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Nanoparticles present in various environments can interact with living organisms, potentially leading
to deleterious effects. Understanding how these nanoparticles interact with cell membranes is crucial
for rational assessment of their impact on diverse biological processes. While previous research
has explored particle–membrane interactions, the dynamic processes of particle wrapping by fluid
vesicles remain incompletely understood. In this study, we introduce a force-based, continuum-scale
model utilizing triangulated mesh representation and discrete differential geometry to investigate
particle–vesicle interaction dynamics. Our model captures the transformation of cell membrane
shapes and nanoparticle wrapping by calculating the forces arising from membrane bending energy
and particle adhesion energy. Inspired by cell phagocytosis of large particles, we focus on establishing a
quantitative understanding of large-scale vesicle deformation induced by the interaction with particles
of comparable sizes. We first examine the interactions between spherical vesicles and individual
nanospheres, both externally and internally, and quantify energy landscapes across different wrapping
fractions of the nanoparticles. Furthermore, we explore multiple particle interactions with biologically
relevant fluid vesicles with nonspherical shapes. Our study reveals that initial particle positions and
interaction sequences are critical in determining the final equilibrium shapes of the vesicle–particle
complex in these interactions. These findings emphasize the importance of nanoparticle positioning
and wrapping fractions in the dynamics of particle–vesicle interactions, providing crucial insights for
future research in the field.

1 Introduction
Recent advancements in nanotechnology have sparked signifi-
cant interest in the interactions between living organisms and
nanoparticles produced from primary and secondary sources1–3.
Metal and polymer nanoparticles are particularly promising
in biomedical research for drug delivery, offering advantages
such as targeted delivery and controlled release of therapeutic
agents2,4,5. Despite these potential benefits, there are growing
concerns about the safety of engineered and industrial nanoparti-
cles directly released into the environment. The term "nanotoxic-
ity" refers to the possible harmful effects of nanoparticles on living
organisms and represents a significant concern due to their wide
range of applications6–8. Besides those from primary sources, tril-
lions per liter of secondary nanoparticles can be generated from
common consumer plastic products during normal use and many
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more are produced by environmental degradation of enormous
plastic waste9,10. Given this concern, there has been a surge in ef-
forts to elucidate how nanoparticles interact with biomembranes
and living cells11–14. Investigating the intricate dynamics of cel-
lular nanoparticle uptake has been a subject of extensive experi-
mental interest, as evidenced by notable studies15,16. Yet, direct
observation remains challenging due to the complexity of these
interactions and inherent technical constraints. Hence, compu-
tational simulations have emerged as a promising tool, shedding
light on dynamic processes like nanoparticle encapsulation by cel-
lular membranes17–21. In this study, we utilize computational
modeling to reveal the intricate dynamics governing the inter-
actions between spherical nanoparticles and three-dimensional
(3D) fluid vesicles.

The cell membrane, a lipid bilayer, acts as a selectively per-
meable barrier that separates the cell from its external environ-
ment. For nanoparticles to enter or exit the cell, they must tra-
verse this barrier22. Nanoparticle transport modes can be classi-
fied into direct penetration through passive diffusion and active
translocation based on particle size. Small hydrophobic nanopar-
ticles with sizes of a few nanometers can penetrate the mem-
brane directly via thermal diffusion. Oppositely, particles sig-
nificantly larger than the membrane thickness resort to energy-
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intensive transport processes such as endocytosis and exocytosis.
During these processes, the membrane substantially deforms and
engulfs around the nanoparticles14,23,24. Spontaneous wrapping
is initiated when the adhesive energy between the nanoparticle
and the membrane outweighs the energy penalty associated with
bending the membrane to wrap the particle18. Continuum-scale
models based on Helfrich theory25 and dynamic triangulated sur-
faces26–29 have been predominantly employed to describe cell
membrane elasticity and study the interactions of fluid vesicles
with nanoparticles. Notably, Bahrami et al.11 as well as Saric and
Cacciuto30 pioneered the investigation of vesicle tabulation trig-
gered by nanoparticle adsorption and ensuing nanoparticle aggre-
gation. These models were later extended to study the wrapping
of particles with anisotropic shapes, including ellipsoids, rods,
and cuboids31–33, as well as those with heterogeneous surface
chemistry19.

Recently, modeling studies have expanded to reveal the effects
of vesicle properties. Yu et al.20 investigated interactions between
nanoparticles and vesicles with different shapes (stomatocytes,
prolates, and oblates), systematically characterizing the effects of
vesicle volume and membrane curvature on particle wrapping.
They also examined cuboid particles and biconcave vesicles to
identify the energy-minimized shapes of these vesicles. The same
group further predicted phase diagrams for spherical nanoparti-
cles wrapped by vesicles with varying osmotic pressure21. Their
findings elucidated that the energy barrier of discontinuous envel-
opment transition increases with increasing osmotic concentra-
tion, stabilizing partially wrapped states. Another recent study by
Sadhu et al.34 modeled the effect of curvature-inducing proteins
on the engulfment of a rigid spherical particle via the Metropolis
Monte Carlo algorithm. Their study demonstrated proteins with
concave shapes can augment the wrapping process by decreas-
ing the bending energy cost of the membrane and adhering the
particle to the surface.

While existing research offers valuable insights into the final
equilibrium states of particle–vesicle systems, they predominantly
rely on energy minimization techniques17,34. In the context of
membrane shape optimization, energy minimization involves it-
eratively adjusting the shape of the membrane to find a configu-
ration where the potential energy of the system is minimized. A
considerable shortcoming of these energy-centric methods is their
inability to explicitly depict the dynamics of particle interactions
and membrane deformations34. To probe interaction dynamics,
particle-based methods such as molecular dynamics and dissipa-
tive particle dynamics are often employed14,35,36. Nonetheless,
these simulations suffer from limitations in temporal and spatial
scales37,38, hindering their ability to model the wrapping dynam-
ics on a cellular scale. To bridge this gap, we built a compu-
tational framework using triangulated membrane representation
and discrete differential geometry to compute forces acting on
membrane and particle and accurately simulate the nanoparticle
wrapping dynamics by fluid vesicles.

