJ211). After hybridization, the sections were washed in
75% probe wash buffer/25% 5xSSCT for 15 min at 37°C, followed
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TABLE 1 Somatostatin receptors of Nile tilapia and the corresponding ligands addressed in this article.

Protein name in

the article Uniprot

Gene name Accession Protein Paralogon i i
A

sstr2a ENSONIG00000019645 XP_003438730.1 SSTR2a I3KUD5

sstr3a ENSONIG00000013851 XP_019215873.1 A SSTR3a I3K8HI

sstr3b ENSONIG00000021451 XP_019213185.1 B SSTR3b 131056

sstr5b ENSONIG00000002138 XP_003452896.1 B SSTRS5b 13]1C6

sstr2b ENSONIG00000021384 XP_005454973.1 B Not in this study AOAGGIERTG6

sstrba ENSONIG00000017693 XP_003455841.1 A Not in this study IBKMG5
Ligands

Gene Name Symbol_resDvsS Protein Protein name in the article

Somatostatin-1B LOC100698045 XP_003444846.1 SST6
Somatostatin-2 LOC100694069 XP_003448989.2 SST3
Somatostatin- 1 LOC100693797 XM_003448940.5 SST1

by a second wash in 50%, a third wash in 25% probe wash buffer,
and a final wash with only 5XSSCT solution. The slides were
preamplified with an amplification buffer for 30 min at room
temperature. The pituitary slides were incubated overnight in a
dark chamber in the same buffer containing snap-cooled h1 and h2
hairpins. To remove excess hairpins, the slides were washed in
5XSSCT twice for 30 min and then for 5 min.

After the HCR, the sections were subjected to immunofluorescence
labeling. Sections wete blocked in 5% (v/v) normal goat serum with
0.3% (v/v) Triton X-100 for 1 h at room temperature and incubated
with specific antibodies raised in rabbits against recombinant tlapia
rtGH (7, 33), diluted 1:500 in antibody dilution buffer (1% w/v BSA;
0.3% Triton X-100 in PBS) overnight at 4°C. The samples were stained
using secondary antirabbit antibodies conjugated to Alexa fluorescent
dyes (Invitrogen) diluted 1:300 and incubated for 2 h at room
temperature. Following staining, the slides were stained with 4',6-
diamidino-2-phenylindole (DAPI), washed, and mounted using an
antifade solution (2% w/v propyl-gallate, 75% v/v glycerol in PBS). The
pituitaries wete imaged using a confocal fluorescence microscope
(Leica microsystems) using X20 and X60 objectives, and images were

processed using the Fiji program (34).

2.7 Somatostatin peptide synthesis
and purification

Tilapia (ti) somatostatin 6 (tiSST6; (N) APCKNFFWKTFTSC
(C); accession no. XP_003444846.1) and somatostatin 3 (tSST3;
(N) AGCKNFYWKGLTSC (C) accession no. XP_003448989.2)
were synthesized by GL. Biochem (cysteines are indicated in bold)
using an automated solid-phase method and applying Fmoc active-
ester chemistry. The crude peptides were purified by HPLC to >95%
purity. The pure peptides had a single peak in analytical RP-HPLC,
with the expected mass determined by MS analysis. For signal

Frontiers in Endocrinology

transduction reporter assays, the peptides were dissolved to the

desired concentration in double-distilled water.

2.8 Receptor signal transduction
reporter assays

The signaling pathways of SSTRs were studied by inserting the
entire coding sequence of the four receptors expressed in the pituitary
(SSTR2a, SSTR3a, SSTR5b, and SSTR3b; accession nos.
XP_003438730.1, XP_019215873.1, XP_003452896.1, and
XP_019213185.1, respectively; Table 1) into pcDNA3.1 (Invitrogen)
and verified by cloning and sequencing. The sequences were obtained
from GenScript Biotech based on sequence information retrieved from
GenBank. The procedures for transient transfection of the different cell
lines and receptor stimulation have been described previously (35, 36).
In brief, COS-7 cells were cotransfected with a luciferase reporter
plasmid (Cre-luc; 3 pg) and one of the SSTRs (3 ug). As a control
treatment, the receptors were transfected without reporter plasmid
(data not shown). After 48 h, the transfected cells were exposed to
increasing concentrations of the tilapia native peptides SST6 and SST3
in the presence of forskolin (FSK; 20 mM; Sigma-Aldrich), an activator
of protein kinase A that increases cAMP production. Six hours after
stimulation, the cells were analyzed using the GloMax multidetection
system (Promega).

In another set of assays, the SST receptors were exposed to
increasing concentrations of cyclosomatostatin, an SSTR antagonist
(0-1000 nM; each in triplicate), in combination with octreotide, an
SSTR agonist (10 nM), and FSK (20 mM), or increasing
concentrations of octreotide (0-1000 nM; each in triplicate) in
combination with cyclosomatostatin (10 nM) and FSK (20 mM).
Three individual experiments were conducted using distinct batches
of COS-7 cells for each experiment and including three replicates
for every concentration.
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2.9 Invivo experiment

Adult female tilapia (body weight 89.29 £ 32.93 ¢) were injected
IP with saline, cyclosomatostatin, or octreotide (100 pug/kg; n = 8
fish per group). The fish were bled from the caudal blood vessels
into heparinized syringes at 0, 2, 4, 6, and 24 h after injection. Blood
was centrifuged at 3,200 rpm for 30 min at 4°C to obtain plasma
samples, which were stored at =20°C until assayed. This standard
protocol was used previously to test the effect of GnRH and other
hypothalamic neuropeptides on circulating levels of LH, FSH, and
GH in tilapia (33, 37, 38). Three independent experiments were

performed for each treatment.

