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ABsTRACT. We isolate a class of groups — called lossless groups — for which
homotopy classes of G-N« operads are in bijection with certain restricted transfer
systems on the poset of conjugacy classes Sub(G)/G.
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1. INTRODUCTION

The concept of an N, operad, as introduced by Blumberg—Hill in [BH15|, provides
an equivariant analogue of E. operads which captures multiplicative norm maps
on equivariant commutative ring spectra. Further work by various authors proved
that homotopy category of N, operads can be identified with far simpler structures
called indexing systems [BP21, GW18, Rub2lal. This was then distilled into the
identification of transfer systems which are purely combinatorial representations of
No operads on the subgroup lattice of the group in question [BBR21, Rub21b|. This
has led to computable approaches to understand the structures of N operads for a
given group.

In [BBR21], the collection of No, operads for the cyclic groups C,» were classified
via the use of transfer systems on the lattice Sub(Cpn) = [n]. This concept was
abstracted in [FOO*22] where the notion of transfer systems was developed for an
arbitrary finite poset, and shown in particular to be in bijection with weak factor-
ization systems when the poset was moreover a complete lattice. This approach has
already provided fruitful results such as classifications of model structures on total
orders in [BOOR22|.

This abstraction provides a strict generalization. Indeed, in [Jak74], those lattices
L which arise as Sub(G) for an arbitrary group G are classified (this was refined to
the Abelian case in [Conll]). For example, the lattice in Figure 1 does not appear
as Sub(G) for any G.
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FIGURE 1. A lattice which is not of the form Sub(G) for any G.

In this paper, we move back to the roots of the classification of N, operads, with
a view to improve the computational tools available. In particular, we will make
the first serious foray into the realm of non-Abelian groups. In the definition of
No operads, conjugation must be taken into account. One may naively hope that
this is superfluous, and that one can just work with transfer systems on the poset
Sub(G)/G, that is, the collection of subgroups up to conjugacy. This, however, does
not work in general.

Indeed, this is already noted in an example of Rubin [Rub21b], as we now recall.
If one considers the symmetric group &4, then there are three conjugate copies of
D, (the dihedral group of order 8) living inside it. Moreover, there are three double-
transpositions in &4 which generate three conjugate copies of Co. It follows that
to define a transfer system for Sy it is not enough to just declare that we have the
relation Cy R D4, we must also keep track of which copies of Cy are related to which
copies of Dy, something that is lost when working up to conjugacy.

There are cases, however, where it is possible to work up to conjugacy; again, such
an example is observed by Rubin [Rub21b|. Moving down in the world of symmetric
groups, consider G = &3. The subgroup lattice here takes the form displayed in
Figure 2.

F1GURE 2. The lattice Sub(G) for G = S3. A red node is a copy of
Cs, while the blue node is a copy of Cs.

The key point is that we can treat all copies of Co as essentially being the same
subgroup. We refer the reader to Definition 2.1 for the definition of a transfer system
for what follows. Suppose that we have a transfer system with the relation 1R ((12)).
As transfer systems are required to be closed under conjugation, this implies that
we necessarily have 1R (1) for every transposition 7. Dually if we have ((12)) R S3
then we also have (1) R G5 for every transposition 7. Next, we use that fact that in
a transfer system if we have H R K and LR K then we also have (H N L)RK. In
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particular, if we remember that we really have three distinct copies of Co, it follows
that if we have ((12)) R ©S3, then we also have ((23)) R S3, and as such we have
1R S5 by this intersection property.

It turns out that this is the only condition that one needs to impose in this case.
So we may do exactly as we want, study transfer systems on Sub(G)/G, which is of
the form Figure 3.

FiGURE 3. The lattice Sub(G)/G for G = S3. The red node is a
copy of Cy up to conjugacy, while a blue node is the copy of Cs.

Any transfer system on this lattice (of which there are 10) lifts to a transfer system
for Sub(G) when we additionally satisfy that whenever we have @ R S3 we also have
1R S3. It turns out that there are 9 such transfer systems.

The goal of this paper is to isolate a class of groups for which G-transfer systems
can be explicitly characterized as certain restricted transfer systems on the poset
Sub(G)/G in this fashion. The class of groups that we will isolate here are the lossless
groups (see Definition 2.6). Not only does this provide a non-trivial structural result,
it also equips us with powerful computational tools to classify N, operads for a wide
range of non-Abelian groups, and provides a better conceptual understanding of the
structures involved.

For example, let us assume that we wish to study the collection of G-N,, operads
for G = Dg. The lattice that we need to consider, Sub(Dy), is displayed in Figure 4.

FIGURE 4. The lattice Sub(G) for G = Dg. The colored nodes in the
rows indicate different conjugacy classes of subgroups.

Hoping to find patterns or structure on this lattice is a daunting task. However,
the results presented here will allow us to instead explore structure in the much



4 SCOTT BALCHIN, ETHAN MACBROUGH, AND KYLE ORMSBY

more manageable — and human friendly — Sub(G)/G as displayed in Figure 5.
In [BMO22] we shall undertake this exploration, and provide a recursive algorithm
for computing N operads for the dihedral groups D= for alln > 0 (p # 2).

F1GURE 5. The lattice Sub(G)/G for G = Dg. The coloring of the
nodes corresponds to the coloring in Figure 4.

In Section 2 we will introduce the main object of study of this paper, the lossless
groups, and prove that there is a bijection between G-transfer systems for a lossless
group G and liftable transfer systems on Sub(G)/G. We record the main theorem
here.

Theorem (Corollary 2.14). Let G be a lossless group. Then there is a bijection be-
tween homotopy classes of G-N« operads and liftable transfer systems on Sub(G)/G.

In fact, in a sense made precise in Section 2, the above theorem characterizes
lossless groups.

We then continue in Section 2.2 and prove that many groups of interest are in
fact lossless. In Section 3 we direct our attention to a particularly nice class of
lossless groups, namely the metacyclic Frobenius groups. For these groups we have
a detailed understanding of both the form of Sub(G)/G and the lifting conditions
required to determine a G-transfer system. We apply this theory in Section 4 to
demonstrate how the theory aids computations. Finally, in Section 5 we outline
a potential strategy for dealing with lossy groups. In particular we shall focus on
the case of G = SLy(F,) which is an important family of groups in the study of
topological modular forms with level structures [HL16].