This study focuses on large-scale membrane deformation of
fluid vesicles induced by the interaction of particles having com-
parable sizes, mimicking cell phagocytosis of large particles39 or
nanoparticle interaction with extracellular vesicles. We first sim-

ulated the dynamics of a single-particle interaction and wrapping
by a spherical fluid vesicle, delving into the interaction energy
landscapes and induced shape changes. Both external and in-
ternal nanoparticle wrapping processes were examined quantita-
tively. We then investigated how two initially distant nanoparti-
cles interact with the vesicle, characterizing the energy profiles
and the evolution of particle configurations driven by membrane-
mediated interactions. Finally, aiming to mimic biologically rele-
vant uptake, we analyzed the impact of nanoparticle positioning
during the wrapping process as they interacted with a biconcave-
shaped vesicle, a shape reminiscent of a red blood cell.

2 Theoretical Background and Simulation Setup

2.1 Membrane elasticity theory
The continuum theory of membrane elasticity describes the defor-
mation of a lipid bilayer membrane using the Helfrich-Canham-
Evans Hamiltonian (referred to as the Helfrich Hamiltonian
below)25,40,41. The membrane is considered a curved two-
dimensional (2D) surface embedded in three-dimensional (3D)
space, which exhibits fluid-like behaviors in the plane of the mem-
brane while resisting stretching and bending. The fluidity of bi-
ological membranes is attributed to the lateral diffusivity of lipid
molecules within the lipid bilayer. The membrane does not con-
tain any memory of the previous shape or configuration, indicat-
ing the energy functional is solely dependent on the current ge-
ometry42. The bending free energy of the membrane can be ex-
pressed as a functional of mean curvature H, spontaneous mean
curvature H0, and Gaussian curvature G as follows43:

Eb =
∮

dA
{

2κb (H −H0)
2 +κGG

}
(1)

Here, H = (c1 + c2)/2 and G = c1 · c2 with c1 and c2 represent-
ing two principal curvatures. The spontaneous mean curvature
H0 can be influenced by various factors, including embedded pro-
teins and lipid composition asymmetry between the two leaflets.
The local elastic properties of the membrane are described by
κb and κG, which represent the bending and Gaussian curvature
moduli, respectively. When there is no change in the membrane
topology, the Gaussian curvature term can be neglected because
the corresponding surface integral remains constant according
to the Gauss-Bonnet theorem44. The minimization of the Hel-
frich Hamiltonian thus results in a fourth-order nonlinear partial
differential equation that describes the optimized shape of the
membrane possessing the lowest bending energy. However, this
formidable “shape” equation has only been solved analytically for
a limited number of highly symmetric cases45.

Besides the bending energy, the physical models for 3D vesicles
also often include the contributions from surface tension energy
Ea and osmotic pressure energy Ev. The area energy can be ex-
pressed by the following equation45,46:

Ea = κa
(A−A0)

2

A0
(2)

Here, At and A0 represent the current and preferred total areas
of the membrane, respectively. κa is the area expansion modu-
lus that controls the strength of penalty to maintain a preferred
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vesicle area47. A closed membrane also regulates the enclosed
volume accordingly. Therefore, we consider the volume energy of
the vesicle as45,46:

Ev = κv
(V −V0)

2

V0
(3)

Here, V and V0 denote the current and preferred volumes en-
closed by the membrane, respectively. The volume constraint
modulus, denoted by κv, acts as a control parameter that influ-
ences how strongly the system penalizes deviations from the de-
sired volume48. The volume control term can also be interpreted
as the contribution of osmotic pressure when the system is close
to the isosmotic condition21,49. Thus, the total energy of the vesi-
cle is composed as follows:

Evesicle = Eb +Ea +Ev (4)

2.2 Calculation of discrete geometric properties

Due to the challenging math involved in solving the shape equa-
tion, an alternative approach to the problem of membrane shape
optimization is to discretize a smooth surface into a triangulated
mesh. Discrete differential geometry50 is used to calculate the
surface geometric quantities necessary for computing the energy
functional. We convert a 2D surface M into a triangular mesh
network. The mesh consists of vertices V , edges E, and trian-
gles T . Each vertex vi ∈ V represents a point on the original sur-
face, and its 3D coordinates determine the shape of the surface.
Each triangular element ti ∈ T is defined by a group of 3 vertices(
vi,v j,vk

)
∈ V sharing a common triangle. In order to compute

the bending energy and force, it is necessary to determine the
curvatures and surface normal at each vertex of the triangulated
surface.

Meyer et al.51 proposed a method to define surface geomet-
ric properties at discrete mesh vertices as spatial averages. The
averaging process is performed within the immediate neighbor-
ing triangles, referred to as the “1-ring neighborhood”. Figure 1
provides a schematic representation of the 1-ring neighborhood
surrounding a particular vertex i with its position given by a vec-
tor xi. The authors also introduced a mixed vertex area Amixed to
ensure a perfect tiling of the surface without overlaps or gaps in
the presence of obtuse triangles to minimize the errors originat-
ing from spatial averaging. Namely, for a non-obtuse triangle, the
vertex area is defined by using Voronoi cells. In contrast, when a
triangle is obtuse, its tiling is conducted by using the midpoints
of the edges, as shown in Figure 1. Thus, the area of the vertex
with the obtuse angle is half of the triangle area, while each of
the other two vertices takes a quarter of the triangle area.

The mean curvature of a 2D smooth surface is related to its
Laplacian at position x by the following equation:

∆sx = 2Hn (5)

Here, n is the unit outward normal vector of the surface. Thus,
the discrete mean curvature H(xi) at a vertex i can be calculated

Fig. 1 Schematic diagram of a spherical vesicle mesh and the 1-ring
neighborhood of a vertex. The shaded region enclosed by the dashed
lines represents the mixed vertex area Amixed .

by the cotangent formula:

H(xi) = |K(xi)|=
1

4Ai
mixed

∣∣∣∣Nv(vi)

∑
j

(cotαi j + cotβi j)(xi −x j)

∣∣∣∣ (6)

Here, αi j and βi j respectively correspond to the angles opposite
to edge (xi,x j), and Nv(vi) is the set of 1-ring neighbor vertices of
i. The sign of the mean curvature H is determined by whether the
direction of the outward normal vector n(xi) matches the sign of
the mean curvature vector K(xi) at vertex i. n(xi) can be calcu-
lated by the "mean weighted angle" approach52. When the signs
are the same, the mean curvature is considered positive; other-
wise, it is regarded as negative. The discrete Gaussian curvature
G(xi) can be obtained as a vertex angular deficit by employing the
discrete version of the Gauss-Bonnet theorem51:

