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A B S T R A C T

The inevitable presence of moisture within a polymer composite has allowed for the development of a novel
dielectric nondestructive evaluation (NDE) technique which capitalizes on the behavior of moisture under an
applied electromagnetic field. Relative permittivity of water which is bound to the polymer network differ
significantly from that of water which is not bound to the network, and the preferential diffusion of this “free”
water to damage sites permits the creation of spatial permittivity maps. Presently, this technique has shown
capability for damage detection but has not achieved quantification, which is crucial for industry use. The
introduction of machine learning algorithms to existing techniques in this field has proven valuable, thus, a
machine learning approach for data processing and damage quantification to the existing dielectric technique
was developed and applied in this work. BMI/Quartz samples and S2-Glass/Epoxy samples were fabricated and
subjected to impact damage via drop tower. The BMI samples were impacted centrally at 9 J and the S2-Glass
samples were subjected to two impact events of differing energies, 5 and 3 J. An unsupervised K-means clustering
algorithm was applied to the acquired dielectric scans at different gravimetric moisture contents which has
provided promising results for all samples. Specifically, within the two impact samples, the algorithm assigned a
higher cluster center to the site with more damage, indicating the technique has the capability to both detect and
quantify impact damage at all moisture levels examined.

1. Introduction

Historically speaking, significant functional improvements in the
engineering sectors has often been accompanied by breakthroughs at the
frontier of materials discovery. In the aerospace and automobile in-
dustry, the development of fiber reinforced composites in the mid-
twentieth century was one such event which led to rapid advances in
terms of performance. When compared to conventional structural ma-
terials like steel, composites offer a higher strength to weight ratio [1,2],
resistance to chemical contamination [3] and a higher thermal stability
[4,5]. Composites also gained a lot of favor in the defense and military
sectors when researchers discovered its ability to transmit radar signa-
tures without considerable signal absorption [6]. The advantages this
class of materials offer has led to a global composite market which was

estimated at 86.4 billion USD in 2020. The industry is expected to
expand at a compound annual growth rate (CAGR) of 6.6% from 2021 to
2028 [7].

Despite their obvious superiorities over existing material classes, it
cannot be overlooked that the majority of applications where compos-
ites are employed are safety critical [8] where the failure of any con-
stituent can trigger a catastrophic event without warning. Accurate
damage detection and quantification in composites has been an active
area of research for the past couple of decades [9–11] and the problem is
complicated because, unlike metals, composites often do not show any
visible signs of damage initiation or accumulation [12,13]. The multi-
tude of applied loads and stresses from different sources during the
operating lifetime makes it even more challenging to develop tools for
residual life prediction [14,15]. Damage can initiate in a composite
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laminate from a seemingly benign event like a hail strike or a tool drop
by an operator during a routine maintenance overhaul [16]. The barely
visible matrix cracks generated will accumulate in-service as the struc-
ture is subjected to fluctuating cycles of temperature [17,18],
freeze-thaw cycling [19,20], and fatigue loading [21–23]. Moreover, the
polar nature of the polymer matrix of a composite coupled with expo-
sure to low levels of precipitation or prolonged high humidity makes
them amenable to low levels of moisture absorption [24,25]. Neat
epoxy-based resins can absorb anywhere between 1 and 7% moisture by
wt [26]. which can translate to a moisture content of ~3% by wt [27]. in
a polymer composite. Earlier studies have provided a detailed docu-
mentation of the deleterious effect of absorbed moisture on the me-
chanical performance [28–32], thermal stability [33] and electrical
insulation properties [34–36] of polymer matrix composites (PMC).

The combination of performance unpredictability, mechanical loads
and environmental stressors makes it imperative to develop safe, reli-
able, and affordable methods of non-destructive evaluation (NDE)
geared specifically for composites. Currently, there are a variety of
available NDE techniques which aim to detect damage at different
phases as it evolves in a composite [37–39]. The strengths and weak-
nesses of each technique have been discussed in previous review papers
[40–43] but a persistent limitation across techniques is their inability to
reliably predict sub-micron scale damage during the early lifetime of the
composite. Some techniques like radiography [44] which perform well
in the damage initiation phase are burdened by safety and economic
restrictions. Consequently, despite the development of highly sophisti-
cated NDE techniques at the academic level, a widespread adoption on
the commercial scale is lacking and manual techniques that rely on
operator skill like ‘tap tests’ [45] are still prevalent.

We have briefly discussed the known degradation induced by mois-
ture in composites, but some degree of absorption is inevitable even in
low-humidity operating environments [46]. Molecular simulation
studies [47–53] have demonstrated that the state of the ingressed water
molecules is dependent on the intermolecular secondary bonding in-
teractions with the polymer network and the physical morphology of the
matrix. The presence of nanopores and voids can lead to local clusters of
water molecules which do not engage in strong hydrogen bonds with the
polar groups in the network. Spectroscopy [54–57] and dielectric
relaxation [58,59] have been successful in identifying two distinct states
of moisture in an epoxy – one which is clustered as water droplets
(“free”) and the other which is “bound” to the polymer matrix.

