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ARTICLE INFO ABSTRACT

Keywords: The ATLAS sensor onboard the ICESat-2 satellite is a photon-counting lidar (PCL) with a primary mission to map
ICESat-2 Earth’s ice sheets. A secondary goal of the mission is to provide vegetation and terrain elevations, which are
Lidar

essential for calculating the planet’s biomass carbon reserves. A drawback of ATLAS is that the sensor does not
provide reliable terrain height estimates in dense, high-closure forests because only a few photons reach the
ground through the canopy and return to the detector. This low penetration translates into lower accuracy for the
resultant terrain model. Tropical forest measurements with ATLAS have an additional problem estimating top of
canopy because of frequent atmospheric phenomena such as fog and low clouds that can be misinterpreted as top
of the canopy. To alleviate these issues, we propose using a ConvPoint neural network for 3D point clouds and
high-density airborne lidar as training data to classify vegetation and terrain returns from ATLAS. The semantic
segmentation network provides excellent results and could be used in parallel with the current ATLO8 noise
filtering algorithms, especially in areas with dense vegetation. We use high-density airborne lidar data acquired
along ICESat-2 transects in Central American forests as a ground reference for training the neural network to
distinguish between noise photons and photons lying between the terrain and the top of the canopy. Each photon
event receives a label (noise or signal) in the test phase, providing automated noise-filtering of the ATLO3 data.
The terrain and top of canopy elevations are subsequently aggregated in 100 m segments using a series of
iterative smoothing filters. We demonstrate improved estimates for both terrain and top of canopy elevations
compared to the ATLO8 100 m segment estimates. The neural network (NN) noise filtering reliably eliminated
outlier top of canopy estimates caused by low clouds, and aggregated root mean square error (RMSE) decreased
from 7.7 m for ATLO8 to 3.7 m for NN prediction (18 test profiles aggregated). For terrain elevations, RMSE
decreased from 5.2 m for ATLO8 to 3.3 m for the NN prediction, compared to airborne lidar reference profiles.

Point cloud
Noise filtering

1. Introduction

Forests can store a considerable amount of carbon in their living
biomass, making them an important carbon sink. Ultimately the carbon
gets released back into the atmosphere by mechanisms of respiration,
decomposition, or disturbance. Changes in carbon storage are necessary
to monitor because they can help mitigate or, conversely - exacerbate
climate change. Tropical forests especially have high importance as a
carbon sink (Baccini et al., 2012). A substantial part of the storage is
concentrated in woody biomass, while the rest of the forest pool is
organic forest floor litter and soils. The carbon uptake they provide has
been historically very high. Recent studies show that tropical forest
carbon sequestration amounts have declined, mainly because of trees
mortality and deforestation (Hubau et al., 2020).

Airborne lidar mapping or airborne laser scanning (ALS) can be an
essential tool for monitoring forest metrics. Airborne lidar provides
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accurate wall-to-wall height estimates for both terrain and top of canopy
elevations in forested areas, but is cost-prohibitive to provide data on a
global scale. Space-borne lidars such as NASA’s Ice, Cloud, and Land
Elevation Satellite — 2 (ICESat-2) or the Global Ecosystem Dynamics
Investigation (GEDI) mission provide global coverage but with only
sparse sampling. Nevertheless, various studies have used ICESat-2 data
to provide better tree height estimates and, subsequently, better
aboveground biomass estimates for forest sites around the world. Initial
results using ICESat-2 for vegetation mapping and biomass were ob-
tained using simulated data (Glenn et al., 2016; Gwenzi et al., 2016;
Narine et al., 2019; Duncanson et al., 2020). Narine et al. (2020) pro-
vided an early assessment of the use of canopy metrics for aboveground
biomass (AGB) estimation using ICESat-2 transects over temperate for-
ests in south-east Texas; their results confirmed the utility of ICESat-2
data for characterizing AGB. Neuenschwander et al. (2020) validated
terrain and canopy height estimates in boreal forests in southern
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Finland. They recommended the use of the ATLAS instrument strong
beams (vs. using weak beams) for mapping canopy heights. Malambo
and Popescu (2021) assessed the agreement between ICESat-2-derived
terrain elevations and canopy heights and reference ALS data in
various ecozones in the US, reporting that ATLOS terrain heights had
better agreement than ATLOS canopy heights with corresponding ALS
heights. Contrary to Neuenschwander et al. (2020), they recommended
the use of both strong and weak beams for forest height retrievals.
Narine et al. (2022) examined the applicability of ICESat-2 as a data
source for canopy cover information over forests in south-east Texas and
southern Alabama. Their results showed high correlations with ALS
canopy cover estimates (R? ranging from 0.75 to 0.84), suggesting the
possibility of using ICESat-2 data for the development of a gridded
canopy cover product. Others have studied the opportunities of inte-
grating ICESat-2 data with GEDI or space-borne imagery and SAR in-
struments for obtaining aboveground wall-to-wall biomass estimates
(Liu et al., 2022; Guerra-Hernandez et al., 2022; Luo et al., 2023).
Studies using ICESat-2 in tropical forests have not been widely reported
in the literature, and previous work has shown that accurate estimation
of elevations in tropical forests is challenging (Fernandez-Diaz et al.,
2022). Urbazaev et al. (2022) further confirmed that terrain elevations
in tropical forests are hard to retrieve and have the lowest accuracy
compared to ALS data among a variety of biomes and canopy closures.
Musthafa et al. (2023) compared both ICESat-2 and GEDI forest height
estimates to field data in tropical and sub-tropical forests in India and
found that GEDI achieved lower RMSE values (compared to field
reference data) than ICESat-2.