G(xi) =
1

Ai
mixed

(
2π −

Nt (vi)

∑
t

θ
t
i

)
(7)

with θ t
i representing the angle at vertex i in triangle t. Nt(vi) is

the set of 1-ring neighbor triangles of vi. Detailed benchmarks of
numerical calculations of the mean curvature and the Laplacian
of the mean curvature can be found in Section 1 of the Electronic
Supplementary Information (ESI) (also see Figures S1 and S2)

2.3 Forces on discretized surface

The bending force acting on each vertex of the triangular mesh
can be calculated from the force density vector f, which is given
by the first variation of the bending energy functional53,54

f = 2κb

[
2(H −H0)(H2 +H0H −G)+∆sH

]
n (8)
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Here, ∆sH denotes the Laplacian of the mean curvature, which
again can be calculated by the cotangent expression on dis-
cretized surfaces. The nodal bending force is then calculated by
multiplying the mixed vertex area with the force density vector
evaluated at vertex i

fb = f(xi)Ai
mixed (9)

The area constraint force is calculated by taking the negative po-
sitional gradient of the energy:49,55:

fa =−∂Ea

∂xi
=−κa

2(A−A0)

A0

Nt

∑
t

∂At

∂xi
(10)

Here, At is the area of the triangle t and Nt is the total number of
triangles of the mesh. The discretized form of the area gradient
for vertex i is described below46:

Nt

∑
t

∂At

∂xi
=

1
2

Nv(vi)

∑
j

(cotαi j + cotβi j)(xi −x j) (11)

Similarly, the force derived from the volume constraint can be
calculated by using the following equations:

fv =−∂Ev

∂xi
=−κv

2(V −V0)

V0

Nt

∑
t

∂V t

∂xi
(12)

where V t is the volume of the tetrahedron formed by triangle t
and an arbitrary point (selected as the origin here). The volume
gradient term can be obtained by the following expression46:

Nt

∑
t

∂V t

∂xi
=

1
3

Nt

∑
t

Atnt (13)

with nt being the unit face normal for triangle t.

2.4 Membrane–particle interaction

The adhesion energy between the membrane surface and particle
surface regulates the process of particle wrapping by a membrane.
We can express the adhesion energy between the discretized sur-
face and the particle as follows11,31:

Ead =
Nv

∑
i

V (di)Ai
mixed (14)

Here, V (di) is the particle–membrane interaction energy per unit
area, which depends on the distance between the vesicle vertices
and the surface of the particle di = |xi−x0|−Rp with x0 represent-
ing the particle center and Rp denoting the particle radius. The
interaction between particle and membrane can be attributed to
electrostatic and van der Waals forces, as well as the binding of
specific receptor and ligand molecules anchored in the membrane
and on the particle surface. In this study, we model adhesion us-
ing a continuous Morse potential12,17,56

VM(di) =U(e−2di/ρ −2e−di/ρ ) (15)

which is characterized by its depth U and potential range ρ as
shown in Figure 2. The potential takes the minimal value of −U at
di = 0, corresponding to the equilibrium distance between the par-

Fig. 2 Energy profile of the Morse potential.

ticle and bound membrane patch. Similar to other nodal forces,
the adhesion force on each vertex is given by

fad =−∂Ead

∂xi
(16)

The total energy of the system including the contribution from
the adhesion energy is

Etotal = Evesicle +Ead (17)

By comparing the adhesion energy to the bending energy, we
can define a reduced adhesion energy u = UR2

p/κb, governed by
bending modulus κb, adhesion energy density U , and particle ra-
dius Rp. Previous studies have shown that particle wrapping by
cell membrane is influenced by the relative curvature Cr and u and
u = 2 serves as a critical point corresponding to the transition be-
tween wrapped and unwrapped states. Moreover, at u = 2.0, the
interplay between bending and adhesion energies leads to an en-
ergy landscape in which the unwrapped and fully wrapped states
have equal overall energies, irrespective of the relative size of the
vesicle and nanoparticle12.

2.5 Time integrator and mesh regularization

The forward Euler method is commonly used in numerical simu-
lations, particularly when solving differential equations that gov-
ern the evolution of a system over time. The total force ftotal of
each vertex is calculated to obtain the vertex velocity v. The new
vertex position is given for the following time step.

v = ẋ = ftotal/γ = (fb + fa + fv + fad)/γ (18)

Here, γ is an effective drag coefficient representing the strength
of viscous dissipation from the background, considering the vesi-
cle is immersed in a liquid. In the context of optimization, the
forward Euler scheme is equivalent to the gradient descent algo-
rithm for minimizing an objective function, which herein is the
discrete energy.

In simulations with multiple particles, the relative motion be-
tween particles during their interaction with the vesicle is of inter-
est. Thus, the particle dynamics is modeled by simply calculating
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the reaction force fp of the adhesion force according to Newton’s
third law. Notably, different from fad which includes contribu-
tions from variations in both Morse potential and membrane ver-
tex area (see Eqs. 16 and 18), the reaction force on the particle
accounts for only the contribution from the adhesion potential.
To prevent particle overlap, a linear excluded volume repulsion
fev is also introduced. The particle velocity vp is then calculated
by vp = (fp + fev)/γp with γp being the effective drag coefficient
for nanoparticles.

We observed that the triangulated mesh configuration of the
vesicle could suffer from significant distortions when interacting
with particles, such as elongation in one direction or the genera-
tion of obtuse angles. In this force-based scheme, the nodal forces
depend sensitively on the underlying mesh geometry. When the
mesh structure deforms abruptly, the force variations can lead to
numerical instability, convergence issues, or even divergence of
the simulation. As a result, the system energy is also significantly
affected by mesh quality. To improve simulation stability and en-
sure the accuracy of the energy analysis, two mesh regularization
schemes are implemented. The first regularization scheme is the
equiangulation57, also known as the T2 bond flipping27. By us-
ing this method, we aim to optimize the triangular configurations
of the mesh to achieve equilateral or near-equilateral triangles.
The second regularization scheme is the “vertex averaging”57 to
redistribute the vertices to improve the mesh homogeneity. For
each vertex, this operation computes a new position by taking
the area-weighted average of the centroids of the triangles con-
nected to the vertex. Both regularization schemes play crucial
roles in preserving the quality of the triangulated mesh during its
evolution. By mitigating mesh distortion and preserving uniform
triangular elements, these techniques contribute to more reliable
simulations of the particle–vesicle system.