The presence of internal damage sites creates additional free volume
in the form of microcracks where moisture can exist as “free” water and
exhibit characteristics similar to bulk water [60–65]. In the case of dry
non-conductive composites with fiberglass or quartz reinforcements, the
composite laminates are considered homogenous with a relatively small
disparity in terms of relative permittivity between fiber andmatrix (both
have a dielectric constant ~ 3) [66,67]. The dielectric properties of
moisture are dependent on the dipolar rotational polarization mecha-
nism under the influence of an applied electromagnetic field [68]. If the
water molecules can align in the direction of the applied electromag-
netic field, they have high relative permittivity. Hence bulk water has a
significantly higher dielectric constant (~80) [69–71], creating a sharp
contrast between the dielectric signatures of the “free” water and the
composite phase. Water bound to the polymer network is significantly
restricted in its motion and has a much lower dielectric constant of ~3.2
[36–72]. This means that even at very low levels of moisture absorption,
the difference in dielectric constants between the free and bound water
will cause localized rise in relative permittivity near the damage site.
This phenomenon has been leveraged in a novel NDE technique where
the different species of moisture have been used as an “imaging agent” to
detect impact damage [60–74].

In the realm of composite NDE, the past few years have been
underlined by the infusion of different machine learning (ML) algo-
rithms to existing methodologies [75–81]. Since a major part of damage
detection is identifying subtle changes in data patterns; applying ML

enables a faster, more sophisticated, and reliable blueprint for deter-
mining the type, location, or extent of damage. For instance, Das et al.
[77] used a one-class support vector machine (SVM) on the wave
propagation data collected by piezoelectric transducers mounted on a
cantilever carbon fiber composite beam. They were successful in
detecting and classifying different forms of defects like holes, cuts,
notches and delaminations in the samples. Jung et al. [79] developed
nonlinear models for composite helicopter rotor blades and applied SVM
to categorize damage into one of ‘negligible’, ‘moderate’ or ‘severe’
classes. Yuan et al. [80] adopted a deep learning approach and employed
a unified Convolutional Neural Network (CNN)-Recurrent Neural
Network (RNN) architecture to diagnose impact events from simulated
wave fields on a finite element model.

The examples discussed above are applications of supervised ML
which requires training on labeled data sets. But in many real-life sce-
narios it is hard to label the high-dimensional data extracted from NDE
experiments. Unsupervised ML can be very useful in these cases for (i)
dimensionality reduction (DR), projecting the high-dimensional data
set into an easily interpretable two or three dimensional space and (ii)
clustering which can detect patterns in unlabeled data and divide them
into relevant subsets [82]. For instance, Park et al. [81] collected the
in-situ electromechanical output during impact for
carbon-fiber-reinforced plastic (CFRP). The seven-dimensional data was
reduced to three dimensions using Principal Component Analysis (PCA)
and unsupervised k-means clustering subsequently identified four
different damage types in the sample. Liu et al. [76] analyzed the
damage behaviors on composite wind turbine blades under accelerated
fatigue loading and used bisecting k-means clustering on acoustic
emission data to identify damage modes.

These works underscore the value of combining fundamental science
with ML algorithms. Phenomenological differences in polymer-water
interactions near the damage locations of fiberglass composites has
already been well documented through near infrared (NIR) spectroscopy
[62–64] and dielectric resonance [61–63]. This study aims to develop a
damage quantification algorithm for non-conductive composites by
applying unsupervised K-means clustering on spatial maps of relative
permittivities. A damage mapping setup was used to track the localized
changes in permittivity due to the presence of “free” water near the
damage sites and unsupervised k-means clustering was used to divide
the data into subsets of increasing damage. The algorithm was validated
on Quartz/BMI samples with single impact locations. In these samples,
the mapping setup worked as a damage detection technique which could
accurately identify the location and the most affected area based on
moisture induced permittivity changes. Post-validation, the setup was
used for damage quantification in S-Glass/Epoxy samples with multiple
locations of different impact energies. Finally, some future strategies are
discussed which can help eliminate the current shortcomings of this
methodology and enable its successful deployment in a commercial
service setting.

2. Materials and methods

2.1. Materials

In this study, experiments were carried out on two different types of
composite laminates. The validation was performed on quartz-
reinforced BMI resin samples which had a single, centrally located
impact site. The technique was then applied for damage quantification

Table 1
Average BMI/Quartz laminate properties.

Property Average (%) Standard Deviation (%)

Fiber volume percentage 59.41 0.149
Resin volume percentage 40.27 0.144
Void percentage 0.32 0.045
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on three S-glass reinforced epoxy resin samples which had two impact
sites with varying energies.

Two Quartz/BMI samples of approximate dimensions 132 mm × 75
mm (±5%) were cut with a wet diamond saw from a twelve-ply, 36
square inch laminate. The average sample thickness was 2.61 mm. This
type of composite is typically employed in aircraft radomes and the BMI
resin in the laminate has a commercial trade name of Hexcel® F650. The
reinforcement is a woven eight-harness satin weave quartz fabric. It was
cured at a US air force facility in an autoclave. A pre-cure conditioning
was performed at 27 ◦C (80 ◦F) and 10 psi pressure for 30 min. The
temperature was then raised to 190 ◦C (375 ◦F) at a rate of 3 ◦C (5 ◦F)/
minute and was held constant at 85 psi pressure for 4 h. This was fol-
lowed by a manufacturer recommended 8-h post-cure at 232 ◦C (450 ◦F)
in which the temperature was increased at a maximum rate of 2 ◦C (3.3
◦F).