2.10 ELISA for the measurement of tilapia
FSH, LH, and GH

Plasma levels of LH, FSH, and GH were measured by specific
competitive ELISAs developed for tilapia (39, 40) based on
recombinant (r)tiGTHs or rtiGH. The isera were produced
against rtlLHb (41), rtFSHb (40), or rtGH (39), and rtLLHba (41),
rtFSHba (37) or rtGH (39) was used to generate a standard curve.
The sensitivity of plasma measurements was 15.84 pg/ml for LH,
0.24 pg/ml for FSH, and 35.0 pg/ml for GH. The inter-assay
coefficients of variation (CV) were 14.8, 12.5, and 13%, whereas
intra-assay CVs were 7.2, 8, and 8% for LH, FSH, and
GH, respectively.

2.11 Statistical analysis

The results are presented as mean = SEM. Two-way ANOVA
was used to compare mean LH, FSH, and GH values from the in
Vivo expetriments. One-way ANOVA was used to compate the
signal transduction results. In cases of statistically significant
differences between the groups, the analysis was followed by an a

posteriori Tukey multiple comparison test using JMP software
version 9 (SAS Institute, Inc., Cary, NC, USA).

3 Results

3.1 Phylogenetic and synteny analyses of
SSTRs and their differential expression in
tilapia pituitary

In order to comprehend the involvement of somatostatin in the
reproductive processes of fish, we initially undertook a thorough
investigation of the tilapia genome, conducting analyses of
phylogenetics and synteny related to their receptors. Genome
mining revealed that the studied receptors in teleost fish were
encoded in three groups of preserved Sstr genes: Sstr2, sstr3, and
sstrS. The syntenic analysis showed that the sstr2, sstr3, and sstrd

genes in spotted gar were duplicated in teleosts due to a whole
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genome duplication event. Two paralogons, A and B, containing an
asymmetric conservation of the genes, were identified in each
species 1). The
differentiated after the paralogon as sstr2a, sstr2b, sstr3a, sstr3b,

(Figure duplicated genes in teleosts were
sstr5a, and sstr5b. The paralogon A of the gene SStr2 contains the
genes fam20, amz2, arsg, sle39al, sstr2-like, and sgsh. Paralogon A
had also undergone a transposition to a different chromosome in all
the studied teleosts between the genes slc26all and mf213a
Table 1A).

characterized by containing the genes gocl and zgc:86896. The

(Figure 1A; Supplementary Paralogon B was
protein SSTR2 was encoded in the gene sstr2a of the Nile tilapia
found in paralogon A (Table 1).

The gene related to sstr2, named sstr2-like, was found in the
spotted gar as the closest gene to Sstr2. In Nile dlapia, the gene sstr2-
like consists of one exon 1963 nucleotides in length that encodes a
protein of 339 amino acids. The protein encoded by the sstr2-like
gene has prints for a somatostatin receptor. However, unlike the
other SST receptors, the protein encoded by the sstr2-like gene
contains only 6 transmembrane domains; it is missing one domain.
This gene was also affected by the whole genome duplication effect
and has been preserved in paralogon A in the teleosts.

The gene encoding the SSTRG receptor exists in medaka
(Oryzias latipes) and likely emerged after loss of a duplicate
during the 3R event (42). Although not reported previously,
medaka lacks copies of the sstr6, sstrl, and sstr4 genes. By
contrast, tilapia lacks the sstr6, sstrl, and sstr4 genes altogether.

These discrepancies in gene conservation between Nile tilapia and

medaka may result from extensive genomic rearrangements that
have affected the distribution of somatostatin receptor genes in
teleosts. Chromosome missegregation and subsequent genomic
rearrangements may also have contributed to these differences
due to the short generation time in Nile tilapia and medaka species.
The analysis of the genomic region of SStr3 revealed that
paralogon A contains the gene cuta and paralogon B contains the
gene tmemb 150b (Figure 1B; Supplementary Table 1B). The protein
SSTR3a was encoded by the gene sstr3a of the Nile tilapia found in
paralogon A, and the protein SSTR3b was encoded by the gene
sstr3b of the Nile tilapia found in paralogon B (Table 1). Further
analysis of the receptors encoded by the gene sstr3b showed that
SSTR5X1-X2 and -X3 are apparently three splicing variants of this
gene and are misnamed as artifacts of possibly different
naming processes.