Determining the geometric properties of the triangulated sur-
face of the vesicle constitutes a pivotal component in the com-
putation of force and energy terms. To increase computational
efficiency, we utilized the libigl C++ library for the geometric cal-
culations58. The simulations were performed by in-house C++
code.We performed a comprehensive validation of our model by
reproducing previously observed phase diagrams of vesicle shapes
as detailed in ESI Section 2 and Figures S3 and S4.

3 Results and Discussion

3.1 Interactions of single particles with spherical vesicles

Endocytosis and exocytosis are cellular processes involved in the
transport of colloidal particles across cell membranes59,60. En-
docytosis is the process by which a cell takes in substances from
its surroundings. Exocytosis, on the other hand, helps the cell re-
lease substances into the external environment. To mimic these
two processes, we explore the interaction of vesicles with external
and internal particles. Particles of different sizes are denoted by
a signed vesicle-to-particle relative curvature Cr =±Rp/Rv =±Rp

for the vesicle with initial radius Rv = 1. This geometric property
reflects the degree of concavity or convexity of the local mem-
brane patch around the initial contact point. The membrane of a
spherical vesicle has consistent concavity or convexity, depending

on the side of particle interaction. Thus, the sign also differen-
tiates the particles located inside and outside the vesicle. The
positive and negative signs correspond to the particles outside
and inside the vesicle, respectively. Our model explores the inter-
action regime for relative curvatures on the order of 0.1 and the
large deformation of vesicles induced by particle interaction.

We note that this study does not distinguish real intracellu-
lar and extracellular environments separated by membranes with
asymmetric lipid composition between leaflets61 and transmem-
brane electrostatic potential differences62. The current model
can be extended to incorporate non-zero membrane spontaneous
curvature and asymmetric particle interaction potential depend-
ing on the side of the interaction. However, integrating molecular
dynamics simulations capturing detailed interactions and/or ex-
perimental data is needed to account for these effects accurately,
which is beyond the scope of this work.

Due to the use of continuous Morse potential with a finite po-
tential range, we introduce an effective wrapping fraction of the
nanoparticles based on adhesion energy to quantify the wrapping
state. Namely, it is defined by the ratio of the adhesion energy
Ead computed in the simulation to the theoretical adhesion en-
ergy corresponding to the wrapping of the entire particle, given as
χe f f = Ead/

(
4πUR2

p
)
. When first exploring single-particle inter-

actions, instead of the fixed space frame in which particle dynam-
ics are explicitly modeled, the moving body frame is simulated
with the nanoparticle fixed during the wrapping. We confirmed
that the selection of different frames of reference has a negligible
influence on the system evolution and equilibrium energy. The
simulation parameters are given in Table 1.

Table 1 Model parameters used for nanoparticle–vesicle interaction sim-
ulations

Parameters Values
Spherical vesicle radius (Rv) 1.0
Spontaneous mean curvature (H0) 0.0
Bending modulus (κb) 0.01
Area expansion modulus (κa) 1.0
preferred surface area (A0) 4π

Volume constraint modulus (κv) 0.0 (Spherical vesicles)
or 2.0 (Biconcave vesicle)

Particle radius (Rp) 0.2-0.4
Reduced adhesion energy (u) 2.0
Morse potential range (ρ) 0.01
Membrane drag coefficient (γ) 1.0
Particle drag coefficient (γp) 100.0
Time step (δ t) 0.01

We examine the total and bending energies of the particle-
vesicle system to gain quantitative insights into their interactions.
The theory predicts significant energy barriers associated with the
wrapping of external particles18. Therefore, to explore and sam-
ple states that are energetically unfavorable, we introduce a har-
monic biasing potential, which resembles the ideas of umbrella
sampling63 used in molecular dynamics simulations. This poten-
tial adds a restraining force that assists in reaching target wrap-
ping fractions.

Figure 3a plots the total equilibrium energies of the particle–
vesicle complex at different wrapping fractions. The profiles ex-
hibit distinct behaviors between internal and external particle
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Fig. 3 Normalized (a) total and (b) bending energies as functions of
effective wrapping fractions χe f f and relative curvature Cr of the parti-
cles. Cr is positive for a particle outside the vesicle (closed markers) and
negative for a particle inside the vesicle (open markers). The dotted lines
represent theoretical predictions in Bahrami et al. 18 for Cr =±0.322.

wrapping. For external particles, the total energy first increases
and then decreases as χe f f increases. The maximum corresponds
to an energy barrier that inhibits spontaneous wrapping. How-
ever, if the energy barrier were overcome, the wrapping would
proceed until membrane fission to complete the internalization
of the fully wrapped particle (not incorporated in the present
model). Oppositely, when particles interact with the membrane
from the inside, the total energy monotonically decreases until
an effective wrapping fraction of approximately 0.6 is reached,
indicating spontaneous wrapping. This observation suggests that
internal particles naturally affiliate with the membrane. How-
ever, additional energy is required to exceed the optimal degree
of wrapping. Compared with external wrapping showing pro-
nounced particle size effects, the wrapping of internal particles
is significantly less sensitive to the relative curvature, evinced by
the collapse of energy curves.

Figure 3b shows the variations in the bending energy of the
vesicle induced by particle wrapping. When particles are not
wrapped, the bending energies converge to that of an unal-
tered spherical vesicle, specifically 8πκb. As the wrapping frac-
tion increases, the bending energies rapidly increase due to the
adhesion-induced vesicle deformation. As the wrapping fraction
is close to 1.0, the bending energy approaches 16πκb regardless

of the particle location. This limiting state corresponds to the
full wrapping in which two spherical membrane patches are con-
nected by an infinitesimal neck. Notably, external particles induce
a steeper bending energy increase relative to those inside. Con-
sistent with the total energy profiles, the particle size has a pro-
nounced effect on external wrapping while the bending energy
differences among internal particles are negligible. This observa-
tion underscores that external particles exert a more significant
influence on vesicle deformation dynamics.