The S2-glass/epoxy laminate was fabricated using a unidirectional
prepreg consisting of a modified epoxy film adhesive matrix reinforced
with AGY 463 S-2 Glass roving. A cross-ply laminate of size 304 mm ×

304 mmwas formed using 7 plies of prepreg, laid up in an alternating 0/
90 sequence. The layup was then cured in a hot press at 345 kPa; it was
heated from room temperature at an average rate of 10 ◦C/min until
temperature reached 121 ◦C. Pressure and temperature were released
after a cure time of 1 h, and the laminate cooled at an average rate of 2
◦C/min until ambient temperature was achieved. A waterjet was used to
cut three samples with dimensions 170 mm × 72 mm from the cured
laminate and the average sample thickness was 2.167 mm (±1.8%).

The compositional properties were obtained through a high tem-
perature resin burn-off in accordance with ASTM D3171 [83].
Pre-sample weights of 15 specimens for both the laminates were
recorded and then they were maintained at 800 ◦C until the complete
elimination of all the.

Resin. The post-burn weight allowed the accurate estimation of the
resin, void and fiber percentages which have been recorded in Tables 1
and 2 respectively.

2.2. Sample Conditioning and impact setup

To ensure the elimination of any residual moisture, all the samples
were dried in a vacuum oven at 65 ◦C in accordance with ASTM D5229
[84]. The sample weights were recorded on a high-precision Met-
tler-Toledo analytical balance. Since the percentage weight change
during the conditioning can be as low as 0.03%, even static electrical
charges on the surface of the specimen can trigger some spurious weight
fluctuations. This effect was neutralized by applying pressurized air on
the sample surface through an ionizing gun before recording the weight.
After the weights stabilized, the samples were subjected to impact in a
drop tower as shown in Fig. 1. The tower is equipped with a double
column impactor guide mechanism and a hemispherical tip striker of
radius 9.4 mm mounted on a crosshead. The payload has a total weight
of 4.29 kg and the impact energies subjected on the samples can be
modified by changing the drop height.

Low velocity out of plane impact of 9 J was applied at the center of
the BMI/Quartz samples. In the case of the S2-glass/epoxy samples two
locations were chosen along the central axis which were separated by
75 mm. These locations were subjected to impacts of 3 and 5 J respec-
tively. Before impact, all the specimens were firmly secured between
two 3 mm thick steel plates and the intended impact sites were exposed
through a central cutout of 35 mm in the plates. The damage induced in the specimens was consistent with events like tool drops during main-

tenance or small hail strikes during service. As we can see in Fig. 2(a)
and (b), they will be hard to detect especially if the panels are painted.
These sites are examples of barely visible impact damage (BVID) which
has minimal impact on the surface but is capable of internally initiating
delaminations, matrix cracks and fiber breakage [85–87].

Table 2
Average Epoxy/S-glass laminate properties.

Property Average (%) Standard Deviation (%)

Fiber volume percentage 59.74 1.300
Resin volume percentage 35.46 1.032
Void percentage 4.80 0.880

Fig. 1. Drop tower setup for inducing impact damage.

Fig. 2 (a). Front and Back side of one of the centrally impacted BMI/Quartz
fiber samples.

R.D. Guha et al.
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2.3. Gravimetric moisture uptake

In previous studies the equilibrium moisture uptake level in BMI and
epoxy resin composites have been found to be between 1.4 and 1.8% by
wt [88,89]. But in this work, we explored the potential of damage
detection and quantification at very low levels of moisture contamina-
tion and hence themaximummoisture uptake level tested in both classes
of samples was ~0.4% by wt. Two separate approaches were adopted for
conditioning the damaged samples which allowed us to replicate
different in-service conditions. The BMI/Quartz samples were kept in a
controlled humidity environment and their weight was monitored as
they absorbed moisture from the ambient surroundings over a period of
two months. On the other hand, the doubly impacted S-glass/epoxy
samples were subjected to accelerated aging as they were submerged in
a distilled water bath at a regulated temperature of 25 ◦C. These spec-
imens were periodically removed from the bath and dried with a lint free
cloth. Subsequently, they were allowed to stabilize in the lab conditions
of ~60% humidity for 10 min before recording their weight. The uptake
was calculated through the weight change of each sample according to:

M(%) =
W − Wi

Wi
× 100% (1)

where W is the weight of the specimen after absorption for a specific
time andWi is the initial, dry weight of the specimen after drying in the
vacuum oven. The moisture uptake profile for all the three S-glass/
epoxy samples have been included in Section 1 of the SI.

2.4. Split post dielectric resonator and the damage mapping setup

The dielectric properties of the samples were recorded at a micro-
wave frequency of 2.48 GHz using a split post dielectric resonator
(SPDR) manufactured by QWED©, Poland [90,91]. The SPDR was
coupled with an Agilent programmable Vector Network Analyzer (VNA)
through high precision coaxial cables as seen in Fig. 3. This setup is
capable of measuring bulk relative permittivity, and it can also track
minute changes in relative permittivity (in the order of 10−3). Prior
calibration of the S-parameters (S11, S22 and S21) is necessary before
using the equipment which is achieved by manually adjusting the
coupling loops present at port 1 (S11) and port 2 (S22) until the loss in
both signals are approximately equal. Consequently, both the loops are
rotated in the opposite direction till the S21 signal loss becomes ~ -40
db. After the calibration is complete, the VNA is used to record the
resonant frequency and quality factor (Q-factor) of the empty resonator.

Fig. 2 (b). Front and Back side of one of the double impacted Epoxy/S-
Glass samples.

Fig. 3. Test Setup for measuring relative permittivity of composite samples.

Fig. 4. Damage mapping setup for moving the specimen inside the SPDR.

