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Abstract. We study the tensor robust principal component analysis (TRPCA) problem, a tensorial extension of
matrix robust principal component analysis, which aims to split the given tensor into an underlying
low-rank component and a sparse outlier component. This work proposes a fast algorithm, called
robust tensor CUR decompositions (RTCUR), for large-scale nonconvex TRPCA problems under the
Tucker rank setting. RTCUR is developed within a framework of alternating projections that projects
between the set of low-rank tensors and the set of sparse tensors. We utilize the recently developed
tensor CUR decomposition to substantially reduce the computational complexity in each projection.
In addition, we develop four variants of RTCUR for different application settings. We demonstrate
the effectiveness and computational advantages of RTCUR against state-of-the-art methods on both
synthetic and real-world datasets.
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1. Introduction. In our real world, high-dimensional data, such as images, videos, and
DNA microarrays, often reside approximately on low-dimensional manifolds [38]. This associ-
ation between low-dimensional manifolds and high-dimensional data has led mathematicians
to develop various dimension reduction methods, such as principal component analysis (PCA)
[1] and nonnegative matrix factorization [35] under the low-rank assumption. It becomes in-
creasingly important to study the low-rank structures for data in many fields, such as image
processing [20, 37, 40], video processing [42, 62|, text analysis [18, 45], and recommendation
systems [54, 60]. In reality, many higher-order data are naturally represented by tensors
[39, 44, 61], which are higher-order extensions of matrices. The tensor-related tasks, such as
tensor compression and tensor recovery, usually involve finding a low-rank structure from a
given tensor.
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As in the matrix setting but to an even greater extent, PCA is one of the most widely
used methods for such dimension reduction tasks. However, standard PCA is oversensitive
to extreme outliers [15]. To overcome this weakness, robust principal component analysis
(RPCA) has been proposed to tolerate the sparse outliers in data analysis [16]. In particular,
RPCA aims to reconstruct a low-rank matrix L* and a sparse outlier matrix S* from the
corrupted observation

(1.1) X =L"+8"

Existing studies on RPCA seek to find L* and S™ by solving the following nonconvex problem
[16], and we use L and S to denote the outcomes:

minimize | X — L — S||p
(1.2) S
subject to L is low-rank and S is sparse.

The term low-rank refers to the constraint that the rank of L is much smaller than its size, and
the term sparse refers to the restriction on the number of nonzero entries in S (for example,
one possible restriction is to allow each column and row of S to contain at most 10% nonzero
entries). This RPCA model has been widely studied [3, 5, 6, 7, 9, 11, 12, 28, 48] and applied
to many applications, e.g., face modeling [57], feature identification [30], and video background
subtraction [36]. However, the original RPCA method can only handle 2-mode arrays (i.e.,
matrices), while real-world data are often more naturally represented by higher-dimensional
arrays (i.e., tensors). For instance, in the application of video background subtraction, a color
video is automatically a 4-mode tensor (height, width, frame, and color). To apply RPCA to
tensor data, one has to unfold the original tensor into a matrix along some specific mode(s).
Although the upper bound of the unfolded matrix rank depends on the original tensor rank, the
exact rank of the unfolded matrix remains unclear in some tensor rank settings. In addition,
we seek methods that utilize the structural information of a tensor rather than ignoring the
information. Therefore, it is important to generalize the standard RPCA to tensor settings.
This task is called tensor robust principal component analysis (TRPCA) [43]. Moving from
matrix PCA to the tensor setting could be challenging because some standard results known
in the matrix case may not be generalized to tensors smoothly [21]. For example, the rank of a
matrix is well-defined and uniquely defined, but researchers have proposed several definitions
of tensor rank, such as Tucker rank [55], CP rank [17], and Tubal rank [59].

1.1. Notation and definitions. A tensor is a multidimensional array, and its number of
dimensions is called the order or mode. The space of real tensors of order n and of size
(di,--- ,dy) is denoted as R%**dn  In this section, we first bring in the tensor-related
notation and review some basic tensor properties which will be used throughout the rest of
the paper. We denote tensors, matrices, vectors, and scalars in different typeface for clarity.
More specifically, calligraphic capital letters (e.g., X') are used for tensors, bold capital letters
(e.g., X) for matrices, bold lowercase letters (e.g., ) for vectors, and regular letters (e.g., z)
for scalars. We use X (I,:) and X (:,J) to denote the row and column submatrices of X with
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index sets I and J, respectively. X (Iy,---,I,) denotes the subtensor of X with index sets Ij
at the kth mode. A single element in a tensor is indexed as A&j, ... ;. Moreover,

[¥oe = max |&;,,...i, | and [ X]|p =

215 ln

denote the max magnitude and Frobenius norm of a tensor, respectively. X' denotes the
Moore—Penrose pseudoinverse of a matrix. The set of the first d natural numbers is denoted

by [d] :={1,---,d}.

Definition 1.1 (tensor matricization/unfolding). An n-mode tensor X can be matricized, or
reshaped into a matriz, in n ways by unfolding it along each of the n modes. The mode-k
matricization/unfolding of tensor X € R4**dn js the matriz denoted by

(1.3) X(k) € R Il d-?"

whose columns are composed of all the vectors obtained from X by fixing all indices except for
the kth dimension. The mapping X — X, is called the mode-k unfolding operator.

Definition 1.2 (mode-k product). Let X € R®X>dn gnd A € R7>*% . The kth-mode
multiplication between X and A is denoted by Y =X X A, with

dy
(1'4) yily"'7ik717j7ik+17"'77;n = E Xi17"'7ik—1a57ik+17'“7inAj78‘
s=1

This can be wrilten as a matriz product by noting that Yy = AXy). If we have multiple
tensor matrixz products from different modes, then we use the notation X x;_, A; to denote the
product X xy Ay Xyy1 -+ X5 Ag. We also use “tensor-matriz product”to name this operation
throughout our paper.