The energy profiles obtained from our numerical model devi-
ate from the theoretical predictions considerably. However, they
present features consistent with those observed in other numer-
ical simulations31. The most obvious discrepancy between our
results and previous theoretical predictions is the significant un-
derestimation of bending and total energies. This deviation is at-
tributed to a key distinction in our methodology compared to that
of Bahrami et al. While the theoretical calculation relies on a con-
stant free energy per area for adhesion, our model incorporates
particle adhesion using a continuous potential defined on a finite
range, which results in a varying adhesion energy density, depen-
dent on the instantaneous vertex-to-surface distance. Given this
adhesion potential, the particle surface becomes smeared with
a broadened attraction range between the particle and the mem-
brane and the particle size effectively increases. These two effects
result in increased adhesion energy as well as increased effective
wrapping fraction (which is based on the adhesion energy).

Interestingly, the total energy of external wrapping for the
smallest particle of relative curvature Cr = 0.2 particle (Figure S7)
shows a minimum around χe f f = 0.2 in contrast to the theoretical
predictions18, which suggests limited spontaneous wrapping of
small external particles. Moreover, the systems cannot reach tar-
get wrapping fractions greater than 0.9 and 0.8 for external and
internal wrapping, respectively. The energy profiles also exhibit
anomalous variations at high wrapping fractions. We assert that
this behavior is attributed to insufficient mesh resolutions to ac-
curately capture the high curvature bending induced by the small
particles.

Figures S5 and S6 in the ESI showcase the vesicle morphol-
ogy changes when interacting with external and internal parti-
cles, respectively. At low wrapping fractions, vesicles retain a
nearly spherical shape. Yet, as χe f f rises, specifically within the
range from 0.3 to 0.7, the vesicle undergoes notable deformations
both local to the particle as well as in the global shape due to
the conservation of membrane area. Depending upon the particle
location, the local deformations can adopt either concave or con-
vex configurations. When wrapping a large external particle, the
vesicle morphs into a distinct kidney-like shape. In contrast, the
vesicles interacting with internal particles predominantly evolve
into teardrop shapes as wrapping progresses, consistent among
different particle sizes. At χe f f = 0.9, the simulation snapshots
clearly show the formation of a neck connecting the membrane
patch wrapping the particle to the parent vesicle. Particularly
in external wrapping, the neck region resembles a catenoid-like
deformation, an exemplary minimal surface with zero mean cur-
vature and thus zero bending energy.

Having observed multiple behaviors hint at mesh resolution,
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We further conducted a mesh-sensitivity study to assess the influ-
ence of mesh density and particle size on the wrapping state. Our
tests utilize a coarser mesh consisting of 5,120 triangles and a
finer mesh having 20,480 triangles. Figure S8 demonstrates sub-
stantial deviations in the bending and total energy profiles when
comparing coarser and finer mesh models for a relative curvature
of ±0.20. The coarser mesh model fails to achieve target wrap-
ping fractions greater than 0.9 and 0.8 for external and internal
wrapping of Rp = 0.2 particles, respectively. Moreover, the en-
ergy profiles exhibit anomalous variations at high wrapping frac-
tions. The finer mesh not only enables the simulations of higher
effective wrapping fractions but also results in smoother varia-
tions in the energy profiles. For particles with a radius of 0.3
(Cr =±0.3) shown in Figure S8, the differences between the two
meshes are much less discernible, suggesting the interaction is ac-
curately captured with both mesh resolutions. We note that the
total energy for external wrapping plateau at the extreme target
wrapping fractions of 0.95, deviating from the further decrease
predicted by the theory. Figures S7 and S8 also confirm that the
adhesion energy is not affected by the mesh resolution.

To further understand the mesh resolution effect, Figure S9
presents a visual sequence illustrating neck formation in a system
with a high wrapping fraction around 0.9. Notably, an interme-
diate state where the membrane shape is still evolving features
an unstable neck morphology, as shown in Figures S9a,b. The-
oretically, the neck radius would shrink asymptotically to zero
(corresponds to the membrane fission) as the wrapping fraction
approaches 1.0. The triangulated surface will inevitably fail to ac-
curately represent the small neck with high curvature, resulting
in an overestimation of the mean curvature and bending energy.
Consequently, the neck expands unphysically to relieve the excess
bending energy as shown in Figures S9c,d, leading to the reduc-
tion in the effective wrapping fraction. This improper formation
of stable necks of small radii limited by mesh resolution and the
finite-ranged particle adhesion could incur a significant energy
penalty from the imposed biasing potential. This increased bias-
ing potential energy thus contributes to the rapid increases in the
total energy and arrests the system at metastable states as shown
by the outlier in Figure 3 and Figure S7.

It is also noteworthy that, for lower wrapping fractions, the
deformed vesicle shape remains symmetric around the particle.
However, when the vesicle wraps the particle at a high wrapping
fraction (χe f f > 0.8), the vesicle deformation becomes asymmet-
ric with concurrent neck formation (See Figures S5 and S6). A
comprehensive examination of energy-equilibrium shapes shows
that the asymmetric deformation exacerbates when the neck size
decreases, corresponding to increasing wrapping fractions. We at-
tribute the development of asymmetric shapes to an uneven dis-
tribution of membrane bending force in the neck region. Due
to high curvature and non-axisymmetric nodal distribution, the
bending force could be highly nonuniform in the transverse di-
rection of the neck and cause the connecting parent vesicle to
take an asymmetric configuration to minimize the total bending
energy. These findings shed light on the intricate evolution of
vesicle morphology in response to particle introduction, further
elucidating the interplay between particle size, curvature, and

resulting vesicle shapes. Despite external wrapping at extreme
wrapping fractions, the interactions of nanoparticles of radius 0.3
are accurately modeled. Thus, we focus on this particle size in
the following simulations.