R.D. Guha et al.
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The introduction of the sample shifts the resonant frequency of the
SPDR, and the relative permittivity can be calculated from the difference
in frequencies according to:

ε′
r = 1 +

f0 − fs

h f0 Kε
(
ε′

r, h
) (2)

where f0 is the empty resonator frequency, fs is the SPDR frequency after
the sample has been inserted, h is sample thickness and Kε is a function
of both ε′

r and h, the values of which are unique to each SPDR and
provided in tabular form by the manufacturer.

The SPDR enables accurate permittivity measurements for the
composite but in isolation, the device is restricted to single readings of
the sample area which is encapsulated by the resonant cavity of the
SPDR. For damage detection and quantification, a spatial map of
permittivity measurements across the specimen dimensions is necessary.
To achieve this goal, a custom damage mapping setup was devised with
the help of stepper motors and microcontrollers. As seen in Fig. 4,
NEMA-17 stepper motors were operated by A4988 motor drivers which
could move the sample in both the x and y directions within the cavity.
The drivers were controlled by an Arduino MEGA 2560 microcontroller
board. Both the VNA and Arduino were interfaced through MATLAB®
scripts allowing us to accurately move the samples with steps as low as
0.5 mm and trigger the VNA to take readings at individual sample
points. The scan area had to be delineated in a manner which would
guarantee that only the specimen was within the cavity for all the
recorded observations. Scan dimensions higher than a certain prescribed
limit would result in observations which are a combination of the sample
and the 3-D printed holders within the cavity (see Fig. 4). Accounting for
the dimensions of the SPDR cavity (55 mm diameter), the scan area was
automatically calculated in the MATLAB script, and they have been
shown for the Quartz/BMI and S-glass/epoxy samples in Fig. 5 (a) and
(b) respectively.

2.5. Unsupervised K-means clustering

As discussed in the first section, machine learning can be an effective

way of recognizing patterns in a data set and accelerate the accurate
detection of damage modes in a composite. For instance, in a recent
work, supervised learning was used on spatial dielectric maps at varying
moisture concentrations [92]. The maps were superimposed on the
images of the damaged samples which were part of the training set and
points within the visible damage boundary were used to label the data.
However, this technique has a few shortcomings. Firstly, it has an
associated cost of exhaustive manual labeling and secondly, it is
dependent on the external damage boundary and cannot account for
unpredictable internal rupture mechanisms across different composite
samples. In a real-life scenario, it is also possible that a data set trained
on a particular group of samples does not translate well to a new sample.
Therefore, this classification problem can greatly benefit from an un-
supervised learning algorithm which can leverage patterns in unlabeled
data and segment them into different heterogeneous groups based on the
extent of damage. This task of discovering groups of similar attributes
within the data set is called clustering and it comes with its own set of
technical nuances worth noting. Since there are no external labels, it is
difficult to know offhand how many clusters the data should be divided
into. Concurrently, external validation or expert insight is necessary to
interpret the veracity of the results generated by the model.

K-means clustering is an example of an exclusive clustering algo-
rithmwhich segments a given data set into a certain number of clusters k
which is decided a-priori. The central idea of the algorithm is encap-
sulated in Fig. 6. One center is defined for each intended cluster and each
point is assigned to the nearest centroids. Once all the points are
assigned, the k centers are recalculated, and the process is iterated till
the position of the centers become invariant. Similar to the supervised
learning algorithms, K-means clustering also aims at minimizing the cost
of an objective function which is defined by the squared error function as
[88,89]:

J =
∑k

j=1

∑x

i=1

⃦
⃦
⃦x(j)

i − cj

⃦
⃦
⃦

2
(3)

where x(j)
i are individual data points and cj are the coordinates of the

cluster centers. At the end of an iteration the new cluster centers are
calculated from the reassigned points as:

cj =
1
nj

∑nj

j=1
xi (4)

where nj represents the number of points in the jth cluster
The results from the algorithm are very sensitive to the initial as-

signments of the randomly assigned cluster centers and it does not al-
ways converge to the most optimal clustered segments. The probability
of a non-optimum solution is higher when two cluster centers are
initially assigned very close to one another. A solution to this problem is
to use a smarter initialization technique which prioritizes greater dis-
tances from the initialized centers for the subsequent cluster centers. For
instance, if one of the data points is randomly assigned as a cluster center
ck, then the distances of all the other non-selected data points are
calculated from ck. Then the next center is assigned to the data point (xi)
which maximizes the weighted probability distribution (P):

P =
(xi − ck)

2

∑n

i=1
(xi − ck)

2
(5)

K-means clustering performed after this initialization technique is
called k-means ++ [93] and it dramatically improves the performance
of the algorithm. In this work, the scikit-learn package in Python is used
to execute the k-means algorithm which implements k-means ++ by
default.

Fig. 5. Dimensions of scan area in (a) Quartz/BMI samples and (b) S-glass/
epoxy samples.

Fig. 6. A flowchart explaining the steps involved in K-means clustering.