In tensor analysis, Tucker rank [29] (also known as multilinear rank) is one of the most es-
sential tensor ranks related to subspace estimation, compression, and dimensionality reduction
[51].

Definition 1.3 (tensor Tucker rank and Tucker decomposition). The Tucker decomposition
of tensor X is defined as an approzimation of a core tensor C multiplied by n factor matrices
Ay (whose columns are usually orthonormal) along each mode such that

(1.5) X~Cxj_, A
If (1.5) becomes an equation and C € R™ > X" then we say this decomposition is an exact

Tucker decomposition of X.

Note that higher-order singular value decomposition (HOSVD) [22] is a specific orthogonal
Tucker decomposition which is popularly used in the literature.

1.2. Related work: Tensor CUR decompositions. Researchers have been actively study-
ing CUR decompositions for matrices in recent years [24, 26]. For a matrix X € R%*4 et
C be a submatrix consisting of a subset of columns of X with column indices J, R be a
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submatrix consisting of a subset of rows of X with row indices I, and U = X (I, J). The the-
ory of CUR decompositions states that X = CU'R if rank(U) = rank(X). The first extension
of CUR decompositions to tensors involved a single-mode unfolding of 3-mode tensors [46].
Later, [14] proposed a different variant of tensor CUR that accounts for all modes. Recently,
[10] dubbed these decompositions with more descriptive monikers, namely, Fiber and Chidori
CUR decompositions. In this paper, we will employ both Fiber CUR decomposition and
Chidori CUR decomposition (see Figures 1 and 2 for illustration) to accelerate an essential
step in the proposed algorithm. We state the Fiber CUR and Chidori CUR decomposition
characterizations below for the reader’s convenience.

\

Figure 1. ([10]). lllustration of the Fiber CUR decomposition of Theorem 1.4, in which J; is not necessarily
related to I;. The lines correspond to rows of C2, and red indices correspond to rows of Uz. Note that the lines
may (but do not have to) pass through the core subtensor R outlined by dotted lines. For the figure’s clarity,
we do not show fibers in C1 and C's.

Figure 2. ([10]). Illustration of Chidori CUR decomposition of a 3-mode tensor in the case when the indices
I; are each an interval and J; = Qj1:1; (see Theorem 1.4). The matriz C1 is obtained by unfolding the red
subtensor along mode 1, C2 by unfolding the green subtensor along mode 2, and Cs by unfolding the yellow
subtensor along mode 3. The dotted line shows the boundaries of R. In this case, U; =R for alli.
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Theorem 1.4 (see [10, Theorem 3.3]). Let A € RUX"Xdn with Tucker rank (r1,...,ry). Let
Ii - [dz] and JZ - [Hj?éi dj]. Set R = A(Il, te ,In), CZ = A(z)(7 Jz); and U,‘ = Cz(Iz; ) Then
the following statements are equivalent:
(i) A=R x[ (CiU));
(ii) rank(U;) =1i;
(iii) rank(C;)=r; for all i, and the Tucker rank of R is (ri,- - ,my).
Remark 1.5. In particular, when J; are sampled independently from I;, Theorem 1.4(i) is

called Fiber CUR decomposition. When J; = ®;;1;, Theorem 1.4(i) is called Chidori CUR
decomposition.

In addition, according to [27, Corollary 5.2], if one uniformly samples indices I; and J; with
size |I;| = O(r;log(d;)) and |J;| = O <ri log(I1;..: dj)), then rank(U;) = r; holds for all i with
high probability under some mild assumptions. Thus, the tensor CUR decomposition holds,
and its computational complexity is dominated by computing the pseudoinverse of U;. Given
the dimension of U;, the computational complexity of the pseudoinverse of U; with Fiber
sampling is O ((n — 1)r3log? d); thus, Fiber CUR decomposition costs O (m“3 log? d).1 The
Chidori CUR decomposition has a slightly larger |.J;|, which is [ [, ;i log(d;) = O((r log d)"1);
thus, the decomposition costs O (7"“”rl log™ d). By contrast, the computational complexity of
HOSVD is at least O(rd").

1.3. Related work: TRPCA. There is a long list of studies on RPCA [56] and low-
rank tensor approximation [44], so we refer the reader to those two review articles for the
aforementioned topics and focus on TRPCA works in this section. Consider a given tensor X
that can represent a hypergraph network or a multidimensional observation [13]; the general
assumption of TRPCA is that X can be decomposed as the sum of two tensors,

(1.6) X =L+ 8,

where £* € RUX%dn i the underlying low-rank tensor and S* € R%*"*dn is the underlying
sparse tensor. Compared to the exact low-rank tensor models, the TRPCA model contains an
additional sparse tensor S, which accounts for potential model outliers and hence is more stable
with sparse noise. Different from the well-defined matrix rank, there exist various definitions
of tensor decompositions that lead to various versions of tensor rank and to different versions
of robust tensor decompositions. For example, [41, 43, 47] formulate TRPCA as a convex
optimization model based on the tubal rank [59].

Based on the Tucker rank, we aim to solve the nonconvex optimization problem in this
work:
minimize |[X — L —S||r

(1.7) £
subject to L is low-Tucker-rank and S is sparse.

Researchers have developed different optimization methods to solve (1.7) [13, 23, 31, 53].
For example, the work in [13] integrated the Riemannian gradient descent (RGD) and gradient

LFor notational simplicity, we assume that the tensor has the same d and r along each mode when we
discuss complexities. All log operators used in this paper stand for natural logarithms.
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pruning methods to develop a linearly convergent algorithm for (1.7). This RGD algorithm
will also serve as a guideline approach in our experiments. However, one of the major chal-
lenges in solving the Tucker rank-based TRPCA problem is the high computational cost
for computing the Tucker decomposition. If £* is rank-(ry,---,7,), then the existing meth-
ods, e.g., [13, 25, 31, 32, 53], have computational complexity at least O(nd"r)—they are thus
computationally challenging in large-scale problems. Thus, it is necessary to develop a highly
efficient TRPCA algorithm for time-intensive applications.