3.2 Interactions of two particles with spherical vesicles

Fig. 4 Normalized (a) total and (b) bending energies of spherical vesicles
interacting with two nanoparticles having a relative curvature of 0.3 at
different effective wrapping fractions. The solid and open markers repre-
sent the states with particles located outside and inside of the vesicle, re-
spectively. Dotted lines present the energy profiles for the corresponding
single-particle interaction for comparison. Here, the particle–membrane
interaction is modeled by a Morse potential with a reduced adhesion
strength of u = 2.0 a potential range of ρ = 0.01.

In this section, we delve into the dynamics of a spherical vesicle
concurrently interacting with two nanoparticles, each with a size
parameter of Cr = 0.3 at different wrapping fractions. We con-
sider relative particle motion to efficiently probe the interaction
dynamics, as described in Section 2.5. As in our previous analy-
ses, we employ the umbrella potential to explore states that are
energetically less favorable. Our findings reveal that when a vesi-
cle interacts with two particles, the resulting equilibrium energy
profiles (both total and bending) resemble those for the single-
particle interactions, as detailed in Figures 4a,b. The bending
energies of both external and internal wrapping are significantly
higher because the vesicle has to deform more to accommodate
extra particles. Compared to a single particle, the external wrap-
ping of two particles needs to overcome a higher energy barrier,
while the wrapping of two inside particles is energetically more
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favorable. Notably, both the minimum and maximum of the to-
tal interaction energy are located at χe f f of approximately 0.7,
slightly higher than in the single-particle interactions.

Fig. 5 Relation between interparticle distance and particle wrapping frac-
tion for two particles having a relative curvature 0.3 interacting with a
vesicle simultaneously. Insets show corresponding equilibrium configura-
tions for different wrapping states. The adhesion strength and potential
range of the particle–membrane interaction is u = 2.0 and ρ = 0.01, re-
spectively. The dashed line denotes the distance corresponding to the
contact of two particles.

We quantify the distances between the two particles as they
interact and become wrapped by the vesicle. As shown in Fig-
ure 5, for particles within the vesicle, the interparticle distance
(dp) increases proportionally with the increasing wrapping frac-
tion. Concurrently, there is a noticeable elongation of the vesicle,
with the particles positioning themselves at opposite poles. Op-
positely, during external wrapping, dp decreases monotonically.
Initially, at low wrapping degrees (0 ≤ χe f f ≤ 0.5), the vesicle ap-
pears squeezed by the particles due to the wrapping. However,
as the wrapping fraction exceeds 0.5, the vesicle tends to revert
to a nearly spherical shape, enclosing the particles within its in-
terior. At very high wrapping fractions, particles approach each
other until contact. This close proximity can lead to changes in
the vesicle topology through membrane fusion (not accounted for
in this study).

In addition to well-separated particles, we also simulated the
external wrapping of two adjacent particles. Figure S10 confirms
that the vesicle retains a near-spherical shape while interacting
with two adjacent spherical particles for lower wrapping frac-
tions. As the wrapping fraction increases, the vesicle first adopts
an oblate shape and then recovers a spherical shape once the two
particles are completely internalized. Due to enforcing the same
wrapping fraction for the two particles, our simulations repro-
duce the symmetric joint wrapping of two particles observed in
previous studies11. Notably, in spontaneous interaction in which
two particles could have different wrapping fractions, there exists
a more energetically favorable state of asymmetric wrapping by
an invaginated membrane tube11.

Fig. 6 (a) Initial configuration and (b) well-developed state of a
biconcave-shaped vesicle interacting with a single particle. (c) Initial
and (d) final equilibrium states of the successive interaction with the
second particle are also shown. Particles in red color represent sponta-
neous interaction without any bias potential.

Fig. 7 (a) Initial and (b) equilibrium states of the interaction between
the biconcave-shaped vesicle and two particles simultaneously placed at
the waist of the vesicle. (c) Initial and (b) equilibrium states when the
particles are initially located at the top and bottom concave regions of the
vesicle. Particles in red color represent spontaneous interaction without
any biasing potential.

3.3 Interactions of particles with biconcave-shaped vesicles

How orientations and initial positions of multiple nanoparticles
affect the membrane-particle interaction has been modeled in
previous studies, revealing the importance of cooperative effect in
multiple particle interactions64–66. However, these studies focus
on the interaction with membranes with negligible local curva-
tures (i.e., modeling a flat membrane). In this work, we extend to
consider the effect of membrane curvature and further probe the
interactions between particles and vesicles with biologically rele-
vant shapes for different sequences and positions of interaction.
Due to the extensive interest in cellular responses of nanoparticle
exposure, we model biconcave discoid vesicles, which resemble
healthy red blood cells (RBCs). Unlike the previous model of
spherical vesicles, the biconcave vesicle with a reduced volume
of v of 0.65 is subjected to a constant volume constraint with
κv = 2.0, mimicking volume regulation in real cells.

We initiate our study by introducing a single particle on the
top concave region of a discocyte-shaped vesicle (Figure 6a).
The interaction between the particle and vesicle occurs sponta-
neously without any additional biasing potential. Due to intrinsic
membrane concavity at the contact, the membrane rapidly wraps
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around the particle as shown in Movie S1 and achieves effective
wrapping fractions χe f f > 0.8. The high wrapping fractions con-
firm the successful uptake of the particle by the cell membrane
(Figure 6b). Induced by the particle uptake, the bottom concave
region of the vesicle reshapes to a convex shape. After the up-
take of the first particle, we position a second particle beneath
the vesicle, again without applying any biasing potential (Fig-
ure 6c). Interestingly, the second particle archives a significantly
lower wrapping fraction around 0.2, while the top particle main-
tains a similar degree of wrapping during the simulations (Figure
8a).

The difference in the final state is attributed to the morpholog-
ical changes of the vesicle induced by the first particle. Specifi-
cally, the lower concavity of the vesicle disappears which results
in an unfavorable interaction between the second particle and a
locally convex region of the membrane (imposing a higher en-
ergy barrier). In addition, the interparticle distance quickly de-
creases to 2Rp = 0.6 (Figure 8a), indicating that the interaction
with the vesicle draws two particles into contact. The presence of
the highly wrapped first particle thus prevents the further wrap-
ping of the second one. Figure 6d also illustrates the shift of the
particles from the vesicle center and the vesicle responds by de-
forming asymmetrically. Notably, the particle contact would im-
ply the contact of the membrane patches wrapping the particle.
We speculate that this membrane contact will lead to membrane
fusion and the creation of a hole in the vesicle, corresponding to
a topological change. This nontrivial shape transformation could
disrupt the structural integrity of the cell and potentially its bio-
logical functions, or even induce wrapping-induced lysis.