Paralogon A of the gene sstr5 contains the genes metrn, prr35,
nthll, tsc2, text4, knopl, and vps35L Paralogon B contains the genes
igck and litaf. An entire transposition of paralogon A in teleosts
occurred between the genes c¢rp and slc9a3 (Figure 1C;
1C).

experienced the transposition of some of the genes into different

Supplementary Table The Asian bonytongue also
chromosomes. The protein SSTR5b was encoded by the gene sstrSb
of the Nile tilapia found in paralogon B (Table 1).

The results of the phylogeny analysis showed a major group of
monophyletic origin formed by SSTR5, SSTR3, and SSTR2. Within
this branch, SSTR3 and SSTR5 exhibit a shared monophyletic
origin, and SSTR2 is basal to them. The SSTR4, SSTR1, and
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FIGURE 1

Synteny analysis of sstr genes. Representation of the genomic regions of the studied genes. Gene positions are expressed in 10% (A) Synteny analysis of
the sstr2 gene. The spotted gar (Lepisosteus occulatus) has been used as a reference to identify two duplicated paralogons in teleosts. Paralogon A is
enclosed in the purple square and paralogon B is enclosed in the blue square. The gene of interest, sstr2, is marked in green. (B) Synteny analysis of the
sstr3 gene. The spotted gar (Lepisosteus occulatus) has been used as a reference to identify two duplicated paralogons in teleosts. Paralogon A is
enclosed in the purple square and paralogon B is enclosed in the blue square. The gene of interest, sstr3, is marked in green. (C) Synteny analysis of the
sstr5 gene. The spotted gar (Lepisosteus occulatus) has been used as a reference to identify two duplicated paralogons in teleosts. Paralogon A is
enclosed in the purple square, and paralogon B is enclosed in the blue square. The gene of interest, sstr5, is marked in green.

SSTRG6 sequences are basal to the previous list. Within this
grouping, the SSTR4 sequences appear to be basal to SSTR1 and
SSTR6 (Figure 2; Supplementary File 1, Supplementary Table 2).
Generally, each group of SSTR receptors was further split into two
clades, one for tetrapods and the other containing piscine SSTRs. In
the piscine group, the spotted gar is basal to the teleosts. In SSTR1
and SSTRO, the coelacanth is basal to the actinopterygians and
teleosts, while the coelacanth is absent from the other groups. No
actinopterygian or teleost SSTR4 has been found thus far, but it is
still present in the sarcopterygians, including the coelacanth.

We also performed RNA-seq analysis on pituitaries of
transgenic tilapia that express GFP in FSH cells and RFP in LH
cells (23, 24). Of the nine paralogs of SSTR identified in the tilapia
genome, only four were expressed in the pituitary (SSTR3b,
SSTR5b, SSTR2a, and SSTR3a; marked in blue in Figure 2) (21).
Comparison of each receptor expression in LH and FSH cells to
their expression in the negative fraction (Figure 3) identified two
main SSTRs that had significantly high expression in ecach
gonadotroph: SStr3b was highly expressed in FSH cells, whereas
sstr3a and sstr5b were highly expressed in LH cells. The sstr2a and
sstr5b genes were expressed in the negative fraction, probably
because this fraction included GH cells (Figure 3, Table 2).

Frontiers in Endocrinology

3.2 Colocalization of somatostatin
receptors in tilapia pituitary

Cell-specific SSTR expression was revealed by RNA-seq and in situ
hybridization using specific probes for each receptor in the double-
labeled transgenic fish (23, 24). The use of immunofluorescence with
specific antibodies for GH showed that the somatotropes almost
exclusively expressed sstr2a (Figures 4A-D) and sstrSb (Figures 41-1)
mRNA, whereas sstr3a (Figures 4E-H) and sstr3b (Figures 4M-P)
mRNA were expressed mainly by FSH and LH cells. These results are
summarized in Table 2.

3.3 Homology modeling and binding
site prediction

RNA-seq conducted on whole brain samples from mature
reproductive tilapia fish (22) indicated that tiSST3 and tiSST6
were motre highly expressed than SST1 in mature reproductive
males (Figure 5A, Table 1), implying potential pivotal roles for these
two subtypes in reproduction. Because we focused on brain SST and
its interactions with pituitary-expressed SSTRs during the

frontiersin.org


https://doi.org/10.3389/fendo.2024.1302672
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org/

Mizrahi et al.

10.3389/fendo0.2024.1302672

SuLssToTEyN WIS

"-SSTR3p

Wrasse_ssrray

Tounge_Sole_SSTR3 o 41
Pike_SSER3b(SSTRS-1ike)

e_SSTRy.

HUMAN_ss 7Ry

_night_monkey_ssTr1

THLSSTISNON

TaLssTIE)

- songaeTATUER

Rat_SSTR1

Macaqy,

Ma's

FIGURE 2

marked on the right bottom corner.

Yangtze_river_dolphin_SSTRS

Phylogenetic tree of somatostatin receptors. A maximum likelihood method-based phylogenetic tree of the different SSTR types. Tilapia SSTRs
relevant to this study [SSTR2a; SSTR3a; SSTR5b, and SSTR3b(5_isoform_X3)] are marked in blue. The tilapia SSTR2b is marked in green. The scale is

ssTR22
o

B sk
Tilapsa_sSTRZE
wrasse_SSTRZ
Medaka_$STR2b
Pufferfish_SSTR2b
Zabrafish_ssrros
Carp_ssTRan
Assap
G

cassTusdeor

reproductive season, we conducted further analyses only on tiSST6
and tiSST3.