1.4. Contributions. In this work, we consider the TRPCA problem under the Tucker
rank setting. Our main contributions are threefold:

1. We provide theoretical evidence supporting the generality of the TRPCA model over
the matrix robust PCA model obtained from the unfolded tensor (see section 2). That
is, TRPCA requires a much weaker sparsity condition on the outlier component. Our
theoretical finds will be empirically verified later in the numerical section.

2. We propose a novel nonconvex approach, coined robust tensor CUR decompositions
(RTCUR), for large-scale’ TRPCA problems (see section 3). RTCUR uses a frame-
work of alternating projections and employs a novel modewise tensor decomposition
[10] for fast low-rank tensor approximation. We present four variants of RTCUR
with different sampling strategies (see subsection 3.4 for the details about sampling
strategies). The computational complexity of RTCUR is as low as O(n2dr?log?d) or
O(ndr™log" d) flops, depending on the sampling strategy, for an input n-mode ten-
sor of size? R?**4 with Tucker rank (r,...,r). Both computational complexities
are substantially lower than the state-of-the-art TRPCA methods. For instance, two
state-of-the-art methods [42, 43] based on tensor singular value decomposition have
computational costs at least O(nd"r) flops.

3. We verify the empirical advantages of RTTCUR with synthetic datasets and three real-
world applications (see section 4), including robust face modeling, video background
subtraction, and network clustering. We show that RTCUR has not only speed effi-
ciency but also superior robustness compared to the statesof the art. In particular,
we provide certain outlier patterns that can be detected by RTCUR but that fail
all matrix-based methods (see subsection 4.2). This further verifies our theoretical
findings in section 2.

2. Characterizations of a sparse outlier tensor. The tensor RPCA problem can be also
solved by using the RPCA method if we unfold the tensor into a matrix along a certain mode.
To solve the tensor-to-matrix RPCA problem successfully, the unfolded outlier tensor must
satisfy a-M-sparsity, a commonly used assumption in matrix RPCA problem. We state the
definition of a-M-sparsity for matrix as follows.

Definition 2.1 (a-M-sparsity for matrix). S € R%*% js a-M-sparse if
|Seillo<adi and e So < ads

foralli=1,---,dy and j=1,--- ,dy.

2n our context, “large-scale” refers to large d.
3For notational simplicity, we assume that the tensor has the same d and r along each mode when we
discuss complexities. All log operators used in this paper stand for natural logarithms.
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However, when solving TRPCA directly with tensor-based methods, it is more natural to
generalize a-M-sparsity to the tensor setting. We consider the following sparsity condition for
outlier tensor [13].

Definition 2.2 (a-T-sparsity for tensor). A tensor S € R4>* > js o-T-sparse if

.
IS % ey, jllo < aHdi
i#]j

for all kj =1,--- ,d;, where {ekj,j}ijl is the standard basis of R%. Thus, S X j e;j,j corre-
sponds to the kjth slice of S along mode j.

We emphasize that Definitions 2.1 and 2.2 are not equivalent. In fact, from Figure 3, one
can see that unfolding an outlier tensor along a certain mode can result in much worse sparsity
in the unfolded matrix, with the exact same outlier pattern. Note that one can argue that
unfolding alone a different mode may result in a not-worse M-sparsity. Although this is true,
in practice, the user usually does not have prior knowledge of outlier patterns and thus cannot
determine the most robust mode to unfold alone. Hence, we claim that Definition 2.2 is a
much weaker condition than Definition 2.1. This is further verified by the following theorem.

Theorem 2.3. Suppose that an n-order tensor S € R >4 is generated according to the

Bernoulli distribution with expectation §, i.e., S, ... ;, ~Ber(§), and that od > fo’;lﬁ‘f. Then
S is a-T-sparse with probability at least 1 —nd'~"%""" Moreover, by unfolding S into a matriz
M e RE*4"™" qlong some particular modes with k € [1,n—1], M is a-M-sparse with probability

at least 1 — dk—nd" ™" _ gn—k-nd"""

Remark 2.4. Tt is evident that for a large-scale tensor, i.e., d > 1 and n > 2, we have
1 —nd"? < max{k —nd" %1 n—k—nd*'}. Thus, the condition of a-T-sparsity for S can
be satisfied with much better probability than that of a-M-sparsity for the unfolders of S.

Proof of Theorem 2.3. Since Sy, ... ;, ~Ber(5), we have E(S;,,...;,) = §. Let’s first consider
the sparsity of one slice of §: We use Sy to denote the kth slice along mode j. According
to the multiplicative Chernoff bound, we have

aan—1

(2.1) P > Sl i i Zod™ ) <(5)

(AUSIEIN PRSI S EPTTEIN 4

20%-T-Sparsity 100%-M-Sparsity

Figure 3. T-sparsity versus M-sparsity. A black box represents an outlier entry, and a white box represents
a good entry. The right-hand-side matrix is unfolded from the left-hand-side tensor.
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Taking the sparsity of all slices along all modes into account, the probability that S is a-
sparsity can be bounded by

adn—1 adn—1

P(S is a-T-sparse) > (1 _ (Z)2>nd o nd(i) :

2nlogd
When ad > Togd—1> We thus have

(2.2) P(S is a-T-sparse) > 1 —nd" """,

xd""* “then we have that

Similarly, if we unfold S into a matrix M € R
(2.3) P(M is a-M-sparse) > 1 — dF~"

provided that 1207;12% ‘f [ |

dn—k—l

. dnfkfnd’“*1

Remark 2.5. The purpose of the sparsity condition is to ensure a well-defined robust tensor
PCA problem; i.e., the low-rank and sparse tensors are separable. By the matrix rank-sparsity
uncertainty principle [19], a-M-sparsity ensures that the matrix problem unfolded from the
tensor is well-defined. However, with the newly developed tensor Tucker-rank-sparsity uncer-
tainty principle [58, Proposition 2], the more relaxed a-T-sparsity is enough for well-defined
robust tensor PCA problems. Moreover, to solve the problems with «-T-sparsity right, an
algorithm based directly on tensor structures is needed like the one that will be proposed in
the next section. The unfolded matrix-based algorithms will still require the more restricted
a-M-sparsity condition and thus is more likely to fail.