To further investigate the effect of interaction sequence and
local membrane shapes, we place two spherical particles simul-
taneously in the top and bottom concave region of the discoid
vesicle (Figure 7). Figure 7a,b demonstrate that the vesicle fails
to uptake the particles positioned at the waist due to the local
convexity of the membrane. Namely, the χe f f does not exceed
0.1, indicating a substantial energy barrier imposed by the convex
membrane shape. In contrast, the vesicle readily wraps the two
particles located near the concave regions of the vesicle (Figure
7c), gradually achieving an intermediate wrapping fraction ≈ 0.45
for both particles, as illustrated in Figure 7d. Figure 8b shows that
both particles initially experience a sharp increase in wrapping
fraction, which then plateaus, indicating an equilibrium state has
been reached. As a result of the concurrent uptake, the inter-
particle distance decreases until two particles contact (see Movie
S2). The vesicle topological change due to the membrane contact
would also happen in this case. These results underscore that the
outcome of the interaction is influenced by the local membrane
curvature. This also highlights that the concavities in biconcave
vesicle shape facilitate nanoparticle uptake and emphasize the im-
portance of interaction sequence.

Finally, we explore the dynamics of a discocyte vesicle in the
presence of two strongly interacting particles positioned along its
waist (see Figure 9 and Movie S3). Here, we impose the um-
brella potential to enforce particle wrapping with a target wrap-
ping fraction of 0.5. In the initial phase of simulation (Figure 9a),
we observe that the vesicle elongates horizontally to facilitate par-

Fig. 8 Temporal evolution of effective wrapping fraction and interparticle
distance for two particles, for (a) sequential interaction and (b) simul-
taneous interaction for two different particles, labeled as Particle 1 and
Particle 2. The black markers denote the wrapping fraction while the red
line tracks the interparticle distance. The shaded region corresponds to
the two stages of the interaction.

ticle wrapping. Figure 10 registers a corresponding drastic rise in
the bending energy. The vesicle transitions to a dog-bone shape.
Simultaneously, the particles move apart with dp increases to ap-
proximately 5.4 (Figure 10b). As the simulation progresses (Fig-
ure 9b,c), the elongated vesicle begins to contract to release the
excess bending energy and move the particles at the two ends of
the vesicle toward each other. dp exhibits a monotonic decrease
to approximately 2.8. Approaching equilibrium (Figures 9e-h, the
particles aggregate toward the middle section of the vesicle, even-
tually coming into contact. The vesicle forms a dimple hosting
both particles with an effective wrapping fraction of ≈ 0.45 and
the bending energy of the vesicle is lowered to 2.25 at the equilib-
rium (Figure 10) Due to the adhesion energy imposed by particles
to deform the vesicle, the equilibrium bending energy is higher
than the initial bending energy of the biconcave vesicle. This re-
sult showcases the membrane-mediated nanoparticle aggregation
on vesicles with complex shapes.

4 Conclusions
This study employed a force-based, continuum scale model to in-
vestigate the dynamics of fluid vesicles in response to the interac-
tions of nanoparticles that exhibit adhesive interactions and pos-
sess dimensions greater than the membrane thickness. The mem-
brane bending energy and total free energy profiles correspond-
ing to the full range of wrapping fractions (0.05 ≤ χe f f ≤ 0.95)
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Fig. 9 Simulation snapshot sequence for interaction dynamics between two particles and the biconcave-shaped vesicle with a bias potential to reach
target wrapping fraction of 0.5. The initial positions of the particles are on the waist. The brown color indicates the particles with the bias potential.

were systematically characterized for a single nanoparticle inter-
acting with a spherical vesicle at various curvature ratios (0.2 ≤
Cr ≤ 0.4). The results demonstrate that a nanoparticle interacting
from outside the vesicle must overcome a substantial energy bar-
rier to achieve full wrapping, whereas an internal particle spon-
taneously attains an intermediate wrapping fraction. The parti-
cle size affects external wrapping more significantly than internal
wrapping. Due to the discretization effects, the energy maxima
and minima were observed at wrapping fractions higher than 0.5
predicted by the analytical theory18. The significant deviations
in energies between simulation and theory are attributed to the
finite range of the Morse potential used for modeling the particle–
membrane interaction. When wrapping an extra particle, the
vesicles exhibit similar energy variations, but the magnitudes of
energy changes increase. The progressive wrapping of dual par-
ticles also results in opposite trends in the interparticle distance
for the particles located inside or outside the vesicle. While the
wrapping of internal particles drives their separation, the external
particles aggregate as being wrapped more.

Furthermore, our research extends to multiple particle inter-
actions with biological vesicles of red blood cell shapes. We
elucidate the effects of initial particle positions and interaction
sequences in determining the equilibrium configurations of the
vesicle-particle complexes. The results show that the membrane
concavity facilitates particle uptake while the convex membrane
region repels adhesive particles. Vesicle shape changes induced
by the interaction of the first particle influence the wrapping of
ensuing particles. Finally, the simulation demonstrates highly dy-
namic shape variations of the biconcave vesicle when interacting
with strongly adhesive particles. To conclude, this study high-
lights the intricacies of particle–vesicle interaction dynamics and
reveals the importance of wrapping fractions and particle posi-
tioning in governing equilibrium configurations. Our results also
provide insights into the potential effects of nanoparticles on bio-
logical structures.
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Gauthier and N. S. Gov, A theoretical model of efficient phago-
cytosis driven by curved membrane proteins and active cy-
toskeleton forces, Soft Matter, 2023, 19, 31–43.

35 X. Yong, E. J. Crabb, N. M. Moellers and A. C. Balazs,
Self-healing vesicles deposit lipid-coated janus particles into
nanoscopic trenches, Langmuir, 2013, 29, 16066–16074.

36 I. Salib, X. Yong, E. J. Crabb, N. M. Moellers, G. T. McFarlin IV,
O. Kuksenok and A. C. Balazs, Harnessing fluid-driven vesicles
to pick up and drop off Janus particles, ACS nano, 2013, 7,
1224–1238.