Conventions. Throughout, we shall use the following conventions for group theory:

H < G designates H as a subgroup of G.

N < G designates N as a normal subgroup.

If g € G then 8H := gHg™! (thus §("H) = 8" H for all g,h € G).

For G a group we write Sub(G)/G for the poset of conjugacy classes of
subgroups of G.

e For n > 2, we write D,, for the dihedral group of order 2n.
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2. TRANSFER SYSTEMS ON LOSSLESS GROUPS

In this section we will introduce the class of lossless groups, which allow us to
study G-transfer systems using only categorical transfer systems on Sub(G)/G. After
proving the basic structural results about these groups, we identify several simple
criteria for when a group is lossless, and also provide several examples of how groups
can fail to be lossless.

2.1. General results. We first recall the definitions of G-transfer systems and cate-
gorical transfer systems. We refer the reader to [BBR21, FOO*22]| for further details.

Definition 2.1. Let G be a finite group. A (G-)transfer system is a relation R on
Sub(G) refining inclusion satisfying the following:

(reflexivity) HR H for all H < G;

(transitivity) KR H and LR K implies L R H;

(closed under conjugation) K R H implies that SK R 8H for all g € G;
(closed under restriction) KR H and L < H implies (KNL) R L.

Proposition 2.2 ([BBR21]). Let G be a finite group. Then there is a bijection
between the set of transfer systems on Sub(G) and the set of G-N operads.

In [FOO*22|, a notion of an abstract categorical transfer system was introduced
for an arbitrary poset, but with a particular focus on when the poset in question is
a lattice. In fact, despite presenting the definition for general posets, the authors
only make serious use of their definition in the setting of lattices. Since Sub(G)/G
may not be a lattice when G is non-commutative, we are forced to think seriously
about more general posets. The definition we present below is not equivalent to
the definition given in [FOO*22|, since we require restriction closure for arbitrary
maximal lower bounds, rather than just when a unique meet exists. However, it is
straightforward to verify the two definitions coincide when the poset is a lattice. For
an element x in some poset P, let x! denote the down-set of x in P, i.e. the set of
all y < x.

Definition 2.3. Let P = (P, <) be a poset. A (categorical) transfer system on P
consists of a partial order R on P that refines < and such that whenever x R y and
z <y, then for all maximal w € x! Nz} we have w R z.

Remark 2.4. Using this definition, Theorem 4.13 in [FOO*22| (categorical transfer
systems on a lattice are in natural bijection with weak factorization systems) can
be generalized to arbitrary posets. This gives some evidence that our definition is
the “morally correct” one for non-lattice posets. More pragmatically, the stronger
definition is necessary to make Lemma 3.1 work.
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Warning 2.5. Until this point in the literature, only transfer systems on Abelian
groups have been seriously considered. In this case, G-transfer systems are in bijec-
tion with categorical transfer systems on Sub(G) = Sub(G)/G, and as such there is
no distinction to be made. We are primarily concerned with non-Abelian groups in
this paper, and as such, one needs to be careful what they mean.

We now introduce the notion of a lossless group. This definition was isolated to
capture exactly the groups needed for our applications, and we have been unable to
find this class of groups studied previously in the literature.

Definition 2.6. A lossless group is a group G such that for all pairs of subgroups
K < H such that 8K < H for some g € G, there exists some h € Ng(H) such that
hK =8K. A group which is not lossless will be called lossy.

Remark 2.7. An equivalent succinct way of phrasing this definition is that for all
H < G, the fusion of subgroups of H is controlled by Ng(H). Note that we do
not require fusion to be controlled on elements as is common in group theoretic
literature. This corresponds in the previous definition to the fact that we only
require h~'g € Ng(K), rather than requiring h~'g € Cg(K).

In the following definition, [H] denotes the conjugacy class of a subgroup H < G.
We also adopt the notational convention of writing K — H € R as shorthand for
K R H; we find this notational flexibility useful, especially as the notation for a given
transfer system becomes more complex.

Definition 2.8. Let G be a group and n: Sub(G) — Sub(G)/G be the quotient
map of posets.

e For a categorical transfer system R on Sub(G)/G, we define 771 (R) to be the
relation on Sub(G) such that K — H € n~'(R) if and only if [K] — [H] € R.
We then define 7*(R) to be the G-transfer system generated by 771 (R).

e For a G-transfer system R, we define 7,(R) to be the relation on Sub(G)/G
where [K] — [H] € n.(R) if and only if there exist some pair of subgroups
K’ < H’ with [K] = [K’] and [H] = [H’], such that K’ - H' € R.

We start with an observation that we can push any G-transfer system to a cate-
gorical transfer system on Sub(G)/G provided that G is lossless.

Lemma 2.9. Let G be a lossless group. Then for all G-transfer systems R, n.(R)
is a categorical transfer system on Sub(G)/G.

Proof. Let R" = m.(R). Suppose [K]R’'[H]R’[L] and let there be lifts (i.e., repre-
sentatives in the conjugacy class) KR H" and H” R L’. Then [H'] = [H] = [H"]
implies we can find g € G for which 8H’ = H”. Then 8K’ R L’ is a lift of [K] — [L].
Thus R’ is transitive. Note that this part does not use the assumption that G is
lossless.

Now suppose [K]R’[H] and [L] < [H], and suppose [M] is maximal among
[M] < [K] and [M] < [L]. We can assume without loss of generality that K R H is
alift and L < H and M < K. Let g € G such that 8M < L. Since G is lossless we can
assume g € Ng(H). Thus 8K R H and $M < 8KNL. But [SKNL] < [K],[L], so by
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maximality 8 M must be conjugate to 8K N L, and hence for order reasons we have
8M =8K N L. But since R is a transfer system we have SM R L as 8M = (8K N L),
and hence [M]R’[L]. m|

Proposition 2.10. If G is lossless then 7* 4 m, is a Galois connection between G-
transfer systems and categorical transfer systems on Sub(G)/G. Furthermore, the
unit of this adjunction is the identity, i.e., for all G-transfer systems R we have

R =11 (n.(R)) = n*(7.(R)).