3. Proposed approach. In this section, we propose an efficient approach, called RTCUR,
for the nonconvex TRPCA problem (1.7). RTCUR is developed in a framework of alternating
projections: (I) First, we project X — L% onto the space of sparse tensors to update the
estimate of outliers (i.e., S**+1); (II) then we project the less corrupted data X —S*+1) onto
the space of low-Tucker-rank tensors to update the estimate (i.e., E(k+1)). In our algorithm,
the key to acceleration is using the tensor CUR decomposition for inexact low-Tucker-rank
tensor approximation in step (II), which is proved to be much more efficient than the standard
HOSVD [10] in terms of computational complexity. Consequently, in step (I), this inexact
approximation allows us to estimate only the outliers in the smaller subtensors and submatrices
involved in the tensor CUR decomposition. RTCUR is summarized in Algorithm 3.1. Notice
that there are two variants of tensor CUR decompositions which will result in different J; (see
Remark 1.5), but the steps of Algorithm 3.1 will remain the same. Therefore, we will not
distinguish the two decomposition methods in subsections 3.1 and 3.2 when discussing the
details of steps (I) and (II). We will then show the computational complexity for Algorithm
3.1 with both Fiber and Chidori CUR decompositions in subsection 3.3.

3.1. Step (I): Update sparse component S. We consider the simple yet effective hard
thresholding operator HT: for outlier estimation. The operator is defined as

Xit o sins | X i | >

0 otherwise.

(3.1) (HT¢(X))iy e i, = {
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Algorithm 3.1. RTCUR Decompositions.

1: Input: X = £* + S* € Rh**Xdn: ohserved tensor; (rq,---,7,): underlying Tucker rank
of £*; e: targeted precision; ((9),~: thresholding parameters; (L1 A
cardinalities for sample indices. //J; is defined differently for different sampling
strategies. See subsection 3.4 for details about J; and sampling strategies.

2: Initialization: £ =0,8© =0,k=0

3: Uniformly sample the indices {I;}7_,,{Ji}I",

4: while e¢®) > ¢ do // e®) is defined in (3.7)
5: (Optional) Resample the indices {I;}7,,{Ji}I"
6: // Step (I): Updating S

7 CRFD) — . ¢(R)

8  SHHD =HT i (X — LW)

9: // Step (II): Updating £
10:  REHD =(x — SE+HY(1y, - 1,,)
11: fori=1,---,n do
12: Cl(k—H) =(X - S(]H'l))(i)(:, Ji)
13: U*t) —svp, (¢ (1,,))
14: end for

n k+1 k+1)\ T
15 LO+D) = R+ ym Cz( ) (UE ))
16: k=k+1
17: end while

18: Output: R, Cgk), ng) for i=1,--- ,n: the estimates of the tensor CUR
decomposition of L,.

As shown in [6, 9, 48], with a properly chosen thresholding value, HT; is effectively a
projection operator onto the support of §*. More specifically, we update

(3.2) SHHD = HT cren) (X — L),

If ¢(*+H) = | £* — £®)|| is chosen, then we have supp (S¥ 1) C supp(S*) and ||S* —
S| o <2||£* — LP)]|oo. Empirically, we find that iteratively decaying thresholding values

(33) D) — oy o)

provide superb performance with carefully tuned ~ and ¢(9. Note that a favorable choice of
¢ s | £*||c0, which can be easily estimated in many applications. The decay factor v € (0, 1)
should be tuned according to the level of difficulty of the TRPCA problem; e.g., those prob-
lems with higher rank, more dense outliers, or large condition numbers are considered to be
harder. For successful reconstruction of £* and S*, the harder problems require larger ~.
When applying RTCUR on both synthetic and real-world data, we observe that ~ € [0.6,0.9]
generally performs well. Since real-world data normally lead to more difficult problems,
we fix v = 0.7 for the synthetic experiment and ~ = 0.8 for the real-world data studies in
section 4.
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3.2. Step (Il): Update low-Tucker-rank component £. SVD is the most popular method
for low-rank approximation under matrix settings since SVD gives the best rank-r approxi-
mation of given matrix X, both with respect to the operator norm and to the Frobenius norm
[2]. Similarly, HOSVD has been the standard method for low-Tucker-rank approximation
under tensor settings in many works [2, 22, 39, 52]. However, the computational complexity
of HOSVD is at least O(rd™); hence, computing HOSVD is very expensive when the problem
scale is large. As highlighted in [10, sections 3.2 and 3.3], tensor CUR decomposition can
serve as an effective low-Tucker-rank approximation method, even with perturbations. As
such, we employ tensor CUR decomposition for accelerated inexact low-Tucker-rank tensor
approximations. Namely, we update the estimate of the low-Tucker-rank component £ by
setting

%

(3.4) LA = R yn Cl(k—i-l) (U(k—i-l))T’

where

READ = (x — SEHVY(1y, -+, 1),
(3.5) Y = (x = ST+ 4 (-, ),
Ut = svp,, (" (1;,).

i i

3.3. Computational complexities. As mentioned in subsection 1.2, the complexity for
computing a tensor CUR decomposition is much lower than HOSVD, and the dominating
steps in RTCUR are the hard thresholding operator and the tensor/matrix multiplications. For
both Fiber and Chidori CUR decompositions, only the sampled subtensors and submatrices
are required when computing (3.5). Thus, we merely need to estimate the outliers on these
subtensors and submatrices, and (3.2) should not be fully executed. Instead, we only compute

SEHI(IL, -+ 1) = HT ooy (X — LB (T4, -+, 1)),

(3.6) S((S+1)(:’ J;) = HT (e (X — E(kz))(i)(:7 7))

for all . Not only can we save the computational complexity on hard thresholding, but
also much smaller subtensors of £*) need to be formed in (3.6). We can form the required
subtensors from the saved tensor CUR components, which is much cheaper than forming and
saving the whole £*).