R.D. Guha et al.
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3. Results and discussion

3.1. Rationale for clustering

The inspiration behind using K-means clustering for segmenting the
permittivity data into increasing levels of damage and delineating a
damage boundary for the most affected area in the sample was taken
from a comparable problem in image compression. Any computer image
can be interpreted as a spatial map of pixels with 3 separate features
capturing the red (R), blue (B) and green (G) signals. For example, in
Fig. 7 (a), a bouquet of colorful flowers is represented by an image of
376 × 564 pixels. The multiple hues in the figure are due to the com-
bination of thousands of unique colors. This image can be numerically
unpacked as an array of 212,064 elements (283 × 407) with three
feature vectors (RGB signals). If a K-means clustering algorithm is then
applied to this array, the thousands of unique color shades can be
clustered into a handful of color centers. When this array is again
reshaped back into a pixelated image (see Fig. 7 (b)), the main features
of the image are preserved despite having a significant loss in infor-
mation. Each data point recorded during a dielectric scan can be likened
to a pixel of an image as they also store information in the form of three
feature vectors: permittivity values, loss tangent and signal bandwidth.
Therefore, a spatial scan consisting of thousands of observations can be
segmented into a few predefined damage levels (cluster centers). One of
the challenges with this approach is to determine the optimal number of
segments before executing the clustering algorithm. A possible solution
to this problem is the ‘elbow method’, which uses a plot of inertia versus
the number of clusters in the data set to determine the appropriate
number of cluster centers. Inertia is defined as the sum of squared dis-
tance of each data point from its assigned cluster center. Increasing the
number of clusters leads to a lower inertia due to the points becoming
closer to a cluster center, but there is eventually a point at which we
overfit the data and observe diminished returns. In the limiting scenario,
the number of cluster centers will become equal to the number of data
points resulting in zero inertia. The ‘elbow method’ attempts to find an

inflection point on the plot after which the decrease in inertia slows
down appreciably [94]. In some cases, it is hard to find a sharp inflection
and the best possible candidate must be chosen from multiple options.
Nine clusters were the chosen k for the image compression in Fig. 7 (b)
which was selected from the inflection point seen in Fig. 7 (c).

Fig. 7. Practical implementation of k-means clustering. (a) A high-resolution image (b) compressed image after clustering (c) inertia curve used to determine k from
elbow method.

Fig. 8. Overall Invariance in permittivity in one of the damaged Quartz/BMI
samples with 0% moisture (dry).

R.D. Guha et al.
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3.2. Validation in Quartz/BMI samples

It was critical to validate the damage detection technique and the
clustering algorithm before applying it for damage quantification.
Keeping that aim in mind, the two BMI samples were scanned in the dry
state both before and after they had undergone impact at the drop tower.
A fine step size of 0.5 mm was chosen in both the x and y directions
which created a spatial map of 6355 data points. Then the permittivity
variation between the dry pristine and damaged samples was evaluated.
In accordance with our hypothesis of moisture induced rise in permit-
tivity, there should not be any appreciable difference between the two
scans, which is validated in Fig. 8 for one of the BMI samples. A similar
figure for the other BMI sample is included in Section 2 of the SI. As
mentioned in section 2.3, the Quartz/BMI samples were then exposed
for ambient moisture absorption in a controlled humidity environment
and periodic dielectric scans were taken at increasing moisture con-
centrations (by wt.%).

The dry scan of the damaged samples was chosen as the baseline
which was subtracted from every scan conducted after moisture ab-
sorption. This was done to eliminate variation in permittivity due to
thickness effects. The three feature vectors serving as damage indicators
after the baseline subtraction were the differences in permittivity, loss
tangent and bandwidth at each scan point respectively. The features had
separate units and their respective variances also differed by orders of

magnitude. Since K-means utilizes the squared distances between data
points, the features with smaller variances will have a greater influence
of the algorithm [95]. Therefore, the 6355 × 3 array was scaled in Py-
thon with a ‘MinMaxScaler’ available in the scikit-learn. preprocessing
module and the resulting vectors were standardized indicators ranging
between 0 and 1. Subsequently, the K-means algorithm was iteratively
applied on the normalized arrays for each BMI sample and then resha-
ped back into the 155 × 41 two-dimensional spatial map obtained from
the damaged samples. As seen in Fig. 9 (a) and (c), the elbow in the
inertia curve occurred at approximately 8 and 9 clusters respectively.
Fig. 9 (b) and (d) shows the results of the clustering in a
three-dimensional contour plot using the scaled damage indicator for
the permittivity variable. The segmentation creates envelopes of
increasing damage as the scan moves towards the central impact loca-
tion from either side. The trends of the damage are intuitive and can
even be seen in contour maps of the raw data before it is passed through
the k-means clustering algorithm. However, the segmentation resulting
from the algorithm provides a much clearer and consistent picture of the
exact damage boundary, irrespective of the moisture content. As seen
when comparing the two figures, the damage boundary for each sample
is different. This is a result of the unpredictability in the induced internal
microcracks and delaminations in the separate composite samples
despite similarities in constituents and damage history. In the first
sample, the damage levels decrease almost concentrically with the

Fig. 9. (a) Inertia versus k curve for the first BMI sample at 0.2% moisture by wt. %. (b) Clustering results for the first Quartz/BMI sample at 0.2% moisture by wt. %
(k = 8). (c) Inertia versus k curve for the first BMI sample at 0.16% moisture by wt. %. (d) Clustering results for the first Quartz/BMI sample at 0.16% moisture by wt.
% (k = 9).

Fig. 10. Contour maps and labeled boundaries for the highest damage level in the scan area of the first Quartz/BMI sample at (a) 0.20% (b) 0.31% and (c) 0.43%
moisture (by wt.%).