The main instrument onboard the ICESat-2 satellite is the Advanced
Topographic Laser Altimeter System (ATLAS). The sensor employs a
photon-counting lidar (PCL) with return sensitivity at the single-photon
level. The idea behind PCL is to emit low-power pulses and record each
returning photon. This mode of operation is in contrast to a discrete
mode lidar that needs thousands of photons to reach a predetermined
threshold value to record a return (Swatantran et al., 2016; Brown et al.,
2020). The number of returning signal photons depends on the outgoing
laser energy, surface reflectance of the illuminated area, solar condi-
tions, scattering and attenuation in the atmosphere, and sensitivity of
the detector (Neuenschwander et al, 2020). A big challenge for
detecting at the single-photon level is the noise introduced by solar
photons. The sensor is susceptible to solar noise in the 532 nm
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Fig. 1. ATLO3 photon events (blue dots) with overlapping ALS estimates of
terrain (red line) and top of the canopy (green line). All the photon events
above and below the dense band outlined by the airborne lidar data are
considered noise. All the events within the outlines are signal, as it contains
returns from both terrain and vegetation. (For interpretation of the references
to color in this figure legend, the reader is referred to the Web version of
this article.)
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operational wavelength, producing point clouds that may contain
numerous noise photon events (see Fig. 1). This is because any returned
photon, whether from the reflected signal or solar background, can
trigger an event within the detector (Neuenschwander et al., 2020).

One of the main challenges for PCL is the reduced canopy penetra-
tion compared to linear-mode lidar (Stoker et al., 2016). There is a lower
probability for photons to reach the ground and return to the detector
through the tree canopy, and as a result, the terrain below the trees often
cannot be mapped with high accuracy. This will skew the terrain
elevation estimates, which can propagate inaccuracies in the calculation
of biomass estimates through vegetation height errors. In the presence of
dense vegetation, like in tropical forests, penetration is exacerbated,
making it more difficult to estimate terrain elevations under a closed
canopy and dense understory. Tropical climates can also result in an
increase in incorrect photon event classification and significant outliers.
This is primarily caused by the occasional presence of low-lying clouds
or fog that can produce photon returns that might be interpreted as top
of canopy returns, resulting in significant over-estimates of canopy
height, as presented in Fig, 2.

Recent results (Fernandez-Diaz et al., 2022) show that in tropical
forests with dense vegetation, terrain elevation estimation errors grow
proportionally with the heights of the trees. Outlier values can skew the
top of canopy elevation estimates due to atmospheric conditions such as
fog or low-lying clouds and the intrinsic sensitivity of the PCL detector.
There has been a concerted effort to develop noise filtering algorithms
for photon counting lidar, specifically for ICESat-2 data. Most algo-
rithms are based on the idea that signal photons have higher density and
are clustered together compared to randomly distributed background
noise photons. First derivations of such algorithms were tested on
simulated ICESat-2 data collected by airborne photon-counting lidars
such as the Multiple Altimeter Beam Experimental Lidar (MABEL) in
preparation for the ICESat-2 mission. (Herzfeld et al., 2013; Wang et al.,
2016). Popescu et al. (2012) applied multi-level noise filtering to reduce
the number of noise photons and then classified the terrain and top of
canopy by means of overlapping moving windows and cubic splines.
One of the sites where they tested their noise filtering was a tropical
forest in Gabon. RMSEs between 3.11 m and 4.48 were reported for
night data acquisition and 4.41 m-5.59 m during the day. Since their
data was simulated, the performance was not tested against the algo-
rithms used for the ICESat-2 ATLO3 or ATLO8 products, and we cannot
directly compare the obtained in Gabon results to ours. After the launch
of ICESat-2, many authors published methods that focused on noise
filtering for forest heights retrieval using the newly available ATLO3
geolocated photon data. These methods rely on expanding and
combining a wide range of traditional approaches for noise filtering such
as photon density clustering, neighborhood search within a circle or an
ellipse, histogram-based approaches, distance threshold, along with
more elaborate combinations of these (Huang et al.. 2023; Xie et al.,
2022). In Gao et al. (2022), the authors use a succession of large-scale
and small-scale search radiuses to improve on the existing DRAGANN
(Differential, Regressive, and Gaussian Adaptive Nearest Neighbor) al-
gorithm used for the noise filtering of the released ATLOS data. A further
improvement is using an ellipse instead of a circle for the neighborhood
search, as seen in Zhu et al. (2020). An even more elaborated search
method named local outlier factor algorithm with a rotating search area
(LOFR) is presented in He et al. (2023), demonstrating that LOFR al-
gorithm can adaptively adjust the search area and direction. This
method works well in complex terrain environments because the search
ellipse can follow the topography, thus capturing the correct terrain and
top of the canopy. While those methods were reported to be effective
and provided good results for their respective testing sites, none of them
treated the challenging environment of tropical forest regions and the
specific types of noise that could develop in those regions, for example,
the presence of low clouds. The only method that was applied exclu-
sively to tropical forests was Li et al. (2020), which proposed an
approach based on relative neighbor relationships and locally weighted
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Fig. 2. Example of a profile with an occurrence of both accurate top of canopy elevations (as compared with airborne lidar ground reference) in the right side of the
figure, as well as outlier values (probably related to low-lying clouds) in the left side of the figure.

distance statistics. The relative neighboring relationship describes the
relative density distribution of the neighboring photon points around
two photon points. They use the statistical characteristics of the mean
local weighted distance to choose an adaptive threshold that separates
the signal from the noise photons. The authors report good results
compared to a previously used local distance statistics-based filtering
method, but they do not provide any comparison to the standard algo-
rithm used for the data distributed to ICESat-2 ATLO8 users. A further
drawback is that the location of the study site is not provided, and results
are reported for only a single satellite track, which is a very limited test.
Currently, two noise filtering methods (Neuenschwander and Pitts,
2019; Neuenschwander et al., 2020; Neumann et al., 2021) are used for
the released ATLOS data products to reduce the noise photons before
estimating forest heights and terrain elevations, one of which is The
Differential, Regressive, and Gaussian Adaptive Nearest Neighbor
(DRAGANN). Both methods are described in more detail in section 3.4.
While some studies (Liu et al., 2022; Peng et al., 2022) have examined
the use of neural networks with ICESat-2, they did not examine noise
filtering of ATLO3 data or top of canopy (TOC) and terrain estimation in
dense forests. Similar to us, Meng et al. (2022) used a neural network for
noise filtering, and they reported results only in shallow bathymetry
study sites. Unlike the case of a neural network, which allows direct
input of 3D points, their method does not directly input the photon
events for training the network. They construct a feature vector from a
K-nearest neighbors search within a horizontal elliptical region that is
used as an input, which results in additional steps. A recent paper by Lin
and Knudby (2023) used PointNet++, a neural network for 3D points, to
extract bathymetric photons from ICESat-2 data. Their work differs from
ours in two fundamental ways: the first is that bathymetric data is
inherently easier to classify compared to forested areas, as the photons
that delineate the sea floor are in most cases easy to distinguish. The
datasets are devoid of high amounts of noise, unlike tropical forests,
which do not have any structure that can be easily discerned. Secondly,
they use manual classification of the training data, while we employ
airborne lidar data for automatic labeling, which significantly speeds
and scales the process. In this paper, we propose an approach that, to our
knowledge, has yet to be studied: the use of a neural network working
directly on the 3D point clouds for automated separation of noise and
signal events in dense tropical forests. We are motivated by the large and
growing availability of high-density, high-accuracy tropical airborne
lidar data that can serve as reference datasets for the training of neural
networks. Using airborne lidar data to prepare labeled training datasets
is a faster and easier method than fully manual labeling. The neural
network method leverages geometric and local signal density informa-
tion from overlapping airborne lidar measurements to train a deep
neural network to separate signal and noise photon events. We use a
ConvPoint architecture (Boulch, 2020) for 3D point clouds that is
applied to the raw ICESat-2 ATLO3 point cloud records, producing
reliable and continuous noise filtering results even in densely vegetated
areas. The main benefit of the ConvPoint architecture, compared to