Proof. Let R be a G-transfer system and R’ a categorical transfer system on Sub(G)/G.
By definition, R > 7*(R’) if and only if R > 771 (R’) if and only if [K] R’ [H] implies
KRH. On the other hand, we have n,(R) > R’ if and only if [K] R’ [H] implies
there exists some K’ < H’ with [K’] = [K] and [H’] = [H] such that K'"R H’.

Thus we need to show K’R H’ implies KR H. Or in other words, we need to
show that if G is lossless, then for any G-transfer system R and any two pairs
K < H, K’ < H’ such that [K] = [K’] and [H] = [H’], we have KR H if and only
if KR H'. By symmetry we can suppose K R H and we want to show this implies
K'RH’. But [H] = [H’] implies by definition we can find some g € G such that
8H = H’, and by conjugation closure we have 8K R 8H, so we might as well assume
H = H'. Let h € G such that "K = K’. Then we have K,"K < H, so since G is
lossless we can assume h € Ng(H). But then again using conjugation closure we
have (K’ ="K)R ("H = H = H’) as claimed.

From the definition of 771(=), this also shows R = 7~ (n,(R)) for any G-transfer
system R. Since 7*(R’) is defined to be the smallest G-transfer system containing
a7 1(R’) and R is a G-transfer system by definition, this also implies R = 7*(7.(R))
and hence the unit is the identity. O

Corollary 2.11. If G is lossless then every G-transfer system can be lifted from a
categorical transfer system on Sub(G)/G.

We note that a strong converse to this corollary also holds:

Proposition 2.12. Let G be an arbitrary (finite) group. If every G-transfer system
can be written as 7n*(R) for some arbitrary relation R on Sub(G)/G, then G is
lossless.

Proof. Let S be some set of arrows in Sub(G), and let R be the G-transfer system
generated by S. By the explicit construction of the transfer system generated by
a set of arrows given in [Rub21b, Appendix B|, one can show that K - H € R
necessarily implies that there must exist some K’ — H’ € S and some g € G such
that K < 8K’ and H < 8H'.

Now suppose K, 8K < H, and let R be the G-transfer system generated by K — H.
Suppose R = n*(R’). Since n*(R’) is generated by 7~1(R’), there must be some
K’ — H' € 77'(R’) and some h € G such that K < "K’ and H < "H’. But
also R is generated by § = {K — H}, so there must exist some k € G such that
K’ < KK and H’ < ¥H’. For order reasons this forces K = "K’ and H = "H’, so
(K] = [H] =[K'] - [H'] e R".
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But we also have [8K] — [H] and [K] — [H] € R’ and [H] = [K], so by definition
of 771(R’) we must have 8K — H € R. Thus we can find & € G such that 8K < "K
and H < "H, and again for order reasons this forces 8K ="K and H = "H, i.e., K
and 8K are conjugate by way of h € Ng(H). Since K,8K < H was arbitrary, this
shows G is lossless. O

Remark 2.13. By Proposition 2.10 and the general theory of Galois connections,
when G is lossless we have a bijection between G-transfer systems and categorical
transfer systems R on Sub(G)/G such that R = m,.(n*(R)). We call such transfer
systems liftable. For example, considering G = S3, as mentioned in the introduction
a categorical transfer system is liftable if and only if whenever we have 7 — G3
for any transposition 7 we also have 1 — &3 (c.f., Figure 3 and the surrounding
discussion).

In general the condition R = m,.(n*(R)) is not very evocative. In Lemma 3.1 we
give a more concrete set of conditions for a categorical transfer system to be liftable,
but for general (lossless) G these conditions can still be rather opaque and difficult
to verify. In Section 3 we will consider some special cases where the lifting conditions
are simple enough to be visually intuitive, like in the case of G = G3.

The following corollary summarizes the results of this section.

Corollary 2.14. If G is a lossless group, then the function n* from liftable transfer
systems on Sub(G)/G to transfer systems for G (i.e., homotopy classes of G-N
operads) is a bijection; furthermore, for a general finite group G, bijectivity of 7*
(when restricted to liftable transfer systems) implies that G is lossless.

2.2. Examples and counterexamples of lossless groups. We continue with
some observations regarding lossless groups, and provide some non-trivial examples
of interesting families of lossless groups. Note that clearly any Abelian group is
lossless.

In general it appears that the class of lossless groups is rather poorly behaved
under group-theoretic operations. However, we can prove that lossless groups at
least play nicely with quotients.

Lemma 2.15. Any quotient of a lossless group is lossless.

Proof. This follows directly from the standard equivariant poset isomorphism be-
tween Sub(G/N) and the interval [N, G] € Sub(G)" for all N < G. O

Remark 2.16. The product of lossless groups can be lossy. Indeed, consider the group
G = Cy X Ay, for which Figure 6 displays Sub(G)/G.

In G we have a conjugacy class [(C2)?] which contains only two copies of [Cy]
displayed in red in Figure 6. Since each (C3)? contains three copies of Cs, this implies
the existence of some H = (C3)? which contains two conjugate copies of Cy, K and
8K. However, the normalizer of (C3)? is (C)?, which is Abelian and hence K, 8K
cannot be conjugate in (Co)® = Ng(H). That is, Cy X A4 fails to be lossless even
though Cy and Ay are lossless.

Heuristically it seems very likely that being lossless does not imply that all (even
normal) subgroups are lossless. Indeed, if K,8K < H < L < G are such that K,8K



LIFTING No OPERADS FROM CONJUGACY DATA 9

[Ca x Ay4]
[Cel [A4] [(C2)%]
[Cs] [(C2)?] [(C2)?] [(C2)?]
[C2] [C2] [Ca]

F1GURE 6. The structure of Sub(G)/G for G = Cy X A4.

are not conjugate in Np(H) (so in particular L is definitely not lossless), then it
may still be the case that K,8K are conjugate in Ng(H) (so G might be lossless).
However the authors have been unable to find an explicit example of a lossless group
with a lossy subgroup.

A substantial class of examples of lossless groups comes from the following ob-
servation. Recall that a T-group is a group in which every subnormal subgroup is
normal, i.e., K < H and H < G implies K < G [Rob96, §13.4]. A subgroup K < G
is pronormal if for all g € G, K and 8K are conjugate in (K,8K) [DH92, §1.6]. We
note that if K,8K < H then (K,8K) < H < Ng(H), so if every subgroup of G is
pronormal then G is lossless.