Somatostatin precursors are large proteins (e.g., SST6, 110 aa;
SST3, 191 aa), whereas the known biologically active component
SST-14 is only a 14-aa-long peptide at the C-terminus of the protein
5B, F).

conformation by the formation of a sulfide bond between the

(Figures SST-14 acquired a circular post-cleavage
cysteines at the 3t and 14 positions of the peptide, resulting in
the creation of a ring structure in the peptide chain (Figure 5).
tiSST6-14 showed a higher identity to huSST-14, with only a
proline substitution for glycine at the 27 position of the peptide.
In tiSST3-14, tyrosine replaced phenylalanine at 7% position,
glycine replaced threonine at 10t position, and leucine replaced
phenylalanine at the 11t position relative to huSST-14.

The models for tiSSTRs generated using huSSTR2 as a
template (PDB:7T10) are shown in Figures 6A, B. The SST
receptors are class A (thodopsin-like) GPCRs (31). As with
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other peptide-binding receptors, they exhibit an extracellular
domain (ECD), a seven-transmembrane domain (7TM)
connected by intracellular and extracellular loops (ECLs), and
an intracellular domain (ICD). Our models showed a large ECD
and ICD in all 6SSTRs; however, tiSSTR3a (482aa) and tiSSTR3b
(483aa) had larger sequences and contained structurally similar
N-terminal and C-terminal regions, which were longer than in the
other homologs.

tiSSTR2a (Figures 6C, D), tiSSTR5b (Figures 6F, I'), tiSSTR3a
(Figures 0G, H) and tiSSTR3b (Figures 61, ]J) each possessed a
putative orthosteric binding pocket, a common feature in most class
A GPCRs (43). This binding pocket was located in the
transmembrane cavity, which implies the potential involvement
of the ECD and ECL. Unlike the case in other specific GPCRs, such
as GnRHRs, the ECD did not obstruct the binding pocket in
tiSSTRs (Figure 0). The binding sites of tiSSTR3a and tiSSTR3b

were quite similar and were primarily composed of the hydrophobic
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FIGURE 3
Expression of somatostatin receptors in LH and FSH cells isolated from tilapia pituitaries. RNA-seq of FACS-isolated cells identified the different types
of SSTRs from pituitaries of transgenic tilapia expressing RFP in LH cells and GFP in FSH cells. Isolated LH cells, FSH cells, and negative pituitary cells
were subjected to RNA-seq as described previously (21). The complete transcriptome information is available in GEO through accession number
GSE159470. Asterisk represents significantly different expression values as compared to the negative cells (*p < 0.05; ****p < 0.00001).

cleft in the TMD. The binding site located on tiSSTR2a was
apparently larger than in other SSTRs.

3.4 Signal transduction analysis of SSTRs in
the presence of a somatostatin agonist and
native peptides

Comparison of the activation of the different SST receptor types
by the native SST6 and SST3 ligands versus octreotide, a
commercial SSTR agonist, in COS-7 cells revealed differences in
the potency, selectivity, and signal transduction pathways. Like
SSTRs
receptors that inhibit adenylate cyclase activity upon coupling to
Gai/o and reduce cAMP production (17, 36); thus, the ligand effect

was analyzed in the presence of forskolin (20 uM), which increased

dopamine and melatonin receptors, are inhibitory

cAMP levels, as reflected by an elevation in luciferase activity.
Treatment with octreotide, tiSST6, and tiSST3 at subnanomolar
concentrations inhibited tiSSTR2a Cre-luc activity (Figure 7A,
Table 3). Highly potent inhibition of SSTR5b Cre-luc activity was

TABLE 2 The relative number of LH, FSH, and GH cells expressing each
SSTR subtype according to hybridization chain reaction (HCR)/
immunofluorescence assays, as presented in Figure 4.

IH + ++ - ++

FSH

+

++

GH ++ ++
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also observed (Figure 7C; IC59 = 906.1, 720.2, and 157.0 nM, for
octreotide, tiSST6, and tiSST3, respectively; Table 3). Octreotide
was the most efficient activator of SSTR3a (ICso = 0.004 nM;
Figure 7B, Table 3), and SSTG6 was more efficient than SST3
(Figure 7B; 1Cs0 = 3.75 and 572.9 nM, respectively). When
exposed to SSTR-3b, both ligands inefficiently inhibited Cre-luc
activity (Figure 7D).