traditional 2D convolutional neural networks, is the direct application
on irregular 3D photon data without conversion to a regularized inter-
mediate representation such as an image. The benefit is two-fold: on the
one hand, saving time by directly using readily available ATLO3 data
product photon events, and on the other, not having data inevitably lost
during conversion to a lower dimension format (i.e., from 3D to 2D). We
validate our results for ICESat-2 terrain and top of canopy elevations in
the dense tropical forests of Mexico, Belize, Guatemala, Honduras,
Brazil, and Puerto Rico by comparing the neural network classified data
with high-density airborne lidar data from nine study areas. The results
show better consistency, removal of outliers, and overall improvement
in terrain and top of canopy elevation estimates compared to current
ICESat-2 noise filtering algorithms delivered by the ATLOS product. We
are examining the most challenging environment for the ATLAS sensor,
which is to monitor tropical forests. The method proposed here has the
potential to improve terrain and top of canopy estimates in all vegetated
environments. The rest of the paper is organized as follows: first, we
introduce the study areas and datasets used in this project. We cover in
more detail the current noise filtering used on ATLO3 data, and next, we
present the current research on neural networks for point clouds. We
then describe the architecture we use, namely ConvPoint and the
datasets preparation, training, and testing. In the final section, we pre-
sent the results and discuss why the method is well-suited for use in
forested areas and some important considerations when adopting the
methodology.

2. Materials and methods
2.1. ICESat-2 ATLO3 and ATLO8 data

ICESat-2 data is freely available and can be downloaded from the
National Snow and Ice Data Center (NSIDC). The data product used for
the training and testing of the neural network is the ATLAS/ICESat-2
L2A Global Geolocated Photon Data, Version 3 (Neumann et al.,
2020), which is referred to as ATLO3 data. We have used only data from
the strong beams to ensure enough photon events for the training of the
model. The data consists of photon events tagged by latitude, longitude,
and height (Fig. 1). It should be noted that although the data is in a 3D
format, the satellite’s footprint is so small (about 13 m), and the tran-
sects so regular that it can be represented as a profile. In some profiles,
slight variations in the longitude direction along the profile lines are
observed, and those come from small variations in the instrument
pointing. The ATLAS/ICESat-2 L3A land and vegetation height product,
or ATLOS, is used during the final comparison of our results to the terrain
finding algorithm that is employed by the ICESat-2 team (Neuensch-
wander and Pitts, 2019). ATLOS data contains heights for both terrain
and top of canopy in the along-track direction relative to the WGS-84
ellipsoid. The highest-level terrain and top of canopy elevations are
provided within 100-m segments. Depending on the number of classified
photons, some segments may not provide elevations if the confidence in
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the classification is low. For terrain elevations, users can choose to use
the interpolated terrain values (h_te interp), which are lower confidence
100-m elevations. The high-confidence elevations are denoted as
h canopy abs and h te mean in the ATLOS Land Water Vegetation
Elevation data product (Neuenschwander et al., 2020).

2.2. Linear mode high-density airborne lidar (HDL) as ground reference
data

The airborne lidar data used for a large part of the project was
collected by the National Center for Airborne Laser Mapping (NCALM),
based at the University of Houston. The pulse density is higher than 15
pulses/m?, with canopy measurements of more than 20 points/m?. The
data was automatically segmented into ground and above ground
returns using an algorithm similar to that described in Axelsson (2000),
and then the classification was manually verified. After segmentation
and verification, the data was processed into 20 x 20 m rasters of canopy
heights and terrain elevations. The corresponding lidar data was then
extracted from the raster overlap locations with the ICESat-2 ground
tracks (Fig. 3). The extracted airborne lidar elevation estimates for
terrain and top of canopy were then used as ground reference (truth) for
the neural network training. All of the NCALM-collected HDL data in this
paper has already been used for the validation of ICESat-2 elevation
estimations in Fernandez-Diaz et al. (2022). Therefore, more details
regarding the airborne HDL used for this project can be found in Fer-
nandez-Diaz et al. (2022). The only other lidar data used was for the
Brazilian sites over the Amazon forest. It is openly available (Dos-Santos
et al., 2019) and was processed in the same manner as the NCALM data
to arrive at both terrain and top of canopy estimates.
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2.3. Study sites

We selected HDL data from five sites in Central America, two sites in
Brazil and one in Puerto Rico (Fig. 4). We used two of the Central
American sites, Maya Biosphere Reserve in Guatemala and Puuc in
Mexico, for the training of the neural network. The total area of the two
training sites is 2718 km?, with 756 km of ATLO3 transects for the 76
training files. The total length of the ATLO3 transects for the test (vali-
dation) sites is 169 km in 18 test files. The vegetation type covering the
majority of the sites is dense, old-growth tropical forests. A main
consideration when using the HDL data as ground reference is the
temporal offset between the ICESat-2 and HDL acquisitions. We have
selected areas with primarily mature intact forests, such as national
forests and nature (biosphere) reserves. Thus, the differences in the tree
canopy heights between acquisitions should be minimized. In Table 1 we
list the HDL acquisition dates together with the corresponding ATLO3
HDF5 files used for the area. Fig. 5 shows the selected sites in Central
America with an overlay of the Intact Forest Landscapes map (Potapov
etal., 2017). In addition to those considerations, visual inspections were
also undertaken for selected profiles to ensure the best possible agree-
ment between ICESat-2 and the reference airborne lidar data, as
described in section 3.6.