R.D. Guha et al.
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highest indicated damage at the center of the scan area. Observations in
the second sample convey that the damage is shifted to the edge of the
scan area and the boundary is broader for the highest damage level. It is
possible that the induced damage from the drop tower was slightly
off-center in the second sample. The ability of the algorithm to catch
such subtle differences in BVID profiles at moisture contents as low as
0.2% and 0.16% by wt. makes the technique very promising when
compared to the lower resolutions of ultrasonic C-scans [96]. Figs. 10
and 11 compare the damage maps of the two samples at increasing
moisture.

Concentrations. Companion figures were also obtained from Python
by labeling all the data points in the highest damage level as 1 and every
other point as 0. These binary figures help to delineate the boundaries
for the most affected regions in the samples at different moisture

concentrations. The chosen value of k (8 and 9) was kept constant for
both the samples even as the moisture concentration increased. The
overall consistency in the detected damage areas also shows that the
algorithm can account for the elevation in overall permittivity due to a
rise in moisture content.

3.3. Damage quantification in S-glass/epoxy samples

The results of the previous sub-section clearly show that the spatial
dielectric mapping coupled with the k-means clustering algorithm can
help detect the BVID location in composite samples. But the possibility
of applying this technique to quantify the extent of damage is still un-
explored. For this purpose, the S-glass/epoxy samples with two damage
sites of varying impact energies (3 J and 5 J) were periodically scanned
at specific moisture contents. Like the BMI samples, the scan at 0%
moisture for the damaged samples was subtracted as a dry baseline from
every subsequent wet scan. A difficulty with these experiments was the
loss in moisture content during the scan process. Since the scan di-
mensions of these samples was larger, the scanning time of each sample
at a 0.5 mm step size was considerably longer than the BMI samples.
Each scan at 0.5 mm step size took approximately 11 h and as these
samples were conditioned in a water bath, there was a loss of moisture
content during the scan due to the ambient exposure. To mitigate this
issue, a step size of 1 mm was chosen in both the x and y directions and
the MATLAB® ‘interp’ command was used to linearly interpolate the
missing value between any two successive data points. As we have
already seen [97], the loss in scan accuracy is minimal for small changes
in step sizes. Consequently, a spatial map of 2088 (116 × 18) data points
was interpolated to get a refined data set of 8085 (231 × 35) points,
while cutting down the scan time to approximately 4.5 h. The overall
permittivity invariance in the dry state for one of the S-Glass/Epoxy
samples is shown in Fig. 12 and similar figures for the remaining two
samples have been included in Section 3 of the SI.

Dielectric scans were taken at increasing moisture contents of 0.05%
by wt. starting from a moisture concentration of 0.05%. The same
normalization technique used for the BMI samples was utilized to scale
the feature vectors. When the clustering algorithm was applied on these
samples, all the three exhibited an elbow in the inertia curve at
approximately k = 10. The plot for one of the samples is shown in Fig. 13
(a) and similar plots for the other two samples have been included in
Section 4 of the SI. Due to the multiple impact spots, two different
elevated damage segments are expected and as we can see in Fig. 13 (b),
separate envelopes near the respective impact locations are observed. A
narrow strip of damage is also detected at the center of the sample where
no external impact was applied. We suspect that this is due to a ‘knock-
on’ effect from the double impacts separated by a narrow spatial margin
of 75 mm. The consecutive impact events might have induced coupled
cracks along some of the in-axis laminas. If further validation corrobo-
rates this hypothesis, then it also vindicates the use of this method for
tracing composite damage progression from associated loads. A

Fig. 11. Contour maps and labeled boundaries for the highest damage level in the scan area of the second Quartz/BMI sample at (a) 0.16% (b) 0.25% and (c) 0.38%
moisture (by wt.%).

Fig. 12. Overall Invariance in permittivity in one of the damaged S-glass/
Epoxy samples with 0% moisture (dry).

R.D. Guha et al.



NDT and E International 145 (2024) 103137

9

comparative analysis with Fig. 12 makes the results in Fig. 13 (b)
particularly encouraging since they are obtained at a moisture concen-
tration as low as 0.05% (by wt.).

Fig. 14 (a), (b) and (c) illustrates the damage maps of the three S-
glass/Epoxy samples at increasing moisture concentrations ranging from
0.05% to 0.30% moisture (by wt.). A couple of additional scans for each
sample at 0.15% and 0.25% bywt. have been included in Section 5 of the
SI. For the first two samples, the clustering not only detects the two
impact spots clearly, it also performs well with respect to quantifying the
difference in extent of damage within the.

Sample. In Fig. 14 (a), across all the moisture concentrations, the 5 J
impact spot has a wider coverage of the highly damaged clusters when
compared to the 3 J impact spot. This indicates an overall moisture
distribution across the sample with a higher concentration of free water
near the.

5 J damage site triggered by a greater availability of microcracks,
voids and delaminations. The narrow strip of elevated damage near the
center of the sample also persists in every scan of Figure.

14 (a) and as mentioned earlier, this might be because of additional

in-axis cracks induced in some of the laminas through consecutive im-
pacts. Although more uniform in terms of damage distribution, the
second sample (Fig. 14 (b) also exhibits small pockets of higher damage
near the 5 J damage site. In case of the third sample (Fig. 14 (c)), the 3 J
impact site is not clearly detected in all the scans at different moisture
concentrations. At the lowest and highest moisture contents of 0.05%
and 0.30% by wt., a faint damage boundary is detected near the site.
Since the technique worked for the other two samples, it is improbable
that clustering was unsuccessful in segmenting the envelope created by
the 3 J damage. A more likely explanation is that the 3 J drop did not
induce damage which is discernible at lower moisture concentrations
which again highlights the unpredictability associated with low energy
impact events.