Before we continue, let us recall the theory of Hall subgroups, and Hall’s theorem,
which can be seen as a generalization of Sylow’s theorem in the solvable case.

Definition 2.17. A Hall subgroup of a group G is a subgroup whose order is coprime
to its index. If & is a set of primes, then a Hall w-subgroup is a subgroup whose order
is a product of primes in 7.

Theorem 2.18 (Hall’s Theorem [Hal28|). Let G be a finite solvable group and m any
set of primes. Then G has a Hall n-subgroup, and any two such Hall m-subgroups
are conjugate. Moreover, any subgroup whose order is a product of primes in m is
contained in some Hall m-subgroup.

Proposition 2.19. Any (finite) solvable T-group is lossless.
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Proof. A theorem of Peng tells us that a group G is a solvable T-group if and
only if every p-subgroup of G is pronormal, and in this case G is in fact supersolv-
able [Pen69]. We claim that in this case all subgroups of G are pronormal, and
hence G is lossless. This result seems to be well-known among group theorists (see,
e.g., [FT22, dGV00, KS06]), but the authors of the present paper were unable to
find a proof in the literature so we include one here.

Suppose that G is a (super)solvable T-group, and let K < G. We will prove by
induction on the number of prime divisors of |K| that K is pronormal. By Peng’s
theorem this holds in the case where |K| only has a single prime divisor. Since G
is supersolvable, K < G is also supersolvable, so K has a Sylow p-subgroup P < K
and a normal Hall p’-subgroup § << K for some p. In particular, P < Ng(S). By
induction we can assume S and P are both pronormal in G. By [Ros67, 1.8|, this
implies K = SP is pronormal in G. O

Although the solvable T-groups form a fairly large class of groups, this class no-
tably excludes most interesting p-groups. Indeed, since every subgroup of a nilpotent
group is subnormal, a p-group is a T-group if and only if every subgroup is normal, so
the only non-Abelian p-groups obtained this way are groups of the form Qg% (Z/2)",
where Qg is the ordinary quaternion group [Ded97|. In light of this, the remainder of
this section will largely focus on p-groups and determining conditions under which
a p-group is lossless.

The following result is trivial, but will show that Example 2.21 provides a minimal
example of lossy p-groups.

Proposition 2.20. Let G be any p-group of order at most p3. Then G is lossless.

Proof. Suppose K,8K < H. We want to show K,8K are conjugate in Ng(H). We
can assume K < H since otherwise K = 8K and there’s nothing to show. Since G is
nilpotent we have H < Ng(H), and we're already done if Ng(H) = G, so we must
have [G : H] > p2. But if |G| < p? then this forces K = {e} = K so there’s nothing
to show. O

Example 2.21. Let p # 2 and let N = (Z/p)>. Let a generator of T = C,, act on N
by the matrix

A=

S O =
O ==
— =

Let G = NxT. Note that |G| = p%. Let K = ((0,0,1)) € N and L = {(0,0,1), (1,1,1)) C
N. Let g € T be a generator. Then K,8K < L, but Ng(L) = N is Abelian and hence
K # 8K cannot be conjugate in Ng(L). Thus G is not lossless.

Remark 2.22. The reason we needed to assume p # 2 in Example 2.21 is because if
p = 2 then the matrix A has order 4 instead of 2. By an exhaustive search one can
show that every group of order 2% is lossless.

We recall for the proof of Proposition 2.23 that a subgroup H of G is said to
be characteristic if every automorphism of G fixes H, that is, ¢(H) = H for every
automorphism ¢ of G.



LIFTING No OPERADS FROM CONJUGACY DATA 11

Proposition 2.23. If G has a cyclic normal subgroup of prime index, i.e., if G is
an extension
1-C,—>G—->C,—1

for some prime p, then G is lossless.

Proof. Let K,8K < H < G, and let N = C,, < G. Since every subgroup of C, is
characteristic, all subgroups of N are normal in G. Thus if K < HNN then K is normal
so K = 8K and there’s nothing to show. Otherwise the quotient H - H/HNN = C),
is non-trivial restricted to K < H, and hence H = K(HN N). Since HNN < N is
normal in G this implies

SH=8(K(HNN))=8KS(HNN)=8K(HNN) < H
and hence g € Ng(H). O

We will now wish to discuss some families of groups which are amenable to the
above result. We will define some of the groups in question as they may not be
standard knowledge. From their description via generators and relations it is clear
that they all have cyclic normal subgroups of order 2.

Definition 2.24.

e The dicyclic group of order 4n, denoted Dic, is defined via generators and
relations as

Dic, := (r,s | r?" =s* = 1, srs = r¥"71).

e The semidihedral group of order 2", denoted SD,, is defined via generators
and relations as

-1 -2
SD, == (r,s | r¥ =s2=1,srs=r¥ 1.

e The modular mazximal-cyclic group of order 2", denoted MM,, is defined via
generators and relations as

-1 -2
MM, = (r,s | r¥ =s2=1srs=r> *1).

Corollary 2.25. Any dihedral group, dicyclic (e.g., generalized quaternion) group,
semidihedral group, or modular maximal-cyclic group is lossless.

Corollary 2.26. If g is a prime power with ¢ =3 mod 4, then the Sylow 2-subgroup
of PSL3(F,) is lossless. Similarly, if ¢ = 1 mod 4 then the Sylow 2-subgroup of
PSU3(F,) is lossless.

Proof. In each of these cases the Sylow 2-subgroup is semidihedral [ABG70]. O

Example 2.27. Let g | ¢(p®)/p = p(p — 1), and let a generator g € T = Cp, act on
N =Z/p? via multiplication by some element in Z/p? of order gp, and let G = N =T.
Let Ny = pN and Ny = p?N. Let K =T9, H= KN, and L = TN». Note that N1, No
are characteristic in N and hence normal in G, so H and L are indeed subgroups of
G.