2.4. ATLO3 and DRAGANN noise filtering algorithms

The ICESat-2 ATLO3 data product provides a classification for each
photon event to be used as input for subsequent higher-level data
products such as ATLOS. The methodology behind the ATLO3 classifi-
cation algorithm leverages the assumption that background noise pho-
tons follow a Poisson distribution. The algorithm searches for outliers to

220000

Fig. 3. High-density airbome lidar data for Maya Biospere Reserve and an example of ICESat-ATL08 ground tracks overlap. The yellow and cyan colors of the tracks
represent two ATLOS8 files from different dates. The color of the underlying high-density airborne lidar data raster represents the canopy height model at 20 x 20 m
resolution. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Table 1
HDL data acquisition dates with corresponding date of ATLO3 files used for the
area.

Area Year of HDL HDF5 File Acquisition
Acquisition Date
Maya Biosphere Reserve, 2019 20181028
Guatemala 20190326
20190727
20200125
20200323
20200421
20210322
Puuc, Mexico 2017 20181122
20190920
Xpujil, Mexico 2016 20181028
20190127
Rio Bravo Conservation Area, 2016 20191019
Belize 20200721
Rio Platano Biosphere Reserve, 2012 20181102
Honduras 20220125
Adolpho Ducke National Forest, 2010 20190802
Brazil
Saraca-Taquera National Forest, 2013 20191126
Brazil
Saraca-Taquera National Forest, 2014 20210823
Brazil
El Yunque National Forest, Puerto 2011 20200223
Rico 20220215

the Poisson distribution, which are then labeled as candidate signal
photons. Histograms of the photon events are aggregated into along-
track and vertical bins. The background noise photons are distributed
randomly among the histogram bins while the signal photons will
cluster into single or several adjacent bins (Neumann et al., 2021). The
approach performs well on surfaces such as ice sheets, but it has been
observed that over vegetated areas, the algorithm does not faithfully
catch the top of the canopy photons as signal (Neuenschwander and
Pitts, 2019). The ATLO8 data processing combines the ATLO3 classifi-
cation results with an additional noise filtering method - the Differential,
Regressive, and Gaussian Adaptive Nearest Neighbor (DRAGANN),
developed by the ATLO8 science team, to obtain the best possible signal
from noise separation prior to running surface finding algorithms.
DRAGANN exploits the assumption that signal photons will be more
clustered in space than random noise photons. The algorithm consists of
several steps: (1) an adaptive nearest neighbor search to compute the
number of nearby photons within a specified search radius for each
photon in the point cloud. The radius is established by computing the
probability of how many photons will be in a given search area and is a
function of the total number of photons in the point cloud. The adaptive
search is flexible as different thresholds can be applied, each suitable for
varying amounts of background noise and surface reflectance. (2) a
histogram of the number of neighbors within a radius is generated,
where two distinct peaks are expected to appear - a noise peak and a
signal peak, (3) Gaussian curves are fitted to the histograms, one for the
signal and one for noise peak - the intersection of the two Gaussian
curves is used as a threshold value (optimized search radius) to distin-
guish between signal and noise photons, and, (4) the threshold classified
data is then used as input for final determination of the canopy and
ground surfaces.

2.5. Neural networks for 3D point clouds

Deep learning using convolutional neural networks (CNN) is a well-
established tool for processing 2D images and structured data such as
speech and text, with generally the aim of object or language recognition
(LeCun et al., 2015; Deng et al., 2014; Goodfellow et al., 2016). 3D point
cloud data is widely used for tasks such as autonomous driving; thus, the
need for algorithms that can recognize and automatically classify point
cloud data with good accuracy has arisen. Unfortunately, due to the
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unordered and unstructured nature of point cloud data, a 2D convolu-
tion operator cannot be used directly on 3D point clouds without first
gridding or regularizing the point cloud data, which may result in a loss
of information. Therefore, a CNN that works on unstructured 3D point
clouds would be desirable. Fortunately, there are many emerging ap-
proaches for the direct processing of 3D point clouds with neural net-
works, for example, voxelization, multi-view, and graph neural
networks (Maturana and Scherer, 2015; Wu et al., 2015; Qi et al., 2016).
PointNet is a pioneering neural network that directly processes unor-
dered and unstructured point clouds (Qi et al., 2017a). Geometric deep
learning is the generic term for the methods that operate on manifolds,
graphs, or directly on point clouds (Bronstein et al., 2017). A good re-
view of the methods for geometric deep learning is provided in Guo et al.
(2020), and an overview of semantic segmentation for point clouds
using deep learning is provided in Xie et al. (2020) and more recently
Zhang et al. (2023). A large portion of the deep learning models applied
to point clouds attempts to discriminate objects with a well-defined
shape coming from either indoor scenes or data collected by a mobile
lidar scanner for the needs of the autonomous driving industry, where
classes of objects are, for example, cars, pedestrians, buildings and curb
lines. Airborne lidar datasets of outdoor scenes can have some objects
with a distinct shape, such as buildings, but they also include many
mathematically difficult objects to model, such as clusters of trees. There
is a rise in the number of publications that use increasingly elaborate
point-based methods of segmentation for airborne lidar datasets, for
example (Huang et al., 2021; Lin et al., 2021; Zeng et al., 2023; Yu et al.,
2022), among others. Many expand on previous point-based neural
networks such as PointNet (Qi et al., 2017b) or KPConv (Thomas
et al., 2019). Large-scale airborne lidar datasets have been built spe-
cifically with the goal of training and evaluation of deep learning al-
gorithms for applications such as ground filtering or semantic
segmentation of airborne point clouds (Varney et al., 2020; Qin et al.,
2021; Ye et al., 2020). Semantic3D (Hackel et al., 2017) and the 3D
Point Cloud and Modeling (Nuage de Points et Modelisation 3D -
NPM3D), Roynard et al. (2018), are two other projects which provide
labeled point clouds for outdoor scenes. Because the ATL03 datasets in
tropical environments are relatively devoid of regular objects, we
selected the ConvPoint architecture as it was implemented in NPM3D
and Semantic3D datasets and performed well for outdoor point clouds.
An additional reason to choose ConvPoint over, for example, a model
designed explicitly for ALS point clouds, is the relative ease of under-
standing and implementation of the ConvPoint architecture, which is an
elegant extension of discrete 2D convolution kernels to continuous 3D
space. Additionally, other researchers have confirmed that ConvPoint
performs well for semantic segmentation of urban outdoor scenes (Diab
et al., 2022) as well as airborne lidar datasets (Turgeon-Pelchat et al.,
2021).