In particular, for X € R>*d ¢ = ... = pr, =r and || = --- = |I,| = O(rlogd),
computing E(k)(ll, -+, I,,) requires n tensor-matrix product operations, so the complexity for
computing LF)(I1,--- ,I,,) is O(n(rlogd)™*!) flops for both Fiber and Chidori CUR decom-
positions. The complexity for computing Cgf))(:,Ji) with Fiber CUR is different from the

complexity of computing Lgf))(:, Ji) with Chidori CUR. With Fiber CUR, we compute each

fiber in EEZ)(:,JZ-) independently, and each fiber takes n tensor-matrix product operations.

The first n — 1 operations transform the n-mode core tensor £*)(Iy,--- I,,) into a 1-mode
tensor, which is a vector of length O(rlogd), and the last operation transforms this vector into
another vector of length d. Since there are J; = O(nrlogd) fibers in total, the complexity for
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computing L’gf))(:, J;) with Fiber CUR decomposition is O(nrlogd((rlogd)™ + drlogd)) flops.
With Chidori CUR, we compute ng))(:, Ji) as a complete unit using n tensor-matrix product
operations. The first n — 1 operations on the core tensor do not change its size, and the last
operation changes the size of the ith mode to d. Therefore, the complexity for computing
Cgf))(:, J;) with Chidori CUR decomposition is O(n(rlogd)"** + d(rlogd)™) flops.

Moreover, for time-saving purposes, we may avoid computing the Frobenius norm of the
full tensor when computing the relative error for the stopping criterion. In RTCUR, we adjust
the relative error formula to be

o JER - L)l + 0 166 ¢ ) e
[, Tl + iy 1% G T e

where £®) = x — £*) — S(*) g0 that it does not use any extra subtensor or fiber but only
those we already have. We hereby summarize the computational complexity for each step
from Algorithm 3.1 in Table 3.1.

If we assume that the tensor size d is comparable with or greater than O((rlogd)"~!),
then we can conclude that the total computational complexity is O(n?dr? log? d) flops for
RTCUR with Fiber CUR decomposition and O(ndr™log™ d) flops for RTCUR with Chidori
CUR decomposition. Otherwise, the computational complexity would be O(n?rn*! log" ! d)
flops for RTCUR with Fiber CUR, and the complexity for RTCUR with Chidori CUR remains
unchanged. For all tensors tested in section 4, the first case holds. Therefore, in Table 3.1,
we highlighted O(n2dr?log?d) and O(ndr™log™d) as the dominating terms.

(3.7) el

3.4. Four variants of RTCUR. In subsection 1.2, we discussed two versions of tensor
CUR decomposition: Fiber CUR decomposition and Chidori CUR decomposition. Each of
the decomposition methods could derive two slightly different RTCUR, algorithms depending
on if we fix sample indices through all iterations (see Algorithm 3.1). As a result of this,
we obtain four variants in total. We give different suffixes for each variant of the RTCUR
algorithm: RTCUR-FF, RTCUR-FC, RTCUR-RF, and RTCUR-RC. We will showcase exper-
imental results for all variants in section 4. The first letter in the suffix indicates whether we
fix the sample indices through all iterations: “F” stands for “fix,” where the variant uses fixed

Table 3.1
Computational complexzity for each step from Algorithm 3.1. The complezity for computing S(I1, -+ ,In)
and R are the same as their size; the complexity for CiU;r is introduced in subsection 1.2; the complezity for
computing L and the error term is introduced in subsection 3.3. The dominating terms are highlighted in bold.

COMPUTATIONAL COMPLEXITY FIBER SAMPLING CHIDORI SAMPLING
Sparse subtensor S(I1,---,I,) or R O(r™log" d) O(r™log™ d)

All S¢;y(:, Ji) or C; for n modes O(n?*rdlogd) O(nr™tdlog™ ' d)

All UT for n modes O(n*r3log? d) O(nr™*log™ d)

All C;U! for n modes O(n?*r?dlog®d) O(nr*dlog™d)
Low-rank subtensor L£(I1,---,Iy) O(nr"log™ ™ d) O(nr™tlog™ ™ d)

All L;)(z, Ji) for n modes Om*r"log" ™t d + n?r2dlog”d) ON*r"t'log" ! d + nr™dlog™ d)
Error term E¥)(Iy,---,1,,) and O(r™log™ d + n*drlog d) O(dr™ *log™™*(d))

Séik)) (:,J4)
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Algorithm 3.2. Conversion from CUR to HOSVD.

1: Input: R,C;,U;: CUR decomposition of the tensor .4

2: [Q;,Ri]=qr (CiU;-r) fori=1,---,n

3: ﬂ:Rlel X+t Xan

4: Compute HOSVD of 77 to find 71 =T X1 Vi X9+ %X, V,,

5: Output: [T7;Q;V1,---,Q,V,]: HOSVD decomposition of A

sample indices through all iterations, and “R” stands for “resampling,” where the variant
resamples {I;}7 ; and {J;}}' in each iteration. The second letter indicates which type of
CUR decomposition we use in RTCUR. “F” represents that RTCUR, is derived from Fiber
CUR decomposition, and “C” stands for Chidori CUR. For Fiber CUR, the amount of fibers
to be sampled refers to [27, Corollary 5.2], i.e., [I;| = vr;log(d;), | Ji| = vrilog(]];,; d;), and J;
is sampled independently from I;. Here, v denotes the sampling constant, a hyperparameter
that will be tuned in the experiments. For Chidori CUR, |I;| = vr;log(d;) and J; = ®;4;1;.
Of these four variants, RTCUR-FF requires minimal data accessibility and runs slightly faster
than other variants. The resampling variants access more data and take some extra com-
puting; for example, the denominator of (3.7) has to be recomputed per iteration. However,
accessing more redundant data means that resampling variants have better chances of cor-
recting any “unlucky” sampling over the iterations. Thus, we expect resampling variants to
have superior outlier tolerance over fixed sampling variants, and the fixed sampling variants
have an efficiency advantage over the resampling variants under specific conditions (e.g., when
reaccessing the data is expansive).