3.5 Signal transduction activity of a
somatostatin agonist (octreotide) and
antagonist (cyclosomatostatin)

Agonists and antagonists are commonly used to study receptor
activation and to develop drugs with specific targets and activities.
We, therefore, activated tiSSTRs by cyclosomatostatin, an SSTR
antagonist, dose-dependently in the presence of a constant
concentration of SSTR agonist (10 nM; Figures 8A-D).
Conversely, the effect of different doses of octreotide, an SSTR
agonist, was tested in the presence of a constant concentration of
SSTR antagonist (10 nM; Figures 8E-H). Although both octreotide
and cyclosomatostatin were developed for mammalian receptors
(44), both were very effective in fish SSTRs (45). SSTR3a and
SSTR5b were most effectively stimulated by the SSTR antagonist
(ECs0 = 0.1 and 2.15 nM, respectively; Figures 8B, C, Table 4). By
contrast, SSTR2a displayed the lowest stimulation by different doses
of SSTR antagonist (ECsp = 188.4 nM, Figure 8A, Table 4) and the
highest inhibition by SSTR agonist together with SSTR3a and
SSTR3b (ICsp = 0.81, 8.6x10+ and 0.35 nM, Figures 8F, H,
Table 4). SSTR3a was the most effective when stimulated with
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FIGURE 4

The mRNA expression analysis of sstr in tilapia pituitary cells. Double-labeled pituitaries from transgenic tilapia with labeled LH [(A, I, E, M) magenta]
and FSH cells [(F, N) green] and immunofluorescence-stained for GH [(B, J) yellow] were used for in situ hybridization chain reaction (HCR) (v3.0) to
determine co-localization of mRNA expression of different sstr genes [(C) sstr2a; (K) sstr5b; (G) sstr3a; (O) sstr3b; cyan). Nuclei are stained with DAPI
[(D, L, H, P) blue]. In the merged box, magenta arrows show LH cells, green arrows show FSH, and yellow arrows show GH cells. Scale bar, 10 pm.

octreotide (Figure 8F, Table 4). Overall, SSTR5b was the most  administering intraperitoneal injections of these compounds to
efficient receptor in terms of maximal response to the  sexually mature female tilapia. Administration of SSTR antagonist
SST antagonist. cyclosomatostatin increased FSH and LLH levels, compared to the
control, as early as 2 h post-injection (Figures 9A, B). However, GH

levels were the same as in the control fish. As expected,

3.6 In vivo effect of SSTR antagonist and administration of the SSTR agonist octreotide significantly
agonist on FSH, LH, and GH plasma levels decreased GH plasma levels at 2 h postinjection, and this
reduction persisted even after 4 and 6 h (Figure 9C). Octreotide

We investigated the physiological impact of the SSTR  also resulted in decreased FSH plasma levels at 2 h postinjection and
antagonist and agonist on the release of gonadotropins and  thereafter (Figure 9A), whereas LH plasma levels remained similar

growth hormone by assessing their plasma concentrations after to the control (Figure 9B).
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depicts the sequence alignment of the tilapia and human SST1-14. (G) The different types of somatostatin that are expressed by RNA-seq of

tilapia brain.

4 Discussion

Somatostatin  has diverse physiological functions in all
vertebrates, including an essential role in inhibiting GH secretion
from the pituitary (2). Its inhibitory action was later shown for a
wide range of hypophyseal hormones, including prolactin,
thyrotropin, and ACTH (46-48), as well as in the gastrointestinal
hormones gastrin  (49), cholecystokinin (CCK) (50), gastric
inhibitory peptide (GIP) (51), neurotensin (52), and pancreatic
glucagon (53, 54) and insulin (51, 53, 54). SST is also a
neuromodulator that regulates motor activity (55) and aggressive
behavior in cichlid fish (45). However, little is known about the

effect of SST on reproduction in either fish or mammals. Therefore,

Frontiers in Endocrinology

we studied the regulation of growth and reproduction hormones by
the somatostatin system in tilapia.

In jawed vertebrates, SST1-6 are the products of at least six
paralogous sst1-6 genes (16, 56). Following the second whole
genome duplication, the vertebrate SST ancestor was deduced to
have possessed three sst paralogs, SST1, SST2, and SST5. SST3 and
SSTG6 then arose by duplication of the SST1 and SST2 genes,
respectively (16, 56). Our characterization of the somatostatin
peptides in the tilapia brain by RNA-seq of mature fish revealed
only three SST peptide forms: SST6, SST3, and low levels of SST1.
The SSTR subfamily encompasses SSTR1-5, which has several
different isoforms in the tilapia genome (tiSSTR2a, tiSSTR3a,
tSSTR5b, and €SSTR3b). Our syntenic analysis revealed that
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FIGURE 6

SSTR homology models and binding pockets. Homology models and predicted binding sites for huSSTR2 (PDB:7T10) (A, B); tiSSTR2a (C, D);
tiSSTR5b (E, F); tiSSTR3a (G, H); and tiSSTR3b (1, J) showing ECD (green), TM1 (yellow), TM2 (orange), TM3 (peach), TM4 (pink), TM5 (teal), TM6
(cyan), TM7 (violet), and ICD (maroon). The site map within the white box (D, F, H, J) shows the hydrophobic region (yellow), the hydrogen-bond

donor (blue), and acceptor maps (red).

the studied proteins were affected by the whole genome
duplication of the teleosts (57), thus producing several genes
encoding different proteins, including the studied receptors
(Table 1, Figure 1). Whole genome duplications described in
other receptors and their ligands in teleosts (20, 58-61) increase
their functional complexity.