A computation shows that H is normal in G, but if p # 2 then Ng(K) = Ng(L) =
TNy < G. Thus G is not lossless, showing the assumption that [G : N] is prime in
Proposition 2.23 is essential.
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Proposition 2.28. If the derived subgroup of G has prime order, then G is lossless.

Proof. Let K,8K < H. Since G /G’ is Abelian, any subgroup containing G’ is normal
in G. Thus in particular KG’ is normal, and hence 8K < KG’. Since |G’| = p we have
[KG’ : K] < p, so K is maximal in KG’. Thus if 8K # K then (K,8K) = KG’ and
hence G’ < KG’ < H. Thus H is normal, and as such, there is nothing to check. O

Definition 2.29. A p-group G is said to be extraspecial if its center Z(G) is cyclic
of order p and the quotient G/Z(G) is a non-trivial elementary abelian p-group.

Corollary 2.30. Any extraspecial group is lossless.

Corollary 2.31. For any prime p the subgroup of upper triangular matrices in
GL2(F)p) is lossless.

Proposition 2.32. If gcd(m,p) =1 and G = (Cp)2 = Cyyy, then G is lossless.

Proof. Let K,8K < H. Again any subgroup containing G’ is normal in G. If KNG’ #
1, then by the diamond identity [KG’ : K] = [G’ : G’ N KG’] < p and the same
argument as before applies. Thus we can assume K NG’ = 1, and hence K, 8K are
contained in some p’-Hall subgroups S, S’ of H. Thus we can find some h € H such
that 2§ = §” and hence "K < §’. But S’ is a cyclic group so |"K| = |2K| implies
hK = 8K, and of course h € Ng(H) as required. O

Corollary 2.33. For any prime p the subgroup of upper triangular matrices in
SLa(F)2) is lossless.

Example 2.34. If p = 2,3, or 5, then SLo(F)) is lossless.

In fact, for p = 2,3, 5 the group SLo(F),) satisfies a very strong additional property:
any two isomorphic subgroups are conjugate. We shall say that such a group is
universally lossless. Groups like this are quite useful for identifying “lossless pieces”
of larger groups containing them as subgroups.

Proposition 2.35. Let G be an arbitrary (finite) group, and suppose K,8K < H <
G. Suppose further that H < L < G, where L is a universally lossless group. Then
K and 8K are conjugate in Ng(H).

Proof. Since K = 8K and K,8K < L, by assumption K and 8K are conjugate in L,
so we can assume g € L. Thus since L is lossless and K,8K < H < L, we must have
K and 8K are conjugate in Ny (H) < Ng(H). m|

3. LIFTING CRITERIA

In Corollary 2.14 we saw that for a lossless group G, G-transfer systems are
in bijection with liftable transfer systems on Sub(G)/G. However as discussed in
Remark 2.13, explicitly identifying which transfer systems on Sub(G)/G are liftable
can be extremely difficult in general. In this section we consider some special cases
where the lifting conditions are tangible. We first begin with a generality.
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Lemma 3.1. Let G be a lossless group, and let R be a categorical transfer system
on Sub(G)/G. Then R is liftable if and only if for all [K] R [H] and any K’ < H
with [K’] = [K] we have [K N K']| R [H].

Proof. Suppose R is liftable and K, K’ < H are as in the statement of the lemma.
Then K — H,K’ — H € 7*(R) by definition, so by restriction-closure and transitivity
we have (KNK’') - K’ - H € 7*(R) and hence [K NK'] —» [H] € n.(7*(R)) =R.

Now suppose conversely that R is a categorical transfer system on Sub(G)/G such
that the condition in the statement of the lemma holds. We claim that 771 (R) is a
G-transfer system. Note that if this claim is true then

7(7"(R)) = 7(nH(R) < R < mu(n*(R))

where the first inequality follows directly from the definition of 7, and 7~! and the
last inequality follows from 7* 4 7.

Clearly 771(R) is a conjugation-closed partial order refining <. All we need to
show is that it is restriction-closed. In other words, we need to show that given
K - H e n7'(R) and L < H we have (KNL) — L € 7~'(R). We prove this by
induction on the tuple (K, H,L). That is, assuming the claim is true for all tuples
(K’ H',L") with K’ < K,L’ < L,H’ < H, and at least one of these inequalities is
strict, we want to show this implies the claim for (K, H,L). The base case where
K = H = L is the trivial subgroup holds by reflexivity of R.

By the induction hypothesis with K and H fixed but L’ < L, we can assume
(KNL) - L' e 7' (R) for all L’ < L with KNL < L’. Let M < L such that
[K N L] < [M] and [M] is maximal among [M] < [K],[L]. Let g € G such that
8(KNL) <M. Since G is lossless we can assume g € Ng(L). Thus ¢£'M < L and
[M] = [g_lM], so we can assume without loss of generality that KN L < M.

If M < L, then by the induction hypothesis we have KN L — M € 7~ '(R) and
hence by definition [KNL] R [M]. But since R is a categorical transfer system, [M]
is maximal for [M] < [K], [L] < [H], and [K] R [H], we have [K N L] R[M]R[L],
and hence KNL — L € 171 (R).

On the other hand, if M = L then [L] < [K], so §'L < K for some g € G, and
again since G is lossless we can assume g € Ng(H). Thus K,8K < H and [K| R [H],
so by hypothesis we have [K N 8K] R [H]. By restriction-closure this then implies
[K N8K|R[2K], so KN8K — 8K € 7~ '(R). If 8K < H, then by the induction
hypothesis with K’ = KN8K, H =8K, and L' = L we obtain KN8KNL=KNL —
L € 77'(R). But if 8K = H then also K = H and hence K N L = L so there’s nothing
to show in this case. O

Although Lemma 3.1 is nice in its generality, and is certainly more explicit than
the basic definition, checking it still requires understanding subtle details about the
way that subgroups of G embed into each other. Thankfully, for certain groups the
subgroup structure is nice enough to make this condition particularly explicit. Some
of the results described below hold in greater generality than stated, but the purpose
of this section is mainly illustrative so we avoid excess generality. We recall that,
in essence, a Frobenius group is a transitive permutation group on a finite set such



14 SCOTT BALCHIN, ETHAN MACBROUGH, AND KYLE ORMSBY

that no non-trivial element fixes more than one point, and some non-trivial element
fixes a point. They can be characterized as those groups G possessing a proper,
nontrivial subgroup T (called the Frobenius complement) such that T N 8T is the
trivial subgroup for every g € G \ T. The identity element along with members of
G N\ Ugeg 8T form the Frobenius kernel of G.