The difference between Chidori variants and Fiber variants has similar properties: If we
choose the same v and let |I;| = vr;log(d;) for both Chidori and Fiber CUR described in
subsection 1.2, then the Chidori variants generally access more tensor entries compared to
the Fiber variants. Therefore, with the same sampling constant v, Chidori variants require
more computing time in each iteration. Nevertheless, Chidori variants can tolerate more
dense outliers with these extra entries than Fiber variants. We will further investigate their
computational efficiency and practical performance in section 4.

Remark 3.1. The tensor CUR decomposition represented in Theorem 1.4(i) is also in
Tucker decomposition form. We can efficiently convert the tensor CUR decomposition to
HOSVD with Algorithm 3.2 [10]. In contrast, converting HOSVD to a tensor CUR decompo-
sition is not as straightforward.

4. Numerical experiments. This section presents a set of numerical experiments that
compare the empirical performance of RTCUR with several state-of-the-art robust matrix/
tensor PCA algorithms, including RGD [13], the alternating direction method of multipliers
(ADMM) [43], accelerated alternating projections (AAP) [6], and iterative robust CUR
(IRCUR) [9]. RGD and ADMM are designed for the TRPCA task, while AAP and IR-
CUR are designed for the traditional matrix RPCA task. Note that RGD is Tucker-rank
based and that ADMM is tubal-rank based.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/13/24 to 68.205.67.173 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ROBUST TENSOR CUR DECOMPOSITIONS 237

In each subsection, we evaluate the performance of all four proposed variants: RTCUR-FF,
RTCUR-RF, RTCUR-FC, and RTCUR-RC. However, for the network clustering experiment,
we only use fixed sampling (RTCUR-FF and RTCUR-FC). As the coauthorship network is
highly sparse, the resampling variants may diminish the core tensor with a high probability.

The rest of this section is structured as follows. In subsection 4.1, we present two syn-
thetic experiments. Specifically, subsection 4.1.1 examines the empirical relationship between
outlier tolerance and sample size for RTCUR, while subsection 4.1.2 demonstrates the speed
advantage of RTCUR over the state of the art. In subsections 4.2 and 4.3, we apply RTCUR
to two real-world problems, namely, face modeling and color video background subtraction. In
subsection 4.4, we apply RT'TCUR on network clustering applications and analyze the obtained
results.

We obtain the codes for all compared algorithms from the authors’ websites and hand-
tune the parameters for their best performance. For RTCUR, we sample |I;| = vr;log(d;)
(and |J;| = vrilog(]],; d;) for Fiber variants) for all ¢, and v is called the sampling constant
throughout this section. All the tests are executed from Matlab R2020a on an Ubuntu work-
station with an Intel 19-9940X CPU and 128 GB RAM. The relevant codes are available at
https://github.com/huangl3/RTCUR.

4.1. Synthetic examples. For the synthetic experiments, we use d :=dy =--- =d, and
r:=rmry =---=r, The observed tensor X is composed as X = L* + §*. To generate n-
mode £* € R %4 with Tucker rank (r,---,7), we take £* =) x1 Y] Xg .-+ x,, Yy,, where

Y € R and {Y; € R} are Gaussian random tensors and matrices with standard
normal entries. To generate the sparse outlier tensor S*, we uniformly sample |ad™| entries

to be the support of §*, and the values of the nonzero entries are uniformly sampled from the
interval [—E(|L} ), E(|LF )]

e i

4.1.1. Phase transition. We study the empirical relation between the outlier corruption
rate a and sampling constant v for all four variants of RTCUR using 300 x 300 x 300 (i.e., n=3
and d = 300) problems with Tucker rank (r,r,r), where r = 3,5, or 10. We set the thresholding
parameters to ¢(0) = I£]|co and v = 0.7 and use the stopping condition e?) <1075, A test
example is considered successfully solved if ||[£* — L*¥)||g/||£*||r < 1072, For each pair of a
and v, we generate 10 test examples.

We summarize the experimental results in Figure 4, where a white pixel means that all
10 test examples are successfully solved under the corresponding problem parameter setting
and a black pixel means that all 10 test cases fail. On observation, one has that the Chidori
variants RTCUR-FC and RTCUR-RC can recover the low-rank tensor with a higher outlier
rate than the Fiber variants with the same sampling constant v. This expected behavior can be
attributed to the fact that Chidori sampling accesses more data from the tensor with the same
v, leading to more stable performance compared to Fiber sampling. Furthermore, RTCUR-RF
also outperforms RTCUR-FF, as resampling the fibers allows access to more tensor entries
throughout the process. This phenomenon holds true for the Chidori variants as well, where
RTCUR-FC and RTCUR-RC exhibit very similar phase transitions. Additionally, we observe
that smaller values of r tolerate more outliers, as larger values of » make the TRPCA task
more complex. Increasing v improves outlier tolerance, but at the cost of larger subtensors
and more fibers to be sampled, resulting in longer computational time.