The highest and the second highest damage envelopes in these
samples were labeled in Python after clustering and the results for 0.30%
moisture by wt. has been summarized in Fig. 15 (a)-(c). The higher
density of ‘Damage Level 1’ labeled points for all the samples near the 5
J impact site reinstates the promise of this approach for comparing and
quantifying multiple BVID sites in the same composite sample.

Fig. 13. (a) Inertia versus k curve for the first S-Glass/Epoxy sample at 0.05% moisture by wt. %. (b) Clustering results for the first S-Glass/Epoxy sample at 0.05%
moisture by wt. % (k = 10).

Fig. 14. (a)-(c) Contour maps after clustering showing the damage boundaries in the 3 multi-impacted S-Glass/Epoxy samples at (i) 0.05% (ii) 0.10% (iii) 0.20% and
(iv) 0.30% moisture concentration (by wt.).

R.D. Guha et al.



NDT and E International 145 (2024) 103137

10

3.4. Limitations and future directions

The results compiled in this work are strong pointers to remain
optimistic about leveraging the duality in dielectric properties of
absorbed moisture; not only as an imaging agent for detection, but also
for quantification of the extent of sub-micron scale internal damage in a
safety-critical composite structure. Despite the promising signs, there
are still some strides to be made before this technique can be deployed
on a commercial scale.

The first hurdle which needs to be overcome is the limitations in
terms of sample dimensions. Since the SPDR is a compact device, we are
currently limited to relatively small samples with a maximum thickness
of ~3 mm. In a field scenario, besides being much larger, the composite
panels would also be part of a much bigger structure which cannot be
maneuvered inside a SPDR cavity. A potential solution is to use other
dielectric techniques which are not spatially confined, such as the free-
space method which uses coupled spot focusing antennas [98,99] to
replace the function of the SPDR cavity. The free-space technique has
been previously used for the NDE of composite materials [100]. Another
alternative would be to use other characterization techniques which
could quantify the relative concentration of free and bound water.
Previous works have demonstrated [64–101] that Near Infrared (NIR)
Spectroscopy can evaluate the free to bound water ratio in damaged
composite samples and future work is underway for a similar damage
mapping setup with a Nano NIR scanner [102] which can map the water
states distribution across a damaged sample. The scanner also eliminates
the thickness restrictions imposed by the SPDR cavity. Further, it is a
single-sided access method as opposed to double-sided (as the current
dielectric techniques are) and expands the usage possibilities to struc-
tures which cannot be accessed from both sides.

The efficiency of this technique currently pales in comparison to
other common NDE methods; at this stage of development, mapping a
large composite panel would take days. Moreover, since the method is
dependent on the moisture concentration in the sample, the associated
moisture loss during a prolonged scan can lead to inaccurate damage
maps. We attempted to minimize the moisture loss during scans by using
a humidifier inside the lab and we are currently working on establishing
a better understanding between scan resolution and accuracy to opti-
mize the method [97]. Preliminary results have shown that the loss in
scan accuracy is minimal if a finer damage map is interpolated from a

coarser step size. Establishing an optimal scan resolution which balances
the tradeoffs between accuracy and speed will significantly accelerate
the scanning process.

The necessity of a dry baseline subtraction from the scan also com-
plicates this NDE method, especially in a commercial setting where the
moisture content in a given sample will be unknown. It would be an
impractical, if not impossible, approach for most structures to dry every
component of interest for days and then re-expose them to ambient
moisture. But further investigations of our technique have evidenced
that this shortcoming can be mitigated by taking two scans with mois-
ture contamination and subtracting the scan at the lower moisture
content as the baseline. As seen in Fig. 16 (b), the sample 1 damage maps
obtained after using the scan at 0.05% moisture concentration as the
baseline yields comparable results to Fig. 16 (a) where the dry baseline is
used. In a service setting, two consecutive scans with one at a relatively
higher moisture content should eliminate the need of a dry baseline
scan.

The characterization is also restricted to fibers and matrices which
are non-conductive. Since the polarization tendencies in these materials
are overshadowed by conduction, the dielectric properties cannot be
effectively measured [103]. This limitation can be partially overcome by
using NIR as the characterization tool, but even then, some re-
inforcements with strong absorbance (carbon fiber) can reduce the
sensitivity and overall effectiveness of damage detection. However,
given the widespread use of glass fibers, this technique can still be
leveraged for industry use.

Finally, although there are very few existing techniques with capa-
bilities to accurately detect damage at the sub-micron scale, the

Fig. 15. (a)-(c) Labeled damage maps showing the two most affected damage
envelopes in all the S-glass/Epoxy samples at 0.30% moisture content by wt.

Fig. 16. Contour Maps delineating the damage boundaries in the first S-Glass/
Epoxy sample at 0.20% moisture by wt. using (a) the dry sample as the baseline
(b) the scan at 0.05% moisture as the baseline.
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proposed method in this work would benefit from some validation
through available characterization tools, especially if they can visually
corroborate the actual damage boundaries with the envelopes formed by
the clustering algorithm. Current work is underway which aims to
compare the results of dielectric mapping with reconstructed, ply-level,
three dimensional images from x-ray computed tomography (CT). X-ray
CT coupled with image analysis is very adept at quantitatively charac-
terizing sub-micron scale damage but the radiation concerns associated
with its use limits its adoption in a service setting.