Our results are consistent with previous analyses by Tostivint
(62), who found preserved copies of the genes studied in this

syntenic analysis. Furthermore, Tostivint and colleagues (62)

Frontiers in Endocrinology

suggested that the genes Sstr2 and sstr3 were on the same
chromosome in the ancestor of the teleosts. Contrary to the
situation observed in the spotted gar, all the genes within
paralogons A and B in teleosts were situated on the same
chromosome. Therefore, the synteny analysis agrees with the
hypothesis of Tostivint and O’Campo-Daza that the ancestral
genes were arranged together and gave rise to the different
receptors placed on the same chromosome in teleosts (63). The

presence of three receptors on the same chromosome in both
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FIGURE 7

Signal transduction activity of somatostatin receptors induced by an SSTR agonist and native SST peptides. COS-7 cells were co-transfected with
Cre-luc plasmid and either SSTR2a (A), SSTR3a (B), SSTR5b (C), or SSTR3b (D). Transfected cells were exposed to increasing concentrations of
octreotide (an SST agonist) or somatostatin peptides SST6 or SST3 (0-1000 nM) in combination with FSK (20 mM). Graphs show fold changes in

luciferase activity relative to the basal level. Averaged data from three experiments are shown and are presented as mean + SEM. Asterisk-marked
points significantly differ from basal levels: *p < 0.05; **p < 0.01, (one-way ANOVA followed by Dunnett’s test).

paralogon A and its duplicate, paralogon B, suggests a unique gene
arrangement in teleosts, likely originating from a specific
rearrangement involving the genes sstr2, sstr3, and sstr5. This
rearrangement led to all three receptors being located on the
same chromosome, followed by duplication events.

The gene sstr2-like in the spotted gar likely resulted from a local
duplication. Its asymmetric conservation in the teleost paralogon A
suggests that the duplication occurred before the teleost whole
genome duplication, potentially in their actinopterygian ancestor.
However, the gene structure and encoded peptide are highly
divergent, as they lack introns and possess only 6 transmembrane
domains, unlike the 7 domains that are essential for the proper
function of rhodopsin-like GPCRs (42). Thus, the sstr2-like gene
may be undergoing a functional alteration that may possibly lead

to pseudogenization.

TABLE 3 1C,, values (nM) of SSTR agonist octreotide and native
peptides SST6 and SST3 on tilapia SST receptors.

SST6 \ SST3 \ Octreotide
SST-R2a 3.75x10-5 = 0.03 2.86x10-> + 0.02 1.09x107 = 0.04
SST-R3a 3.75 = 0.04 5729 = 0.1 0.004 £ 0.03
SST-R5b 906.1 = 0.5 720.2 £ 05 157 £ 0.1
SST-R3b ND ND ND

Cre-luciferase was used to assess PKA activation. Results are shown as mean = SEM.
ND, Not detectable.
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Our phylogenetic analysis showed that the earliest divergence was
into a major clade containing SSTR2, SSTR3, and SSTR5. These
receptors, as well as SSTR1 and SSTRO, have a monophyletic origin
and are basal to the previous clade. The sequences of SSTR4 are basal to
the other groups. The receptors SSTR1 and SSTRG, as well as SSTR3
and SSTR5, share a monophyletic origin. A previous investigation
explored the hypothesis that two rounds of whole genome duplication,
referred to as 2R, influenced the genes encoding the SSTRs (42, 62).
According to this framework, the ancestor of vertebrates after the 2R
event should have possessed 8 SSTR genes, but only 6 genes are
currently identified. This discrepancy may be explained by a loss of 2
genes prior to the radiation of vertebrates, resulting in the present count
of 6 somatostatin receptors in extant species. Our phylogenetic analysis
aligns with this hypothesis (42, 62). Notably, the absence of a
monophyletic origin for a pair of receptors branching with SSTR4
suggests a potential loss of the duplicate sstr4 gene. Similarly, the clade
housing the SSTR2 sequences lacks a coupled clade, indicating that the
duplicate of the sstr2 gene might have been lost following the whole
genome duplication events in the vertebrate ancestor.

Within the SSTR1, SSTR2, SSTR3, and SSTRS5 clades, two distinct
monophyletic groups emerged, separating the terrestrial tetrapods
from aquatic species, including the coelacanth. Notably, SSTR4 is
absent in nonsarcopterygian species, while SSTR6 remains conserved
exclusively in aquatic counterparts, including an ancestral
sarcopterygian, the coelacanth. The coelacanth grouping within
aquatic species in SSTR1 and SSTRG6 suggests that phylogenetic
affected terrestrial Previous

divergence mainly tetrapods.
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Signal transduction activity of somatostatin receptors induced by an SSTR agonist (octreotide) and antagonist (cyclosomatostatin). COS-7 cells were
co-transfected with Cre-luc plasmid and either SSTR2a (A, E), SSTR3a (B, F), SSTR5b (C, G), or SSTR3b (D, H). Transfected cells were exposed to
increasing concentrations of cyclosomatostatin (0-1000nM) in the presence of octreotide (10 nM) and FSK (20 mM; (A-D), red lines) and increasing

concentrations of octreotide (0-1000nM) in the presence of cyclosomatostatin (10 nM) and FSK (20 mM; (E-H), blue lines). Graphs show fold
changes in luciferase activity relative to the basal level. Averaged data from three experiments are shown and are presented as mean + SEM.
Asterisk-marked points significantly differ from basal levels: *p < 0.05; **p < 0.01, ***p< 0.0001 (one-way ANOVA followed by Dunnett’s test).