Definition 3.2. A metacyclic Frobenius group (mcF group) is a Frobenius group G
such that both the kernel N < G and the complement T < G are cyclic groups.

Remark 3.3. Any mcF group is of the form
G=2Z/n=xT

where T is a cyclic subgroup of (Z/n)* such that x —1 € (Z/n)* for all x # 1 € T.
Conversely every group of this form is an mcF group. For a general mcF group G,
we will assume that we have passed through this bijection, and for clarity, write shall
write N for the group (Z/n). That is, G = N < T.

Remark 3.4. Although not immediately obvious from the definition, one can show
that a group G is metacyclic Frobenius if and only if G is both a metacyclic group
and a Frobenius group, explaining the naming choice. This collection of groups also
implicitly appears in work of Khukhro—-Makareno [KM13a, KM13b|, but the authors
are not aware of any other place that they have been studied.

Example 3.5. Let n be odd. Then the dihedral group D, = Z/n < Z/2 of order 2n
is a mcF group.

Example 3.6. Let p be any prime. Then AGL,(F,) = F, > IF;(,, the group of affine
linear transformations of the finite field F,, is a mcF group. Here we are using

Gauss’s observation that (Z/n)* is cyclic when n = pk.

Definition 3.7. Let K < G. We call K N N the base of K and write KN N = Ng.

Lemma 3.8. Any subgroup K of an mcF group G such that Nx # {e} and K £ N is
itself an mcF group with kernel Ng. If Nx = {e} or K < N then K is a cyclic group.

Proof. This follows immediately from [Fei57, Lemma 2.2]. m]

Lemma 3.9. A subgroup K of an mcF group G is normal if and only if K < N or
Nk =N.

Proof. If Nk = N then K = KN is the preimage of KN/N < G/N, and since G/N =
T is cyclic this implies KN/N < G/N and hence K < G. If K < N then K is
characteristic in N < G and hence again K < G.

Conversely suppose Ng # N and K £ N. Let g € K\ N and h € N\ K. Since N is
cyclic and ord(h) = ord(ghg™'), we can write ghg™' = ™, and since G is Frobenius
and gN # eN € G/N, m — 1 must be a unit mod ord(#). But if K is normal then
Wt = p ™ = (hmlgh)g™! € K and hence h € K, a contradiction. O

Lemma 3.10. Any mcF group G is in particular a solvable T-group, and hence
lossless by Proposition 2.19. Furthermore, any two subgroups with the same order
are conjugate in G.
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Proof. Solvability follows from the fact that G = N T and N, T are cyclic by defini-
tion. The fact that G is a T-group follows directly from Lemma 3.8 and Lemma 3.9.

Now suppose K, K’ < G and |K| = |K’|. Since N is a normal Hall subgroup of
G, we also have |Nkg| = |Nk’| and hence Nx = Nk~ since N is cyclic. Let §,8” be
complementary Hall subgroups of K and K’, respectively. Then we can extend S, S’
to Hall subgroups T,T’ of G, and by Hall’s theorem we can find ¢ € G such that
8T =T’. Then 8§,5’ < T’ are subgroups of the cyclic group T’ and |8S| = |S’|, so
88§ =S8’. Thus gK=g(NKS)=NKS’=K/. O

The main property that makes the lifting conditions for mcF groups simple comes
from the following proposition.

Proposition 3.11. Let G be an mcF group, and let K < G. For all g € G\ Ng(K),
we have K N 8K = Ng.

Proof. Since Nk is a normal subgroup of K, we have Ny < KN 8K for all g € G.
To complete the proof, we show that the existence of x € (K N g_lK) \ Nk implies
that g € Ng(K). Fix such an x. Then ord(x) cannot divide |Nk]|, so after replacing
x with some power we can assume ord(x) is coprime to |Ng|. Let § < K be a
Hall subgroup complementary to Nk such that x € S, and let T < K be a Hall
subgroup complementary to Ng such that gxg™' € 7. Let §” > S and T’ > T be Hall
subgroups of G complementary to N. Then by Hall’s theorem we can find h € G
such that 78S = T’ and since e # gxg™' € €S’ N T’ this implies "85’ N ¢S" # {e}. By
[Fei57], this implies we must have 77 = "8§” = 8§’ Since T is cyclic it has a unique
subgroup of order |T| = |8S|, so this then also implies T = 8S. But then g € Ng(K)
as

8K = &(NkS) = NxT = K.
O

Corollary 3.12. Let G be an mcF group, and R a categorical transfer system on
Sub(G)/G. Then R is liftable if and only if whenever [K] R [H] with Nx # Ny, we
have [Nx| R [H] (or equivalently [Ngx]R [K]).

Proof. By Lemma 3.1, for the if direction we need to check for all K,8K < H that
either K = 8K or K N 8K = Nk, but this follows directly from Proposition 3.11. For
the only if direction we need to check that Nx # Ny implies there exists some g € G
with 8K < H such that Ny = KN8K. But Ng # Ny implies by Lemma 3.9 that K is
not normal in H, and hence by Proposition 3.11 we can find some g € H such that
K N8K = Nk, and of course 8K < $H = H. O

Remark 3.13. We can make this result more visually intuitive as follows. By Lemma 3.10,
the map [K] — (|Nk|,[K : Nk]) is a poset isomorphism Sub(G)/G = Dy X Dr,
where Dy is the lattice of divisors of |N| and Dy is the lattice of divisors of
|G/N| = |T|. Then Corollary 3.12 says that a categorical transfer system R on
Dy x Dr is liftable if and only if whenever (i, j) R (i’, j’) with j’ > j, we must have

G DHRAE,J).
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4. EXAMPLES OF LIFTABLE TRANSFER SYSTEMS
We will now apply the theory presented in this paper to two classes of mcF groups.