2.5.1. ConvPoint architecture and nearest neighbors search

The ConvPoint convolutional network is implemented using the
PyTorch library (Boulch, 2020). It employs continuous convolutional
kernels, in contrast to the discrete ones used by regular 2D or 3D con-
volutions on image or voxel data. In discrete convolutions over gridded
data, such as an image, each kernel element has an exact overlap with a
corresponding image pixel. This is not possible for point clouds, as they
are unstructured, and the coordinates of a point are not arranged on a
grid but represent a continuum in 3D space. Continuous convolution can
be used on unstructured data such as point clouds; continuous, in this
case, means that the kernel element locations do not overlap with the
point cloud locations but compute the distances between each kernel
element and the specific point from the point cloud on which the kernel
is applied. The kernel element locations are initialized randomly and are
optimized by a multi-layer perceptron (MLP) layer during the training
phase of the network (Fig. 6). Learning the kernel element positions is
advantageous compared to having fixed-position kernel elements as the
network becomes more flexible to adapt to the geometry of the data
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Fig. 4. All high-density airborne lidar data sites.

(Thomas et al., 2019). It is outside the scope of the paper to explain how
ConvPoint learns from the distribution of photon events in space to
arrive at predictions, and the reader is referred instead to (Thomas et al .
2019) and (Boulch, 2020) for further reading on how the adaptive kernel
positions lead to better learning outcomes.

The semantic segmentation part of the network uses a structure
similar to U-net with an encoder network followed by a decoder network
(Boulch, 2020; Ronneberger et al., 2015). The kernel is applied to the
k-nearest neighbors (k-nn) of a set of randomly selected points. In the
case of ConvPoint layers, the number of nearest neighbors varies be-
tween 16 and 4. As stated in Thomas et al. (2019), a nearest neighbors
search is not robust for input point clouds having varying densities. A
theoretically better approach would be to use a radius search where the
features would be more related to the geometry of the input points
rather than the sampling number (Thomas et al.. 2019). This is because
for a dense point cloud eight nearest neighbors will be much closer to
each other than in a sparse cloud case. With a radius search, that
problem is eliminated, and the kernel will be applied only to points
within a given radius. One drawback will be that the number of points
within each radius search will vary. The varying number of points is an
issue when building the index matrices for the nearest points within a
radius. In the case of k-nn, the number of nn is fixed, and the resulting
matrices are easy to compose, and optimization tools such as Cython are
easier to implement. We tested the hypothesis that a radius search would
be a better-suited choice for the ATLO3 point cloud data by imple-
menting a radius search within the existing ConvPoint architecture. A
maximum number of neighbors within a radius was selected to
circumvent the problem with the unequal number of neighbors for each
search point. If the neighboring points were less than the selected
maximum, the rest of the indices were set to zero. It was also later
necessary to set the calculated distances for those non-existent points to
zero before they are passed through the MLP that learns the weights and
positions of the kernel elements. Surprisingly, the experiments showed
that the original k-nn implementation provided higher accuracy than
using a radius search. An unexpected drawback of the radius search was
slower training, which resulted in longer run times compared to the k-nn
implementation with the same number of epochs.

2.6. Data preparation, training, validation, and testing

For images, semantic segmentation attempts to provide each pixel
with a label corresponding to various object categories. In the case of 3D
point cloud data, semantic segmentation means that each point from the
point cloud will be given a label. For the training data set preparation,
we used two classes to divide the ATLO3 point clouds: signal and noise.
Each point (photon event) was labeled as either zero for noise or one for
signal. Within the tree canopy, it would be difficult to discern noise
photons because the randomness of returns from vegetation mirrors the
randomness of noise event photons. Therefore all photon events lying in
the band between the terrain and the top of the canopy, as delineated by
HDL, were labeled as signal. In the validation or testing phase, the
network output is a signal or noise label prediction for each point. The
labeling for the training datasets was performed as follows. The ATLO3
photon event data was plotted together with the high-density airborne
lidar data (HDL). The MATLAB® polygon function (inpolygon) was used
as a boundary to enclose all the points inside the polygon outlined by the
HDL terrain and top of canopy elevations. The ATLO3 photon events that
fall within the polygon were labeled as signal (label 1), while the points
outside the polygon were labeled as noise (label 0). The automatic la-
beling did not always enclose all the correct signal labels because of
small differences between the HDL ground truth and the ATLO3 data; as
an illustration, Fig. 7 shows such a discrepancy around a water body that
was incorrectly labeled as noise. In this case, the difference is likely
caused by seasonal variations in the water level between acquisitions.
Cases like this, therefore, required additional manual labeling using
TerraScan software to ensure all the correct signal photons were labeled
as such; otherwise, the neural network learning might be hampered. The
Results and Discussion section presents more details about the addi-
tional manual labeling. An overview of the workflow is presented in
Fig. 8.