) Hln
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Figure 5. Runtime-versus-dimension comparison among variants of RTCUR, RGD, IRCUR, and AAP on
tensors with size d X d X d and Tucker rank (3,3,3). The RGD method proceeds relatively slowly for larger
tensors, so we only test the RGD runtime for tensors with a size smaller than 300 for each mode.
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Figure 6. Runtime-versus-relative error comparison among RTCUR-F, RTCUR-R, AAP, and IRCUR on
tensors with size 500 x 500 x 500 and Tucker rank (3,3,3).

modeling task using data from the UT Dallas database [50]. The dataset consists of a face
speech video of approximately 5seconds with a resolution of 360 x 540. We extract 10
nonsuccessive frames and mark a monochromatic block on different color channels for 10
distinct frames per color. This process results in a total of 40 color frames, including the
original 10 unmarked frames. As a monochromatic frame usually does not have a low-rank
structure, we vectorize each color channel of each frame into a vector and construct a (height
- width) x 3 x frames tensor. The targeted Tucker rank is set as r = (3,3,3) for all videos.
For those matrix algorithms, including AAP and IRCUR, we unfold the tensor to a (height -
width) x (3 - frames) matrix, and rank 3 is used. We set RTCUR parameters v = 2, ¢(©) = 255,
~=0.7 in this experiment.

Figure 7 presents the test examples and visual results; Table 2.1 summarizes the runtime
for each method applied on this task. One can see that the matrix-based methods fail to detect
the monochromatic outlier blocks since they lose the structural connection between color
channels after matricization, albeit they spend less time on this task. In contrast, all variants
of RTCUR successfully detect the outlier blocks. The other two TPRCA methods, ADMM
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Figure 7. Visual results for robust face modeling. The top row contains the corrupted faces, the second and
third rows are the recovered faces and detected outliers outputted by RTCUR-FF, the fourth and fifth rows are
results from RTCUR-RF, the sizth and seventh rows are results from RTCUR-FC, the eighth and ninth rows
are results from RTCUR-RC, the tenth and eleventh rows are results from ADMM, the twelfth and thirteenth
rows are results from AAP, the fourteenth and fifteenth rows are results from IRCUR, and the sizteenth and
seventeenth rows are results from RGD.

and RGD, partially detect the outlier blocks. Since ADMM is based on tubal decomposition,
it is not a surprise to see different performances in this experiment. The empirical results in
this section verify our claim in Remark 2.5.

4.3. Color video background subtraction. We apply the four variants of RT'CUR, and the
aforementioned tensor/matrix RPCA algorithms on the color video background subtraction
task. We obtain five color video datasets from various sources: Shoppingmall [34], Highway [4],
Crossroad [4], Port [4], and Parking-lot [49]. Similar to subsection 4.2, we vectorize each frame
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Table 2.1
Runtime comparison (in seconds) for the face modeling task. The matriz RPCA approaches (AAP and
IRCUR) meet the termination condition earlier with the unfolded tensor, but they failed to detect the artificial
noise in this task (see Figure 7).

METHOD RUNTIME METHOD RUNTIME
RTCUR-FF 2.247 ADMM 30.61
RTCUR-RF 2.289 AAP 1.754
RTCUR-FC 2.319 IRCUR 1.307
RTCUR-RC 2.701 RGD 1430.8

Table 3.2

Video information and runtime comparison (in seconds) for color video background subtraction task.

ViDEO sizE  RTCUR-FF RTCUR-RF RTCUR-FC RTCUR-RC ADMM AAP IRCUR

Shoppingmall 256 x 320 x 3 X 3.53 5.83 10.68 10.75 783.67 50.38 15.71
1250

Highway — 240x320x3x440 3.15 5.47 6.80 7.55 168.55 18.10  3.87

Crossroad 350 %640 x 3 x 600 6.15 13.33 8.46 12.01 1099.3 97.85 35.47

Port 480 x 640 x 3 x 11.04 18.34 26.63 27.93 2934.3 154.30 71.64
1000

Parking-lot 360 x 640 x 3 x 400 3.79 4.52 6.62 8.14 854.50 34.70 17.38

and construct a (height - width) x 3 x frame data tensor. The tensor is unfolded to a (height -
width) x (3 - frame) matrix for matrix RPCA methods. We use Tucker rank (3, 3, 3) for tensors
methods and rank 3 for matrix methods. We exclude RGD from this experiment because the
disk space required for RGD exceeds our server limit. Among the tested videos, Shoppingmall,
Highway, and Parking-lot are normal-speed videos with almost static backgrounds. Crossroad
and Port are outdoor time-lapse videos; hence, their background colors change slightly between
different frames. We observe that all tested algorithms perform very similarly for videos with
static backgrounds and produce visually desirable output. On the other hand, the color of
the extracted background varies slightly among different algorithms on time-lapse videos.
Since the color of the background keeps changing slightly for the time-lapse videos, we cannot
determine the ground-truth color of the background; hence, we do not rank the performance of
different algorithms. The runtime for results along with video size information are summarized
in Table 3.2. By comparing the runtime of four variants of RTCUR, we can observe that the
experiment result generally agrees with the analysis on computational efficiency in subsection
3.4. All RTCUR variants accomplish the background subtraction task faster than the guideline
methods. In addition, we provide some selected visual results in Figure 8.

4.4. Network clustering. In this section, we apply our RTCUR algorithm and the TR-
PCA algorithm RGD from [13] for the community detection task on the coauthorship network
data from [33] and compare their results and efficiency. This dataset contains 3248 papers
with a list of authors for each paper (3607 authors in total) and hence could naturally serve as
the adjacency matrix for the weighted coauthorship graph. The original paper for this dataset
tests a number of community detection algorithms, including network spectral clustering, pro-
file likelihood, the pseudolikelihood approach, etc., on a selected subset with 236 authors and
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e For any two connected authors (i,7), which means that author i and j have worked
together for at least two papers, we set Te (i) = Te(ij,j) = 1-

e For any three pairwisely connected authors (7,7, k), we set Te (i k) = 1. Notice that
these three authors may not appear in one paper at the same time, but each pair of
them have worked together for at least two papers.