evolutionary studies found that competing selective pressures for
aquatic and terrestrial environments produced unique functions and
somatic structures, such as the forelimb locomotor mode (64).
Further functional analysis could clarify the association between the
sequence divergence in sarcopterygian SSTR receptors and
terrestrialization events in the tetrapod lineage.

All receptors in teleosts exhibit a monophyletic origin when
present, with the spotted gar serving as the basal species. However,
exceptions are noted in the SSTR3 sequences from salmon and carp
and in the SSTR5 sequence from salmon. These proteins have
undergone significant divergence following the whole genome
duplication events specific to salmonids, known as 4R (65, 66)
and the allotetraploidy events in carp (67). A comprehensive
investigation into the conservation of duplicated genes and their
functions in salmonids, as highlighted by (68), suggests that genes
retained as duplicates after the 3R are likely to persist after the 4R.
Consequently, as in our analysis, highly divergent genes are
conserved after the 4R and might position outside the major
clades or in positions basal to their groups.

In fish, as in mammals, multiple subtypes of SSTRs are found in
many tissues, including the kidney, thyroid, adrenal gland, GI tract,

TABLE 4 The effect of cyclosomatostatin and octreotide on tilapia
SST receptors.

SST- SST- SST- | SST-
R2a R3a R5b R3b
Cyclosomatostatin ECso 188.90 215 46.21
- K 0.10% 0.001
(SSTR antagonist) (nM) +4.34 +0.009 +3.82
Octreotide 1Cso 0.81 8.6x10+ 17.36 0.35
(SSTR agonist) (nM) +0.01 +0.0007 +3.14 +0.04

Cre-luciferase was used to assess PKKA activation. Results are shown as mean £ SEM.
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and brain (69). Four distinct subtypes (SSTR1-3 and SSTR5) and
several SSTR isoforms have been characterized in different fish
species (reviewed in (70). We identified the receptor types that are
expressed in defined pituitary cells by RNA-seq of LH and FSH cell
populations separated from the tilapia pituitary (21, 71). Three
distinct subtypes of SSTRs (SSTR2a, SSTR3a, and SSTR5b) and one
isoform (SSTR3b) were found at different levels in these
gonadotrophs. SSTR3a is enriched in LH cells, while SSTR3b is
significantly enriched in FSH cells. The most highly expressed SSTR
variants in the somatotrophs were SSTR5b and SSTR3b. SSTR3a
was the most abundant SST receptor in LH cells, pointing to the
importance of somatostatin in regulating the LH gonadotropin (21).
SSTRs have already been found in the mammalian
hypothalamus and pituitary. SSTR2a is the most prevalent SSTR
subtype in GnRH neurons in male and female rats (72) and mice
(73). In the rat pituitary, SSTR mRNA was widely distributed across
major endocrine cell groups. Mammalian somatotrophs showed
relatively high expression levels of SSTR4 (which is absent in fish)
and SSTR5b, whereas SSTR2a was predominantly expressed in
thyrotrophs and LH cells (74). Knowledge of SSTR distribution in
specific pituitary and brain cells of fish is minimal. Our data indicate
that SST directly regulates LH and FSH at the pituitary level,
thereby expanding its previously recognized role in GH release.
The SSTR signal is transduced by intracellular mediators, such as
Ca?*, cAMP, cGMP, and nitric oxide (NO) (17). In general, cAMP has
appeared as the most prominent signaling pathway for both gene
transcription and secretion of SST [reviewed in (75)]. Here, we used
both an SSTR agonist and an antagonist to study the signal
transduction of these receptors in tilapia. CRE-luc was increased
dose-dependently in all SSTRs in the presence of a constant
concentration of SSTR agonist (10 nM), whereas it was repressed by
different doses of octreotide and a constant dose of SSTR antagonist.
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In vivo effect of an SSTR agonist (octreotide) and antagonist (cyclosomatostatin) on gonadotropins and GH plasma levels. Female tilapia were

injected with the SSTR antagonist cyclosomatostatin or the SSTR agonist octreotide (100 mg/kg BW) at time point 0; saline-injected fish served as
controls. Blood was sampled at 2, 4, 6, and 24 h after injection. Plasma FSH (A), LH (B), and GH (C) levels were analyzed by specific ELISAs (mean +
SEM; n = 8 fish per group). Letters denote statistically significant differences among groups (P < 0.05), as determined by two-way ANOVA followed

by Tukey’s multiple comparison test.

Cyclosomatostatin is a nonpeptide SSTR3a-selective antagonist (70).
While it elevated cAMP activity in all SSTRs, the highest response was
seen in SSTR3a. Conversely, octreotide is an SSTR agonist that binds
with high affinity to human SSTR2 and SSTR5 and with moderate
affinity to SSTR3a (44).