The x and y coordinates of ATLO3 photon events are provided in
latitude and longitude. To ensure that the neural network will operate
optimally by having all dimensions in the same units, we converted both
ATLO3 and HDL data into Universal Transverse Mercator (UTM) format
using the Point Data Abstraction Library (PDAL) Butler et al. (2021).
After separating the ATLO3 data into two classes, the data files were used
as the input for the training, validation, and testing of the neural
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network. The 100 training files were divided into 76 files for training, 6
for the validation phase for parameter tuning, and 18 for model testing.
We used data from only two sites in Central America for training: the
Maya Nature (Biosphere) Reserve in Guatemala and the Puuc site in
Mexico. Data from the rest of the sites were only used during the testing
phase (13 datasets). This was done to evaluate whether the neural
network model was generalized enough to provide good results in areas
with different forest biophysical parameters not included in the training.
Thus, the number of test datasets in the regions the network was not
trained on was primarily constrained by data availability - we tried our
best to find as many samples in a diverse set of tropical forest regions
that also had coincident HDL data. We chose the 5 test datasets from the
two network training sites to represent harder cases with either large
outliers or increased solar noise. The validation files were randomly
selected at approximately 10% of the training files, and we added a
couple more training files later upon the release of newer ICESat-2
datasets in our regions of interest. Since the Maya Biosphere Reserve
(MBR) was the largest high-density airborne lidar dataset, the amount of
coincident ICESat-2 data was the largest; thus, we used MBR as a
training site to get the highest possible number of training datasets. Each
Numpy file used for training has five fields for each photon event: (1)
northing, (2) easting, (3) height above the ellipsoid, (4) feature, and (5)
label. Since the ATLO3 point cloud does not contain any features,
meaning it has no color or intensity value, for example, the feature
column is a vector of ones. What this means is that the convolutional
neural network prediction is based purely on geometric features
(Boulch, 2020). The input for the testing phase is only the northing,
easting, and height fields for each test file. In order to achieve good
results, adjustments to the original ConvPoint code were implemented.
For instance, the number of required random input points was
decreased, as traditional point clouds collected with mobile laser scan-
ners usually contain millions of points. In the case of ATLO3 data, we
selected the number of random points picked for the first layer to be
1024. This is because the ATLO3 points per file varied between ~12,000
and 190,000. Each individual training and testing file was created to be
~0.1° of latitude (~10 km). The reason for this choice is the fact that the
ATLO8 ground finding algorithm as described in Neuenschwander et al.
(2020) is based on 10 km segment lengths and we have used a similar
approach to calculate the terrain and top of canopy elevations after the
ConvPoint label predictions. We also determined that the normalization
of the points to fit the unit ball lowered the accuracy of the results so we
removed it.

The kernel points in the convolutional kernel are initialized
randomly within the unit ball (Fig. 6) and then the best positions for
each kernel element are learned through a multi-layer perceptron (MLP)
during the training phase. We experimented with initializing the kernel
points using both a flattened sphere or ellipsoid to better represent the
different directionality of ATLO3 point clouds within a 10 km segment
because of the small laser beam footprint. Initializing the kernel

Fig. 7. An example of discrepancy between ICESat-2 ATLO3 data and HDL ground reference. The left figure shows the labeled ATLO3 photon events from
automatic labeling. Red points are photon events labeled signal and blue points are noise. On the right side is a plan view of the ICESat-2 ATLO8 data (yellow circles)
over the same region. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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elements within an ellipsoid did not result in a significant jump in ac-
curacy. It is worth noting that the training accuracy was already high, at
~98% and the directional kernel initialization resulted in training ac-
curacy that again achieved 98%. We trained the model for 350 epochs,
with a batch size of 32, using Adam optimizer and cross-entropy loss.
The learning rate was set at 0.001. For the ConvPoint-specific parame-
ters at training, we set the number of input points to the first layer at
1024 and the block size at 110.

2.6.1. Ground and top of canopy finding algorithm

In the ATLO8 data product, the top of canopy and terrain elevation
estimates are provided at a fixed step size of 100 m in the along-track
direction, defined as a segment. For both visual and quantitative inter-
pretation and validation of the neural network predictions, we compare
them directly to the ATLO8 100 m segment estimates. After obtaining the
noise-filtered data, we further process it in 100 m segments for direct
comparison with ATLO8 data (h_canopy_abs and h_te_interp). We run a
similar ground and top of canopy algorithm to the one provided in the
Algorithm Theoretical Basis Document (ATBD) for Land - Vegetation
Along-Track Products (ATLO8) (Neuenschwander and Sheridan, 2020).
We use a succession of min/mazx, Savitsky-Golay, and mean and median
filtering to obtain the terrain and top of canopy curves and then use the
center latitude from each ATLO8 segment to divide our data into cor-
responding 100 m segments. We then take the 100 m ATLO8 and the 100
m segments obtained from the neural network prediction and compare
both to the 100 m high-density airborne lidar data (HDL) ground
reference, which was segmented in an identical manner.

3. Results and discussion

We demonstrate improved estimates for both terrain and top of
canopy elevations compared to ATLO8, with mean terrain estimates
improved by about 2 m and mean top of canopy by about 4 m (aggre-
gated for all 18 test files given in Tables 3 and 4). For RMSE calculation,
we use the 100 m segments of ATLO8 data and corresponding 100 m
segments from neural network prediction and the HDL reference.
Overall RMSE (18 test profiles from all test areas) for the terrain ele-
vations decreased from 5.2 m for ATLO8 to 3.3 m for the ConvPoint
Neural Network (NN) prediction, compared to the HDL ground refer-
ence. Overall RMSE decreased from 7.7 m to 3.7 m for the top of canopy
elevations. The overall accuracy in the training, validation, and testing
phases is presented in Tables 2 and is computed from the confusion
matrix of the predicted point labels as:

(€8]

For the terrain elevations RMSE comparison, we used the interpo-
lated terrain values provided by ATLO8 (h_te_interp) as the mean terrain
elevations h_te_mean are not available for each ATLO8 100 m segment.
For top of canopy comparison, we used the h_canopy_abs 100 m seg-
ments. To ensure that results are not skewed towards the training forest
structure, test profiles were selected from areas in Honduras, Brazil, and
Puerto Rico (the training data is solely from Guatemala and Mexico).
Results suggest that the rules learned by the neural network are not
biased towards data from areas it has trained on, but perform well on
data from forests with different biophysical parameters (Figs. 9 and 11,
Table 4). These findings suggest that the neural network noise filtering
method proposed here can be used for other forested environments
around the globe. We have used only 76 files for training with a total
length of 756 km from two training areas. Extrapolating the results
would mean that a network could be trained for global coverage noise
filtering in forested areas with a relatively low amount of training with
airborne lidar reference data. The applicability of this proposed method
is strengthened by the growing global library of freely available high-
density airborne lidar data that could serve as a ground reference.