4.1. Dihedral groups of prime power order. We begin by considering groups
of the form D« = Z/p* % Z/2 where p is an odd prime; these are mcF groups by
Example 3.5. From Remark 3.13, it follows that Sub(G)/G = [k] x [1] and we shall
consider elements of this lattice as pairs (i, j) where i € [k] and j € [1]. Here [n] is
the totally ordered finite set {0 < 1 < ---n}. It will be useful for us to display this
lattice as the horizontal ladder as in Figure 7.

k+1

FIGURE 7. The lattice [k] x [1].

Figure 8 shows the corresponding subgroups (where we have used square brackets
to denote conjugacy classes where required).

[D1] [Dpl— - [Dpr1]-Dpr

e Cp Cpk—l Cpk

FIGURE 8. The subgroups in the lattice Sub(D ,x)/D .

We can now unravel Corollary 3.12 in this specific example. We need to consider
situations where we have [K]| R [H] with Nx # Ng. This occurs when we move
horizontally on the top row of Figure 7. In this case we require [Ng] R [K] for it to
lift to a transfer system for D« itself. All in all we conclude that the conditions of
Corollary 3.12 correspond to the following in terms of the group:

o If [Dpi]R[Dpj] then CpiR[Dpi] forall 0 <i<j<k.

The following corollary rewords this condition in terms of the categorical transfer
systems on [k] X [1] using Remark 3.13.

Corollary 4.1. A D «-transfer system is equivalent to the data of a categorical
transfer system on [k] X [1] which satisfies the following rule:

*x If (i,1) R (i’,1) for i <i’ then (i,0) R (i,1) for all 0 <i < i’ < k.

Example 4.2. Let us consider the case when k = 1, so that the lattice in question
is [1] X [1]. Then condition (%) of Corollary 4.1 boils down to the single implication
of Figure 9:
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o o (%) e
- |

FIGURE 9. The implications for [1] x [1].

Note that this is exactly the observation of Rubin in [Rub21b| that we recalled in
the introduction. Of the 10 transfer systems on [1] X [1], only one of them does not
satisfy condition (%), namely:

o—0

o0

Example 4.3. We now move to the more exotic case of k = 2 with conjugacy lattice
[2] x [1]. One can compute that there are 68 categorical transfer systems for this
lattice. This time we have three possible options for the pair i < i’ in condition (%)
which are given in Figure 10.

*o——e o (%) e ——e °
= |

° ° ° ° ° °

° oo (x) @ oo
=, |

° ° ° ° ° °

o o o (%3 o e
_—

FIGURE 10. The three restrictions needed for a transfer system on D 2.
Of the 68 transfer systems on [2] X [1], one can computationally verify that 56 of
them are D pg—transfer Systems.

In [BMO22], the authors use these results to produce explicit recursion formulae
for D x-transfer systems.
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4.2. Affine linear transformations of finite fields. In this section we will con-
sider groups of the form AGLy(F,) = F), < F} where p is prime. From Remark 3.13,
it follows that Sub(G)/G = [1] X Sub(Z/(p — 1)). Of course, the prime factorization
of p — 1 follows no apparent rhyme or reason. For the convenience of the reader we
list the first few values in Table 1.

p | Sub(F})
2 [0]
3 [1]
5 [2]
71 [1] x [1]
11 ] [1] x [1]
13 ] [2] x [1]
17 [4]

TABLE 1. The subgroup lattice of F},.

Example 4.4. Consider G = AGL;(F3). Here, the subgroup lattice is [1]x[1]. Then
we are in the exact same case as Example 4.2, which is reassuring as AGL; (F3) = D3.
In particular there are 9 transfer systems for G = AGL (F3).

Example 4.5. The first non-trivial example is G = AGL;(F5), whose subgroup
lattice is [1] X [2]. We warn the reader that this case is not the same as Example 4.3.
Indeed, even though [1] x [2] = [2] x [1], the condition (%) is not invariant under
this. The lattice Sub(G)/G is depicted in Figure 11.

[C4] G
[C2] D5
e Cs

FIGURE 11. The subgroups in the lattice Sub(AGL;(F5))/AGL (Fs).

Applying Corollary 3.12 in conjunction with Remark 3.13 we obtain our lifting
conditions that we collect in Figure 12.
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(1)

o —0 - &0

o o R—
(T2)

° o — e °

° ° ° °.

FIGURE 12. The implications for [1] x [2].

Out of the 68 transfer systems on [1] X [2], 59 of them satisfy condition () and
(F2).

Example 4.6. Our final example is G = AGL; (F7). Here Sub(G)/G = [1]x([1]x[1]),
displayed in Figure 13.

[Csl G
[C2] D7
[Cs] C7xCs
e C7
F1GURE 13. The subgroups in the lattice Sub(AGL; (F7))/AGL (Ey).
As with the previous examples, we apply Corollary 3.12 in conjunction with
Remark 3.13 to obtain our lifting conditions as in Figure 14.
Note again that all other possible relations are implied by these ones due to the
usual axioms for a transfer system.

Out of the 450 transfer systems on [1] x [1] x [1] (c.f., [BBPR21]), one computes
that 400 of these are transfer systems for AGL; (Fr).
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° ) ° °
. . (1) . .
—
e o o e
® ® ° °
° ° ° °
R ($2) o e
=
° ) ° °
° ° ° °
S — ]
L] L] (¥3)
=
° )
° °

FI1GURE 14. The three restrictions needed for a transfer system on AGL(F7).

5. STRATEGIES FOR LOSSY GROUPS

In the previous sections we have explored lossless groups, and shown that they
provide a convenient computational framework for computing transfer systems, es-
pecially when restricted to nicer subclasses such as metacyclic Frobenius groups.
Although we’ve shown in Section 2.2 that several important classes of groups are
lossless, more complicated groups that may arise in practice tend to be lossy. Al-
though lossy groups prevent us from working directly with Sub(G)/G, with some
cleverness it may still be the case that we can obtain simpler representations of
transfer systems for lossy groups. In this final section we speculatively discuss one
possible strategy for dealing with lossy groups in the case of G = SLy(F,) where p
is prime.