Our results revealed a similar pattern in tilapia, as SSTR2a had the
highest response, followed by SSTR5b. However, SSTR3a was more
strongly inhibited by octreotide than by the native tilapia SST's. Taken
together, our results suggest that the binding sites of tilapia SSTRs are
similar to those of the human receptors. When SSTR3b was tested solely
against a backdrop of FSK, octreotide demonstrated no discernible
activation. However, when SSTR3b was activated by cyclosomatostatin
in the presence of both FSK and octreotide, efficient activation was
observed. This discrepancy might be explained by considering that FSK
alone may not have been adequate to elevate cellular cAMP levels
sufficiently to detect suppression.

The SSTR subtypes exhibited neatly identical affinity for the
endogenous peptide SST14, although SST14 had only 40-55%
sequence homology and substantial variation in the extracellular
region containing the ligand interaction site (31). This suggests that
the binding pocket residues and cavities have substantial similarity.
Therefore, we performed binding-site analyses on SSTRs expressed in
the tilapia pituitary (iSSTR2a, tiSSTR3a, tiSSTR5b, and tiSSTR3b). All
these SSTRs displayed characteristics of canonical binding sites of
peptide-binding class A GPCRs. Studies in huSSTR have suggested that
both the extracellular half of the TM domains and the ECLs play
essential roles in ligand binding and subtype selectivity (31). Similarly,
the orthosteric binding sites in selected tiSSTRs were located on the
upper region of the transmembrane cavity and included the ECD and
the ECL loops. In huSSTR1, the ECL2 is reported to influence
selectivity for the binding of particular peptides (77), whereas ECL3
and its adjoining transmembrane-spanning regions are reported to be
critical for the binding of selective agonists (78). The allosteric site
reported in human SSTR1 and murine SSTR2 is located in a similar
region, albeit deeper within the hydrophobic cleft, and shows typical
responses to agonistic and antagonistic compounds, similar to those
reported for hSSTR1 (79).

Although the reduction of GH release by SST has been well
established in tilapia (39), the possible effect of SST on FSH and LH

release was unknown. Therefore, we examined the influence of an
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IP injection of an SSTR agonist and antagonist on tilapia FSH, LH,
and GH plasma levels. In our study, the SSTR antagonist raised LH
and FSH levels for 2 h post-injection. LH returned to baseline after
4 h, while FSH remained elevated for 6 h. Octreotide, an SSTR
agonist, reduced FSH levels similarly to GH but had no significant
effect on LH levels. The high-affinity SSTR agonist octreotide
mainly treats acromegaly and pituitary adenomas (44). In female
sheep, intracerebroventricular (ICV) infusion of SST abolished
pulsatile LH secretion and decreased LLH release (80). In rats, the
suckling-induced activation of SST-SSTR2a signaling mediated the
suppression of pulsatile LH secretion during lactation (81). The lack
of an effect of octreotide on LLH levels in our study is inconsistent
with these previous reports on different species.
SST inhibits the secretion of LH from the pituitary in rats (12),
and it also affects LH secretion indirectly by reducing GnRH activity
in goldfish, common carp, and grass carp [reviewed in (13)].
Possibly, the concentration of the SSTR agonist used in our
experiment (100 pg/kg BW) was insufficient to affect LH levels. A
previous study demonstrated a decrease in aggressive behavior in
cichlid fish using a higher dose of octreotide (4 mg/kg) (45). In
another study, SST administration directly to the target cells via
ICV infusion in male rats over a five-day period suppressed the
activity of LH-positive pituicytes (12). Our data suggest that SST has
similar effects on GH and FSH in tilapia, but has no effect on LH
release. Levels of FSH, which regulate gonad growth and
development, increase during vitellogenesis in tilapia, whereas LH
is responsible for final oocyte maturation and ovulation (40, 82, 83).
The intricate interplay between FSH and GH in fish is required to
balance growth and reproduction. The role of GH in the different
reproductive stages of fish is not fully understood. GH stimulates the
synthesis and secretion of vitellogenin, probably because it enhances
estradiol in the liver (84). The vitellogenic phase is characterized by
rising levels of both GH and FSH (68). This is consistent with the
decreased FSH and GH levels we observed in response to the GH
agonist. In both goldfish and tilapia, LH levels increase before spawning
and decrease afterward (40, 85). In tilapia, somatic growth increases
significantly after spawning (86), and GH levels remain high, while LH
levels decrease (39). This suggests that GH may play a role in

promoting somatic growth after spawning, and this may be reflected

in the increase in LH levels in response to a GH antagonist.
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In summary, we have provided a demonstration of a direct
regulation of gonadotropin release by somatostatin. We have
identified the specific SSTR types expressed on LH and FSH cells and
mapped their co-localizations. Indications were also found that SST may
directly regulate LH and FSH secretion into the bloodstream. These
findings suggest a possible involvement of SST and its receptors in the
interplay between growth and reproductive processes and a possible
bridging function for SST between the somatic and reproductive axes.
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