ISPRS Open Journal of Photogrammetry and Remote Sensing 11 (2024) 100053

Table 2

Overall accuracy (OA) results for the 18 test profiles. The top five profiles in the
table are test datasets from training sites. The lower 13 profiles are test data from
sites that were not included in the training dataset. OA is calculated from the
confusion matrix and it refers to the accuracy of the neural network in predicting
the label of each photon event for each test file (Eq. (1)). GT = Guatemala, MX
Mexico, BZ Belize, HN Honduras, BR Brazil, PR Puerto Rico, NR Nature
(biosphere) reserve, NF National Forest. npoints is the number of ATLO3
photon events within each of the test profiles.

File date for test ~ Area Latitude Beam OA npoints

dataset ATLO3 bounds

20181028 MayaNR, GT 17.55,17.65 1r 0.9939 17661

20190727 MayaNR, GT  17.455,17.555 11 0.9795 82772

20200125 MayaNR,GT  17.5,17.6 3r 0.9983 15221

20200323 MayaNR, GT 17.55,17.65 11 0.9770 25358

20190920 Puuc, MX 20.17,20.25 1r 0.9984 12913

20181028 Xpujil, MX 18.74,18.84 1r 0.9990 11729

20190127 Xpujil, MX 18.7,18.84 21 0.9898 23270

20191019 Rio Bravo, 17.708,17.793 1r 0.9974 10485
BZ

20191019 Rio Bravo, 17.714,17.811 2r 0.9982 9017
BZ

20191019 Rio Bravo, 17.731,17.83 3r 0.9978 12840
BZ

20200721 Rio Bravo, 17.776,17.855 11 0.9923 58016
BZ

20181102 Rio Platano 15.216,15.312 1r 0.9392 16586
NR, HN

20220125 Rio Platano 15.237,15.277 11 0.9924 6303
NR, HN

20191126 Saraca- 1.692, 3r 0.9827 5783
Taquera NF, 1.654
BR

20210823 Saraca- 1.636, 1r 0.9817 7809
Taquera NF, 1.618
BR

20190802 Adolpho 2.963, 11 0.9885 3572
Ducke NF, 2.9375
BR

20200223 EL Yunque 18.24, 18.286 3r 0.9959 9790
NF, PR

20220215 EL Yunque 18.241, 18.30 21 0.9870 7514
NF, PR

Table 3

Terrain and top of canopy RMSE results for test datasets from the Maya
Biosphere Reserve, Guatemala (GT), and Puuc, Mexico (MX). Both ATL0O8 and
neural network (NN) RMSE are calculated with the HDL data serving as refer-
ence for the 100 m segments.

Dataset Beam  Area Day/ Top of Canopy Terrain
Night

ATLO8 NN ATLO8 NN

RMSE RMSE RMSE RMSE

(m) (m) (m) (m)
20181028  1r GT Night 5.6 2.7 6.1 3.7
20190727 11 GT Day 4.5 3.2 6.7 3.7
20200125  3r GT Night 37.0 1.8 6.7 2.5
20200323 11 GT Day 2.5 1.9 2.5 2.1
20190920 1r MX Night 3.3 2.8 1.9 1.5
Mean 10.6 2.5 4.8 2.7

3.1. Outlier reduction

Neural network noise filtering eliminates large top of canopy outliers
in both Figs. 9 and 10. The latter is a test dataset in the Maya Biosphere
Reserve NN training site. The test file is for beam 3r; beams 1r and 2r
were included in the training dataset. The outliers seem to be caused by
fog or low-lying clouds that were mistaken for the top of the canopy
because of the density of the returns. ATLO8 terrain estimates also show
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Table 4

Terrain and Top of canopy RMSE results for the 13 test-only datasets in regions
excluded from network training. Both ATLO8 and neural network (NN) RMSE
are calculated with the HDL data serving as reference for the 100 m segments.
GT = Guatemala, MX = Mexico, BZ=Belize, HN=Honduras, BR=Brazil, PR =
Puerto Rico.

Dataset Beam  Area  Day/ Top of Canopy Terrain
Night

ATLOS NN ATLO8 NN

RMSE RMSE RMSE RMSE

(m) (m) (m) (m)
20181028 1Ir MX Night 1.7 0.9 3.3 151
20190127 21 MX Night 3.5 22 1.2 0.7
20191019 1Ir BZ Night 4.3 37 5.0 3.1
20191019  2r BZ Night 4.3 27 5.2 3.2
20191019  3r BZ Night 3.6 26 4.9 3.0
20200721 11 BZ Night 4.4 6.3 3.2 1.8
20181102 Ir HN Night  28.6 79 9.9 7.1
20220125 11 HN Night 8.2 6.3 9.1 5.9
20191126  3r BR Day 23 22 3.7 27
20210823 1Ir BR Night 4.5 29 6.5 4.6
20190802 11 BR Night 4.4 3.0 7.0 4.8
20200223  3r PR Night 6.8 6.1 5.1 29
20220215 21 PR Night 9.2 7.7 5.5 4.6
Mean 6.6 4.2 5.4 3.5

large inaceuracies compared to the HDL ground reference. The neural
network noise filtering eliminates the band of low-lying clouds, leading
to higher-aceuracy estimates for both the top of canopy and terrain. The
former (Fig. 9) is from an area in Honduras (no data from Honduras area
was included in the training dataset). Again, low-lying clouds compli-
cate the ATLOS top of canopy predictions between latitudes 15.20 and
15.25. Even though the ConvPoint prediction for signal photons is not
entirely continuous, it correctly identified the clouds/fog as noise. The
NN results in a reduction of top of canopy RMSE from 28.6 to 7.9 m,
while the improvement in terrain is from 9.9 to 7.1 m (Table 4). For this
test profile, there is a gap of signal photons incorrectly identified as noise
between latitudes 15.23 and 15.24. The discontinuity is the reason for
the one incidence of lower overall accuracy of 0.9392 shown in red in
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Table 2. Another example of noise caused by fog or very low clouds is
shown in Fig. 11; the clouds are noticeable between latitudes 18.80 and
18.815. While the neural network incorrectly labels some of the fog
layer as signal between latitudes 18.80 and 18.805, it correctly identifies
it as noise between 18.805 and 18.815 latitude. The 100 m NN segments
are closer to the HDL reference, while the ATLOS prediction shows larger

errors.
3.2. 3D vs. 2D neural network input data

Using a 3D point-based neural network offers an advantage in terms
of flexibility both for training and test file dimensions when compared to
2D image CNNs. Using direct 3D input requires no data aggregation that
may result in loss of resolution. Input files for 2D convolutional archi-
tectures such as U-net must have the same rows and columns size. This
constraint can decrease the training set size because coincident ground
reference data might not always be available for a whole segment length
or else has to be cropped. While there is flexibility in the length of the
files, if the number of points is too low compared to the mean number of
points, the network might predict with lower accuracy.