Here &(S) denotes all permutations of the set S. Therefore, the adjacency tensor T is
symmetric. Now we apply RTCUR with different sampling constants as well as the TRPCA
algorithm RGD [13] to learn the low-rank component £ with Tucker rank (4,4,4), which is
used to infer the communities in this network. Then we apply the SCORE algorithm [33] as
the clustering algorithm on the low-rank tensor £. We use SCORE instead of other traditional
clustering algorithms, such as spectral clustering, because SCORE could mitigate the influence
of node heterogeneity [33]. We plot the results from each TRPCA algorithm in Figure 9.

Fist Principal Component of SCORE result

-

Fist Principal Component of SCORE rosult Fist Principal Component of SCORE result

Figure 9. Three communities detected in the “High-Dimensional Data Analysis” coauthorship network with
SCORE [33], RGD [13], and RTCUR. Top left: Result from SCORE on original tensor. Top right: Result from
RGD and SCORE. Middle left: Result from RTCUR-FF and SCORE, with v = 6. Middle right: Result from
RTCUR-FC and SCORE, with v=2. Bottom left: Result from RTCUR-FC and SCORE, with v==6. Bottom
right: Result from RTCUR-FC and SCORE, with v =11. All TRPCA methods are applied on the adjacency
tensor T with Tucker rank = (4,4,4).
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The clustering of the “High-Dimensional Data Analysis” coauthorship network is an un-
supervised task, which means that the ground truth of labeling an author with a certain
community does not exist. Therefore, we do not focus on qualitatively evaluating each result,
but we present the new findings from higher-order interactions among coauthors and ana-
lyze the results from different choices of parameters. Previous studies on this coauthorship
network generally provide three clusters with names: the “Carroll-Hall” group, the “North
Carolina” community, and the “Fan and Others” group [13, 33]. Among them, the “Carroll-
Hall” group generally includes researchers in nonparametric and semiparametric statistics,
functional estimation, and high-dimensional statistics; the “North Carolina” group generally
includes researchers from Duke University, the University of North Carolina, and North Car-
olina State University; and the “Fan and Others” group includes primarily the researchers
collaborating closely with Jianqging Fan or his coauthors and other researchers who do not
obviously belong to the first two groups [13]. For conciseness, we will make use of the same
name of each group as in previous studies on this coauthorship network.

The top two plots of Figure 9 are existing results from [13]. With SCORE as the cluster-
ing method, the original tensor and the RGD output both successfully reveal the two groups:
the “Carroll-Hall” group and a “North Carolina” community, with a slightly different clus-
tering result for researchers who do not obviously belong to one group, such as Debajyoti
Sinha, Michael J Todd, and Abel Rodriguez. One can observe that Fiber RTCUR detected
the “Carroll-Hall” group. However, Fiber RTCUR labels most authors not having a strong
connection with Peter Hall, Raymond Carroll, and Jianging Fan as the “North Carolina”
community. Similarly, Chidori RTCUR with v =2 generates the center of the “Carroll-Hall”
group as one cluster and categorizes most authors with a lower number of coauthorships and
not coauthored with kernel members into the “Fan and Others” group. We infer that the
tendency to cluster most members into one group is due to insufficient sampling. The coau-
thorship tensor is very sparse, with only about 2% of entries being nonzero, so the feature of
each node may not be sufficiently extracted from Fiber sampling or Chidori sampling with
small v. From the middle two plots, we can observe that most authors in the largest group
have very close first and second principal components in the two-dimensional embedding,
providing the evidence that the algorithm ignored some nonzero entries for nodes with fewer
numbers of connections during the sampling process.

Note that the sampling constant of Fiber sampling should be rlogd times the constant
of Chidori sampling in order to access the same amount of data from the original tensor,
where d denotes the number of authors in this experiment. So we only test the Chidori
sampling with a larger sampling constant on the coauthorship tensor L for efficiency. The
result is shown in the bottom: v = 6 for the bottom left and v = 11 for the bottom right of
Figure 9. Both settings generate the “Carroll-Hall” group with authors having strong ties to
Peter Hall and Raymond Carroll, such as Richard Samworth, Hans-Georg Muller, Anastasios
Tsiatis, Yuanyuan Ma, Yuedong Wang, Lan Zhou, etc. The “Fan and Others” group is also
successfully detected, including coauthors of high-degree node Jianqing Fan, such as Hua
Liang, Yingying Fan, Haibo Zhou, Yong Zhou, Jiancheng Jiang, Qiwei Yao, etc. The sizes
of the three clusters generated from these two settings are more balanced than the result
from RTCUR with smaller v. Therefore, we can conclude that, in this real-world network
clustering task, different choices of sampling constant provide the same core members of each
group, and the group size is more balanced with a larger amount of sampling data at the
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Table 4.3
Runtime comparison (in seconds) of TRPCA algorithms: RGD and RTCUR.

METHOD RUNTIME
RGD [13] 120.5
RTCUR-FF with v=6 3.526

RTCUR-FC with v=2 0.571
RTCUR-FC with v=6 4.319
RTCUR-FC with v =11 7.177

cost of computation efficiency. Table 4.3 shows the runtime for each algorithm and sampling
method.

5. Conclusion. This paper presents a highly efficient algorithm, RTCUR, for large-scale
TRPCA problems. RTCUR is developed by introducing a novel inexact low-Tucker-rank ten-
sor approximation via modewise tensor decomposition. The structure of this approximation
significantly reduces the computational complexity, resulting in a computational complex-
ity for each iteration of O(n2d(rlogd)?) with Fiber CUR and O(nd(rlogd)™) with Chidori
CUR. This is much lower than the minimum of O(rd"™) required by HOSVD-based algorithms.
Numerical experiments on synthetic and real-world datasets also demonstrate the efficiency
advantage of RTCUR against other state-of-the-art tensor/matrix RPCA algorithms. Ad-
ditionally, the fixed sampling variants of RTCUR only require partial information from the
input tensor for the TRPCA task.
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