37 T. Idema and D. J. Kraft, Interactions between model inclu-
sions on closed lipid bilayer membranes, Current Opinion in
Colloid & Interface Science, 2019, 40, 58–69.

38 K. Xiong, J. Zhao, D. Yang, Q. Cheng, J. Wang and H. Ji, Coop-
erative wrapping of nanoparticles of various sizes and shapes
by lipid membranes, Soft Matter, 2017, 13, 4644–4652.

39 J. A. Champion and S. Mitragotri, Role of target geometry in
phagocytosis, Proceedings of the National Academy of Sciences,
2006, 103, 4930–4934.

40 P. B. Canham, The minimum energy of bending as a possible
explanation of the biconcave shape of the human red blood
cell, Journal of Theoretical Biology, 1970, 26, year.

41 E. Evans and Y.-C. Fung, Improved measurements of the ery-
throcyte geometry, Microvascular research, 1972, 4, 335–347.

42 M. Deserno, Fluid lipid membranes: From differential geome-
try to curvature stresses, Chemistry and Physics of Lipids, 2015,
185, 11–45.

43 A. Guckenberger and S. Gekle, Theory and algorithms to com-
pute Helfrich bending forces: A review, Journal of Physics:
Condensed Matter, 2017, 29, 203001.

44 K. Crane and M. Wardetzky, A glimpse into discrete differen-
tial geometry, Notices of the American Mathematical Society,
2017, 64, year.

45 M. Siggel, S. Kehl, K. Reuter, J. Köfinger and G. Hummer,
TriMem: A parallelized hybrid Monte Carlo software for effi-
cient simulations of lipid membranes, The Journal of Chemical
Physics, 2022, 157, 174801.

46 X. Bian, S. Litvinov and P. Koumoutsakos, Bending models of
lipid bilayer membranes: Spontaneous curvature and area-
difference elasticity, Computer Methods in Applied Mechanics
and Engineering, 2020, 359, 112758.

47 D. Steigmann, Fluid films with curvature elasticity, Archive for
Rational Mechanics and Analysis, 1999, 150, 127–152.

48 T. Seifert, O. Zschörnig, J. Arnhold and K. Arnold, Beta-
blockers inhibit the modification of low-density lipoproteins
by sodium hypochlorite in vitro, Chemistry and physics of
lipids, 1997, 85, 13–21.

49 C. Zhu, C. T. Lee and P. Rangamani, Mem3DG: modeling
membrane mechanochemical dynamics in 3D using discrete
differential geometry, Biophysical reports, 2022, 2, 100062.

50 E. Grinspun, M. Desbrun, K. Polthier, P. Schröder and A. Stern,

Discrete differential geometry: an applied introduction, ACM
Siggraph Course, 2006, 7, year.

51 M. Meyer, M. Desbrun, P. Schröder and A. H. Barr, Visualiza-
tion and Mathematics III, Berlin, Heidelberg, 2003, pp. 35–
57.

52 S. Jin, R. R. Lewis and D. West, A comparison of algorithms
for vertex normal computation, The visual computer, 2005,
21, 71–82.

53 O.-Y. Zhong-Can and W. Helfrich, Bending energy of vesicle
membranes: General expressions for the first, second, and
third variation of the shape energy and applications to spheres
and cylinders, Physical Review A, 1989, 39, 5280.

54 K. Sinha and M. D. Graham, Dynamics of a single red blood
cell in simple shear flow, Physical Review E, 2015, 92, 042710.

55 D. Fedosov, B. Caswell and G. Karniadakis, Dissipative Particle
Dynamics Modeling of Red Blood Cells, 2010, 183–218.

56 M. Raatz and T. R. Weikl, Membrane tubulation by elon-
gated and patchy nanoparticles, Advanced Materials Interfaces,
2017, 4, 1600325.

57 K. A. Brakke, The surface evolver, Experimental mathematics,
1992, 1, 141–165.

58 A. Jacobson, D. Panozzo et al., libigl: A simple C++ geometry
processing library, 2018, https://libigl.github.io/.

59 R. Sakhtianchi, R. F. Minchin, K.-B. Lee, A. M. Alkilany, V. Ser-
pooshan and M. Mahmoudi, Exocytosis of nanoparticles from
cells: role in cellular retention and toxicity, Advances in colloid
and interface science, 2013, 201, 18–29.

60 G. Sahay, D. Y. Alakhova and A. V. Kabanov, Endocytosis of
nanomedicines, Journal of controlled release, 2010, 145, 182–
195.

61 E. Pirhadi, J. M. Vanegas, M. Farin, J. W. Schertzer and
X. Yong, Effect of local stress on accurate modeling of bac-
terial outer membranes using all-atom molecular dynamics,
Journal of Chemical Theory and Computation, 2022, 19, 363–
372.

62 L. Wang, Measurements and implications of the membrane
dipole potential, Annual review of biochemistry, 2012, 81,
615–635.

63 C. Bartels and M. Karplus, Probability distributions for com-
plex systems: adaptive umbrella sampling of the potential en-
ergy, The Journal of Physical Chemistry B, 1998, 102, 865–
880.

64 T. Yue and X. Zhang, Cooperative effect in receptor-mediated
endocytosis of multiple nanoparticles, ACS nano, 2012, 6,
3196–3205.

65 Z. Yan, Z. Wu, S. Li, X. Zhang, X. Yi and T. Yue, Curvature-
mediated cooperative wrapping of multiple nanoparticles at
the same and opposite membrane sides, Nanoscale, 2019, 11,
19751–19762.

66 T. Yue, X. Wang, F. Huang and X. Zhang, An unusual pathway
for the membrane wrapping of rodlike nanoparticles and the
orientation-and membrane wrapping-dependent nanoparticle
interaction, Nanoscale, 2013, 5, 9888–9896.

12 | 1–12Journal Name, [year], [vol.],


	Introduction
	Theoretical Background and Simulation Setup
	Membrane elasticity theory
	Calculation of discrete geometric properties
	Forces on discretized surface
	Membrane–particle interaction
	Time integrator and mesh regularization

	Results and Discussion
	Interactions of single particles with spherical vesicles
	Interactions of two particles with spherical vesicles
	Interactions of particles with biconcave-shaped vesicles

	Conclusions