If p =2,3, or 5, then we have seen in Example 2.34 that G is lossless, but for
p > 5 these groups are always lossy. On the other hand, if p = +3 mod 8 then
these groups are very close to being lossless. When p = +1 mod 8, the lossy binary
octahedral subgroups add to the lossyness, but even in this case G only has a few
deviations from losslessness. In the speculations that follow we focus on the simple
case of p = +3 mod &8, but with some work it should be feasible to extend our
constructions to work in general. In Figure 15 we provide a schematic for Sub(G)/G
where G = SLo(F13). The general goal is to represent G-transfer systems as a pair
of abstract transfer systems on two small posets related to Sub(G)/G, subject to a
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compatibility condition. For p = +1 mod 8 one would likely need to use more than
two posets, but the same general technique should still apply.

Let H_ = Dic(p-1)/2 be the normalizer of the diagonal matrices, and H, =
Dic(p+1)/2 the normalizer of some maximal non-split torus. (Here Dic, is the di-
cyclic group of order 4n as in Definition 2.24). Let Z = H; N Hy = Cy be the center
of G.

Recall that for a group G, the Frattini subgroup of G is defined as intersection of
all maximal subgroups of G [Gor80, §5.1]. The maximal subgroups of SLy(F,) can
be deduced from [Kin05| since the Frattini subgroup of SLa(F,) is equal to its center.
When p = +3 mod 8, these maximal subgroups are

(1) normalizers of torii, which are dicyclic as described above,

(2) Borel subgroups, which are isomorphic to F, = F; with x € F}; acting on F,
as multiplication by x2, and

(3) binary tetrahedral or binary icosahedral subgroups.

The Borel subgroups are universally lossless, and the binary tetrahedral /icosahedral
subgroups are isomorphic to SLo(F3) and SLo(F5) which again are universally lossless.
Furthermore, if we let € = +1 accordingly as p + € =4 mod &, then the normalizer
of a torus of order p — € is a dicyclic group of order 2(p —€) =4 mod &, and hence is
also universally lossless. Thus the only non-universally lossless maximal subgroups
are the normalizers of torii of order p + €, which are all conjugate to He.

By [CJ09], any two cyclic subgroups of G with the same order are conjugate. The
subgroup H¢ contains three conjugacy classes of subgroups isomorphic to Cy4, and
hence when we embed into Sub(G)/G these three copies of C4 must be mapped to
the same conjugacy class. But if C4,8Cy < K < H¢ is not contained in any other
maximal subgroup (e.g., K = H, itself), then Ng(K) < He, so Cy4,8C4 cannot be
conjugate in Ng(K). This is what causes G to be lossy. On the other hand, when
p = +3 mod 8 this appears to be the only obstacle preventing losslessness.

Let DG be the poset Sub(H¢)/H with an additional top vertex [G]. (For
G = SLy(F13), this is depicted in Figure 16.) Let Ug € Sub(G)/G be the subposet on
objects [H] such that either H = G or H is contained in some universally lossless sub-
group (depicted in Figure 15). We have natural poset maps y?: Dg — Sub(G)/G
and YV : Us — Sub(G)/G. Let Ig = (¢P) ! (imyY) € D (depicted in Figure 16
for G = SLy(F13)). We let ¢P: Ig — D¢ be the canonical embedding, and we let
¢V : I — Ug be the restriction of y. For any abstract transfer system R on Ig,
let ¢P(R) = im(¢P|r) and similarly for ¢Y (R).

Definition 5.1. A split transfer system is a triple of catgorical transfer systems Rp,
Ri, Ry on Dg, Ig, Ug, respectively, such that
(1) if for some [C4] € D we have [C4] R [G], then in fact [C4] R [G] for all

conjugacy classes of [C4] € D¢, and
(2) ¢ (R1) =Rp Nim ¢ and ¢¥ (R;) = Ry Nim¢v.

For every split transfer system (Rp, Ry, Ry), we can define a reflexive relation R
on Sub(G) as follows. Let K < H. If H=G and K < L for some universally lossless
maximal subgroup L, then we set KR H if and only if [K] Ry [G]. If K £ L for any
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such L, then some conjugate 8K of K is contained in H., and we set K R H if and
only if [8K]Rp [G].
So we suppose H < G. If H < L for some universally lossless maximal subgroup
L < G, then we set KR H if and only if [K] Ry [H]. Otherwise we can find some
g € G such that 8H < H.. Then we set KR H if and only if [8K]|Rp [$H].
Conversely, if R is a transfer system on G then we can define (Rp, R, Ry) so
that
(1) Rp = 7.(Rlsub(r,)), where 7: Sub(H¢) — Sub(H¢)/He C Dg,
(2) R[ = RD|IG7 and
(3) Ry = n,(R)|y, where n’: Sub(G) — Sub(G)/G.
The discussion of this speculative section culminates in the following conjecture.
If this conjecture were true, it would provide a constructive method for exploring
No operads for an interesting class of groups which are not lossless. In particular,
one should not despair if their favorite group of equivariance fails to be lossless, one
only needs to figure out a way to exploit the structure of the group itself.

Conjecture 5.2. Fix an arbitrary transfer system R on G = SLy(F,) where p > 5,
p # 11, and p = +£3 mod 8. Then the triple (Rp, Ry, Ry) is a split transfer system,
and R is lifted from (Rp,R;, Ry) using the procedure above.

[SL2(F13)]
[Dicy] [Dicg] [SLa(F3)]  [Ci3 = Ci2]
[Os]  [Dicg] [Dics] [Ci2] [Dici3] [Cy x Cy3 = Cs]
[Ci4] [Cal [Cel [Cas] [C13 > C3]
[C7] [Ca] [C3] [Ci3]

e]

F1GURE 15. The poset Sub(G)/G for G = SLs(Fy3). The non-split
torus appears as Dicy, the split torus as Dicg, C13 > Cq5 is the Borel
subgroup and SLy(F3) is the binary tetrahedral subgroup. The ob-
jects of the sub-poset Ug are highlighted in red.
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[SL2(F13)]
[Dics]

[Os] [C12] [Dics] [Dics]
[C4] [C4] [C4] [Cs]
[Ca] [Cs]

[e]

FIGURE 16. The poset Dg for G = SLo(F13). The objects of the
sub-poset I are highlighted in red.

[ABG70]
[BBPR21]
[BBR21]
[BH15]
[BMO22]
[BOOR22]
[BP21]
[CJ09]
[Conl1]
[Ded97]
[dGV00]

[DHY2]
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