4. Conclusions

Previous studies have illustrated the differences in the physical states
and chemical interactions of absorbed moisture in the damaged and
undamaged regions of a fiber reinforced polymer matrix. This
phenomenological duality, coupled with the power of unsupervised
clustering was leveraged to develop a damage detection and quantifi-
cation technique for non-conductive composite materials. An attempt
was made to cover a range of available polymer matrix composites
(PMC). To achieve this goal, samples were procured from 12 ply woven
Quartz/BMI panel and 7 ply unidirectional (cross ply) S-glass/epoxy
laminates. Barely Visible Impact Damage (BVID) of 9 J was centrally
applied on the BMI samples and the specimens were exposed to ambient
moisture for a period of two months during which they reached a
maximum moisture content of ~0.40% by wt. On the other hand, two
impact sites of 3 J and 5 J was induced in the epoxy samples, and they
were subjected to accelerated absorption of up to 0.30% by wt. by
submerging them in a temperature-controlled water bath. Unsupervised
K-means clustering was applied to periodic spatial scans of relative
permittivity at increasing moisture concentrations obtained using an
SPDR with a microwave resonant frequency (2.481 GHz). In the BMI
samples, the processed results showed that the technique can not only be
accurately used for damage detection, but it can also segment the
scanned data into levels of increasing damage. The algorithm was sub-
sequently extended for damage quantification in the epoxy samples
which had multiple damage sites with differing impact energies (3 J vs 5
J). The technique was successful in identifying both the affected areas
and quantitatively; it consistently assigned a comparatively higher
cluster center to the 5 J site.

The process of combining clustering with the spatial variation in the
states of absorbed moisture has the potential to be developed into an
efficient damage quantification methodology which also produces
interpretable and accurate results. Some current shortcomings hinder its
widespread commercialization but possible solutions for overcoming
those limitations have been discussed in the current work and will
continue to be active topics of research in future studies.

CRediT authorship contribution statement

Rishabh D. Guha: Conceptualization, Data curation, Formal anal-
ysis, Investigation, Methodology, Software, Validation, Visualization,
Writing – original draft, Writing – review & editing. Katherine Berko-
witz: Data curation, Methodology, Validation, Writing – original draft,
Writing – review & editing. Landon R. Grace: Conceptualization,
Funding acquisition, Investigation, Project administration, Resources,
Supervision, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This material is based upon work partially supported by the National
Science Foundation (NSF) - US. under Grant Number: CMMI-175482.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ndteint.2024.103137.

References

[1] Bakhshi B, Heydarian M. Study of mechanical, flame, and water stability of
phenolic resin/carbon fiber/nanosilica composites. Polym Compos 2021;42(8):
3892–8. Available: https://doi-org.prox.lib.ncsu.edu/10.1002/pc.26101.

[2] Steinke K, Groo L, Sodano HA. Laser induced graphene for in-situ ballistic impact
damage and delamination detection in aramid fiber reinforced composites.
Compos Sci Technol 2021;202:108551. Available: https://www-sciencedirect-
com.prox.lib.ncsu.edu/science/article/pii/S0266353820323435.

[3] Kim K, et al. Enhanced physical stability and chemical durability of sulfonated
poly(arylene ether sulfone) composite membranes having antioxidant grafted
graphene oxide for polymer electrolyte membrane fuel cell applications. J Membr
Sci 2017;525:125–34. Available: https://www-sciencedirect-com.prox.lib.ncsu.
edu/science/article/pii/S0376738816312650.

[4] Wang Y, Qiu X, Zheng J. Study the mechanism that carbon nanotubes improve
thermal stability of polymer composites: an ingenious design idea with coating
silica on CNTs and valuable in engineering applications. Compos Sci Technol
2018;167:529–38. Available: https://www-sciencedirect-com.prox.lib.ncsu.edu/
science/article/pii/S0266353818312971.

[5] J. Guo et al., "Thermal stability and thermal degradation kinetics of short and
long glass fiber reinforced PA10T composites," Polym Eng Sci, vol. 59, (2), pp.
246-253.

[6] Loss KR. Damage tolerant sandwich panel core with low moisture affinity. In:
Proceedings of American Society for composites 29th technical conference on
composite materials; 2014.

[7] Anonymous (.). Composites market size, share & trends analysis report by
product (carbon, glass), by resin (thermosetting, thermoplastics), by
manufacturing process, by end use, and segment forecasts. https://www.
grandviewresearch.com/industry-analysis/composites-market; 2020 - 2027.

[8] Kaware K, Kotambkar M. Low velocity impact response and influence of
parameters to improve the damage resistance of composite structures/materials:
a critical review. Int J Crashworthiness 2021:1–25.

[9] Cantwell WJ, Morton J. The significance of damage and defects and their
detection in composite materials: a review. J Strain Anal Eng Des Jan 01, 1992;27
(1):29–42.

[10] Raut NP, Kolekar AB, Gombi SL. Methods of damage detection on composites
under low velocity impact: review. Mater Today Proc Jan 01, 2020, 2019;27:
2823–7.

[11] Yuan FG. Structural health monitoring (SHM) in aerospace structures. Woodhead
Publishing; 2016.

[12] Vaidya UK. Impact response of laminated and sandwich composites. In: Impact
Engineering of composite StructuresAnonymous; 2011. p. 97–191.

[13] Hakim S, Razak HA. Adaptive neuro fuzzy inference system (ANFIS) and artificial
neural networks (ANNs) for structural damage identification. Struct Eng Mech:
Int J 2013:779–802.
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