3.3. Automatic labeling considerations

The automatic labeling described in section 3.6 presented challenges
for several ICESat-2 profiles. In some instances, some signal points were
outside the HDL bounds while in other instances noise points were
labeled as signals; this was confirmed by visual examination. One reason
for the discrepancies between the satellite-collected data and the HDL
reference might be seasonal variations and the time difference between
acquisitions. Some discrepancies also existed around water bodies
where ICESat-2 detected shallow bathymetry and associated “ringing™.
For example, in Fig. 7, it is visually evident that the water surface
automatically labeled as noise (red rectangle on the left plot) needs to be
re-labeled as signal before the neural network training. The mislabeled
water surface is likely a pond that has seasonal water level variations,
which caused the discrepancy between ATLO3 and HDL elevations.
Those clustered signal points that were mislabeled as noise would have

Download ICESat-2
ATLO3 and ALTOB
at coincident
locations

Create 20x20m

HDL terrain and

top of canopy
rasters

Automatically label

ICESat-2 ATLOS data

using HDL as ground
referance

Convert ATLO3
data to UTM and
import to the
neural netwark

Run smoothing
filters on labeled
output and create

100m segments

Compare to
corresponding
ATLOB 100m
segments

Manually relabel
if needed

Fig. 8. Overview of the workflow.
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Fig. 11. Example of a test dataset in night conditions from a test only area in Mexico (20190127, beam 2 1).

lowered the accuracy of the test results if not manually reclassified. This
was confirmed by training the network first with only automatically
determined labels and then re-training using manually updated labels.
After re-labeling, the training accuracy slightly improved, with 98%
overall accuracy (OA) for the manually re-labeled training data,
compared to about 96% OA when training on the automatically labeled
clouds.

3.4. Robustness of the NN model

We first experimented with testing the network using profiles in
geographic areas where it had not been trained to examine performance
in a diverse range of tropical forests; as described above in this results
section. Of the 18 test datasets, 13 are from test-only areas. The NN
terrain estimates are lower in all test datasets while top of canopy esti-
mates are lower in all but one (20200721, BZ, in Table 4). The higher top
of canopy RMSE in this particular dataset is due primarily to localized
differences between the HDL and ATLO3 data caused by the 4 year time
difference between their acquisition (2016 for HDL and 2020 for
ATLO3). The area around this profile has recent human activities and
some variation in the vegetation cover between the acquisitions of the
lidar and ICESat-2 data is clearly present. To verify this conclusion, a
second experiment was performed with the 20200721, BZ dataset; two
of the strong beams for this profile were included in the NN training
dataset and the newly trained network was then used to examine the

outlier test profile. This is to examine whether the network predictions
were poor because the BZ dataset was not well represented by the
original training data. The difference between the original and re-
trained network results is minor, but when trained on additional site-
specific files, the results are marginally better, as seen in Fiz. 2.
Using the original training data set, the predictions of the water surface
are slightly noisier, but still acceptable, given that the network has not
seen similar data and some “ringing” is clearly present. The ringing is the
result of specular returns from standing water and is an instrument
response to high signal rates, as described in Neuenschwander and
Magruder (2019). In the paper, the authors mention the potential for
ICESat-2 to detect inundated lands and flooded forests based on this
ringing response. Future work could involve training a point-based
neural network to specifically detect ringing in ATLO3 data to isolate
inundated areas.

3.5. Future directions

As described in section 2.6. 1, the terrain and top of canopy detection
algorithms we used are similar to those used for ATLOS. Since the neural
network separation of signal and noise closely follows the lidar ground
reference even in day conditions, as seen in Fig. 13, we have used a
moving minimum filtering for terrain and moving maximum for top of
canopy together with successions of mean, median, and Savitzky—Golay
filtering. We chose this approach for its simplicity to implement and use
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as a comparison to ATLOS results, as our main focus was the noise
filtering potential. In some cases, though, when the neural network
predictions are outside the boundaries of the HDL reference, minimum
filtering will cause the segmented predictions to be too low. Similarly, if
a couple of photon events are predicted too high or too low compared to
the main signal band, the minimum, and maximum filtering will cause
the segment predictions to move to the outlying points. A step for future
work could be a more elaborate terrain and top of canopy algorithm that
would leverage the advantage of the cleaner noise-filtering provided by
the ConvPoint neural network. Despite our best efforts to find datasets in
both day and night conditions, most of the ICESat-2 ATLO3 data avail-
able for the test sites was collected at night. It would be interesting to
add more daytime acquisitions as the ICESat-2 mission continues and
new data becomes available. Herein, only two classes were used for
neural network training, however, it is feasible that more classes could
be incorporated. This can be done by separating the signal into indi-
vidual labels such as terrain, intra-canopy, and top of the canopy, for
example. The ConvPoint implementation (or any other neural archi-
tecture) can be adjusted to contain as many classes as needed. The only
downside would be that more labor would be involved to ensure that the
training datasets are well-labeled. This architecture could also be an
excellent tool for shallow bathymetry classification.

4. Conclusions

In this paper, a novel approach towards noise filtering of spaceborne
photon counting data, namely, using a neural network for 3D point
clouds coupled with airborne lidar data as a ground reference was
proposed. Our results indicate that even with modest training from two
areas, this approach achieves good results in six separate tropical forest
regions with varied terrain, slope, and top of canopy characteristics. The
neural network method could be used in combination with the two
noise-filtering algorithms currently employed for classifying ATLO3
photons. Its usefulness is reinforced by the continuous arrival of ATLO3
data during the lifetime of the ICESat-2 satellite and the abundance of
airborne lidar datasets for vegetated locations worldwide. Given the
widespread availability of data and the potential of point-based deep
learning algorithms, implementing this proposed noise filtering method
may prove valuable not only for ICESat-2 but any future lidar satellite
missions.
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